ivprobit — Probit model with continuous endogenous covariates

Description

ivprobit fits models for binary dependent variables where one or more of the covariates are endogenous and errors are normally distributed. By default, ivprobit uses maximum likelihood, but Newey’s (1987) minimum chi-squared (two-step) estimator can be requested. Both estimators assume that the endogenous covariates are continuous and so are not appropriate for use with discrete endogenous covariates.

Quick start

Probit regression of \(y_1 \) on \(x \) and endogenous regressor \(y_2 \) that is instrumented using \(z \)

\[
\text{ivprobit } y_1 \ x \ (y_2 = z)
\]

With robust standard errors

\[
\text{ivprobit } y_1 \ x \ (y_2 = z), \ vce(robust)
\]

Use Newey’s two-step estimator

\[
\text{ivprobit } y_1 \ x \ (y_2 = z), \ twostep
\]

As above, and show first-stage regression results

\[
\text{ivprobit } y_1 \ x \ (y_2 = z), \ twostep \ first
\]

Menu

Statistics > Endogenous covariates > Probit model with endogenous covariates
Syntax

Maximum likelihood estimator

```
ivprobit depvar [varlist] (varlist2 = varlistiv) [if] [in] [weight] [, mle_options]
```

Two-step estimator

```
ivprobit depvar [varlist] (varlist2 = varlistiv) [if] [in] [weight], twostep [tse_options]
```

varlist1 is the list of exogenous variables.
varlist2 is the list of endogenous variables.
varlistiv is the list of exogenous variables used with varlist1 as instruments for varlist2.

mle_options Description

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mle</td>
<td>use conditional maximum-likelihood estimator; the default</td>
</tr>
<tr>
<td>asis</td>
<td>retain perfect predictor variables</td>
</tr>
<tr>
<td>constraints(constraints)</td>
<td>apply specified linear constraints</td>
</tr>
</tbody>
</table>

SE/Robust

```
vce(vcetype)
```

vcetype may be oim, robust, cluster clustvar, opg, bootstrap, or jackknife

Reporting

```
level(#)
first
noconsreport
display_options
```

set confidence level; default is level(95)
report first-stage regression
do not display constraints
control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling

Maximization

```
maximize_options
coeflegend
```

control the maximization process
display legend instead of statistics
Options for ML estimator

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mle</td>
<td>requests that the conditional maximum-likelihood estimator be used. This is the default.</td>
</tr>
<tr>
<td>asis</td>
<td>requests that all specified variables and observations be retained in the maximization process. This option is typically not used and may introduce numerical instability. Normally, ivprobit drops any endogenous or exogenous variables that perfectly predict success or failure in the dependent variable. The associated observations are also dropped. For more information, see Model identification in [R] <code>probit</code>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SE/Robust</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vce(vcetype)</td>
<td>specifies the type of standard error reported, which includes types that are derived from asymptotic theory (<code>oim</code>, <code>opg</code>), that are robust to some kinds of misspecification (<code>robust</code>), that allow for intragroup correlation (<code>cluster clustvar</code>), and that use bootstrap or jackknife methods (<code>bootstrap</code>, <code>jackknife</code>); see [R] <code>vce_option</code>.</td>
</tr>
</tbody>
</table>
first requests that the parameters for the reduced-form equations showing the relationships between the endogenous variables and instruments be displayed. For the two-step estimator, first shows the first-stage regressions. For the maximum likelihood estimator, these parameters are estimated jointly with the parameters of the probit equation. The default is not to show these parameter estimates.

nocnsreport; see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, noflabel, fvwrap(#), fvwraption(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] Estimation options.

The following option is available with ivprobit but is not shown in the dialog box: coeflegend; see [R] Estimation options.

Options for two-step estimator

twostep is required and requests that Newey’s (1987) efficient two-step estimator be used to obtain the coefficient estimates.

asis requests that all specified variables and observations be retained in the maximization process. This option is typically not used and may introduce numerical instability. Normally, ivprobit drops any endogenous or exogenous variables that perfectly predict success or failure in the dependent variable. The associated observations are also dropped. For more information, see Model identification in [R] probit.

