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Postestimation commands
The following postestimation commands are of special interest after ivregress:

Command Description

estat endogenous perform tests of endogeneity
estat firststage report “first-stage” regression statistics
estat overid perform tests of overidentifying restrictions
∗estat sbknown perform tests for a structural break with a known break date
∗estat single perform tests for a structural break with an unknown break date

These commands are not appropriate with svy estimation results.
∗estat sbknown and estat sbsingle work only after ivregress 2sls.

The following postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
†forecast dynamic forecasts and simulations
†hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict linear predictions and their SEs, probabilities, etc.
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

†forecast and hausman are not appropriate with svy estimation results.
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predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, residuals, standard
errors, probabilities, and expected values.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic
]

predict
[

type
]

stub*
[

if
] [

in
]
, scores

statistic Description

Main

xb linear prediction; the default
residuals residuals
stdp standard error of the prediction
stdf standard error of the forecast
pr(a,b) Pr(a < yj < b) under exogeneity and normal errors
e(a,b) E(yj | a < yj < b) under exogeneity and normal errors
ystar(a,b) E(y∗j ), y

∗
j = max{a,min(yj , b)} under exogeneity and normal errors

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .)
means +∞; see [U] 12.2.1 Missing values.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

residuals calculates the residuals, that is, yj−xjb. These are based on the estimated equation when
the observed values of the endogenous variables are used—not the projections of the instruments
onto the endogenous variables.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. This is also referred
to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction
for 1 observation. It is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas in [R] regress postestimation.

https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u12.pdf#u12.2.1Missingvalues
https://www.stata.com/manuals/rregresspostestimation.pdf#rregresspostestimationMethodsandformulas
https://www.stata.com/manuals/rregresspostestimation.pdf#rregresspostestimation
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pr(a,b) calculates Pr(a < xjb + uj < b), the probability that yj |xj would be observed in the
interval (a, b) under exogeneity and assuming errors are normally distributed.

a and b may be specified as numbers or variable names; lb and ub are variable names;
pr(20,30) calculates Pr(20 < xjb+ uj < 30);
pr(lb,ub) calculates Pr(lb < xjb+ uj < ub); and
pr(20,ub) calculates Pr(20 < xjb+ uj < ub).

a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < xjb+ uj < 30);
pr(lb,30) calculates Pr(−∞ < xjb+ uj < 30) in observations for which lb ≥ .
and calculates Pr(lb < xjb+ uj < 30) elsewhere.

b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > xjb+ uj > 20);
pr(20,ub) calculates Pr(+∞ > xjb+ uj > 20) in observations for which ub ≥ .
and calculates Pr(20 < xjb+ uj < ub) elsewhere.

e(a,b) calculates E(xjb + uj | a < xjb + uj < b), the expected value of yj |xj conditional on
yj |xj being in the interval (a, b), meaning that yj |xj is truncated. a and b are specified as they
are for pr(). Exogeneity and normally distributed errors are assumed.

ystar(a,b) calculates E(y∗j ), where y∗j = a if xjb + uj ≤ a, y∗j = b if xjb + uj ≥ b, and
y∗j = xjb + uj otherwise, meaning that y∗j is censored. a and b are specified as they are for
pr(). Exogeneity and normally distributed errors are assumed.

scores calculates the scores for the model. A new score variable is created for each endogenous
regressor, as well as an equation-level score that applies to all exogenous variables and constant
term (if present).
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margins

Description for margins

margins estimates margins of response for linear predictions, probabilities, and expected values.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

xb linear prediction; the default
pr(a,b) Pr(a < yj < b) under exogeneity and normal errors
e(a,b) E(yj | a < yj < b) under exogeneity and normal errors
ystar(a,b) E(y∗j ), y

∗
j = max{a,min(yj , b)} under exogeneity and normal errors

stdp not allowed with margins

stdf not allowed with margins

residuals not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
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estat

Description for estat

estat endogenous performs tests to determine whether endogenous regressors in the model are
in fact exogenous. After GMM estimation, the C (difference-in-Sargan) statistic is reported. After 2SLS
estimation with an unadjusted VCE, the Durbin (1954) and Wu–Hausman (Wu 1974; Hausman 1978)
statistics are reported. After 2SLS estimation with a robust VCE, Wooldridge’s (1995) robust score test
and a robust regression-based test are reported. In all cases, if the test statistic is significant, then the
variables being tested must be treated as endogenous. estat endogenous is not available after LIML
estimation.

estat firststage reports various statistics that measure the relevance of the excluded exogenous
variables. By default, whether the equation has one or more than one endogenous regressor determines
what statistics are reported.

estat overid performs tests of overidentifying restrictions. If the 2SLS estimator was used,
Sargan’s (1958) and Basmann’s (1960) χ2 tests are reported, as is Wooldridge’s (1995) robust score
test; if the LIML estimator was used, Anderson and Rubin’s (1950) χ2 test and Basmann’s F test
are reported; and if the GMM estimator was used, Hansen’s (1982) J statistic χ2 test is reported. A
statistically significant test statistic always indicates that the instruments may not be valid.

Menu for estat
Statistics > Postestimation

Syntax for estat

Perform tests of endogeneity

estat endogenous
[

varlist
] [

, lags(#) forceweights forcenonrobust
]

Report “first-stage” regression statistics

estat firststage
[
, all forcenonrobust

]
Perform tests of overidentifying restrictions

estat overid
[
, lags(#) forceweights forcenonrobust

]
collect is allowed with estat endogenous, estat firststage, and estat overid; see [U] 11.1.10 Prefix

commands.

