
lpoly — Kernel-weighted local polynomial smoothing

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
lpoly performs a kernel-weighted local polynomial regression of yvar on xvar and displays a graph

of the smoothed values with (optional) confidence bands.

Quick start
Kernel-weighted local polynomial regression of y on x

lpoly y x

Same as above, but specify a bandwidth of 2

lpoly y x, bwidth(2)

Same as above, but specify a degree of 1

lpoly y x, bwidth(2) degree(1)

Same as above, but use the alternative Epanechnikov kernel

lpoly y x, bwidth(2) degree(1) kernel(epan2)

Same as above, but create a new variable for the smoothing grid g and smoothed values s
lpoly y x, bwidth(2) degree(1) kernel(epan2) generate(g s)

With 95% confidence bands

lpoly y x, ci

Use twoway to graph multiple local polynomial fits

twoway scatter y x || ///
lpoly y x, degree(1) kernel(epan2) || ///
lpoly y x, degree(1) kernel(epan2) bwidth(1) || ///
lpoly y x, degree(1) kernel(epan2) bwidth(7) ||

Menu
Statistics > Nonparametric analysis > Local polynomial smoothing
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Syntax
lpoly yvar xvar [ if ] [ in ] [weight ] [ , options ]

options Description

Main

kernel(kernel) specify kernel function; default is kernel(epanechnikov)
bwidth(# | varname) specify kernel bandwidth

degree(#) specify degree of the polynomial smooth; default is degree(0)
generate([ newvar𝑥 ] newvar𝑠) store smoothing grid in newvar𝑥 and smoothed points in

newvar𝑠
n(#) obtain the smooth at # points; default is min(𝑁, 50)

at(varname) obtain the smooth at the values specified by varname

nograph suppress graph

noscatter suppress scatterplot only

SE/CI

ci plot confidence bands

level(#) set confidence level; default is level(95)
se(newvar) store standard errors in newvar

pwidth(#) specify pilot bandwidth for standard error calculation

var(# | varname) specify estimates of residual variance

Scatterplot

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Smoothed line

lineopts(cline options) affect rendition of the smoothed line

CI plot

ciopts(cline options) affect rendition of the confidence bands

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rlpoly.pdf#rlpolySyntaxweight
https://www.stata.com/manuals/rlpoly.pdf#rlpolySyntaxkernel
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3marker_label_options.pdf#g-3marker_label_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3addplot_option.pdf#g-3addplot_option
https://www.stata.com/manuals/g-3twoway_options.pdf#g-3twoway_options


lpoly — Kernel-weighted local polynomial smoothing 3

kernel Description

epanechnikov Epanechnikov kernel function; the default

epan2 alternative Epanechnikov kernel function

biweight biweight kernel function

cosine cosine trace kernel function

gaussian Gaussian kernel function

parzen Parzen kernel function

rectangle rectangle kernel function

triangle triangle kernel function

collect is allowed; see [U] 11.1.10 Prefix commands.

fweights and aweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

kernel(kernel) specifies the kernel function for use in calculating the weighted local polynomial esti-

mate. The default is kernel(epanechnikov).

bwidth(# | varname) specifies the half-width of the kernel—the width of the smoothing window around

each point. If bwidth() is not specified, a rule-of-thumb (ROT) bandwidth estimator is calculated

and used. A local variable bandwidth may be specified in varname, in conjunction with an explicit

smoothing grid using the at() option.

degree(#) specifies the degree of the polynomial to be used in the smoothing. The default is degree(0),
meaning local-mean smoothing.

generate( [ newvar𝑥 ] newvar𝑠) stores the smoothing grid in newvar𝑥 and the smoothed values in

newvar𝑠. If at() is not specified, then both newvar𝑥 and newvar𝑠 must be specified. Otherwise,

only newvar𝑠 is to be specified.

n(#) specifies the number of points at which the smooth is to be calculated. The default is min(𝑁, 50),
where 𝑁 is the number of observations.

at(varname) specifies a variable that contains the values at which the smooth should be calculated. By

default, the smoothing is done on an equally spaced grid, but you can use at() to instead perform

the smoothing at the observed x’s, for example. This option also allows you to more easily obtain

smooths for different variables or different subsamples of a variable and then overlay the estimates

for comparison.

nograph suppresses drawing the graph of the estimated smooth. This option is often used with the

generate() option.

noscatter suppresses superimposing a scatterplot of the observed data over the smooth. This option is

useful when the number of resulting points would be so large as to clutter the graph.

https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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� � �
SE/CI �

ci plots confidence bands, using the confidence level specified in level().

