
ivregress — Single-equation instrumental-variables regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
ivregress fits linear models where one or more of the regressors are endogenously determined.

ivregress supports estimation via two-stage least squares (2SLS), limited-information maximum like-

lihood (LIML), and generalized method of moments (GMM).

Quick start
2SLS estimation of a linear regression of y1 on x1 and endogenous regressor y2 that is instrumented by

z1
ivregress 2sls y1 x1 (y2 = z1)

Same as above, but with two endogenous regressors, y2 and y3 instrumented by z1 and z2
ivregress 2sls y1 x1 (y2 y3 = z1 z2)

Same as above, but absorbing indicator variables for the levels of cvar1 and cvar2
ivregress 2sls y1 x1 (y2 y3 = z1 z2), absorb(cvar1 cvar2)

With robust standard errors

ivregress 2sls y1 x1 (y2 y3 = z1 z2), vce(robust)

Report small-sample statistics

ivregress 2sls y1 x1 (y2 y3 = z1 z2), small

Use LIML estimation

ivregress liml y1 x1 (y2 y3 = z1 z2)

Use GMM estimation

ivregress gmm y1 x1 (y2 y3 = z1 z2)

Also specify a weight matrix that allows for correlation within clusters identified by cvar
ivregress gmm y1 x1 (y2 y3 = z1 z2), wmatrix(cluster cvar)

Menu
Statistics > Endogenous covariates > Linear regression with endogenous covariates
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Syntax
ivregress estimator depvar [ varlist1 ] (varlist2 = varlistiv) [ if ] [ in ] [weight ]

[ , options ]

varlist1 is the list of exogenous variables.

varlist2 is the list of endogenous variables.

varlistiv is the list of exogenous variables used with varlist1 as instruments for varlist2.

estimator Description

2sls two-stage least squares (2SLS)

liml limited-information maximum likelihood (LIML)

gmm generalized method of moments (GMM)

options Description

Model

absorb(varlist[ , method ])1 specify categorical variables to be absorbed
† dfabsorb1 adjust degrees of freedom for collinearity among absorbed variables

noconstant1 suppress constant term

hascons has user-supplied constant

GMM2

wmatrix(wmtype) wmtype may be robust, cluster clustvar, hac hacspec, or
unadjusted

center center moments in weight matrix computation

igmm use iterative instead of two-step GMM estimator

eps(#)3 specify parameter convergence criterion; default is eps(1e-6)
weps(#)3 specify weight-matrix convergence criterion; default is weps(1e-6)

SE/Robust

vce(vcetype) vcetype may be unadjusted, robust, cluster clustvar, bootstrap,
jackknife, or hac hacspec

Reporting

level(#) set confidence level; default is level(95)
first report first-stage regression

small make degrees-of-freedom adjustments and report small-sample statistics

noheader display only the coefficient table

depname(depname) substitute dependent variable name

eform(string) report exponentiated coefficients and use string to label them

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization
† optimization options4 control the optimization process; seldom used

perfect do not check for collinearity between endogenous regressors and
excluded instruments

coeflegend display legend instead of statistics

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rivregress.pdf#rivregressSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rivregress.pdf#rivregressOptionshacspec
https://www.stata.com/manuals/rivregress.pdf#rivregressOptionsvcetype
https://www.stata.com/manuals/rivregress.pdf#rivregressOptionshacspec
https://www.stata.com/manuals/u11.pdf#u11.3Namingconventions
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/rivregress.pdf#rivregressOptionsdisplay_options
https://www.stata.com/manuals/rivregress.pdf#rivregressOptionsopt_options
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1These options may be specified only with 2sls.
2These options may be specified only with gmm.
3These options may be specified only with igmm.
4These options may be specified only with igmm or 2sls and absorb().
†Ignored if only one absorbed variable is specified.

varlist1, varlist2, and varlistiv may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, varlist1, varlist2, and varlistiv may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayesboot, bootstrap, by, collect, fmm, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix

commands. For more details, see [FMM] fmm: ivregress.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

aweights are not allowed with the jackknife prefix; see [R] jackknife.

absorb(), dfabsorb, hascons, vce(), noheader, depname(), and weights are not allowed with the svy prefix; see
[SVY] svy.

fweights, iweights, and pweights are not allowed with vce(hac).
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

perfect and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

absorb(varlist[ , method ]) specifies the categorical variables to be absorbed. The results are adjusted

as if indicator variables for each level of each variable in varlist were included in the regression.

The absorption of categorical variables involves projecting the depvar and all variables in varlist1,

varlist2, and varlistiv via an alternating projection method (APM) iterative algorithm. method specifies

the APM and is one of halperin or cimmino.

halperin, the default, uses the product of the projection matrices.

cimmino uses the mean of the projection matrices.

The two methods typically perform similarly. See Stammann (2018) for details.

method is ignored if only one absorbed variable is specified.

absorb() may not be combined with vce(hac).

dfabsorb adjusts the degrees of freedom to account for collinearity among absorbed variables. The

default degrees of freedom assumes that all absorbed variables are independent. This option is ignored

if only one absorbed variable is specified in absorb().

noconstant; see [R] Estimation options.

hascons indicates that a user-defined constant or its equivalent is specified among the independent vari-

ables.