Options for estat

Options for estat are presented under the following headings:

Options for estat endogenous
Options for estat firststage
Options for estat overid

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
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Options for estat endogenous

lags(#) specifies the number of lags to use for prewhitening when computing the heteroskedasticity-
and autocorrelation-consistent (HAC) version of the score test of endogeneity. Specifying lags(0)
requests no prewhitening. This option is valid only when the model was fit via 2SLS and an HAC
covariance matrix was requested when the model was fit. The default is lags(1).

forceweights requests that the tests of endogeneity be computed even though aweights, pweights,
or iweights were used in the previous estimation. By default, these tests are conducted only after
unweighted or frequency-weighted estimation. The reported critical values may be inappropriate
for weighted data, so the user must determine whether the critical values are appropriate for a
given application.

forcenonrobust requests that the Durbin and Wu–Hausman tests be performed after 2SLS estimation
even though a robust VCE was used at estimation time. This option is available only if the model
was fit by 2SLS.

Options for estat firststage

all requests that all first-stage goodness-of-fit statistics be reported regardless of whether the model
contains one or more endogenous regressors. By default, if the model contains one endogenous
regressor, then the first-stage R2, adjusted R2, partial R2, and F statistics are reported, whereas
if the model contains multiple endogenous regressors, then Shea’s partial R2 and adjusted partial
R2 are reported instead.

forcenonrobust requests that the minimum eigenvalue statistic and its critical values be reported
even though a robust VCE was used at estimation time. The reported critical values assume that
the errors are independent and identically distributed (i.i.d.) normal, so the user must determine
whether the critical values are appropriate for a given application.

Options for estat overid

lags(#) specifies the number of lags to use for prewhitening when computing the heteroskedasticity-
and autocorrelation-consistent (HAC) version of the score test of overidentifying restrictions.
Specifying lags(0) requests no prewhitening. This option is valid only when the model was fit
via 2SLS and an HAC covariance matrix was requested when the model was fit. The default is
lags(1).

forceweights requests that the tests of overidentifying restrictions be computed even though
aweights, pweights, or iweights were used in the previous estimation. By default, these tests
are conducted only after unweighted or frequency-weighted estimation. The reported critical values
may be inappropriate for weighted data, so the user must determine whether the critical values are
appropriate for a given application.

forcenonrobust requests that the Sargan and Basmann tests of overidentifying restrictions be
performed after 2SLS or LIML estimation even though a robust VCE was used at estimation time.
These tests assume that the errors are i.i.d. normal, so the user must determine whether the critical
values are appropriate for a given application.
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Remarks and examples stata.com

Remarks are presented under the following headings:
estat endogenous
estat firststage
estat overid

estat endogenous

A natural question to ask is whether a variable presumed to be endogenous in the previously fit
model could instead be treated as exogenous. If the endogenous regressors are in fact exogenous,
then the OLS estimator is more efficient; and depending on the strength of the instruments and other
factors, the sacrifice in efficiency by using an instrumental-variables estimator can be significant.
Thus, unless an instrumental-variables estimator is really needed, OLS should be used instead. estat
endogenous provides several tests of endogeneity after 2SLS and GMM estimation.

Example 1

In example 1 of [R] ivregress, we fit a model of the average rental rate for housing in a state as
a function of the percentage of the population living in urban areas and the average value of houses.
We treated hsngval as endogenous because unanticipated shocks that affect rental rates probably
affect house prices as well. We used family income and region dummies as additional instruments
for hsngval. Here we test whether we could treat hsngval as exogenous.

. use https://www.stata-press.com/data/r18/hsng
(1980 Census housing data)

. ivregress 2sls rent pcturban (hsngval = faminc i.region)
(output omitted )

. estat endogenous

Tests of endogeneity
H0: Variables are exogenous

Durbin (score) chi2(1) = 12.8473 (p = 0.0003)
Wu-Hausman F(1,46) = 15.9067 (p = 0.0002)

Because we did not specify any variable names after the estat endogenous command, Stata by
default tested all the endogenous regressors (namely, hsngval) in our model. The null hypothesis
of the Durbin and Wu–Hausman tests is that the variable under consideration can be treated as
exogenous. Here both test statistics are highly significant, so we reject the null of exogeneity; we
must continue to treat hsngval as endogenous.

The difference between the Durbin and Wu–Hausman tests of endogeneity is that the former uses
an estimate of the error term’s variance based on the model assuming the variables being tested
are exogenous, while the latter uses an estimate of the error variance based on the model assuming
the variables being tested are endogenous. Under the null hypothesis that the variables being tested
are exogenous, both estimates of the error variance are consistent. What we label the Wu–Hausman
statistic is Wu’s (1974) “T2” statistic, which Hausman (1978) showed can be calculated very easily
via linear regression. Baum, Schaffer, and Stillman (2003, 2007) provide a lucid discussion of these
tests.

When you fit a model with multiple endogenous regressors, you can test the exogeneity of a subset
of the regressors while continuing to treat the others as endogenous. For example, say you have three
endogenous regressors, y1, y2, and y3, and you fit your model by typing

. ivregress depvar . . . (y1 y2 y3 = . . .)

http://stata.com
https://www.stata.com/manuals/rivregress.pdf#rivregressRemarksandexamplesex_ivregress_2sls
https://www.stata.com/manuals/rivregress.pdf#rivregress
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Suppose you are confident that y1 must be treated as endogenous, but you are undecided about y2
and y3. To test whether y2 and y3 can be treated as exogenous, you would type

. estat endogenous y2 y3

The Durbin and Wu–Hausman tests assume that the error term is i.i.d. Therefore, if you requested
a robust VCE at estimation time, estat endogenous will instead report Wooldridge’s (1995) score
test and a regression-based test of exogeneity. Both these tests can tolerate heteroskedastic and
autocorrelated errors, while only the regression-based test is amenable to clustering.

