linktest — Specification link test for single-equation models

Description

linktest performs a link test for model specification.

Quick start

Specification link test after a single-equation estimation command without options

```
linktest
```

After tobit estimated with right-censoring limit at 24

```
linktest, ul(24)
```

After stcox estimated with Efron method for tied failures

```
linktest, efron
```

Perform test on full dataset when estimation used a subset of observations

```
linktest if e(sample) < .
```

Menu

Statistics > Postestimation

Syntax

```
linktest [if] [in] [, cmd_options]
```

When if and in are not specified, the link test is performed on the same sample as the previous estimation. collect is allowed; see [U] 11.1.10 Prefix commands.

Option

```
Main
```

`cmd_options` must be the same options specified with the underlying estimation command, except the `display_options` may differ.
The form of the link test implemented here is based on an idea of Tukey (1949), which was further described by Pregibon (1980), elaborating on work in his unpublished thesis (Pregibon 1979). See Methods and formulas below for more details.

Example 1

We want to explain the mileage ratings of cars in our automobile dataset by using the weight, engine displacement, and whether the car is manufactured outside the United States:

```
. use https://www.stata-press.com/data/r17/auto
   (1978 automobile data)
. regress mpg weight displ foreign
```

```
Source |     SS       df      MS  Number of obs =  74
-------+------------------------------  F(3, 70) = 45.88
Model   | 1619.72 3  539.91  Prob > F = 0.0000
Residual|  823.74 70  11.77  R-squared = 0.6629
          |                  Adj R-squared = 0.6484
Total   | 2443.46 73  33.47  Root MSE =  3.43

mpg | Coefficient  Std. err.    t    P>|t|    [95% conf. interval]
-----+---------------------------------------
weight | -.0067745  .0011665  -5.81  0.000  -.0091011  -.0044479
displacement |  .0019286  .0100701   0.19  0.849  -.0181556  .0220129
foreign | -1.600631  1.113648  -1.44  0.155  -.3821732  .6204699
_cons  |   41.84795  2.350704  17.80  0.000   37.15962  46.53628
```

On the basis of the R^2, we are reasonably pleased with this model.

If our model really is specified correctly, then if we were to regress mpg on the prediction and the prediction squared, the prediction squared would have no explanatory power. This is what `linktest` does:

```
. linktest
```

```
Source |     SS       df      MS  Number of obs =  74
-------+------------------------------  F(2, 71) = 76.75
Model   | 1670.72 2  835.36  Prob > F = 0.0000
Residual|  772.74 71  10.88  R-squared = 0.6837
          |                  Adj R-squared = 0.6748
Total   | 2443.46 73  33.47  Root MSE =  3.299

mpg | Coefficient  Std. err.    t    P>|t|    [95% conf. interval]
-----+---------------------------------------
_hat  |  -.4127198  .6577736  -0.63  0.532  -.1.724283  .8988434
_hatsq|   .0338198  .015624   2.16  0.034   .0026664  .0649732
_cons |   14.00705  6.713276   2.09  0.041   .6211539  27.39294
```

We find that the prediction squared does have explanatory power, so our specification is not as good as we thought.
Although `linktest` is formally a test of the specification of the dependent variable, it is often interpreted as a test that, conditional on the specification, the independent variables are specified incorrectly. We will follow that interpretation and now include weight squared in our model:

```
. regress mpg weight c.weight#c.weight displ foreign
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 74</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1699.02634</td>
<td>4</td>
<td>424.756584</td>
<td>F(4, 69) = 39.37</td>
</tr>
<tr>
<td>Residual</td>
<td>744.433124</td>
<td>69</td>
<td>10.7888859</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>2443.45946</td>
<td>73</td>
<td>33.4720744</td>
<td>R-squared = 0.6953</td>
</tr>
</tbody>
</table>

```
. linktest
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 74</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1699.39489</td>
<td>2</td>
<td>849.697445</td>
<td>F(2, 71) = 81.08</td>
</tr>
<tr>
<td>Residual</td>
<td>744.06457</td>
<td>71</td>
<td>10.4797827</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>2443.45946</td>
<td>73</td>
<td>33.4720744</td>
<td>Adj R-squared = 0.6889</td>
</tr>
</tbody>
</table>

```
mpg                  Coefficient  Std. err.  t     P>|t|      [95% conf. interval]
weight               -.0173257   .0040488 -4.28   0.000   -.0254028  -.0092486
                   c.weight#      1.87e-06    6.89e-07  2.71   0.008     4.93e-07   3.24e-06
                   c.weight       -.0101625   .0106236 -0.96   0.342    -.031356   .011031
                   displacement -.2560016   1.123506 -2.28   0.026    -.4801349  -.318632
                   foreign        -2.560016   1.123506 -2.28   0.026    -.4801349  -.318632
                   _cons            58.23575    6.449882  9.03   0.000    45.36859   71.10291
```