� � �
GMM �

wmatrix(wmtype) specifies the type of weight matrix to be used in conjunction with the GMM estimator.

wmatrix(robust), the default, requests a weight matrix that is optimal when the error term is het-

eroskedastic.

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/fmmfmmivregress.pdf#fmmfmmivregress
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/rjackknife.pdf#rjackknife
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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wmatrix(cluster clustvar) requests a weight matrix that accounts for arbitrary correlation among

observations within clusters identified by clustvar.

wmatrix(hac hacspec) requests a heteroskedasticity- and autocorrelation-consistent (HAC) weight

matrix. The full syntax of hacspec is one of the following:

wmatrix(hac kernel [ # ]) requests a HAC weight matrix using the specified kernel (see below)

with optional # lags. The bandwidth of a kernel is equal to # + 1. If # is not specified, a kernel

with 𝑁 − 2 lags is used, where 𝑁 is the sample size.

wmatrix(hac kernel opt [ # ]) requests a HAC weight matrix using the specified kernel (see be-

low), and the lag order is selected using Newey and West’s (1994) optimal lag-selection algo-

rithm. # is an optional tuning parameter that affects the lag order selected; see the discussion

in Methods and formulas.

kernel may be one of the following:

bartlett or nwest requests the Bartlett (Newey–West) kernel.

parzen or gallant requests the Parzen (Gallant 1987) kernel.

quadraticspectral or andrews requests the quadratic spectral (Andrews 1991) kernel.

wmatrix(unadjusted) requests a weight matrix that is suitable when the errors are homoskedastic.

The GMM estimator with this weight matrix is equivalent to the 2SLS estimator.

center requests that the sample moments be centered (demeaned) when computing GMM weight matri-

ces. By default, centering is not done.

igmm requests that the iterative GMM estimator be used instead of the default two-step GMM estimator.

Convergence is declared when the relative change in the parameter vector from one iteration to the

next is less than eps() or the relative change in the weight matrix is less than weps().

eps(#) specifies the convergence criterion for successive parameter estimates when the iterative GMM

estimator is used. The default is eps(1e-6). Convergence is declared when the relative difference
between successive parameter estimates is less than eps() and the relative difference between suc-

cessive estimates of the weight matrix is less than weps().

weps(#) specifies the convergence criterion for successive estimates of the weight matrix when the iter-

ative GMM estimator is used. The default is weps(1e-6). Convergence is declared when the relative
difference between successive parameter estimates is less than eps() and the relative difference be-

tween successive estimates of the weight matrix is less than weps().

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that

use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

vce(unadjusted), the default for 2sls and liml, specifies that an unadjusted (nonrobust) VCE

matrix be used. The default for gmm is based on the wmtype specified in the wmatrix() option;

see wmatrix() above. If wmatrix() is specified with gmm but vce() is not, then vcetype is set

equal to wmtype. To override this behavior and obtain an unadjusted (nonrobust) VCE matrix,

specify vce(unadjusted).

vce(hac hacspec) specifies that a HAC covariance matrix be used. The syntax is identical to that for

wmatrix(). vce(hac) may not be combined with absorb().

https://www.stata.com/manuals/rivregress.pdf#rivregressMethodsandformulaswmatrixopt
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/rivregress.pdf#rivregressOptionswmatrix()
https://www.stata.com/manuals/rivregress.pdf#rivregressOptionshacspec
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� � �
Reporting �

level(#); see [R] Estimation options.

first requests that the first-stage regression results be displayed.

small requests that the degrees-of-freedom adjustment 𝑁/(𝑁 − 𝑘) be made to the variance–covariance
matrix of parameters and that small-sample 𝐹 and 𝑡 statistics be reported, where 𝑁 is the sample size

and 𝑘 is the number of parameters estimated. By default, no degrees-of-freedom adjustment is made,

and Wald and 𝑧 statistics are reported. Even with this option, no degrees-of-freedom adjustment is

made to the weight matrix when the GMM estimator is used.

noheader suppresses the display of the summary statistics at the top of the output, displaying only the

coefficient table.

depname(depname) is used only in programs and ado-files that use ivregress to fit models other than

instrumental-variables regression. depname() may be specified only at estimation time. depname

is recorded as the identity of the dependent variable, even though the estimates are calculated using

depvar. This method affects the labeling of the output—not the results calculated—but could affect

later calculations made by predict, where the residual would be calculated as deviations from dep-

name rather than depvar. depname() is most typically used when depvar is a temporary variable (see

[P] macro) used as a proxy for depname.

eform(string) is used only in programs and ado-files that use ivregress to fit models other than

instrumental-variables regression. eform() specifies that the coefficient table be displayed in “ex-

ponentiated form”, as defined in [R] Maximize, and that string be used to label the exponentiated

coefficients in the table.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

optimization options: iterate(#), [no]log, and tolerance(#). iterate() specifies the maximum

number of iterations to perform in conjunction with the iterative GMM estimator. The default is the

number set using set maxiter, which is 300 by default. log/nolog specifies whether to show the

iteration log; see set iterlog in [R] set iter. tolerance() is allowed only with 2sls and the

absorb() option and specifies the projection tolerance. These options are seldom used.

The following options are available with ivregress but are not shown in the dialog box:

perfect requests that ivregress not check for collinearity between the endogenous regressors and

excluded instruments, allowing one to specify “perfect” instruments. This option cannot be used

with the LIML estimator. This option may be required when using ivregress to implement other

estimators.

coeflegend; see [R] Estimation options.