Example 2

We refit our housing model, requesting robust standard errors, and then test the exogeneity of
hsngval:

. use https://www.stata-press.com/data/r18/hsng
(1980 Census housing data)

. ivregress 2sls rent pcturban (hsngval = faminc i.region), vce(robust)
(output omitted )

. estat endogenous

Tests of endogeneity
H0: Variables are exogenous

Robust score chi2(1) = 2.10428 (p = 0.1469)
Robust regression F(1,46) = 4.31101 (p = 0.0435)

Wooldridge’s score test does not reject the null hypothesis that hsngval is exogenous at conventional
significance levels (p = 0.1469). However, the regression-based test does reject the null hypothesis at
the 5% significance level (p = 0.0435). Typically, these two tests yield the same conclusion; the fact
that our dataset has only 50 observations could be contributing to the discrepancy. Here we would
be inclined to continue to treat hsngval as endogenous. Even if hsngval is exogenous, the 2SLS
estimates are still consistent. On the other hand, if hsngval is in fact endogenous, the OLS estimates
would not be consistent. Moreover, as we will see in our discussion of the estat overid command,
our additional instruments may be invalid. To test whether an endogenous variable can be treated as
exogenous, we must have a valid set of instruments to use to fit the model in the first place!

Unlike the Durbin and Wu–Hausman tests, Wooldridge’s score and the regression-based tests do
not allow you to test a subset of the endogenous regressors in the model; you can test only whether
all the endogenous regressors are in fact exogenous.

After GMM estimation, estat endogenous calculates what Hayashi (2000, 220) calls the C
statistic, also known as the difference-in-Sargan statistic. The C statistic can be made robust to
heteroskedasticity, autocorrelation, and clustering; and the version reported by estat endogenous
is determined by the weight matrix requested via the wmatrix() option used when fitting the model
with ivregress. Additionally, the test can be used to determine the exogeneity of a subset of the
endogenous regressors, regardless of the type of weight matrix used.

If you fit your model using the LIML estimator, you can use the hausman command to carry out
a traditional Hausman (1978) test between the OLS and LIML estimates.
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estat firststage

For an excluded exogenous variable to be a valid instrument, it must be sufficiently correlated with
the included endogenous regressors but uncorrelated with the error term. In recent decades, researchers
have paid considerable attention to the issue of instruments that are only weakly correlated with the
endogenous regressors. In such cases, the usual 2SLS, GMM, and LIML estimators are biased toward the
OLS estimator, and inference based on the standard errors reported by, for example, ivregress can be
severely misleading. For more information on the theory behind instrumental-variables estimation with
weak instruments, see Nelson and Startz (1990); Staiger and Stock (1997); Hahn and Hausman (2003);
the survey article by Stock, Wright, and Yogo (2002); and Angrist and Pischke (2009, chap. 4).

When the instruments are only weakly correlated with the endogenous regressors, some Monte
Carlo evidence suggests that the LIML estimator performs better than the 2SLS and GMM estimators;
see, for example, Poi (2006) and Stock, Wright, and Yogo (2002) (and the papers cited therein). On
the other hand, the LIML estimator often results in confidence intervals that are somewhat larger than
those from the 2SLS estimator.

Moreover, using more instruments is not a solution, because the biases of instrumental-variables
estimators increase with the number of instruments. See Hahn and Hausman (2003).

estat firststage produces several statistics for judging the explanatory power of the instruments
and is most easily explained with examples.

Example 3

Again building on the model fit in example 1 of [R] ivregress, we now explore the degree of
correlation between the additional instruments faminc, 2.region, 3.region, and 4.region and
the endogenous regressor hsngval:

. use https://www.stata-press.com/data/r18/hsng
(1980 Census housing data)

. ivregress 2sls rent pcturban (hsngval = faminc i.region)
(output omitted )

. estat firststage

First-stage regression summary statistics

Adjusted Partial
Variable R-sq. R-sq. R-sq. F(4,44) Prob > F

hsngval 0.6908 0.6557 0.5473 13.2978 0.0000

Minimum eigenvalue statistic = 13.2978

Critical Values # of endogenous regressors: 1
H0: Instruments are weak # of excluded instruments: 4

5% 10% 20% 30%
2SLS relative bias 16.85 10.27 6.71 5.34

10% 15% 20% 25%
2SLS size of nominal 5% Wald test 24.58 13.96 10.26 8.31
LIML size of nominal 5% Wald test 5.44 3.87 3.30 2.98

To understand these results, recall that the first-stage regression is

hsngvali = π0 + π1pcturbani + π2faminc+ π32.region+ π43.region+ π54.region+ vi

https://www.stata.com/manuals/rivregress.pdf#rivregressRemarksandexamplesex_ivregress_2sls
https://www.stata.com/manuals/rivregress.pdf#rivregress
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where vi is an error term. The column marked “R-sq.” is the simple R2 from fitting the first-stage
regression by OLS, and the column marked “Adjusted R-sq.” is the adjusted R2 from that regression.
Higher values purportedly indicate stronger instruments, and instrumental-variables estimators exhibit
less bias when the instruments are strongly correlated with the endogenous variable.

Looking at just the R2 and adjusted R2 can be misleading, however. If hsngval were strongly
correlated with the included exogenous variable pcturban but only weakly correlated with the
additional instruments, then these statistics could be large even though a weak-instrument problem is
present.

The partial R2 statistic measures the correlation between hsngval and the additional instruments
after partialing out the effect of pcturban. Unlike the R2 and adjusted R2 statistics, the partial R2

statistic will not be inflated because of strong correlation between hsngval and pcturban. Bound,
Jaeger, and Baker (1995) and others have promoted using this statistic.

The column marked “F(4, 44)” is an F statistic for the joint significance of π2, π3, π4, and π5,
the coefficients on the additional instruments. Its p-value is listed in the column marked “Prob > F”.
If the F statistic is not significant, then the additional instruments have no significant explanatory
power for hsngval after controlling for the effect of pcturban. However, Hall, Rudebusch, and
Wilcox (1996) used Monte Carlo simulation to show that simply having an F statistic that is significant
at the typical 5% or 10% level is not sufficient. Stock, Wright, and Yogo (2002) suggest that the F
statistic should exceed 10 for inference based on the 2SLS estimator to be reliable when there is one
endogenous regressor.

estat firststage also presents the Cragg and Donald (1993) minimum eigenvalue statistic as
a further test of weak instruments. Stock and Yogo (2005) discuss two characterizations of weak
instruments: first, weak instruments cause instrumental-variables estimators to be biased; second,
hypothesis tests of parameters estimated by instrumental-variables estimators may suffer from severe
size distortions. The test statistic in our example is 13.30, which is identical to the F statistic just
discussed because our model contains one endogenous regressor.

