Description

ladder searches a subset of the ladder of powers (Tukey 1977) for a transform that converts varname into a normally distributed variable.

gladder and qladder each display a graph matrix. gladder displays nine histograms of transforms of varname according to the ladder of powers. qladder displays the quantiles of transforms of varname according to the ladder of powers against the quantiles of a normal distribution.

Quick start

Table showing Tukey’s ladder of powers transformations for v
ladder v

As above, but with separate tables for each level of the categorical variable catvar by catvar: ladder v

display transformations graphically using histograms

As above, but using quantile plots

Menu

ladder
Statistics > Summaries, tables, and tests > Distributional plots and tests > Ladder of powers

gladder
Statistics > Summaries, tables, and tests > Distributional plots and tests > Ladder-of-powers histograms

qladder
Statistics > Summaries, tables, and tests > Distributional plots and tests > Ladder-of-powers quantile-normal plots
Syntax

Ladder of powers

```
ladder  varname  [  if  ]  [  in  ]  ,  generate( newvar )  noadjust
```

Ladder-of-powers histograms

```
gladder  varname  [  if  ]  [  in  ]  [  ,  histogram_options  combine_options  ]
```

Ladder-of-powers quantile–normal plots

```
qladder  varname  [  if  ]  [  in  ]  [  ,  qnorm_options  combine_options  ]
```

by is allowed with `ladder`; see [D] by.

Options for `ladder`

- `generate(newvar)` saves the transformed values corresponding to the minimum chi-squared value from the table. We do not recommend using `generate()` because it is literal in interpreting the minimum, thus ignoring nearly equal but perhaps more interpretable transforms.

- `noadjust` is the `noadjust` option to `sktest`; see [R] sktest.

Options for `gladder`

- `histogram_options` affect the rendition of the histograms across all relevant transformations; see [R] histogram. Here the `normal` option is assumed, so you must supply the `nonormal` option to suppress the overlaid normal density. Also, `gladder` does not allow the `width(#)` option of `histogram`.

- `combine_options` are any of the options documented in [G-2] graph combine. These include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see [G-3] saving_option).

Options for `qladder`

- `qnorm_options` affect the rendition of the quantile–normal plots across all relevant transformations. See [R] Diagnostic plots.

- `combine_options` are any of the options documented in [G-2] graph combine. These include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see [G-3] saving_option).
Remarks and examples

Example 1: ladder

We have data on the mileage rating of 74 automobiles and wish to find a transform that makes the variable normally distributed:

```
. use https://www.stata-press.com/data/r16/auto
   (1978 Automobile Data)
. ladder mpg
```

<table>
<thead>
<tr>
<th>Transformation</th>
<th>formula</th>
<th>chi2(2)</th>
<th>P(chi2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cubic</td>
<td>mpg^3</td>
<td>43.59</td>
<td>0.000</td>
</tr>
<tr>
<td>square</td>
<td>mpg^2</td>
<td>27.03</td>
<td>0.000</td>
</tr>
<tr>
<td>identity</td>
<td>mpg</td>
<td>10.95</td>
<td>0.004</td>
</tr>
<tr>
<td>square root</td>
<td>sqrt(mpg)</td>
<td>4.94</td>
<td>0.084</td>
</tr>
<tr>
<td>log</td>
<td>log(mpg)</td>
<td>0.87</td>
<td>0.647</td>
</tr>
<tr>
<td>1/(square root)</td>
<td>1/sqrt(mpg)</td>
<td>0.20</td>
<td>0.905</td>
</tr>
<tr>
<td>inverse</td>
<td>1/mpg</td>
<td>2.36</td>
<td>0.307</td>
</tr>
<tr>
<td>1/square</td>
<td>1/(mpg^2)</td>
<td>11.99</td>
<td>0.002</td>
</tr>
<tr>
<td>1/cubic</td>
<td>1/(mpg^3)</td>
<td>24.30</td>
<td>0.000</td>
</tr>
</tbody>
</table>