Remarks and examples
ivregress performs instrumental-variables regression and weighted instrumental-variables regres-

sion. For a general discussion of instrumental variables, see Baum (2006), Cameron and Trivedi (2005;

2022, chap. 7) Davidson and MacKinnon (1993), Greene (2018, chap. 8), and Wooldridge (2010, 2020).

See Hall (2005) for a lucid presentation of GMM estimation. Angrist and Pischke (2009, chap. 4) offer

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/u11.pdf#u11.3Namingconventions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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a casual yet thorough introduction to instrumental-variables estimators, including their use in estimating

treatment effects. Some of the earliest work on simultaneous systems can be found in Cowles Com-

mission monographs—Koopmans and Marschak (1950) and Koopmans and Hood (1953)—with the

first developments of 2SLS appearing in Theil (1953) and Basmann (1957). However, Stock and Watson

(2019, 401–402) present an example of the method of instrumental variables that was first published in

1928 by Philip Wright.

The syntax for ivregress assumes that you want to fit one equation from a system of equations or

an equation for which you do not want to specify the functional form for the remaining equations of

the system. To fit a full system of equations, using either 2SLS equation-by-equation or three-stage least

squares, see [R] reg3. An advantage of ivregress is that you can fit one equation of a multiple-equation
system without specifying the functional form of the remaining equations.

Formally, the model fit by ivregress is

𝑦𝑖 = y𝑖β1 + x1𝑖β2 + 𝑢𝑖 (1)

y𝑖 = x1𝑖𝚷1 + x2𝑖𝚷2 + v𝑖 (2)

Here 𝑦𝑖 is the dependent variable for the 𝑖th observation, y𝑖 represents the endogenous regressors (varlist2
in the syntax diagram), x1𝑖 represents the included exogenous regressors (varlist1 in the syntax diagram),

and x2𝑖 represents the excluded exogenous regressors (varlistiv in the syntax diagram). x1𝑖 and x2𝑖 are

collectively called the instruments. 𝑢𝑖 and v𝑖 are zero-mean error terms, and the correlations between 𝑢𝑖
and the elements of v𝑖 are presumably nonzero.

The rest of the discussion is presented under the following headings:

2SLS and LIML estimators
GMM estimator
Video example

2SLS and LIML estimators
The most common instrumental-variables estimator is 2SLS.

Example 1: 2SLS estimator
We have state data from the 1980 census on the median dollar value of owner-occupied housing

(hsngval) and the median monthly gross rent (rent). We want to model rent as a function of hsngval
and the percentage of the population living in urban areas (pcturban):

rent𝑖 = 𝛽0 + 𝛽1hsngval𝑖 + 𝛽2pcturban𝑖 + 𝑢𝑖

where 𝑖 indexes states and 𝑢𝑖 is an error term.

Because random shocks that affect rental rates in a state probably also affect housing values, we treat

hsngval as endogenous. We believe that the correlation between hsngval and 𝑢 is not equal to zero.

On the other hand, we have no reason to believe that the correlation between pcturban and 𝑢 is nonzero,

so we assume that pcturban is exogenous.

Because we are treating hsngval as an endogenous regressor, we must have one or more additional

variables available that are correlated with hsngval but uncorrelated with 𝑢. Moreover, these excluded

exogenous variables must not affect rent directly, because if they do then they should be included in the

regression equation we specified above. In our dataset, we have a variable for family income (faminc)
and for region of the country (region) that we believe are correlated with hsngval but not the error term.
Together, pcturban, faminc, and factor variables 2.region, 3.region, and 4.region constitute our

set of instruments.

https://www.stata.com/manuals/rreg3.pdf#rreg3
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To fit the equation in Stata, we specify the dependent variable and the list of included exogenous vari-

ables. In parentheses, we specify the endogenous regressors, an equal sign, and the excluded exogenous

variables. Only the additional exogenous variables must be specified to the right of the equal sign; the

exogenous variables that appear in the regression equation are automatically included as instruments.

Here we fit our model with the 2SLS estimator:

. use https://www.stata-press.com/data/r19/hsng
(1980 Census housing data)
. ivregress 2sls rent pcturban (hsngval = faminc i.region)
Instrumental-variables 2SLS regression Number of obs = 50

Wald chi2(2) = 90.76
Prob > chi2 = 0.0000
R-squared = 0.5989
Root MSE = 22.166

rent Coefficient Std. err. z P>|z| [95% conf. interval]

hsngval .0022398 .0003284 6.82 0.000 .0015961 .0028836
pcturban .081516 .2987652 0.27 0.785 -.504053 .667085

_cons 120.7065 15.22839 7.93 0.000 90.85942 150.5536

Endogenous: hsngval
Exogenous: pcturban faminc 2.region 3.region 4.region

As we would expect, states with higher housing values have higher rental rates. The proportion of a

state’s population that is urban does not have a significant effect on rents.

Technical note
In a simultaneous-equations framework, we could write the model we just fit as

hsngval𝑖 = 𝜋0 + 𝜋1faminc𝑖 + 𝜋22.region𝑖 + 𝜋33.region𝑖 + 𝜋44.region𝑖 + 𝑣𝑖

rent𝑖 = 𝛽0 + 𝛽1hsngval𝑖 + 𝛽2pcturban𝑖 + 𝑢𝑖

which here happens to be recursive (triangular), because hsngval appears in the equation for rent
but rent does not appear in the equation for hsngval. In general, however, systems of simultaneous

equations are not recursive. Because this system is recursive, we could fit the two equations individually

via OLS if we were willing to assume that 𝑢 and 𝑣 were independent. For a more detailed discussion of

triangular systems, see Kmenta (1997, 719–720).