The null hypothesis of each of Stock and Yogo’s tests is that the set of instruments is weak. To
perform these tests, we must first choose either the largest relative bias of the 2SLS estimator we are
willing to tolerate or the largest rejection rate of a nominal 5% Wald test we are willing to tolerate.
If the test statistic exceeds the critical value, we can conclude that our instruments are not weak.

The row marked “2SLS relative bias” contains critical values for the test that the instruments are
weak based on the bias of the 2SLS estimator relative to the bias of the OLS estimator. For example,
from past experience we might know that the OLS estimate of a parameter β may be 50% too high.
Saying that we are willing to tolerate a 10% relative bias means that we are willing to tolerate a
bias of the 2SLS estimator no greater than 5% (that is, 10% of 50%). In our rental rate model, if we
are willing to tolerate a 10% relative bias, then we can conclude that our instruments are not weak
because the test statistic of 13.30 exceeds the critical value of 10.27. However, if we were willing
to tolerate only a relative bias of 5%, we would conclude that our instruments are weak because
13.30 < 16.85.

The rows marked “2SLS Size of nominal 5% Wald test” and “LIML Size of nominal 5% Wald
test” contain critical values pertaining to Stock and Yogo’s (2005) second characterization of weak
instruments. This characterization defines a set of instruments to be weak if a Wald test at the 5% level
can have an actual rejection rate of no more than 10%, 15%, 20%, or 25%. Using the current example,
suppose that we are willing to accept a rejection rate of at most 10%. Because 13.30 < 24.58, we
cannot reject the null hypothesis of weak instruments. On the other hand, if we use the LIML estimator
instead, then we can reject the null hypothesis because 13.30 > 5.44.
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Technical note
Stock and Yogo (2005) tabulated critical values for 2SLS relative biases of 5%, 10%, 20%, and

30% for models with 1, 2, or 3 endogenous regressors and between 3 and 30 excluded exogenous
variables (instruments). They also provide critical values for worst-case rejection rates of 5%, 10%,
20%, and 25% for nominal 5% Wald tests of the endogenous regressors with 1 or 2 endogenous
regressors and between 1 and 30 instruments. If the model previously fit by ivregress has more
instruments or endogenous regressors than these limits, the critical values are not shown. Stock and
Yogo did not consider GMM estimators.

When the model being fit contains more than one endogenous regressor, the R2 and F statistics
described above can overstate the relevance of the excluded instruments. Suppose that there are two
endogenous regressors, Y1 and Y2, and that there are two additional instruments, z1 and z2. Say that
z1 is highly correlated with both Y1 and Y2 but z2 is not correlated with either Y1 or Y2. Then, the
first-stage regression of Y1 on z1 and z2 (along with the included exogenous variables) will produce
large R2 and F statistics, as will the regression of Y2 on z1, z2, and the included exogenous variables.
Nevertheless, the lack of correlation between z2 and Y1 and Y2 is problematic. Here, although the
order condition indicates that the model is just identified (the number of excluded instruments equals
the number of endogenous regressors), the irrelevance of z2 implies that the model is in fact not
identified. Even if the model is overidentified, including irrelevant instruments can adversely affect
the properties of instrumental-variables estimators, because their biases increase as the number of
instruments increases.

Example 4

estat firststage presents different statistics when the model contains multiple endogenous
regressors. For illustration, we refit our model of rental rates, assuming that both hsngval and faminc
are endogenously determined. We use i.region along with popden, a measure of population density,
as additional instruments.
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. ivregress 2sls rent pcturban (hsngval faminc = i.region popden)
(output omitted )

. estat firststage

Shea’s partial R-squared

Shea’s Shea’s
Variable partial R-sq. adj. partial R-sq.

hsngval 0.3477 0.2735
faminc 0.1893 0.0972

Minimum eigenvalue statistic = 2.51666

Critical Values # of endogenous regressors: 2
H0: Instruments are weak # of excluded instruments: 4

5% 10% 20% 30%
2SLS relative bias 11.04 7.56 5.57 4.73

10% 15% 20% 25%
2SLS size of nominal 5% Wald test 16.87 9.93 7.54 6.28
LIML size of nominal 5% Wald test 4.72 3.39 2.99 2.79

Consider the endogenous regressor hsngval. Part of its variation is attributable to its correlation
with the other regressors pcturban and faminc. The other component of hsngval’s variation is
peculiar to it and orthogonal to the variation in the other regressors. Similarly, we can think of the
instruments as predicting the variation in hsngval in two ways, one stemming from the fact that
the predicted values of hsngval are correlated with the predicted values of the other regressors and
one from the variation in the predicted values of hsngval that is orthogonal to the variation in the
predicted values of the other regressors.

What really matters for instrumental-variables estimation is whether the component of hsngval
that is orthogonal to the other regressors can be explained by the component of the predicted value of
hsngval that is orthogonal to the predicted values of the other regressors in the model. Shea’s (1997)
partial R2 statistic measures this correlation. Because the bias of instrumental-variables estimators
increases as more instruments are used, Shea’s adjusted partial R2 statistic is often used instead, as
it makes a degrees-of-freedom adjustment for the number of instruments, analogous to the adjusted
R2 measure used in OLS regression. Although what constitutes a “low” value for Shea’s partial R2

depends on the specifics of the model being fit and the data used, these results, taken in isolation, do
not strike us as being a particular cause for concern.

However, with this specification the minimum eigenvalue statistic is low. We cannot reject the null
hypothesis of weak instruments for either of the characterizations we have discussed.

By default, estat firststage determines which statistics to present based on the number of
endogenous regressors in the model previously fit. However, you can specify the all option to obtain
all the statistics.