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (twostep) and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

level(#); see [R] Estimation options.

first requests that the parameters for the reduced-form equations showing the relationships between the endogenous variables and instruments be displayed. For the two-step estimator, first shows the first-stage regressions. For the maximum likelihood estimator, these parameters are estimated jointly with the parameters of the probit equation. The default is not to show these parameter estimates.
ivprobit — Probit model with continuous endogenous covariates

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, alllabels, noflabel, fvwrap(#), fvwrapon(style), cformat(%,fmt), pformat(%,fmt), sformat(%,fmt), and nolstretch; see [R] Estimation options.

The following option is available with `ivprobit` but is not shown in the dialog box: coeflegend; see [R] Estimation options.

Remarks and examples

Remarks are presented under the following headings:

- Model setup
- Model identification

Model setup

`ivprobit` fits models with dichotomous dependent variables and endogenous covariates. You can use it to fit a probit model when you suspect that one or more of the covariates are correlated with the error term. `ivprobit` is to probit modeling what `ivregress` is to linear regression analysis; see [R] ivregress for more information.

Formally, the model is

\[
\begin{align*}
y_{1i}^* &= y_{2i} \beta + x_{1i} \gamma + u_i \\
y_{2i} &= x_{1i} \Pi_1 + x_{2i} \Pi_2 + v_i
\end{align*}
\]

where \(i = 1, \ldots, N \), \(y_{2i} \) is a \(1 \times p \) vector of endogenous variables, \(x_{1i} \) is a \(1 \times k_1 \) vector of exogenous variables, \(x_{2i} \) is a \(1 \times k_2 \) vector of additional instruments, and the equation for \(y_{2i} \) is written in reduced form. By assumption, \((u_i, v_i) \sim N(0, \Sigma)\), where \(\sigma_{11} \) is normalized to one to identify the model. \(\beta \) and \(\gamma \) are vectors of structural parameters, and \(\Pi_1 \) and \(\Pi_2 \) are matrices of reduced-form parameters. This is a recursive model: \(y_{2i} \) appears in the equation for \(y_{1i}^* \), but \(y_{1i}^* \) does not appear in the equation for \(y_{2i} \). We do not observe \(y_{1i}^* \); instead, we observe

\[
y_{1i} = \begin{cases}
0 & y_{1i}^* < 0 \\
1 & y_{1i}^* \geq 0
\end{cases}
\]

The order condition for identification of the structural parameters requires that \(k_2 \geq p \). Presumably, \(\Sigma \) is not block diagonal between \(u_i \) and \(v_i \); otherwise, \(y_{2i} \) would not be endogenous.

Technical note

This model is derived under the assumption that \((u_i, v_i)\) is independent and identically distributed multivariate normal for all \(i \). The vce(cluster clustvar) option can be used to control for a lack of independence. As with most probit models, if \(u_i \) is heteroskedastic, point estimates will be inconsistent.
Example 1

We have hypothetical data on 500 two-parent households, and we wish to model whether the woman is employed. We have a variable, `fem_work`, that is equal to 1 if she has a job and 0 otherwise. Her decision to work is a function of the number of children at home (`kids`), number of years of schooling completed (`fem_educ`), and other household income measured in thousands of dollars (`other_inc`). We suspect that unobservable shocks affecting the woman’s decision to hold a job also affect the household’s other income. Therefore, we treat `other_inc` as endogenous. As an instrument, we use the number of years of schooling completed by the man (`male_educ`).