Historically, instrumental-variables estimation and systems of simultaneous equations were taught

concurrently, and older textbooks describe instrumental-variables estimation solely in the context of

simultaneous equations. However, in recent decades, the treatment of endogeneity and instrumental-

variables estimation has taken on a much broader scope, while interest in the specification of complete

systems of simultaneous equations has waned. Most recent textbooks, such as Cameron and Trivedi

(2005), Davidson and MacKinnon (1993), and Wooldridge (2010, 2020), treat instrumental-variables

estimation as an integral part of the modern economists’ toolkit and introduce it long before shorter dis-

cussions on simultaneous equations.

In addition to the 2SLSmember of the 𝜅-class estimators, ivregress implements the LIML estimator.

Both theoretical and Monte Carlo exercises indicate that the LIML estimator may yield less bias and

confidence intervals with better coverage rates than the 2SLS estimator. See Poi (2006) and Stock,Wright,

and Yogo (2002) (and the papers cited therein) for Monte Carlo evidence.
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Example 2: LIML estimator
Here we refit our model with the LIML estimator:

. ivregress liml rent pcturban (hsngval = faminc i.region)
Instrumental-variables LIML regression Number of obs = 50

Wald chi2(2) = 75.71
Prob > chi2 = 0.0000
R-squared = 0.4901
Root MSE = 24.992

rent Coefficient Std. err. z P>|z| [95% conf. interval]

hsngval .0026686 .0004173 6.39 0.000 .0018507 .0034865
pcturban -.1827391 .3571132 -0.51 0.609 -.8826681 .5171899

_cons 117.6087 17.22625 6.83 0.000 83.84587 151.3715

Endogenous: hsngval
Exogenous: pcturban faminc 2.region 3.region 4.region

These results are qualitatively similar to the 2SLS results, although the coefficient on hsngval is about
19% higher.

GMM estimator
Since the celebrated paper of Hansen (1982), the GMM has been a popular method of estimation in

economics and finance, and it lends itself well to instrumental-variables estimation. The basic principle

is that we have some moment or orthogonality conditions of the form

𝐸(z𝑖𝑢𝑖) = 0 (3)

From (1), we have 𝑢𝑖 = 𝑦𝑖 − y𝑖β1 − x1𝑖β2. What are the elements of the instrument vector z𝑖? By

assumption, x1𝑖 is uncorrelated with 𝑢𝑖, as are the excluded exogenous variables x2𝑖, and so we use

z𝑖 = [x1𝑖 x2𝑖]. The moment conditions are simply the mathematical representation of the assumption

that the instruments are exogenous—that is, the instruments are orthogonal to (uncorrelated with) 𝑢𝑖.

If the number of elements in z𝑖 is just equal to the number of unknown parameters, then we can apply

the analogy principle to (3) and solve

1
𝑁

∑
𝑖
z𝑖𝑢𝑖 = 1

𝑁
∑

𝑖
z𝑖 (𝑦𝑖 − y𝑖β1 − x1𝑖β2) = 0 (4)

This equation is known as the method of moments estimator. Here, where the number of instruments

equals the number of parameters, the method of moments estimator coincides with the 2SLS estimator,

which also coincides with what has historically been called the indirect least-squares estimator (Judge et

al. 1985, 595).

https://www.stata.com/manuals/rivregress.pdf#rivregressRemarksandexamplesex_ivregress_2sls
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The “generalized” in GMM addresses the case in which the number of instruments (columns of z𝑖)

exceeds the number of parameters to be estimated. Here there is no unique solution to the population

moment conditions defined in (3), so we cannot use (4). Instead, we define the objective function

𝑄(β1,β2) = ( 1
𝑁

∑
𝑖
z𝑖𝑢𝑖)

′

W( 1
𝑁

∑
𝑖
z𝑖𝑢𝑖) (5)

where W is a positive-definite matrix with the same number of rows and columns as the number of

columns of z𝑖. W is known as the weight matrix, and we specify its structure with the wmatrix()
option. The GMM estimator of (β1,β2) minimizes 𝑄(β1,β2); that is, the GMM estimator chooses β1
and β2 to make the moment conditions as close to zero as possible for a givenW. For a more general

GMM estimator, see [R] gmm. gmm does not restrict you to fitting a single linear equation, though the

syntax is more complex.

A well-known result is that if we define the matrix S0 to be the covariance of z𝑖𝑢𝑖 and setW = S−1
0 ,

then we obtain the optimal two-step GMM estimator, where by optimal estimator we mean the one that

results in the smallest variance given the moment conditions defined in (3).

Suppose that the errors 𝑢𝑖 are heteroskedastic but independent among observations. Then

S0 = 𝐸(z𝑖𝑢𝑖𝑢𝑖z
′
𝑖) = 𝐸(𝑢2

𝑖 z𝑖z
′
𝑖)

and the sample analogue is

Ŝ = 1
𝑁

∑
𝑖

�̂�2
𝑖 z𝑖z

′
𝑖 (6)

To implement this estimator, we need estimates of the sample residuals �̂�𝑖. ivregress gmm obtains the

residuals by estimating β1 and β2 by 2SLS and then evaluates (6) and setsW = Ŝ−1. Equation (6) is the

same as the center term of the “sandwich” robust covariance matrix available from most Stata estimation

commands through the vce(robust) option.