Technical note

If the previous estimation was conducted using aweights, pweights, or iweights, then the
first-stage regression summary statistics are computed using those weights. However, in these cases
the minimum eigenvalue statistic and its critical values are not available.
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If the previous estimation included a robust VCE, then the first-stage F statistic is based on a
robust VCE as well; for example, if you fit your model with an HAC VCE using the Bartlett kernel
and four lags, then the F statistic reported is based on regression results using an HAC VCE using the
Bartlett kernel and four lags. By default, the minimum eigenvalue statistic and its critical values are
not displayed. You can use the forcenonrobust option to obtain them in these cases; the minimum
eigenvalue statistic is computed using the weights, though the critical values reported may not be
appropriate.

estat overid
In addition to the requirement that instrumental variables be correlated with the endogenous

regressors, the instruments must also be uncorrelated with the structural error term. If the model is
overidentified, meaning that the number of additional instruments exceeds the number of endogenous
regressors, then we can test whether the instruments are uncorrelated with the error term. If the model
is just identified, then we cannot perform a test of overidentifying restrictions.

The estimator you used to fit the model determines which tests of overidentifying restrictions
estat overid reports. If you used the 2SLS estimator without a robust VCE, estat overid reports
Sargan’s (1958) and Basmann’s (1960) χ2 tests. If you used the 2SLS estimator and requested a robust
VCE, Wooldridge’s robust score test of overidentifying restrictions is performed instead; without a
robust VCE, Wooldridge’s test statistic is identical to Sargan’s test statistic. If you used the LIML
estimator, estat overid reports the Anderson–Rubin (1950) likelihood-ratio test and Basmann’s
(1960) F test. estat overid reports Hansen’s (1982) J statistic if you used the GMM estimator.
Davidson and MacKinnon (1993, 235–236) give a particularly clear explanation of the intuition behind
tests of overidentifying restrictions. Also see Judge et al. (1985, 614–616) for a summary of tests of
overidentifying restrictions for the 2SLS and LIML estimators.

Tests of overidentifying restrictions actually test two different things simultaneously. One, as we
have discussed, is whether the instruments are uncorrelated with the error term. The other is that the
equation is misspecified and that one or more of the excluded exogenous variables should in fact be
included in the structural equation. Thus, a significant test statistic could represent either an invalid
instrument or an incorrectly specified structural equation.

Example 5

Here we refit the model that treated just hsngval as endogenous using 2SLS, and then we perform
tests of overidentifying restrictions:

. ivregress 2sls rent pcturban (hsngval = faminc i.region)
(output omitted )

. estat overid

Tests of overidentifying restrictions:

Sargan (score) chi2(3) = 11.2877 (p = 0.0103)
Basmann chi2(3) = 12.8294 (p = 0.0050)

Both test statistics are significant at the 5% test level, which means that either one or more of our
instruments are invalid or that our structural model is specified incorrectly.

One possibility is that the error term in our structural model is heteroskedastic. Both Sargan’s and
Basmann’s tests assume that the errors are i.i.d.; if the errors are not i.i.d., then these tests are not
valid. Here we refit the model by requesting heteroskedasticity-robust standard errors, and then we
use estat overid to obtain Wooldridge’s score test of overidentifying restrictions, which is robust
to heteroskedasticity.
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. ivregress 2sls rent pcturban (hsngval = faminc i.region), vce(robust)
(output omitted )

. estat overid

Test of overidentifying restrictions:

Score chi2(3) = 6.8364 (p = 0.0773)

Here we no longer reject the null hypothesis that our instruments are valid at the 5% significance
level, though we do reject the null at the 10% level. You can verify that the robust standard error
on the coefficient for hsngval is more than twice as large as its nonrobust counterpart and that the
robust standard error for pcturban is nearly 50% larger.

Technical note
The test statistic for the test of overidentifying restrictions performed after GMM estimation is simply

the sample size times the value of the objective function Q(β1,β2) defined in (5) of [R] ivregress,
evaluated at the GMM parameter estimates. If the weighting matrix W is optimal, meaning that

W = Var (ziui), then Q(β1,β2)
A∼χ2(q), where q is the number of overidentifying restrictions.

However, if the estimated W is not optimal, then the test statistic will not have an asymptotic χ2

distribution.

Like the Sargan and Basmann tests of overidentifying restrictions for the 2SLS estimator, the
Anderson–Rubin and Basmann tests after LIML estimation are predicated on the errors’ being i.i.d. If
the previous LIML results were reported with robust standard errors, then estat overid by default
issues an error message and refuses to report the Anderson–Rubin and Basmann test statistics. You
can use the forcenonrobust option to override this behavior. You can also use forcenonrobust
to obtain the Sargan and Basmann test statistics after 2SLS estimation with robust standard errors.

By default, estat overid issues an error message if the previous estimation was conducted using
aweights, pweights, or iweights. You can use the forceweights option to override this behavior,
though the test statistics may no longer have the expected χ2 distributions.

Stored results
After 2SLS estimation, estat endogenous stores the following in r():

Scalars
r(durbin) Durbin χ2 statistic
r(p durbin) p-value for Durbin χ2 statistic
r(wu) Wu–Hausman F statistic
r(p wu) p-value for Wu–Hausman F statistic
r(df) degrees of freedom
r(wudf r) denominator degrees of freedom for Wu–Hausman F

r(r score) robust score statistic
r(p r score) p-value for robust score statistic
r(hac score) HAC score statistic
r(p hac score) p-value for HAC score statistic
r(lags) lags used in prewhitening
r(regF) regression-based F statistic
r(p regF) p-value for regression-based F statistic
r(regFdf n) regression-based F numerator degrees of freedom
r(regFdf r) regression-based F denominator degrees of freedom

https://www.stata.com/manuals/rivregress.pdf#rivregressRemarksandexamplesivreg_eq5
https://www.stata.com/manuals/rivregress.pdf#rivregress
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After GMM estimation, estat endogenous stores the following in r():

Scalars
r(C) C χ2 statistic
r(p C) p-value for C χ2 statistic
r(df) degrees of freedom

estat firststage stores the following in r():