The syntax for specifying the exogenous, endogenous, and instrumental variables is identical to that used in `ivregress`; see [R] `ivregress` for details.

```
. use https://www.stata-press.com/data/r16/laborsup
. ivprobit fem_work fem_educ kids (other_inc = male_educ)
Fitting exogenous probit model
Iteration 0: log likelihood = -344.63508
Iteration 1: log likelihood = -252.10819
Iteration 2: log likelihood = -252.04529
Iteration 3: log likelihood = -252.04529
Fitting full model
Iteration 0: log likelihood = -2368.2142
Iteration 1: log likelihood = -2368.2062
Iteration 2: log likelihood = -2368.2062
Probit model with endogenous regressors
Number of obs = 500
 Wald chi2(3) = 163.88
Log likelihood = -2368.2062 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]
other_inc  -.0542756  .0060854  -8.92 0.000  -.0662028  -.0423485
fem_educ   .2111111   .0268648   7.86 0.000   .1584569   .2637651
kids  -.1820929   .0478267  -3.81 0.000  -.2758315  -.0883542
_cons   .3672086   .4480724   0.82 0.412  -.5109971   1.245414
corr(e.other~c, e.fem_work)  .3720375   .1300518   0.946562  .5968136
sd(e.other~c)  16.66621   .5270318  15.66661   17.73186

Instrumented: other_inc
Instruments: fem_educ kids male_educ

Wald test of exogeneity (corr = 0): chi2(1) = 6.70 Prob > chi2 = 0.0096
```

`ivprobit` used the default maximum likelihood estimator. The header of the output contains the sample size as well as a Wald statistic and p-value for the test of the hypothesis that all the slope coefficients are jointly zero. Below, the table of coefficients, Stata reminds us that the endogenous variable is `other_inc` and that `fem_educ`, `kids`, and `male_educ` were used as instruments.

At the bottom of the output is a Wald test of the exogeneity of the instrumented variables. We reject the null hypothesis of no endogeneity. If there is no endogeneity, a standard probit regression would be preferable (see [R] `probit`).

Below we fit our model with Newey’s (1987) minimum chi-squared estimator using the `twostep` option.
Example 2

Refitting our labor-supply model with the two-step estimator yields

```
. ivprobit fem_work fem_educ kids (other_inc = male_educ), twostep
Checking reduced-form model...
```

Two-step probit with endogenous regressors

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------------|--------|-----------|-------|------|----------------------|
| other_inc | -.058473 | .0093364 | -6.26 | 0.000 | -.0767719 -.040174 |
| fem_educ | .227437 | .0281628 | 8.08 | 0.000 | .1722389 .282635 |
| kids | -.1961748 | .0496323 | -3.95 | 0.000 | -.2934522 -.0988973 |
| _cons | .3956061 | .4982649 | 0.79 | 0.427 | -.5809752 1.372187 |

Instrumented: other_inc
Instruments: fem_educ kids male_educ

Wald test of exogeneity: chi2(1) = 6.50 Prob > chi2 = 0.0108

All the coefficients have the same signs as their counterparts in the maximum likelihood model. The Wald test at the bottom of the output confirms our earlier finding of endogeneity.

Technical note

In a standard probit model, the error is assumed to have a variance of 1. In the probit model with endogenous covariates, we assume that \((u_i, v_i)\) is multivariate normal with covariance matrix

\[
\text{Var}(u_i, v_i) = \Sigma = \begin{bmatrix} 1 & \Sigma_{12} \\
\Sigma_{12} & \Sigma_{22} \end{bmatrix}
\]

From the properties of the multivariate normal distribution, it follows that \(\text{Var}(u_i|v_i) = 1 - \Sigma_{12}^{-1} \Sigma_{22} \Sigma_{21}\). Newey’s estimator and other two-step probit estimators yield estimates of \(\beta/\sigma\) and \(\gamma/\sigma\), where \(\sigma\) is the square root of \(\text{Var}(u_i|v_i)\), instead of estimates of \(\beta\) and \(\gamma\). Hence, we cannot directly compare the estimates obtained from Newey’s estimator with those obtained from maximum likelihood, which estimate \(\beta\), \(\gamma\), and \(\sigma\) separately. See Wooldridge (2010, 585–594) for a discussion about the interpretation of the estimates and the computation of marginal effects of two-step probit estimators under endogeneity.
Model identification

As in the linear simultaneous-equation model, the order condition for identification requires that the number of excluded exogenous variables (that is, the additional instruments) be at least as great as the number of included endogenous variables. `ivprobit` checks this for you and issues an error message if the order condition is not met.