Example 3: GMM estimator
Here we refit our model of rents by using the GMM estimator, allowing for heteroskedasticity in 𝑢𝑖:

. ivregress gmm rent pcturban (hsngval = faminc i.region), wmatrix(robust)
Instrumental-variables GMM regression Number of obs = 50

Wald chi2(2) = 112.09
Prob > chi2 = 0.0000
R-squared = 0.6616

GMM weight matrix: Robust Root MSE = 20.358

Robust
rent Coefficient std. err. z P>|z| [95% conf. interval]

hsngval .0014643 .0004473 3.27 0.001 .0005877 .002341
pcturban .7615482 .2895105 2.63 0.009 .1941181 1.328978

_cons 112.1227 10.80234 10.38 0.000 90.95052 133.2949

Endogenous: hsngval
Exogenous: pcturban faminc 2.region 3.region 4.region

Because we requested that a heteroskedasticity-consistent weight matrix be used during estimation but

did not specify the vce() option, ivregress reported standard errors that are robust to heteroskedastic-

ity. Had we specified vce(unadjusted), we would have obtained standard errors that would be correct
only if the weight matrixW does in fact converge to S−1

0 .

https://www.stata.com/manuals/rgmm.pdf#rgmm
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Technical note
Many software packages that implement GMM estimation use the same heteroskedasticity-consistent

weight matrix we used in the previous example to obtain the optimal two-step estimates but do not use

a heteroskedasticity-consistent VCE, even though they may label the standard errors as being “robust”.

To replicate results obtained from other packages, you may have to use the vce(unadjusted) option.

See Methods and formulas below for a discussion of robust covariance matrix estimation in the GMM

framework.

By changing our definition of S0, we can obtain GMM estimators suitable for use with other types of

data that violate the assumption that the errors are independent and identically distributed. For example,

you may have a dataset that consists of multiple observations for each person in a sample. The observa-

tions that correspond to the same person are likely to be correlated, and the estimation technique should

account for that lack of independence. Say that in your dataset, people are identified by the variable

personid and you type

. ivregress gmm ..., wmatrix(cluster personid)

Here ivregress estimates S0 as

Ŝ = 1
𝑁

∑
𝑐∈𝐶

q𝑐q
′
𝑐

where 𝐶 denotes the set of clusters and

q𝑐 = ∑
𝑖∈𝑐𝑗

�̂�𝑖z𝑖

where 𝑐𝑗 denotes the 𝑗th cluster. This weight matrix accounts for the within-person correlation among
observations, so the GMM estimator that uses this version of S0 will be more efficient than the estimator

that ignores this correlation.

Example 4: GMM estimator with clustering
We have data from the National Longitudinal Survey on young women’s wages as reported in a series

of interviews from 1968 through 1988, and wewant to fit a model of wages as a function of each woman’s

age and age squared, job tenure, birth year, and level of education. We believe that random shocks that

affect a woman’s wage also affect her job tenure, so we treat tenure as endogenous. As additional in-

struments, we use her union status, number of weeks worked in the past year, and a dummy indicating

whether she lives in a metropolitan area. Because we have several observations for each woman (corre-

sponding to interviews done over several years), we want to control for clustering on each person.

https://www.stata.com/manuals/rivregress.pdf#rivregressRemarksandexamplesivregress_gmmest
https://www.stata.com/manuals/rivregress.pdf#rivregressMethodsandformulas
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. use https://www.stata-press.com/data/r19/nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. ivregress gmm ln_wage age c.age#c.age birth_yr grade
> (tenure = union wks_work msp), wmatrix(cluster idcode)
Instrumental-variables GMM regression Number of obs = 18,625

Wald chi2(5) = 1807.17
Prob > chi2 = 0.0000
Root MSE = .46951

GMM weight matrix: Cluster (idcode)
(Std. err. adjusted for 4,110 clusters in idcode)

Robust
ln_wage Coefficient std. err. z P>|z| [95% conf. interval]

tenure .099221 .0037764 26.27 0.000 .0918194 .1066227
age .0171146 .0066895 2.56 0.011 .0040034 .0302259

c.age#c.age -.0005191 .000111 -4.68 0.000 -.0007366 -.0003016

birth_yr -.0085994 .0021932 -3.92 0.000 -.012898 -.0043008
grade .071574 .0029938 23.91 0.000 .0657062 .0774417
_cons .8575071 .1616274 5.31 0.000 .5407231 1.174291

Endogenous: tenure
Exogenous: age c.age#c.age birth_yr grade union wks_work msp

Both job tenure and years of schooling have significant positive effects on wages.

Time-series data are often plagued by serial correlation. In these cases, we can construct a weight

matrix to account for the fact that the error in period 𝑡 is probably correlated with the errors in periods
𝑡 − 1, 𝑡 − 2, etc. A HAC weight matrix can be used to account for both serial correlation and potential

heteroskedasticity.