If we had typed `ladder mpg, gen(mpgx)`, the variable `mpgx` containing \(1/\sqrt{mpg}\) would have been automatically generated for us. This is the perfect example of why you should not, in general, specify the `generate()` option. We also cannot reject the hypothesis that the inverse of `mpg` is normally distributed and that \(1/mpg\)—gallons per mile—has a better interpretation. It is a measure of energy consumption.
Example 2: gladder

`gladder` explores the same transforms as `ladder` but presents results graphically:
```
. gladder mpg, fraction
gladder mpg, fraction
```

![Histograms by transformation](image)

Technical note

`gladder` is useful pedagogically, but be careful when using it for research work, especially with many observations. For instance, consider the following data on the average July temperature in degrees Fahrenheit for 954 U.S. cities:

```
. use https://www.stata-press.com/data/r16/citytemp
(City Temperature Data)
. ladder tempjuly
Transformation formula chi2(2) P(chi2)
cubic tempjuly^3 47.49 0.000
square tempjuly^2 19.70 0.000
identity tempjuly 3.83 0.147
square root sqrt(tempjuly) 1.83 0.400
log log(tempjuly) 5.40 0.067
1/(square root) 1/sqrt(tempjuly) 13.72 0.001
inverse 1/tempjuly 26.36 0.000
1/square 1/(tempjuly^2) 64.43 0.000
1/cubic 1/(tempjuly^3) . 0.000
```

The period in the last line indicates that the χ^2 is very large; see [R] `sktest`.
From the table, we see that there is certainly a difference in normality between the square and square-root transform. If, however, you can see the difference between the transforms in the diagram below, you have better eyes than we do:

```bash
gladder tempjuly, ltitle("") ylabel(none) xlabel(none)
```

Average July temperature

Histograms by transformation

➢ **Example 3: qladder**

A better graph for seeing normality is the quantile–normal graph, which can be produced by `qladder`.
This graph shows that for the square transform, the upper tail—and only the upper tail—diverges from what would be expected. This divergence is detected by `sktest` (see `[R] sktest`) as a problem with skewness, as we would learn from using `sktest` to examine `tempjuly` squared and square rooted.
Stored results

ladder stores the following in r():

Scalars
r(N) scalar r
r(invcube) chi-squared for inverse-cubic transformation
r(P_invcube) p-value for normality test after inverse-cubic transformation
r(invsq) chi-squared for inverse-square transformation
r(P_invsq) p-value for normality test after inverse-square transformation
r(inv) chi-squared for inverse transformation
r(P_inv) p-value for normality test after inverse transformation
r(P_invsqrt) p-value for normality test after inverse-root transformation
r(log) chi-squared for log transformation
r(P_log) p-value for normality test after log transformation
r(sqrt) chi-squared for square-root transformation
r(P_sqrt) p-value for normality test after square-root transformation
r(ident) chi-squared for untransformed data
r(P_ident) p-value for normality test of untransformed data
r(square) chi-squared for square transformation
r(P_square) p-value for normality test after square transformation
r(cube) chi-squared for cubic transformation
r(P_cube) p-value for normality test after cubic transformation

Methods and formulas

For ladder, results are as reported by sktest; see [R] sktest. If generate() is specified, the transform with the minimum χ^2 value is chosen.

gladder sets the number of bins to $\min(\sqrt{n}, 10 \log_{10} n)$, rounded to the closest integer, where n is the number of unique values of varname. See [R] histogram for a discussion of the optimal number of bins.

Also see Findley (1990) for a ladder-of-powers variable transformation program that produces one-way graphs with overlaid box plots, in addition to histograms with overlaid normals. Buchner and Findley (1990) discuss ladder-of-powers transformations as one aspect of preliminary data analysis. Also see Hamilton (1992, 18–23) and Hamilton (2013, 129–132).

Acknowledgment

qladder was written by Jeroen Weesie of the Department of Sociology at Utrecht University, The Netherlands.

References

Also see

[R] boxcox — Box–Cox regression models

[R] Diagnostic plots — Distributional diagnostic plots

[R] Inskew0 — Find zero-skewness log or Box–Cox transform

[R] lv — Letter-value displays

[R] sktest — Skewness and kurtosis tests for normality