Description

`mprobit` fits a multinomial probit (MNP) model for a categorical dependent variable with outcomes that have no natural ordering. The actual values taken by the dependent variable are irrelevant. The error terms are assumed to be independent, standard normal, random variables. `cmmprobit` relaxes the independence of irrelevant alternatives assumption by specifying correlated latent-variable errors. `cmmprobit` also allows heteroskedastic latent-variable errors and alternative-specific independent variables.

Quick start

Multinomial probit model of `y` on `x1`, `x2`, and categorical `a`

```stata
mprobit y x1 x2 i.a
```

As above, but use as the base outcome `y = 3`

```stata
mprobit y x1 x2 i.a, baseoutcome(3)
```

Probit variance parameterization of differenced latent errors

```stata
mprobit y x1 x2 i.a, probitparam
```

Multiple-imputation estimates with Monte Carlo errors from `mi set data`

```stata
mi estimate, merror: mprobit y x1 x2 i.a
```

Menu

Statistics > Categorical outcomes > Multinomial probit regression
Syntax

```plaintext
mprobit depvar [ indepvars ] [ if ] [ in ] [ weight ] [, options ]
```

options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td><code>noconstant</code></td>
</tr>
<tr>
<td>`baseoutcome(#</td>
</tr>
<tr>
<td><code>probitparam</code></td>
</tr>
<tr>
<td><code>constraints(constraints)</code></td>
</tr>
<tr>
<td>SE/Robust</td>
</tr>
<tr>
<td><code>vce(vcetype)</code></td>
</tr>
<tr>
<td>Reporting</td>
</tr>
<tr>
<td><code>level(#)</code></td>
</tr>
<tr>
<td><code>nocnsreport</code></td>
</tr>
<tr>
<td><code>display_options</code></td>
</tr>
<tr>
<td>Integration</td>
</tr>
<tr>
<td><code>intpoints(#)</code></td>
</tr>
<tr>
<td>Maximization</td>
</tr>
<tr>
<td><code>maximize_options</code></td>
</tr>
<tr>
<td><code>collinear</code></td>
</tr>
<tr>
<td><code>coeflegend</code></td>
</tr>
</tbody>
</table>

`indepvars` may contain factor variables; see [U] 11.4.3 Factor variables.
bayes, bootstrap, by, fp, jackknife, mi estimate, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: mprobit.

`vce(bootstrap)` and `vce(jackknife)` are not allowed with the `mi estimate` prefix; see [MI] mi estimate.
Weights are not allowed with the `bootstrap` prefix; see [R] bootstrap.
`vce()` and weights are not allowed with the `svy` prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

- **Model**
 - `noconstant` suppresses the \(J - 1 \) constant terms.
 - `baseoutcome(# | lbl)` specifies the outcome used to normalize the location of the latent variable. The base outcome may be specified as a number or a label. The default is to use the most frequent outcome. The coefficients associated with the base outcome are zero.
 - `probitparam` specifies to use the probit variance parameterization by fixing the variance of the differenced latent errors between the scale and the base alternatives to be one. The default is to
make the variance of the base and scale latent errors one, thereby making the variance of the difference to be two.

canstraints_1(constraints)_2; see [R] Estimation options.

| SE/Robust | vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

If specifying vce(bootstrap) or vce(jackknife), you must also specify baseoutcome().

| Reporting | level(#) , nocnsreport; see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nolabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] Estimation options.

| Integration | intpoints(#) specifies the number of Gaussian quadrature points to use in approximating the likelihood. The default is 15.

| Maximization | maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with mprobit but are not shown in the dialog box: collinear, coeflegend; see [R] Estimation options.

Remarks and examples

The MNP model is used with discrete dependent variables that take on more than two outcomes that do not have a natural ordering. The stochastic error terms for this implementation of the model are assumed to have independent, standard normal distributions. To use mprobit, you must have one observation for each decision maker in the sample. See [CM] cmmprobit for another implementation of the MNP model that permits correlated and heteroskedastic errors and is suitable when you have data for each alternative that a decision maker faced.

The MNP model is frequently motivated using a latent-variable framework. The latent variable for the jth alternative, j = 1, ..., J, is

\[\eta_{ij} = z_i \alpha_j + \xi_{ij} \]

where the 1 x q row vector z_i contains the observed independent variables for the ith decision maker. Associated with z_i are the J vectors of regression coefficients \(\alpha_j \). The \(\xi_{i,1}, \ldots, \xi_{i,J} \) are distributed independently and identically standard normal. The decision maker chooses the alternative k such that \(\eta_{ik} \geq \eta_{im} \) for \(m \neq k \).
Suppose that case i chooses alternative k, and take the difference between latent variable η_{ik} and the $J - 1$ others:

$$v_{ijk} = \eta_{ij} - \eta_{ik} = z_i(\alpha_j - \alpha_k) + \xi_{ij} - \xi_{ik} = z_i\gamma_{j'} + \epsilon_{ij'}$$ (1)

where $j' = j$ if $j < k$ and $j' = j - 1$ if $j > k$ so that $j' = 1, \ldots, J - 1$. $\text{Var}(\epsilon_{ij'}) = \text{Var}(\xi_{ij} - \xi_{ik}) = 2$ and $\text{Cov}(\epsilon_{ij'}, \epsilon_{i'l'}) = 1$ for $j' \neq l'$. The probability that alternative k is chosen is

$$\Pr(i \text{ chooses } k) = \Pr(v_{i1k} \leq 0, \ldots, v_{i,J-1,k} \leq 0) = \Pr(\epsilon_{i1} \leq -z_i\gamma_1, \ldots, \epsilon_{i,J-1} \leq -z_i\gamma_{J-1})$$

Hence, evaluating the likelihood function involves computing probabilities from the multivariate normal distribution. That all the covariances are equal simplifies the problem somewhat; see Methods and formulas for details.

In (1), not all J of the α_j are identifiable. To remove the indeterminacy, α_l is set to the zero vector, where l is the base outcome as specified in the baseoutcome() option. That fixes the lth latent variable to zero so that the remaining variables measure the attractiveness of the other alternatives relative to the base.

Example 1

As discussed in example 1 of [R] mlogit, we have data on the type of health insurance available to 616 psychologically depressed subjects in the United States (Tarlov et al. 1989; Wells et al. 1989). Patients may have either an indemnity (fee-for-service) plan or a prepaid plan such as an HMO, or the patient may be uninsured. Demographic variables include age, gender, race, and site. Indemnity insurance is the most popular alternative, so mprobit will choose it as the base outcome by default.
. use https://www.stata-press.com/data/r16/sysdsn1
(Health insurance data)
. mprobit insure age male nonwhite i.site
Iteration 0: log likelihood = -535.89424
Iteration 1: log likelihood = -534.56173
Iteration 2: log likelihood = -534.52835
Iteration 3: log likelihood = -534.52833
Multinomial probit regression
Number of obs = 615
Wald chi2(10) = 40.18
Log likelihood = -534.52833 Prob > chi2 = 0.0000

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|--------|-----------|------|------|----------------------|
| Insure | | | | | |
| Indemnity (base outcome) | | | | | |
| Prepaid | | | | | |
| age | -.0098536 | .0052688 | -1.87 | 0.061 | -.0201802 .000473 |
| male | .4774678 | .1718316 | 2.78 | 0.005 | .1406841 .8142515 |
| nonwhite | .8245003 | .1977582 | 4.17 | 0.000 | .4369013 1.212099 |
| site 2 | .0973956 | .1794546 | 0.54 | 0.587 | -.2543289 .4491201 |
| site 3 | -.495892 | .1904984 | -2.60 | 0.009 | -.869262 -.1225221 |
| _cons | .22315 | .2792424 | 0.80 | 0.424 | -.324155 .7704549 |
| Uninsured | | | | | |
| age | -.0050814 | .0075327 | -0.67 | 0.500 | -.0198452 .0096823 |
| male | .3332637 | .2432986 | 1.37 | 0.171 | -.1435929 .8101203 |
| nonwhite | .2485859 | .2767734 | 0.90 | 0.369 | -.29388 .7910518 |
| site 2 | -.6899485 | .2804497 | -2.46 | 0.014 | -.1.23962 -.1402771 |
| site 3 | -.1788447 | .2479898 | -0.72 | 0.471 | -.6648957 .3072063 |
| _cons | -.9855917 | .3891873 | -2.53 | 0.011 | -.1.748385 -.2227986 |

The likelihood function for mprobit is derived under the assumption that all decision-making units face the same choice set, which is the union of all outcomes observed in the dataset. If that is not true for your model, then an alternative is to use the cmmprobit command, which does not require this assumption. To do that, you will need to expand the dataset so that each decision maker has \(k_i \) observations, where \(k_i \) is the number of alternatives in the choice set faced by decision maker \(i \). You will also need to create a binary variable to indicate the choice made by each decision maker. Moreover, you will need to use the correlation(independent) and stddev(homoskedastic) options with cmmprobit unless you have alternative-specific variables.
stored results

mprobit stores the following in e():

Scalars
- e(N): number of observations
- e(k_out): number of outcomes
- e(k_points): number of quadrature points
- e(k): number of parameters
- e(k_eq): number of equations in e(b)
- e(k_eq_model): number of equations in overall model test
- e(k_indvars): number of independent variables
- e(k_dv): number of dependent variables
- e(df_m): model degrees of freedom
- e(ll): log simulated-likelihood
- e(N_clust): number of clusters
- e(chi2): \(\chi^2 \)
- e(p): p-value for model test
- e(k_eq_base): equation number of the base outcome
- e(baseout): the value of depvar to be treated as the base outcome
- e(ibaseout): index of the base outcome
- e(const): 0 if noconstant is specified, 1 otherwise
- e(probitparam): 1 if probitparam is specified, 0 otherwise
- e(rank): rank of e(V)
- e(ic): number of iterations
- e(rc): return code
- e(converged): 1 if converged, 0 otherwise

Macros
- e(cmd): mprobit
- e(cmdline): command as typed
- e(depvar): name of dependent variable
- e(indvars): independent variables
- e(wtype): weight type
- e(wexp): weight expression
- e(title): title in estimation output
- e(clustvar): name of cluster variable
- e(chi2type): Wald, type of model \(\chi^2 \) test
- e(vce): vcetype specified in vce()
- e(vcetype): title used to label Std. Err.
- e(outeqs): outcome equations
- e(out#): outcome labels, \#=1,...,e(k_out)
- e(opt): type of optimization
- e(which): max or min: whether optimizer is to perform maximization or minimization
- e(ml_method): type of ml method
- e(user): name of likelihood-evaluator program
- e(technique): maximization technique
- e(properties): b V
- e(predict): program used to implement predict
- e(marginsnotok): predictions disallowed by margins
- e(marginsdefault): default predict() specification for margins
- e(asbalanced): factor variables fvset as asbalanced
- e(asobserved): factor variables fvset as asobserved

Matrices
- e(b): coefficient vector
- e(outcomes): outcome values
- e(Cns): constraints matrix
- e(ilog): iteration log (up to 20 iterations)
- e(gradient): gradient vector
- e(V): variance–covariance matrix of the estimators
- e(V_modelbased): model-based variance

Functions
- e(sample): marks estimation sample
In addition to the above, the following is stored in `r()`:

Matrices

\[r(table) \]

matrix containing the coefficients with their standard errors, test statistics, \(p \)-values, and confidence intervals

Note that results stored in `r()` are updated when the command is replayed and will be replaced when any `r`-class command is run after the estimation command.

Methods and formulas

See Cameron and Trivedi (2005, chap. 15) for a discussion of multinomial models, including multinomial probit. Long and Freese (2014, chap. 8) discuss the multinomial logistic, multinomial probit, and stereotype logistic regression models, with examples using Stata.