To request a HACweight matrix, you specify the wmatrix(hac kernel [ # | opt ]) option. kernel spec-
ifies which of three kernels to use: bartlett, parzen, or quadraticspectral. kernel determines the
amount of weight given to lagged values when computing the HAC matrix, and # denotes the maximum

number of lags to use. Many texts refer to the bandwidth of the kernel instead of the number of lags; the

bandwidth is equal to the number of lags plus one. If neither opt nor # is specified, then 𝑁 − 2 lags are

used, where 𝑁 is the sample size.

If you specify wmatrix(hac kernel opt), then ivregress uses Newey andWest’s (1994) algorithm

for automatically selecting the number of lags to use. Although the authors’ Monte Carlo simulations

do show that the procedure may result in size distortions of hypothesis tests, the procedure is still useful

when little other information is available to help choose the number of lags.

For more on GMM estimation, see Baum (2006); Baum, Schaffer, and Stillman (2003, 2007); Cameron

and Trivedi (2005); Davidson and MacKinnon (1993); Hayashi (2000); or Wooldridge (2010). See

Newey and West (1987) and Wang and Wu (2012) for an introduction to HAC covariance matrix estima-

tion.

Video example
Instrumental variables regression using Stata

https://www.youtube.com/watch?v=lbnswRJ1qV0&index=1&list=UUVk4G4nEtBS4tLOyHqustDA
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Stored results
ivregress stores the following in e():
Scalars

e(N) number of observations

e(k absorb) total number of absorbed categories

e(mss) model sum of squares

e(df m) model degrees of freedom

e(rss) residual sum of squares

e(df r) residual degrees of freedom

e(r2) 𝑅2

e(r2 a) adjusted 𝑅2

e(F) 𝐹 statistic

e(rmse) root mean squared error

e(N clust) number of clusters

e(chi2) 𝜒2

e(kappa) 𝜅 used in LIML estimator

e(J) value of GMM objective function

e(wlagopt) lags used in HAC weight matrix (if Newey–West algorithm used)

e(vcelagopt) lags used in HAC VCE matrix (if Newey–West algorithm used)

e(hac lag) HAC lag

e(rank) rank of e(V)
e(k endog) number of endogenous regressors (after factor-variable expansion)

e(iterations) number of GMM iterations (0 if not applicable)

Macros

e(cmd) ivregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(endog) names of endogenous variables

e(exog) names of exogenous variables

e(absvar) names of absorbed variables

e(apm) alternating projection method

e(constant) noconstant or hasconstant if specified

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(hac kernel) HAC kernel

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(estimator) 2sls, liml, or gmm
e(exogr) exogenous regressors

e(wmatrix) wmtype specified in wmatrix()
e(moments) centered if center specified

e(small) small if small-sample statistics

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(footnote) program used to implement footnote display

e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(W) weight matrix used to compute GMM estimates

e(S) moment covariance matrix used to compute GMM variance–covariance matrix

e(V) variance–covariance matrix of the estimators
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e(V modelbased) model-based variance

e(kabsorb) number of levels for each absorbed variable

e(dfabsorb) adjusted degrees of freedom for each absorbed variable

e(ksingle) number of singletons for each absorbed variable

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Notation
2SLS and LIML estimators
2SLS estimator with absorb() option GMM estimator

Notation
Items printed in lowercase and italicized (for example, 𝑥) are scalars. Items printed in lowercase and

boldfaced (for example, x) are vectors. Items printed in uppercase and boldfaced (for example, X) are

matrices.

The model is

y = Yβ1 + X1β2 + u = Xβ + u

Y = X1𝚷1 + X2𝚷2 + V = Z𝚷 + V

where y is an 𝑁 × 1 vector of the left-hand-side variable; 𝑁 is the sample size; Y is an 𝑁 × 𝑝 matrix of

𝑝 endogenous regressors; X1 is an 𝑁 × 𝑘1 matrix of 𝑘1 included exogenous regressors; X2 is an 𝑁 × 𝑘2
matrix of 𝑘2 excluded exogenous variables, X = [Y X1], Z = [X1 X2]; u is an 𝑁 × 1 vector of errors;

V is an 𝑁 × 𝑝 matrix of errors; β = [β1 β2] is a 𝑘 = (𝑝 + 𝑘1) × 1 vector of parameters; and 𝚷 is a

(𝑘1 + 𝑘2) × 𝑝 vector of parameters. If a constant term is included in the model, then one column of X1
contains all ones.

Let v be a column vector of weights specified by the user. If no weights are specified, v = 1. Let w

be a column vector of normalized weights. If no weights are specified or if the user specified fweights
or iweights, w = v; otherwise, w = {v/(1′v)}(1′1). Let D denote the 𝑁 × 𝑁 matrix with w on the

main diagonal and zeros elsewhere. If no weights are specified, D is the identity matrix.

The weighted number of observations 𝑛 is defined as 1′w. For iweights, this is truncated to an

integer. The sum of the weights is 1′v. Define 𝑐 = 1 if there is a constant in the regression and zero

otherwise.

The order condition for identification requires that 𝑘2 ≥ 𝑝: the number of excluded exogenous vari-
ables must be at least as great as the number of endogenous regressors.