Now, we perform the link test on our new model:

```
. linktest
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 74</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td>F(2, 71) = 81.08</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td></td>
<td></td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>Adj R-squared = 0.6889</td>
</tr>
</tbody>
</table>

```
mpg                  Coefficient  Std. err.  t     P>|t|      [95% conf. interval]
                   _hat              1.141987    .7612218  1.50   0.138    -.3758456   2.659821
                   _hatsq            -.0031916   .0170194 -0.19   0.852    -.0371272   .0307441
                   _cons             -1.50305     8.196444  -0.18   0.855    -17.84629   14.84019
```

We now pass the link test.
Example 2

Above, we followed a standard misinterpretation of the link test—when we discovered a problem, we focused on the explanatory variables of our model. We might consider varying exactly what the link test tests. The link test told us that our dependent variable was misspecified. For those with an engineering background, mpg is indeed a strange measure. It would make more sense to model energy consumption—gallons per mile—in terms of weight and displacement:

```stata
. gen gpm = 1/mpg
. regress gpm weight displ foreign
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs =</th>
<th>74</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>0.009157962</td>
<td>3</td>
<td>0.003052654</td>
<td>F(3, 70) =</td>
<td>76.33</td>
</tr>
<tr>
<td>Residual</td>
<td>0.002799666</td>
<td>70</td>
<td>0.00039995</td>
<td>Prob > F =</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>0.011957628</td>
<td>73</td>
<td>0.000163803</td>
<td>R-squared =</td>
<td>0.7659</td>
</tr>
</tbody>
</table>

| gpm | Coefficient | Std. err. | t | P>|t| | [95% conf. interval] |
|-----|-------------|------------|----|-------|----------------------|
| weight | 0.0000144 | 2.15e-06 | 6.72 | 0.000 | 0.0000102 | 0.0000187 |
| displacement | 0.0000186 | 0.0000186 | 1.00 | 0.319 | -0.0000184 | 0.0000557 |
| foreign | 0.0066981 | 0.0020531 | 3.26 | 0.002 | 0.0026034 | 0.0107928 |
| _cons | 0.0008917 | 0.0043337 | 0.21 | 0.838 | -0.0077515 | 0.009535 |