Scalars
r(mineig) minimum eigenvalue statistic

Matrices
r(mineigcv) critical values for minimum eigenvalue statistic
r(multiresults) Shea’s partial R2 statistics
r(singleresults) first-stage R2 and F statistics

After 2SLS estimation, estat overid stores the following in r():

Scalars
r(lags) lags used in prewhitening
r(df) χ2 degrees of freedom
r(score) score χ2 statistic
r(p score) p-value for score χ2 statistic
r(basmann) Basmann χ2 statistic
r(p basmann) p-value for Basmann χ2 statistic
r(sargan) Sargan χ2 statistic
r(p sargan) p-value for Sargan χ2 statistic

After LIML estimation, estat overid stores the following in r():

Scalars
r(ar) Anderson–Rubin χ2 statistic
r(p ar) p-value for Anderson–Rubin χ2 statistic
r(ar df) χ2 degrees of freedom
r(basmann) Basmann F statistic
r(p basmann) p-value for Basmann F statistic
r(basmann df n) F numerator degrees of freedom
r(basmann df d) F denominator degrees of freedom

After GMM estimation, estat overid stores the following in r():

Scalars
r(HansenJ) Hansen’s J χ2 statistic
r(p HansenJ) p-value for Hansen’s J χ2 statistic
r(J df) χ2 degrees of freedom

Methods and formulas
Methods and formulas are presented under the following headings:

Notation
estat endogenous
estat firststage
estat overid
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Notation

Recall from [R] ivregress that the model is

y = Yβ1 +X1β2 + u = Xβ+ u

Y = X1Π1 +X2Π2 +V = ZΠ+V

where y is an N × 1 vector of the left-hand-side variable, N is the sample size, Y is an N × p
matrix of p endogenous regressors, X1 is an N × k1 matrix of k1 included exogenous regressors,
X2 is an N × k2 matrix of k2 excluded exogenous variables, X = [Y X1], Z = [X1 X2], u is an
N × 1 vector of errors, V is an N × p matrix of errors, β = [β1 β2] is a k = (p+ k1)× 1 vector
of parameters, and Π is a (k1 + k2)× p vector of parameters. If a constant term is included in the
model, then one column of X1 contains all ones.

estat endogenous

Partition Y as Y = [Y1 Y2], where Y1 represents the p1 endogenous regressors whose endogeneity
is being tested and Y2 represents the p2 endogenous regressors whose endogeneity is not being tested.
If the endogeneity of all endogenous regressors is being tested, Y = Y1 and p2 = 0. After GMM
estimation, estat endogenous refits the model treating Y1 as exogenous using the same type of
weight matrix as requested at estimation time with the wmatrix() option; denote the Sargan statistic
from this model by Je and the estimated weight matrix by We. Let Se = W−1

e . estat endogenous
removes from Se the rows and columns corresponding to the variables represented by Y1; denote the
inverse of the resulting matrix by W′

e. Next, estat endogenous fits the model treating both Y1

and Y2 as endogenous, using the weight matrix W′
e; denote the Sargan statistic from this model by

Jc. Then, C = (Je − Jc) ∼ χ2(p1). If one simply used the J statistic from the original model fit
by ivregress in place of Jc, then in finite samples Je − J might be negative. The procedure used
by estat endogenous is guaranteed to yield C ≥ 0; see Hayashi (2000, 220).

Let ûc denote the residuals from the model treating both Y1 and Y2 as endogenous, and let ûe
denote the residuals from the model treating only Y2 as endogenous. Then, Durbin’s (1954) statistic
is

D =
û′ePZY1

ûe − û′cPZ ûc
û′eûe/N

where PZ = Z(Z′Z)−1Z′ and PZY1 = [Z Y1]([Z Y1]
′[Z Y1])

−1[Z Y1]
′ D ∼ χ2(p1). The

Wu–Hausman (Wu 1974; Hausman 1978) statistic is

WH =
(û′ePZY1

ûe − û′cPZ ûc)/p1
{û′eûe − (û′ePZY1 ûe − û′cPZ ûc)} /(N − k1 − p− p1)

WH ∼ F (p1, N − k1 − p− p1). Baum, Schaffer, and Stillman (2003, 2007) discuss these tests in
more detail.

Next, we describe Wooldridge’s (1995) score test. The nonrobust version of Wooldridge’s test is
identical to Durbin’s test. Suppose a robust covariance matrix was used at estimation time. Let ê
denote the sample residuals obtained by fitting the model via OLS, treating Y as exogenous. We then
regress each variable represented in Y on Z; call the residuals for the jth regression r̂j , j = 1, . . . , p.
Define k̂ij = êir̂ij , i = 1, . . . , N . We then run the regression

1 = θ1k̂1 + · · ·+ θpk̂p + ε

https://www.stata.com/manuals/rivregress.pdf#rivregress
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where 1 is an N × 1 vector of ones and ε is a regression error term. N − RSS ∼ χ2(p), where RSS
is the residual sum of squares from the regression just described. If instead an HAC VCE was used
at estimation time, then before running the final regression we prewhiten the k̂j series by using a
VAR(q) model, where q is the number of lags specified with the lags() option.