In the following formulas, if weights are specified, X′
1X1, X

′X, X′y, y′y, Z′Z, Z′X, and Z′y are

replaced with X′
1DX1, X

′DX, X′Dy, y′Dy, Z′DZ, Z′DX, and Z′Dy, respectively. We suppress the D

below to simplify the notation.
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2SLS and LIML estimators
Define the 𝜅-class estimator of β as

b = {X′(I− 𝜅MZ)X}−1
X′(I− 𝜅MZ)y

where MZ = I − Z(Z′Z)−1Z′. The 2SLS estimator results from setting 𝜅 = 1. The LIML estimator

results from selecting 𝜅 to be the minimum eigenvalue of (Y′MZY)−1/2Y′MX1
Y(Y′MZY)−1/2, where

MX1
= I− X1(X′

1X1)−1X′
1.

The total sum of squares (TSS) equals y′y if there is no intercept and y′y − {(1′y)2/𝑛} otherwise.

The degrees of freedom is 𝑛 − 𝑐. The error sum of squares (ESS) is defined as y′y − 2bX′y + b′X′Xb.

The model sum of squares (MSS) equals TSS − ESS. The degrees of freedom is 𝑘 − 𝑐.
The mean squared error, 𝑠2, is defined as ESS/(𝑛−𝑘) if small is specified and ESS/𝑛 otherwise. The

root mean squared error is 𝑠, its square root.
If 𝑐 = 1 and small is not specified, aWald statistic,𝑊, of the joint significance of the 𝑘−1 parameters

of β except the constant term is calculated; 𝑊 ∼ 𝜒2(𝑘 − 1). If 𝑐 = 1 and small is specified, then an 𝐹
statistic is calculated as 𝐹 = 𝑊/(𝑘 − 1); 𝐹 ∼ 𝐹(𝑘 − 1, 𝑛 − 𝑘).

The 𝑅2 is defined as 𝑅2 = 1 − ESS/TSS.
The adjusted 𝑅2 is 𝑅2

a = 1 − (1 − 𝑅2)(𝑛 − 𝑐)/(𝑛 − 𝑘).

The unadjusted (default) variance estimate is Var(b) = 𝑠2{X′(I− 𝜅MZ)X}−1
.

For a general discussion of robust variance estimates in regression, see A general notation for the

robust variance calculation in [R] regress. ivregress uses the same definitions for terms discussed in

Robust calculation for regress in its robust variance calculation, except for the following.

The vector of scores is given by

u𝑗 = (𝑦𝑗 − x𝑗b)x̂𝑗

where x̂′
𝑗 = Pz𝑗

′ and P = (X′Z)(Z′Z)−1. When the formulas in [R] regress are applied, 𝑞𝑐 is given by

its regressionlike definition. If small is not specified, then 𝑘 = 0 in the formulas given in [R] regress.

ivregress 2sls and ivregress liml also support estimation with survey data. For details on VCEs
with survey data, see [SVY] Variance estimation.

2SLS estimator with absorb() option
When absorbed variables are specified, we must project the dependent variable, instruments, and

endogenous variables onto the orthogonal complement of the column space of the absorbed indicator

matrices. Using the same notation found in theMethods and formulas of [R] areg, we have𝑚𝑘 categorical

levels for the 𝑘th absorbed variable, 𝐶𝑘, and an𝑁 ×𝑚𝑘 indicator matrixD𝑘. The orthonormal projection

matrix for the 𝑘th variable is P𝑘 = D𝑘(D′
𝑘D𝑘)−1D′

𝑘. Thus, the product y𝑘 = P𝑘y is the projection of

the dependent variable onto the column space of D𝑘. That is, y𝑘 is the 𝑁 × 1 vector containing the

(repeated) means of 𝑦𝑖 for each level of 𝐶𝑘 in the order that these levels appear in the sample. The

product (I − P𝑘)y is the vector of the demeaned dependent variable. The same projection (demeaning)
is applied to the columns of matrices X1, X2, and Y. The Halperin or Cimmino iterative algorithm loops

over the ℎ absorbed variables computing projections as described in Methods and formulas of [R] areg.

See Methods and formulas in [R] areg for a description of the method used to adjust the degrees of

freedom to account for collinearity among absorbed variables when the dfabsorb option is specified.

https://www.stata.com/manuals/rivregress.pdf#rivregressOptionssmall
https://www.stata.com/manuals/rregress.pdf#rregressMethodsandformulasAgeneralnotationfortherobustvariancecalculation
https://www.stata.com/manuals/rregress.pdf#rregressMethodsandformulasAgeneralnotationfortherobustvariancecalculation
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/rregress.pdf#rregressMethodsandformulasRobustcalculationforregress
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/svyvarianceestimation.pdf#svyVarianceestimation
https://www.stata.com/manuals/rareg.pdf#raregMethodsandformulas
https://www.stata.com/manuals/rareg.pdf#rareg
https://www.stata.com/manuals/rareg.pdf#raregMethodsandformulas
https://www.stata.com/manuals/rareg.pdf#rareg
https://www.stata.com/manuals/rareg.pdf#raregMethodsandformulas
https://www.stata.com/manuals/rareg.pdf#rareg
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GMM estimator
We obtain an initial consistent estimate of β by using the 2SLS estimator; see above. Using this

estimate of β, we compute the weight matrixW and calculate the GMM estimator

bGMM = {X′ZWZ′X}−1
X′ZWZ′y

The variance of bGMM is

Var(bGMM) = 𝑛{X′ZWZ′X}−1
X′ZWŜWZ′X{X′ZWZ′X}−1

Var(bGMM) is of the sandwich form DMD; see [P] robust. If the user specifies the small option,

ivregress implements a small-sample adjustment by multiplying the VCE by 𝑁/(𝑁 − 𝑘).