This model looks every bit as reasonable as our original model:

```stata
. linktest
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs =</th>
<th>74</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>0.009175219</td>
<td>2</td>
<td>0.004587609</td>
<td>F(2, 71) =</td>
<td>117.06</td>
</tr>
<tr>
<td>Residual</td>
<td>0.002782409</td>
<td>71</td>
<td>0.00039189</td>
<td>Prob > F =</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>0.011957628</td>
<td>73</td>
<td>0.000163803</td>
<td>R-squared =</td>
<td>0.7673</td>
</tr>
</tbody>
</table>

| gpm | Coefficient | Std. err. | t | P>|t| | [95% conf. interval] |
|-----|-------------|------------|----|-------|----------------------|
| _hat | 0.6608413 | 5.15275 | 1.28 | 0.204 | -3.665877 | 1.68827 |
| _hatsq | 3.275857 | 4.936655 | 0.66 | 0.509 | -6.567553 | 13.11927 |
| _cons | 0.008365 | 0.0130468 | 0.64 | 0.523 | -0.0176496 | 0.0343795 |

Specifying the model in terms of gallons per mile also solves the specification problem and results in a more parsimonious specification.
Example 3

The link test can be used with any single-equation estimation procedure, not solely regression. Let’s turn our problem around and attempt to explain whether a car is manufactured outside the United States by its mileage rating and weight. To save paper, we will specify `logit`’s `nolog` option, which suppresses the iteration log:

\[\text{. logit foreign mpg weight, nolog} \]

Logistic regression

\[
\begin{array}{lllll}
\text{foreign} & \text{Coefficient} & \text{Std. err.} & z & \text{P>|z|} & [95\% \text{ conf. interval}] \\
\text{mpg} & -0.1685869 & 0.0919175 & -1.83 & 0.067 & -0.3487418 \quad 0.011568 \\
\text{weight} & -0.0039067 & 0.0010116 & -3.86 & 0.000 & -0.0058894 \quad -0.001924 \\
\text{cons} & 13.70837 & 4.518709 & 3.03 & 0.002 & 4.851859 \quad 22.56487 \\
\end{array}
\]

When we run `linktest` after `logit`, the result is another logit specification:

\[\text{. linktest, nolog} \]

Logistic regression

\[
\begin{array}{lllll}
\text{foreign} & \text{Coefficient} & \text{Std. err.} & z & \text{P>|z|} & [95\% \text{ conf. interval}] \\
\text{_hat} & 0.8438531 & 0.2738759 & 3.08 & 0.002 & 0.3070661 \quad 1.38064 \\
\text{_hatsq} & -0.1559115 & 0.1568642 & -0.99 & 0.320 & -0.4633596 \quad 0.1515366 \\
\text{_cons} & 0.2630557 & 0.4299598 & 0.61 & 0.541 & -0.57965 \quad 1.105761 \\
\end{array}
\]

The link test reveals no problems with our specification.

If there had been a problem, we would have been virtually forced to accept the misinterpretation of the link test—we would have reconsidered our specification of the independent variables. When using `logit`, we have no control over the specification of the dependent variable other than to change likelihood functions.

We admit to having seen a dataset once for which the link test rejected the logit specification. We did change the likelihood function, refitting the model using `probit`, and satisfied the link test. Probit has thinner tails than logit. In general, however, you will not be so lucky.

Technical note

You should specify the same options with `linktest` that you do with the estimation command, although you do not have to follow this advice as literally as we did in the preceding example. `logit`’s `nolog` option merely suppresses a part of the output, not what is estimated. We specified `nolog` both times to save space.

If you are testing a tobit model, you must specify the censoring points just as you do with the `tobit` command.

If you are not sure which options are important, duplicate exactly what you specified on the estimation command.
If you do not specify `if exp` or `in range` with `linktest`, Stata will by default perform the link test on the same sample as the previous estimation. Suppose that you omitted some data when performing your estimation but want to calculate the link test on all the data, which you might do if you believe the model is appropriate for all the data. You would type `linktest if e(sample) >= .` to do this.

Stored results

`linktest` stores the following in `r()`:

Scalars

- `r(t)` : t statistic on `_hatsq`
- `r(df)` : degrees of freedom

`linktest` is *not* an estimation command in the sense that it leaves previous estimation results unchanged. For instance, after running a regression and performing the link test, typing `regress` without arguments after the link test still replays the original regression.

For integrating an estimation command with `linktest`, `linktest` assumes that the name of the estimation command is stored in `e(cmd)` and that the name of the dependent variable is stored in `e(depvar)`. After estimation, it assumes that the number of degrees of freedom for the t test is given by `e(df_m)` if the macro is defined.

If the estimation command reports z statistics instead of t statistics, `linktest` will also report z statistics. The z statistic, however, is still returned in `r(t)`, and `r(df)` is set to a missing value.

Methods and formulas

The link test is based on the idea that if a regression or regression-like equation is properly specified, you should be able to find no additional independent variables that are significant except by chance. One kind of specification error is called a link error. In regression, this means that the dependent variable needs a transformation or “link” function to properly relate to the independent variables. The idea of a link test is to add an independent variable to the equation that is especially likely to be significant if there is a link error.

Let

\[y = f(X\beta) \]

be the model and \(\widehat{\beta} \) be the parameter estimates. `linktest` calculates

\[_\text{hat} = X\widehat{\beta} \]

and

\[_\text{hatsq} = _\text{hat}^2 \]

The model is then refit with these two variables, and the test is based on the significance of `_hatsq`. This is the form suggested by Pregibon (1979) based on an idea of Tukey (1949). Pregibon (1980) suggests a slightly different method that has come to be known as “Pregibon’s goodness-of-link test”. We prefer the older version because it is universally applicable, straightforward, and a good second-order approximation. It can be applied to any single-equation estimation technique, whereas Pregibon’s more recent tests are estimation-technique specific.
References

Also see

[R] regress postestimation — Postestimation tools for regress