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

se(newvar) stores the estimates of the standard errors in newvar. This option requires specifying

generate() or at().

pwidth(#) specifies the pilot bandwidth to be used for standard error computations. The default is

chosen to be 1.5 times the value of the ROT bandwidth selector. If you specify pwidth() without

specifying se() or ci, then the ci option is assumed.

var(# | varname) specifies an estimate of a constant residual variance or a variable containing estimates

of the residual variances at each grid point required for standard error computation. By default, the

residual variance at each smoothing point is estimated by the normalized weighted residual sum of

squares obtained from locally fitting a polynomial of order 𝑝 + 2, where 𝑝 is the degree specified

in degree(). var(varname) is allowed only if at() is specified. If you specify var() without

specifying se() or ci, then the ci option is assumed.

� � �
Scatterplot �

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3]marker label options.

� � �
Smoothed line �

lineopts(cline options) affects the rendition of the smoothed line; see [G-3] cline options.

� � �
CI plot �

ciopts(cline options) affects the rendition of the confidence bands; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples
Remarks are presented under the following headings:

Introduction
Local polynomial smoothing
Choice of a bandwidth
Confidence bands

https://www.stata.com/manuals/u20.pdf#u20.8Specifyingthewidthofconfidenceintervals
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3marker_label_options.pdf#g-3marker_label_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3addplot_option.pdf#g-3addplot_option
https://www.stata.com/manuals/g-3twoway_options.pdf#g-3twoway_options
https://www.stata.com/manuals/g-3title_options.pdf#g-3title_options
https://www.stata.com/manuals/g-3saving_option.pdf#g-3saving_option
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Introduction
The last 25 years or so has seen a significant outgrowth in the literature on scatterplot smoothing, other-

wise known as univariate nonparametric regression. Of most appeal is the idea of making no assumptions

about the functional form for the expected value of a response given a regressor, but instead allowing the

data to “speak for themselves”. Various methods and estimators fall into the category of nonparametric

regression, including local mean smoothing as described independently by Nadaraya (1964) and Wat-

son (1964), the Gasser and Müller (1979) estimator, locally weighted scatterplot smoothing (LOWESS)

as described by Cleveland (1979), wavelets (for example, Donoho [1995]), and splines (Eubank 1999),

to name a few. Much of the vast literature focuses on automating the amount of smoothing to be per-

formed and dealing with the bias/variance tradeoff inherent to this type of estimation. For example, for

Nadaraya–Watson the amount of smoothing is controlled by choosing a bandwidth.

Smoothing via local polynomials is by no means a new idea but instead one that has been rediscov-

ered in recent years in articles such as Fan (1992). A natural extension of the local mean smoothing of

Nadaraya–Watson, local polynomial regression involves fitting the response to a polynomial form of the

regressor via locally weighted least squares. Higher-order polynomials have better bias properties than

the zero-degree local polynomials of the Nadaraya–Watson estimator; in general, higher-order polyno-

mials do not require bias adjustment at the boundary of the regression space. For a definitive reference

on local polynomial smoothing, see Fan and Gijbels (1996).

Local polynomial smoothing
Consider a set of scatterplot data {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)} from the model

𝑦𝑖 = 𝑚(𝑥𝑖) + 𝜎(𝑥𝑖)𝜖𝑖 (1)

for some unknown mean and variance functions 𝑚(⋅) and 𝜎2(⋅), and symmetric errors 𝜖𝑖 with 𝐸(𝜖𝑖) = 0

and Var(𝜖𝑖) = 1. The goal is to estimate 𝑚(𝑥0) = 𝐸[𝑌 |𝑋 = 𝑥0], making no assumption about the

functional form of 𝑚(⋅).
lpoly estimates 𝑚(𝑥0) as the constant term (intercept) of a regression, weighted by the kernel func-