If vce(unadjusted) is specified, then we set Ŝ = W−1 and the VCE reduces to the “optimal” GMM

variance estimator

Var(β
GMM

) = 𝑛{X′ZWZ′X}−1

However, ifW−1 is not a good estimator of 𝐸(z𝑖𝑢𝑖𝑢𝑖z
′
𝑖), then the optimal GMM estimator is inefficient,

and inference based on the optimal variance estimator could be misleading.

W is calculated using the residuals from the initial 2SLS estimates, whereas S is estimated using the

residuals based on bGMM. The wmatrix() option affects the form of W, whereas the vce() option

affects the form of S. Except for different residuals being used, the formulas forW−1 and S are identical,

so we focus on estimatingW−1.

If wmatrix(unadjusted) is specified, then

W−1 = 𝑠2

𝑛
∑

𝑖
z𝑖z

′
𝑖

where 𝑠2 = ∑𝑖 𝑢2
𝑖 /𝑛. This weight matrix is appropriate if the errors are homoskedastic.

If wmatrix(robust) is specified, then

W−1 = 1
𝑛

∑
𝑖

𝑢2
𝑖 z𝑖z

′
𝑖

which is appropriate if the errors are heteroskedastic.

If wmatrix(cluster clustvar) is specified, then

W−1 = 1
𝑛

∑
𝑐
q𝑐q

′
𝑐

where 𝑐 indexes clusters,
q𝑐 = ∑

𝑖∈𝑐𝑗

𝑢𝑖z𝑖

and 𝑐𝑗 denotes the 𝑗th cluster.

If wmatrix(hac kernel [ # ]) is specified, then

W−1 = 1
𝑛

∑
𝑖

𝑢2
𝑖 z𝑖z

′
𝑖 + 1

𝑛

𝑙=𝑛−1
∑
𝑙=1

𝑖=𝑛
∑

𝑖=𝑙+1
𝐾(𝑙, 𝑚)𝑢𝑖𝑢𝑖−𝑙 (z𝑖z

′
𝑖−𝑙 + z𝑖−𝑙z

′
𝑖)

https://www.stata.com/manuals/p_robust.pdf#p_robust
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where 𝑚 = # if # is specified and 𝑚 = 𝑛 − 2 otherwise. Define 𝑧 = 𝑙/(𝑚 + 1). If kernel is nwest, then

𝐾(𝑙, 𝑚) = {1 − 𝑧 0≤z ≤1

0 otherwise

If kernel is gallant, then

𝐾(𝑙, 𝑚) =
⎧{
⎨{⎩

1 − 6𝑧2 + 6𝑧3 0 ≤z ≤0.5

2(1 − 𝑧)3 0.5 < 𝑧 ≤ 1
0 otherwise

If kernel is quadraticspectral, then

𝐾(𝑙, 𝑚) = {1 𝑧 = 0
3 {sin(𝜃)/𝜃 − cos(𝜃)} /𝜃2 otherwise

where 𝜃 = 6𝜋𝑧/5.
If wmatrix(hac kernel opt) is specified, then ivregress uses Newey andWest’s (1994) automatic

lag-selection algorithm, which proceeds as follows. Define h to be a (𝑘1 + 𝑘2) × 1 vector containing

ones in all rows except for the row corresponding to the constant term (if present); that row contains a

zero. Define

𝑓𝑖 = (𝑢𝑖z𝑖)h

�̂�𝑗 = 1
𝑛

𝑛
∑

𝑖=𝑗+1
𝑓𝑖𝑓𝑖−𝑗 𝑗 = 0, . . . , 𝑚∗

̂𝑠 (𝑞) = 2
𝑚∗

∑
𝑗=1

�̂�𝑗𝑗𝑞

̂𝑠 (0) = �̂�0 + 2
𝑚∗

∑
𝑗=1

�̂�𝑗

̂𝛾 = 𝑐𝛾 {( ̂𝑠 (𝑞)

̂𝑠 (0) )
2

}
1/2𝑞+1

𝑚 = ̂𝛾𝑛1/(2𝑞+1)

where 𝑞, 𝑚∗, and 𝑐𝛾 depend on the kernel specified:

Kernel 𝑞 𝑚∗ 𝑐𝛾

Bartlett 1 int{20(𝑇 /100)2/9} 1.1447

Parzen 2 int{20(𝑇 /100)4/25} 2.6614

Quadratic spectral 2 int{20(𝑇 /100)2/25} 1.3221

where int(𝑥) denotes the integer obtained by truncating 𝑥 toward zero. For the Bartlett and Parzen

kernels, the optimal lag is min{int(𝑚), 𝑚∗}. For the quadratic spectral, the optimal lag is min{𝑚, 𝑚∗}.
If wmatrix(hac kernel opt #) is specified, then ivregress uses # instead of 20 in the definition of

𝑚∗ above to select the optimal lag.
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If center is specified, when computing weight matrices ivregress replaces the term 𝑢𝑖𝑧𝑖 in the

formulas above with 𝑢𝑖z𝑖 − 𝑢z, where 𝑢z = ∑𝑖 𝑢𝑖z𝑖/𝑁.
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