As discussed in Remarks and examples, the latent variables for a \(J \)-alternative model are \(\eta_{ij} = z_i \alpha_j + \xi_{ij} \), for \(j = 1, \ldots, J \), \(i = 1, \ldots, n \), and \(\{\xi_{i,1}, \ldots, \xi_{i,J}\} \sim \text{i.i.d.} \mathcal{N}(0,1) \). The experimenter observes alternative \(k \) for the \(i \)th observation if \(\eta_{ik} > \eta_{il} \) for \(l \neq k \). For \(j \neq k \), let

\[
v_{ij'} = \eta_{ij} - \eta_{ik} = z_i (\alpha_j - \alpha_k) + \xi_{ij} - \xi_{ik} = z_i \gamma_{j'} + \epsilon_{ij'}
\]

where \(j' = j \) if \(j < k \) and \(j' = j - 1 \) if \(j > k \) so that \(j' = 1, \ldots, J - 1 \). \(\epsilon_i = (\epsilon_{i1}, \ldots, \epsilon_{i,J-1}) \sim \text{MVN}(0, \Sigma) \), where

\[
\Sigma = \begin{pmatrix}
2 & 1 & 1 & \ldots & 1 \\
1 & 2 & 1 & \ldots & 1 \\
1 & 1 & 2 & \ldots & 1 \\
& & & & \\
& & & & \\
1 & 1 & 1 & \ldots & 2
\end{pmatrix}
\]

Denote the deterministic part of the model as \(\lambda_{ij'} = z_i \gamma_{j'} \); the probability that subject \(i \) chooses outcome \(k \) is

\[
\Pr(y_i = k) = \Pr(v_{i1} \leq 0, \ldots, v_{i,J-1} \leq 0) = \Pr(\epsilon_{i1} \leq -\lambda_{i1}, \ldots, \epsilon_{i,J-1} \leq -\lambda_{i,J-1}) = \frac{1}{(2\pi)^{(J-1)/2} |\Sigma|^{1/2}} \int_{-\infty}^{-\lambda_{i1}} \cdots \int_{-\infty}^{-\lambda_{i,J-1}} \exp \left(-\frac{1}{2} z' \Sigma^{-1} z \right) dz
\]

Because of the exchangeable correlation structure of \(\Sigma \) (\(\rho_{ij} = 1/2 \) for all \(i \neq j \)), we can use Dunnett’s (1989) result to reduce the multidimensional integral to one dimension:

\[
\Pr(y_i = k) = \frac{1}{\sqrt{\pi}} \int_0^{\infty} \left\{ \prod_{j=1}^{J-1} \Phi \left(-z\sqrt{2} - \lambda_{ij} \right) + \prod_{j=1}^{J-1} \Phi \left(z\sqrt{2} - \lambda_{ij} \right) \right\} e^{-z^2} dz
\]
Gaussian quadrature is used to approximate this integral, resulting in the K-point quadrature formula

$$\Pr(y_i = k) \approx \frac{1}{2} \sum_{k=1}^{K} w_k \left\{ \prod_{j=1}^{J-1} \Phi(-\sqrt{2}x_k - \lambda_{ij}) + \prod_{j=1}^{J-1} \Phi(\sqrt{2}x_k - \lambda_{ij}) \right\}$$

where w_k and x_k are the weights and roots of the Laguerre polynomial of order K. In `mprobit`, K is specified by the `intpoints()` option.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version using `vce(robust)` and `vce(cluster clustvar)`, respectively. See [P] `_robust`, particularly Maximum likelihood estimators and Methods and formulas.

`mprobit` also supports estimation with survey data. For details on VCEs with survey data, see [SVY] Variance estimation.

References

Also see

[R] `mprobit postestimation` — Postestimation tools for `mprobit`

[R] `clogit` — Conditional (fixed-effects) logistic regression

[R] `mlogit` — Multinomial (polytomous) logistic regression

[R] `ologit` — Ordered logistic regression

[R] `oprobit` — Ordered probit regression

[BAYES] `bayes: mprobit` — Bayesian multinomial probit regression

[CM] `cmmprobit` — Multinomial probit choice model

[CM] `nlogit` — Nested logit regression

[M] `Estimation` — Estimation commands for use with `mi estimate`

[SVY] `svy estimation` — Estimation commands for survey data

[U] 20 Estimation and postestimation commands