tion specified in kernel(), of yvar on the polynomial terms (xvar−𝑥0), (xvar−𝑥0)2, . . . , (xvar−𝑥0)𝑝

for each smoothing point 𝑥0. The degree of the polynomial, 𝑝, is specified in degree(), the amount of
smoothing is controlled by the bandwidth specified in bwidth(), and the chosen kernel function is spec-
ified in kernel().
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Example 1
Consider the motorcycle data as examined (among other places) in Fan and Gijbels (1996). The data

consist of 133 observations and measure the acceleration (accel measured in grams [g]) of a dummy’s

head during impact over time (time measured in milliseconds). For these data, we use lpoly to fit

a local cubic polynomial with the default bandwidth (obtained using the ROT method) and the default

Epanechnikov kernel.

. use https://www.stata-press.com/data/r19/motorcycle
(Motorcycle data from Fan & Gijbels (1996))
. lpoly accel time, degree(3)

-150

-100

-50

0

50

100

A
cc

el
er

at
io

n 
(g

)

0 20 40 60
Time (msec)

kernel = epanechnikov, degree = 3, bandwidth = 3.08

Local polynomial smooth

Technical note
lpoly allows specifying in degree() both odd and even orders of the polynomial to be used for

the smoothing. However, the odd-order, 2𝑘 + 1, polynomial approximations are preferable. They have

an extra parameter compared with the even-order, 2𝑘, approximations, which leads to a significant bias
reduction and there is no increase of variability associated with adding this extra parameter. Using an

odd order when estimating the regression function is therefore usually sufficient. For a more thorough

discussion, see Fan and Gijbels (1996).
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Choice of a bandwidth
The choice of a bandwidth is crucial for many smoothing techniques, including local polynomial

smoothing. In general, using a large bandwidth gives smooths with a large bias, whereas a small band-

width may result in highly variable smoothed values. Various techniques exist for optimal bandwidth

selection. By default, lpoly uses the ROTmethod to estimate the bandwidth used for the smoothing; see

Methods and formulas for details.

Example 2
Using the motorcycle data, we demonstrate how a local linear polynomial fit changes using different

bandwidths.

. lpoly accel time, degree(1) kernel(epan2) bwidth(1)
> generate(at smooth1) nograph
. lpoly accel time, degree(1) kernel(epan2) bwidth(7) at(at)
> generate(smooth2) nograph
. label variable smooth1 ”Smooth: width = 1”
. label variable smooth2 ”Smooth: width = 7”
. lpoly accel time, degree(1) kernel(epan2) at(at) addplot(line smooth* at)
> legend(label(2 ”Smooth: width = 3.42 (ROT)”) cols(2) pos(6))
> note(”kernel = epan2, degree = 1”)
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From this graph, we can see that the local linear polynomial fit with larger bandwidth (width = 7)
corresponds to a smoother line but fails to fit the curvature of the scatterplot data. The smooth obtained

using the width equal to one seems to fit most data points, but the corresponding line has several spikes

indicating larger variability. The smooth obtained using the ROT bandwidth estimator seems to have a

good tradeoff between the fit and variability in this example.

In the above, we also demonstrated how the generate() and addplot() options may be used to

produce overlaid plots obtained from lpoly with different options. The nograph option saves time

when you need to save only results with generate().

https://www.stata.com/manuals/rlpoly.pdf#rlpolyMethodsandformulas
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However, to avoid generating variables manually, one can use twoway lpoly instead; see [G-2] graph
twoway lpoly for more details.

. twoway scatter accel time ||
> lpoly accel time, degree(1) kernel(epan2) lpattern(solid) ||
> lpoly accel time, degree(1) kernel(epan2) bwidth(1) ||
> lpoly accel time, degree(1) kernel(epan2) bwidth(7) ||
> , legend(label(2 ”Smooth: width = 3.42 (ROT)”)
> label(3 ”Smooth: width = 1”)
> label(4 ”Smooth: width = 7”) cols(2) pos(6))
> title(”Local polynomial smooth”) note(”kernel = epan2, degree = 1”)
> xtitle(”Time (msec)”) ytitle(”Acceleration (g)”)
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The ROT estimate is commonly used as an initial guess for the amount of smoothing; this approach

may be sufficient when the choice of a bandwidth is less important. In other cases, you can pick your

own bandwidth.

When the shape of the regression function has a combination of peaked and flat regions, a variable

bandwidth may be preferable over the constant bandwidth to allow for different degrees of smoothness in

different regions. The bwidth() option allows you to specify the values of the local variable bandwidths
as those stored in a variable in your data.

Similar issues with bias and variability arise when choosing a pilot bandwidth (the pwidth() option)

used to compute standard errors of the local polynomial smoother. The default value is chosen to be

1.5 × ROT. For a review of methods for pilot bandwidth selection, see Fan and Gijbels (1996).

https://www.stata.com/manuals/g-2graphtwowaylpoly.pdf#g-2graphtwowaylpoly
https://www.stata.com/manuals/g-2graphtwowaylpoly.pdf#g-2graphtwowaylpoly
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Confidence bands
The established asymptotic normality of the local polynomial estimators under certain conditions

allows the construction of approximate confidence bands. lpoly offers the ci option to plot these bands.

Example 3
Let us plot the confidence bands for the local polynomial fit from example 1.

. lpoly accel time, degree(3) kernel(epan2) ci legend(cols(2) pos(6))
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You can obtain graphs with overlaid confidence bands by using twoway lpolyci; see [G-2] graph
twoway lpolyci for examples.

Constructing the confidence intervals involves computing standard errors obtained by taking a square

root of the estimate of the conditional variance of the local polynomial estimator at each grid point 𝑥0.

Estimating the conditional variance requires fitting a polynomial of a higher order locally by using a

different bandwidth, the pilot bandwidth. The value of the pilot bandwidth may be supplied by using

pwidth(). By default, the value of 1.5×ROT is used. Also, estimates of the residual variance 𝜎2(𝑥0) at
each grid point, 𝑥0, are required to obtain the estimates of the conditional variances. These estimates may

be supplied by using the var() option. By default, they are computed using the normalized weighted

residual sum of squares from a local polynomial fit of a higher order. See Methods and formulas for

details. The standard errors may be saved by using se().

Stored results
lpoly stores the following in r():

Scalars

r(degree) smoothing polynomial degree r(bwidth) bandwidth of the smooth

r(ngrid) number of successful regressions r(pwidth) pilot bandwidth

r(N) sample size

Macros

r(kernel) name of kernel

https://www.stata.com/manuals/rlpoly.pdf#rlpolyRemarksandexamplesex1
https://www.stata.com/manuals/g-2graphtwowaylpolyci.pdf#g-2graphtwowaylpolyci
https://www.stata.com/manuals/g-2graphtwowaylpolyci.pdf#g-2graphtwowaylpolyci
https://www.stata.com/manuals/rlpoly.pdf#rlpolyMethodsandformulas
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Methods and formulas
Consider model (1), written in matrix notation,

y = 𝑚(x) + ε

where y and x are the 𝑛×1 vectors of scatterplot values, ε is the 𝑛×1 vector of errors with zero mean and
covariance matrix 𝚺 = diag{𝜎(𝑥𝑖)}I𝑛, and 𝑚() and 𝜎() are some unknown functions. Define 𝑚(𝑥0) =
𝐸[𝑌 |𝑋 = 𝑥0] and 𝜎2(𝑥0) = Var[𝑌 |𝑋 = 𝑥0] to be the conditional mean and conditional variance of

random variable 𝑌 (residual variance), respectively, for some realization 𝑥0 of random variable 𝑋.

The method of local polynomial smoothing is based on the approximation of 𝑚(𝑥) locally by a

𝑝th order polynomial in (𝑥 − 𝑥0) for some 𝑥 in the neighborhood of 𝑥0. For the scatterplot data

{(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)}, the 𝑝th-order local polynomial smooth �̂�(𝑥0) is equal to ̂𝛽0, an estimate of

the intercept of the weighted linear regression,

̂𝛽 = (X𝑇WX)−1X𝑇Wy (2)

where ̂𝛽 = ( ̂𝛽0, ̂𝛽1, . . . , ̂𝛽𝑝)𝑇 is the vector of estimated regression coefficients (with

{ ̂𝛽𝑗 = (𝑗!)−1�̂�(𝑗)(𝑥)|𝑥=𝑥0
, 𝑗 = 0, . . . , 𝑝} also representing estimated coefficients from a corresponding

Taylor expansion); X = {(𝑥𝑖 − 𝑥0)𝑗}𝑛,𝑝
𝑖,𝑗=1,0 is a design matrix; andW = diag{𝐾ℎ(𝑥𝑖 − 𝑥0)}𝑛×𝑛 is a

weight matrix with weights 𝐾ℎ(⋅) defined as 𝐾ℎ(𝑥) = ℎ−1𝐾(𝑥/ℎ), with 𝐾(⋅) being a kernel function
and ℎ defining a bandwidth. The kernels are defined in Methods and formulas of [R] kdensity.

The default bandwidth is obtained using the ROTmethod of bandwidth selection. The ROT bandwidth

is the plugin estimator of the asymptotically optimal constant bandwidth. This is the bandwidth that

minimizes the conditional weighted mean integrated squared error. The ROT plugin bandwidth selector

for the smoothing bandwidth ℎ is defined as follows; assuming constant residual variance 𝜎2(𝑥0) = 𝜎2

and odd degree 𝑝:

ℎ̂ = 𝐶0,𝑝(𝐾)[
�̂�2 ∫ 𝑤0(𝑥)𝑑𝑥

𝑛 ∫{�̂�(𝑝+1)(𝑥)}2𝑤0(𝑥)𝑓(𝑥)𝑑𝑥
]

1/(2𝑝+3)

(3)

where 𝐶0,𝑝(𝐾) is a constant, as defined in Fan and Gijbels (1996), that depends on the kernel function
𝐾(⋅), and the degree of a polynomial 𝑝 and 𝑤0 is chosen to be an indicator function on the interval

[minx + 0.05 × range
x
,maxx − 0.05 × range

x
] with minx, maxx, and range

x
being, respectively, the

minimum, maximum, and the range of x. To obtain the estimates of a constant residual variance, �̂�2,

and (𝑝 + 1)th order derivative of 𝑚(𝑥), denoted as �̂�(𝑝+1)(𝑥), a polynomial in x of order (𝑝 + 3) is fit
globally to y. �̂�2 is estimated as a standardized residual sum of squares from this fit.

The expression for the asymptotically optimal constant bandwidth used in constructing the ROT band-

width estimator is derived for the odd-order polynomial approximations. For even-order polynomial fits

the expression would depend not only on 𝑚(𝑝+1)(𝑥) but also on 𝑚(𝑝+2)(𝑥) and the design density and

its derivative, 𝑓(𝑥) and 𝑓 ′(𝑥). Therefore, the ROT bandwidth selector would require estimation of these

additional quantities. Instead, for an even-degree 𝑝 of the local polynomial, lpoly uses the value of the

ROT estimator (3) computed using degree 𝑝 + 1. As such, for even degrees this is not a plugin estimator

of the asymptotically optimal constant bandwidth.

https://www.stata.com/manuals/rkdensity.pdf#rkdensityMethodsandformulas
https://www.stata.com/manuals/rkdensity.pdf#rkdensity
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The estimates of the conditional variance of local polynomial estimators are obtained using

V̂ar{�̂�(𝑥0)|𝑋 = 𝑥0} = �̂�2
𝑚(𝑥0) = (X𝑇WX)−1(X𝑇W2X)(X𝑇WX)−1�̂�2(𝑥0) (4)

where �̂�2(𝑥0) is estimated by the normalized weighted residual sum of squares from the (𝑝 + 2)th order
polynomial fit using pilot bandwidth ℎ⋆.

When the bias is negligible the normal-approximation method yields a (1 − 𝛼) × 100% confidence

interval for 𝑚(𝑥0),

{�̂�(𝑥0) − 𝑧(1−𝛼/2)�̂�𝑚(𝑥0), �̂�(𝑥0) + 𝑧(1−𝛼/2)�̂�𝑚(𝑥0)}

where 𝑧(1−𝛼/2) is the (1− 𝛼/2)th quantile of the standard Gaussian distribution, and �̂�(𝑥0) and �̂�𝑚(𝑥0)
are as defined in (2) and (4), respectively.

References
Chetverikov, D., D. Kim, and D. Wilhelm. 2018. Nonparametric instrumental-variable estimation. Stata Journal 18:

937–950.

Cleveland, W. S. 1979. Robust locally weighted regression and smoothing scatterplots. Journal of theAmerican Statistical

Association 74: 829–836. https://doi.org/10.2307/2286407.

Cox, N. J. 2005. Speaking Stata: Smoothing in various directions. Stata Journal 5: 574–593.

Donoho, D. L. 1995. Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition. Applied and

Computational Harmonic Analysis 2: 101–126. https://doi.org/10.1006/acha.1995.1008.

Eubank, R. L. 1999. Nonparametric Regression and Spline Smoothing. 2nd ed. New York: Dekker. https://doi.org/10.

1201/9781482273144.

Fan, J. 1992. Design-adaptive nonparametric regression. Journal of the American Statistical Association 87: 998–1004.

https://doi.org/10.2307/2290637.

Fan, J., and I. Gijbels. 1996. Local Polynomial Modelling and Its Applications. London: Chapman and Hall. https://doi.

org/10.1201/9780203748725.

Gasser, T., and H.-G. Müller. 1979. “Kernel estimation of regression functions”. In Smoothing Techniques for Curve

Estimation, edited by T. Gasser and M. Rosenblatt, vol. 757: 23–68. New York: Springer. https://doi.org/10.1007/

BFb0098489.

Gutierrez, R. G., J. M. Linhart, and J. S. Pitblado. 2003. From the help desk: Local polynomial regression and Stata

plugins. Stata Journal 3: 412–419.

Nadaraya, E. A. 1964. On estimating regression. Theory of Probability and Its Applications 9: 141–142. https://doi.org/

10.1137/1109020.

Sheather, S. J., and M. C. Jones. 1991. A reliable data-based bandwidth selection method for kernel density estimation.

Journal of the Royal Statistical Society, B ser., 53: 683–690. https://doi.org/10.1111/j.2517-6161.1991.tb01857.x.

Verardi, V., and N. Debarsy. 2012. Robinson’s square root of 𝑁 consistent semiparametric regression estimator in Stata.

Stata Journal 12: 726–735.

Watson, G. S. 1964. Smooth regression analysis. Sankhyā, A ser., 26: 359–372.

https://www.stata-journal.com/article.html?article=st0547
https://doi.org/10.2307/2286407
https://www.stata-journal.com/article.html?article=gr0021
https://doi.org/10.1006/acha.1995.1008
https://doi.org/10.1201/9781482273144
https://doi.org/10.1201/9781482273144
https://doi.org/10.2307/2290637
https://doi.org/10.1201/9780203748725
https://doi.org/10.1201/9780203748725
https://doi.org/10.1007/BFb0098489
https://doi.org/10.1007/BFb0098489
https://www.stata-journal.com/article.html?article=st0053
https://www.stata-journal.com/article.html?article=st0053
https://doi.org/10.1137/1109020
https://doi.org/10.1137/1109020
https://doi.org/10.1111/j.2517-6161.1991.tb01857.x
https://www.stata-journal.com/article.html?article=st0278


lpoly — Kernel-weighted local polynomial smoothing 12

Also see
[R] kdensity — Univariate kernel density estimation

[R] lowess — Lowess smoothing

[R] makespline — Spline generation

[R] npregress intro — Introduction to nonparametric regression

[R] smooth — Robust nonlinear smoother

[G-2] graph twoway lpoly — Local polynomial smooth plots

[G-2] graph twoway lpolyci — Local polynomial smooth plots with CIs

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/rkdensity.pdf#rkdensity
https://www.stata.com/manuals/rlowess.pdf#rlowess
https://www.stata.com/manuals/rmakespline.pdf#rmakespline
https://www.stata.com/manuals/rnpregressintro.pdf#rnpregressintro
https://www.stata.com/manuals/rsmooth.pdf#rsmooth
https://www.stata.com/manuals/g-2graphtwowaylpoly.pdf#g-2graphtwowaylpoly
https://www.stata.com/manuals/g-2graphtwowaylpolyci.pdf#g-2graphtwowaylpolyci
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