The regression-based test proceeds as follows. Following Hausman (1978, 1259), we regress Y

on Z and obtain the residuals V̂. Next, we fit the augmented regression

y = Yβ1 +X1β2 + V̂γ+ ε

by OLS regression, where ε is a regression error term. A test of the exogeneity of Y is equivalent
to a test of γ = 0. As Cameron and Trivedi (2005, 276) suggest, this test can be made robust to
heteroskedasticity, autocorrelation, or clustering by using the appropriate robust VCE when testing
γ = 0. When a nonrobust VCE is used, this test is equivalent to the Wu–Hausman test described
earlier. One cannot simply fit this augmented regression via 2SLS to test the endogeneity of a subset
of the endogenous regressors; Davidson and MacKinnon (1993, 229–231) discuss a test of γ = 0 for
the homoskedastic version of the augmented regression fit by 2SLS, but an appropriate robust test is
not apparent.

estat firststage

When the structural equation includes one endogenous regressor, estat firststage fits the
regression

Y = X1π1 +X2π2 + v

via OLS. The R2 and adjusted R2 from that regression are reported in the output, as well as the F
statistic from the Wald test of H0: π2 = 0. To obtain the partial R2 statistic, estat firststage
fits the regression

MX1y = MX1X2ξ+ ε

by OLS, where ε is a regression error term, ξ is a k2 × 1 parameter vector, and MX1
= I −

X1(X
′
1X1)

−1X′1; that is, the partial R2 is the R2 between y and X2 after eliminating the effects
of X1. If the model contains multiple endogenous regressors and the all option is specified, these
statistics are calculated for each endogenous regressor in turn.

To calculate Shea’s partial R2, let y1 denote the endogenous regressor whose statistic is being
calculated and Y0 denote the other endogenous regressors. Define ỹ1 as the residuals obtained from
regressing y1 on Y0 and X1. Let ŷ1 denote the fitted values obtained from regressing y1 on X1

and X2; that is, ŷ1 are the fitted values from the first-stage regression for y1, and define the
columns of Ŷ0 analogously. Finally, let ˜̂y1 denote the residuals from regressing ŷ1 on Ŷ0 and X1.
Shea’s partial R2 is the simple R2 from the regression of ỹ1 on ˜̂y1; denote this as R2

S . Shea’s
adjusted partial R2 is equal to 1− (1−R2

S)(N − 1)/(N − kZ + 1) if a constant term is included
and 1 − (1 − R2

S)(N − 1)/(N − kZ) if there is no constant term included in the model, where
kZ = k1+k2. For one endogenous regressor, one instrument, no exogenous regressors, and a constant
term, R2

S equals the adjusted R2
S .

The Stock and Yogo minimum eigenvalue statistic, first proposed by Cragg and Donald (1993) as
a test for underidentification, is the minimum eigenvalue of the matrix

G =
1

kZ
Σ̂
−1/2
VV Y′M′X1

X2(X
′
2MX1

X2)
−1X′2MX1

YΣ̂
−1/2
VV
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where
Σ̂VV =

1

N − kZ
Y′MZY

MZ = I − Z(Z′Z)−1Z′, and Z = [X1 X2]. Critical values are obtained from the tables in Stock
and Yogo (2005).

estat overid
The Sargan (1958) and Basmann (1960) χ2 statistics are calculated by running the auxiliary

regression
û = Zδ+ e

where û are the sample residuals from the model and e is an error term. Then, Sargan’s statistic is

S = N

(
1− ê′ê

û′û

)
where ê are the residuals from that auxiliary regression. Basmann’s statistic is calculated as

B = S
N − kZ
N − S

Both S and B are distributed χ2(m), where m, the number of overidentifying restrictions, is equal
to kZ − k, where k is the number of endogenous regressors.

Wooldridge’s (1995) score test of overidentifying restrictions is identical to Sargan’s (1958) statistic
under the assumption of i.i.d. and therefore is not recomputed unless a robust VCE was used at estimation
time. If a heteroskedasticity-robust VCE was used, Wooldridge’s test proceeds as follows. Let Ŷ denote
the N × k matrix of fitted values obtained by regressing the endogenous regressors on X1 and X2.
Let Q denote an N ×m matrix of excluded exogenous variables; the test statistic to be calculated is
invariant to whichever m of the k2 excluded exogenous variables is chosen. Define the ith element
of k̂j , i = 1, . . . , N , j = 1, . . . ,m, as

kij = q̂ij ûi

where q̂ij is the ith element of q̂j , the residuals from regressing the jth column of Q on Ŷ and X1.
Finally, fit the regression

1 = θ1k̂1 + · · ·+ θmk̂m + ε

where 1 is an N × 1 vector of ones and ε is a regression error term, and calculate the residual sum
of squares, RSS. Then, the test statistic is W = N − RSS. W ∼ χ2(m). If an HAC VCE was used at
estimation, then the k̂j are prewhitened using a VAR(p) model, where p is specified using the lags()
option.

The Anderson–Rubin (1950), AR, test of overidentifying restrictions for use after the LIML estimator
is calculated as AR = N(κ − 1), where κ is the minimal eigenvalue of a certain matrix defined in
Methods and formulas of [R] ivregress. AR ∼ χ2(m). (Some texts define this statistic as N ln(κ)
because ln(x) ≈ (x − 1) for x near 1.) Basmann’s F statistic for use after the LIML estimator is
calculated as BF = (κ− 1)(N − kZ)/m. BF ∼ F (m,N − kZ).

Hansen’s J statistic is simply the sample size times the value of the GMM objective function
defined in (5) of [R] ivregress, evaluated at the estimated parameter values. Under the null hypothesis
that the overidentifying restrictions are valid, J ∼ χ2(m).

https://www.stata.com/manuals/rivregress.pdf#rivregressMethodsandformulas
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John Denis Sargan (1924–1996) was born in Yorkshire, UK. He pioneered the theory of
instrumental-variables (IV) estimation in an article published in 1958. In the article, he also
developed overidentification tests, developed significance tests, and discussed possible instru-
ments for applied work. A year later, he wrote an article extending the theory to models containing
autoregressive errors. This extension was one of his many contributions to time-series econometric
analysis. For example, in 1964 he published a paper in which he developed misspecification tests
for dynamic equations, along with an IV estimator for models with nonlinear parameters, and a
model with a long-run equilibrium. His paper laid the foundation for other econometric methods,
such as cointegration analysis, and established what would be known as the London School of
Economics (LSE) approach to econometric modeling. He spent twenty years at this institution,
supervising the doctoral work of many econometricians who themselves made important contri-
butions to econometrics. In addition to Sargan’s many lasting contributions to econometrics, he
also left a lasting impression on his students and colleagues through his generosity.� �

References
Anderson, T. W., and H. Rubin. 1950. The asymptotic properties of estimates of the parameters of a sin-

gle equation in a complete system of stochastic equations. Annals of Mathematical Statistics 21: 570–582.
https://doi.org/10.1214/aoms/1177729752.