Like `probit`, `logit`, and `logistic`, `ivprobit` checks the exogenous and endogenous variables to see if any of them predict the outcome variable perfectly. It will then drop offending variables and observations and fit the model on the remaining data. Instruments that are perfect predictors do not affect estimation, so they are not checked. See `Model identification` in [R] `probit` for more information.

`ivprobit` will also occasionally display messages such as

Note: 4 failures and 0 successes completely determined.

For an explanation of this message, see [R] `logit`.

Stored results

`ivprobit`, `mle` stores the following in `e()`:

Scalars

- `e(N)` number of observations
- `e(N_cds)` number of completely determined successes
- `e(N_cdf)` number of completely determined failures
- `e(k)` number of parameters
- `e(k_eq)` number of equations in `e(b)`
- `e(k_eq_model)` number of equations in overall model test
- `e(k_dv)` number of dependent variables
- `e(df_m)` model degrees of freedom
- `e(ll)` log likelihood
- `e(N_clust)` number of clusters
- `e(endog_ct)` number of endogenous covariates
- `e(p)` model Wald p-value
- `e(p_exog)` exogeneity test Wald p-value
- `e(chi2)` model Wald χ^2 test
- `e(chi2_exog)` Wald χ^2 test of exogeneity
- `e(rank)` rank of `e(V)`
- `e(ic)` number of iterations
- `e(rc)` return code
- `e(converged)` 1 if converged, 0 otherwise

Macros

- `e(cmd)` `ivprobit`
- `e(cmdline)` command as typed
- `e(depvar)` name of dependent variable
- `e(instd)` instrumented variables
- `e(insts)` instruments
- `e(wtype)` weight type
- `e(wexp)` weight expression
- `e(title)` title in estimation output
- `e(clustvar)` name of cluster variable
- `e(chi2type)` Wald; type of model χ^2 test
- `e(vce)` `vcetype` specified in `vce()`
- `e(vcetype)` title used to label Std. Err.
- `e(asis)` `asis`, if specified
- `e(method)` `ml`
- `e(opt)` type of optimization
- `e(which)` `max` or `min`; whether optimizer is to perform maximization or minimization
ivprobit — Probit model with continuous endogenous covariates

Matrices
\(e(b) \) coefficient vector
\(e(Cns) \) constraints matrix
\(e(rules) \) information about perfect predictors
\(e(llog) \) iteration log (up to 20 iterations)
\(e(gradient) \) gradient vector
\(e(\Sigma) \)
\(e(V) \) variance–covariance matrix of the estimators
\(e(V_{modelbased}) \) model-based variance

Functions
\(e(sample) \) marks estimation sample

In addition to the above, the following is stored in \(r() \):

Matrices
\(r(table) \) matrix containing the coefficients with their standard errors, test statistics, \(p \)-values, and confidence intervals

Note that results stored in \(r() \) are updated when the command is replayed and will be replaced when any \(r \)-class command is run after the estimation command.

ivprobit, twostep stores the following in \(e() \):

 Scalars
\(e(N) \) number of observations
\(e(N_cdfs) \) number of completely determined successes
\(e(N_cdf) \) number of completely determined failures
\(e(df_m) \) model degrees of freedom
\(e(df_exog) \) degrees of freedom for \(\chi^2 \) test of exogeneity
\(e(p) \) model Wald \(p \)-value
\(e(p_exog) \) exogeneity test Wald \(p \)-value
\(e(chi2) \) model Wald \(\chi^2 \)
\(e(chi2_exog) \) Wald \(\chi^2 \) test of exogeneity
\(e(rank) \) rank of \(e(V) \)

Macros
\(e(cmd) \) ivprobit
\(e(cmdline) \) command as typed
\(e(depvar) \) name of dependent variable
\(e(instd) \) instrumented variables
\(e(insts) \) instruments
\(e(wtype) \) weight type
\(e(wexp) \) weight expression
\(e(chi2type) \) Wald; type of model \(\chi^2 \) test
\(e(vce) \) \(vce \) type specified in \(vce() \)
\(e(asis) \) asis, if specified
\(e(method) \) twostep
\(e(properties) \) \(b V \)
\(e(estat_cmd) \) program used to implement \(estat \)
\(e(predict) \) program used to implement \(predict \)
Methods and formulas

Fitting limited-dependent variable models with endogenous covariates has received considerable attention in the econometrics literature. Building on the results of Amemiya (1978, 1979), Newey (1987) developed an efficient method of estimation that encompasses both Rivers and Vuong’s (1988) simultaneous-equations probit model and Smith and Blundell’s (1986) simultaneous-equations tobit model. An efficient alternative to two-step estimation, and ivprobit’s default, is to use maximum likelihood. For compactness, we write the model as

\[
\begin{align*}
y_{1i}^* &= z_i \delta + u_i \\
y_{2i} &= x_i \Pi + v_i
\end{align*}
\]

where \(z_i = (y_{2i}, x_{1i}), x_i = (x_{1i}, x_{2i}), \delta = (\beta', \gamma)', \) and \(\Pi = (\Pi_1', \Pi_2')'. \)

Deriving the likelihood function is straightforward because we can write the joint density \(f(y_{1i}, y_{2i}, x_i) \) as \(f(y_{1i} | y_{2i}, x_i) f(y_{2i} | x_i) \). When there is an endogenous regressor, the log likelihood for observation \(i \) is

\[
\ln L_i = w_i \left[y_{1i} \ln \Phi \left(m_i \right) + (1 - y_{1i}) \ln \left(1 - \Phi \left(m_i \right) \right) + \ln \phi \left(\frac{y_{2i} - x_i \Pi}{\sigma} \right) - \ln \sigma \right]
\]

where

\[
m_i = \frac{z_i \delta + \rho (y_{2i} - x_i \Pi) / \sigma}{(1 - \rho^2)^{1/2}}
\]

\(\Phi(\cdot) \) and \(\phi(\cdot) \) are the standard normal distribution and density functions, respectively; \(\sigma \) is the standard deviation of \(v_i \); \(\rho \) is the correlation coefficient between \(u_i \) and \(v_i \); and \(w_i \) is the weight for observation \(i \) or one if no weights were specified. Instead of estimating \(\sigma \) and \(\rho \), we estimate \(\ln \sigma \) and \(\text{atanh} \ \rho \), where

\[
\text{atanh} \ \rho = \frac{1}{2} \ln \left(\frac{1 + \rho}{1 - \rho} \right)
\]
For multiple endogenous covariates, let

$$\text{Var}(u_i, v_i) = \Sigma = \begin{bmatrix} 1 & \Sigma_{21} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

As in any probit model, we have imposed the normalization $\text{Var}(u_i) = 1$ to identify the model. The log likelihood for observation i is

$$\ln L_i = w_i \left[y_{1i} \ln \Phi (m_i) + (1 - y_{1i}) \ln \{1 - \Phi (m_i)\} + \ln f(y_{2i}|x_i) \right]$$

where

$$\ln f(y_{2i}|x_i) = -\frac{p}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_{22}| - \frac{1}{2} \left(y_{2i} - x_{i}\Pi \right) \Sigma_{22}^{-1} \left(y_{2i} - x_{i}\Pi \right)'$$

and

$$m_i = (1 - \Sigma_{21}' \Sigma_{22}^{-1} \Sigma_{21})^{-\frac{1}{2}} \left\{ z_i \delta + (y_{2i} - x_i\Pi) \Sigma_{22}^{-1} \Sigma_{21} \right\}$$

With maximum likelihood estimation, this command supports the Huber/White/sandwich estimator of the variance and its clustered version using vce(robust) and vce(cluster clustvar), respectively. See [P] _robust, particularly Maximum likelihood estimators and Methods and formulas.

The maximum likelihood version of ivprobit also supports estimation with survey data. For details on VCEs with survey data, see [SVY] Variance estimation.

The two-step estimates are obtained using Newey’s (1987) minimum χ^2 estimator. The reduced-form equation for y_{1i}^* is

$$y_{1i}^* = (x_i\Pi + v_i)\beta + x_{1i}\gamma + u_i$$

$$= x_i\alpha + v_i\beta + u_i$$

$$= x_i\alpha + \nu_i$$

where $\nu_i = v_i\beta + u_i$. Because u_i and v_i are jointly normal, ν_i is also normal. Note that

$$\alpha = \begin{bmatrix} \Pi_1 \\ \Pi_2 \end{bmatrix} \beta + \begin{bmatrix} I \\ 0 \end{bmatrix} \gamma = D(\Pi)\delta$$

where $D(\Pi) = (\Pi, I_1)$ and I_1 is defined such that $x_i I_1 = x_{1i}$. Letting $\hat{\nu}_i = (x_i\hat{\Pi}, x_{1i})$, $\hat{\nu}_i\delta = x_i D(\hat{\Pi})\delta$, where $D(\hat{\Pi}) = (\hat{\Pi}, I_1)$. Thus, one estimator of α is $D(\hat{\Pi})\delta$; denote this estimator by $\hat{\delta}$.

α could also be estimated directly as the solution to

$$\max_{\alpha, \lambda} \sum_{i=1}^{N} l(y_{1i}, x_i\alpha + \hat{\nu}_i\lambda)$$

(2)

where $l(\cdot)$ is the log likelihood for probit. Denote this estimator by $\hat{\alpha}$. The inclusion of the $\hat{\nu}_i\lambda$ term follows because the multivariate normality of (u_i, v_i) implies that, conditional on y_{2i}, the expected value of u_i is nonzero. Because v_i is unobservable, the least-squares residuals from fitting (1b) are used.

Amemiya (1978) shows that the estimator of δ defined by

$$\max_{\delta} (\hat{\alpha} - \hat{D}\delta)' \hat{\Sigma}^{-1} (\hat{\alpha} - \hat{D}\delta)$$
where $\hat{\Omega}$ is a consistent estimator of the covariance of $\sqrt{N}(\tilde{\alpha} - \hat{D}\delta)$, is asymptotically efficient relative to all other estimators that minimize the distance between $\tilde{\alpha}$ and $D(\hat{\Pi})\delta$. Thus, an efficient estimator of δ is

$$\hat{\delta} = (D'\hat{\Omega}^{-1}D)^{-1}D'\hat{\Omega}^{-1}\tilde{\alpha}$$ \(3\)

and

$$\text{Var}(\hat{\delta}) = (D'\hat{\Omega}^{-1}D)^{-1}$$ \(4\)

To implement this estimator, we need $\hat{\Omega}^{-1}$.

Consider the two-step maximum likelihood estimator that results from first fitting (1b) by OLS and computing the residuals $\hat{v}_i = y_{2i} - x_i \hat{\Pi}$. The estimator is then obtained by solving

$$\max_{\delta, \lambda} \sum_{i=1}^{N} l(y_{1i}, z_i \delta + \hat{v}_i \lambda)$$

This is the two-step instrumental-variables (2SIV) estimator proposed by Rivers and Vuong (1988), and its role will become apparent shortly.

From Proposition 5 of Newey (1987), $\sqrt{N}(\tilde{\alpha} - \hat{D}\delta) \xrightarrow{d} N(0, \Omega)$, where

$$\Omega = J_{\alpha\alpha}^{-1} + (\lambda - \beta)'\Sigma_{22}(\lambda - \beta)Q^{-1}$$

and $\Sigma_{22} = E\{v_i'v_i\}$. $J_{\alpha\alpha}^{-1}$ is simply the covariance matrix of $\tilde{\alpha}$, ignoring that $\hat{\Pi}$ is an estimated parameter matrix. Moreover, Newey shows that the covariance matrix from an OLS regression of $y_{2i}(\hat{\lambda} - \hat{\beta})$ on x_i is a consistent estimator of the second term. $\hat{\lambda}$ can be obtained from solving (2), and the 2SIV estimator yields a consistent estimate, $\hat{\beta}$.

Mechanically, estimation proceeds in several steps.

1. Each of the endogenous right-hand-side variables is regressed on all the exogenous variables, and the fitted values and residuals are calculated. The matrix $\hat{D} = D(\hat{\Pi})$ is assembled from the estimated coefficients.
2. probit is used to solve (2) and obtain $\tilde{\alpha}$ and λ. The portion of the covariance matrix corresponding to α, $J_{\alpha\alpha}^{-1}$, is also saved.
3. The 2SIV estimator is evaluated, and the parameters $\hat{\beta}$ corresponding to y_{2i} are collected.
4. $y_{2i}(\hat{\lambda} - \hat{\beta})$ is regressed on x_i. The covariance matrix of the parameters from this regression is added to $J_{\alpha\alpha}^{-1}$, yielding $\hat{\Omega}$.
5. Evaluating (3) and (4) yields the estimates $\hat{\delta}$ and $\text{Var}(\hat{\delta})$.
6. A Wald test of the null hypothesis $H_0 : \lambda = 0$, using the 2SIV estimates, serves as our test of exogeneity.

The two-step estimates are not directly comparable with those obtained from the maximum likelihood estimator or from probit. The argument is the same for Newey’s efficient estimator as for Rivers and Vuong’s (1988) 2SIV estimator, so we consider the simpler 2SIV estimator. From the properties of the normal distribution,

$$E(u_i|v_i) = v_i \Sigma_{22}^{-1} \Sigma_{21} \quad \text{and} \quad \text{Var}(u_i|v_i) = 1 - \Sigma_{21}' \Sigma_{22}^{-1} \Sigma_{21}$$
We write \(u_i \) as \(u_i = v_i \Sigma_2^{-1} \Sigma_21 + e_i = v_i \lambda + e_i \), where \(e_i \sim N(0, 1 - \rho^2) \), \(\rho^2 = \Sigma_2's^{-1} \Sigma_21 \), and \(e_i \) is independent of \(v_i \). In the second stage of 2SIV, we use a probit regression to estimate the parameters of
\[
y_{1i} = z_i \delta + v_i \lambda + e_i
\]
Because \(v_i \) is unobservable, we use the sample residuals from the first-stage regressions.
\[
Pr(y_{1i} = 1|z_i, v_i) = Pr(z_i \delta + v_i \lambda + e_i > 0|z_i, v_i) = \Phi \left\{ (1 - \rho^2)^{-1/2} (z_i \delta + v_i \lambda) \right\}
\]
Hence, as mentioned previously, 2SIV and Newey’s estimator do not estimate \(\delta \) and \(\lambda \) but rather
\[
\delta_\rho = \frac{1}{(1 - \rho^2)^{1/2}} \delta \quad \text{and} \quad \lambda_\rho = \frac{1}{(1 - \rho^2)^{1/2}} \lambda
\]

Acknowledgments

The two-step estimator is based on the `probitiv` command written by Jonah Gelbach of the University of Pennsylvania Law School and the `ivprob` command written by Joe Harkness formerly with the Institute of Policy Studies at Johns Hopkins University.

References

Also see

[R] `ivprobit postestimation` — Postestimation tools for ivprobit
[R] `gmm` — Generalized method of moments estimation
[R] `ivregress` — Single-equation instrumental-variables regression
[R] `ivtobit` — Tobit model with continuous endogenous covariates
[R] `probit` — Probit regression
[ERM] `eprobit` — Extended probit regression
[SVY] `svy estimation` — Estimation commands for survey data
[XT] `xtprobit` — Random-effects and population-averaged probit models
[U] 20 Estimation and postestimation commands