Angrist, J. D., and J.-S. Pischke. 2009. Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton, NJ:
Princeton University Press.

Basmann, R. L. 1960. On finite sample distributions of generalized classical linear identifiability test statistics. Journal
of the American Statistical Association 55: 650–659. https://doi.org/10.2307/2281588.

Baum, C. F., M. E. Schaffer, and S. Stillman. 2003. Instrumental variables and GMM: Estimation and testing. Stata
Journal 3: 1–31.

. 2007. Enhanced routines for instrumental variables/generalized method of moments estimation and testing. Stata
Journal 7: 465–506.

Bound, J., D. A. Jaeger, and R. M. Baker. 1995. Problems with instrumental variables estimation when the correlation
between the instruments and the endogenous explanatory variable is weak. Journal of the American Statistical
Association 90: 443–450. https://doi.org/10.2307/2291055.

Cameron, A. C., and P. K. Trivedi. 2005. Microeconometrics: Methods and Applications. New York: Cambridge
University Press.

Cragg, J. G., and S. G. Donald. 1993. Testing identifiability and specification in instrumental variable models.
Econometric Theory 9: 222–240. https://doi.org/10.1017/S0266466600007519.

Davidson, R., and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics. New York: Oxford University
Press.

Durbin, J. 1954. Errors in variables. Review of the International Statistical Institute 22: 23–32.
https://doi.org/10.2307/1401917.

Hahn, J., and J. A. Hausman. 2003. Weak instruments: Diagnosis and cures in empirical econometrics. American
Economic Review Papers and Proceedings 93: 118–125.

Hall, A. R., G. D. Rudebusch, and D. W. Wilcox. 1996. Judging instrument relevance in instrumental variables
estimation. International Economic Review 37: 283–298. https://doi.org/10.2307/2527324.

Hansen, L. P. 1982. Large sample properties of generalized method of moments estimators. Econometrica 50:
1029–1054. https://doi.org/10.2307/1912775.

Hausman, J. A. 1978. Specification tests in econometrics. Econometrica 46: 1251–1271.
https://doi.org/10.2307/1913827.

Hayashi, F. 2000. Econometrics. Princeton, NJ: Princeton University Press.

Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lütkepohl, and T.-C. Lee. 1985. The Theory and Practice of Econometrics.
2nd ed. New York: Wiley.

https://doi.org/10.1214/aoms/1177729752
http://www.stata.com/bookstore/mhe.html
https://doi.org/10.2307/2281588
http://www.stata-journal.com/article.html?article=st0030
http://www.stata-journal.com/article.html?article=st0030_3
https://doi.org/10.2307/2291055
http://www.stata.com/bookstore/mma.html
https://doi.org/10.1017/S0266466600007519
http://www.stata.com/bookstore/eie.html
https://doi.org/10.2307/1401917
https://doi.org/10.2307/1401917
https://doi.org/10.2307/2527324
https://doi.org/10.2307/1912775
https://doi.org/10.2307/1913827
https://doi.org/10.2307/1913827


20 ivregress postestimation — Postestimation tools for ivregress

Nelson, C. R., and R. Startz. 1990. The distribution of the instrumental variable estimator and its t ratio when the
instrument is a poor one. Journal of Business 63: S125–S140.

Pflueger, C. E., and S. Wang. 2015. A robust test for weak instruments in Stata. Stata Journal 15: 216–225.

Poi, B. P. 2006. Jackknife instrumental variables estimation in Stata. Stata Journal 6: 364–376.

Sargan, J. D. 1958. The estimation of economic relationships using instrumental variables. Econometrica 26: 393–415.
https://doi.org/10.2307/1907619.

Shea, J. S. 1997. Instrument relevance in multivariate linear models: A simple measure. Review of Economics and
Statistics 79: 348–352. https://doi.org/10.1162/rest.1997.79.2.348.

Staiger, D. O., and J. H. Stock. 1997. Instrumental variables regression with weak instruments. Econometrica 65:
557–586. https://doi.org/10.2307/2171753.

Stock, J. H., J. H. Wright, and M. Yogo. 2002. A survey of weak instruments and weak identi-
fication in generalized method of moments. Journal of Business and Economic Statistics 20: 518–529.
https://doi.org/10.1198/073500102288618658.

Stock, J. H., and M. Yogo. 2005. Testing for weak instruments in linear IV regression. In Identification and Inference
for Econometric Models: Essays in Honor of Thomas Rothenberg, ed. D. W. K. Andrews and J. H. Stock, 80–108.
New York: Cambridge University Press.

Sun, L. 2018. Implementing valid two-step identification-robust confidence sets for linear instrumental-variables models.
Stata Journal 18: 803–825.

Wooldridge, J. M. 1995. Score diagnostics for linear models estimated by two stage least squares. In Advances in
Econometrics and Quantitative Economics: Essays in Honor of Professor C. R. Rao, ed. G. S. Maddala, P. C. B.
Phillips, and T. N. Srinivasan, 66–87. Oxford: Blackwell.

Wu, D.-M. 1974. Alternative tests of independence between stochastic regressors and disturbances: Finite sample
results. Econometrica 42: 529–546. https://doi.org/10.2307/1911789.

Also see
[R] ivregress — Single-equation instrumental-variables regression

[U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

http://www.stata-journal.com/article.html?article=st0377
http://www.stata-journal.com/article.html?article=st0108
https://doi.org/10.2307/1907619
https://doi.org/10.1162/rest.1997.79.2.348
https://doi.org/10.2307/2171753
https://doi.org/10.1198/073500102288618658
http://www.stata-journal.com/article.html?article=st0541
https://doi.org/10.2307/1911789
https://www.stata.com/manuals/rivregress.pdf#rivregress
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands

