
IC note — Calculating and interpreting information criteria

Description Remarks and examples Methods and formulas References Also see

Description
This entry discusses a statistical issue that arises when using the Bayesian (BIC), consistent Akaike’s

(CAIC), and corrected Akaike’s (AICc) information criteria to compare models.

Stata calculates BIC, CAIC, and AICc using 𝑁 = e(N), unless e(N ic) has been set; in that instance,

it uses 𝑁 = e(N ic). For example, choice-model cm commands set e(N ic) to the number of cases

because these commands use a data arrangement in which multiple Stata observations represent a single

statistical observation, which is called a case.

Sometimes, it would be better if a different 𝑁 than e(N) were used. Commands that calculate BIC,

CAIC, and AICc have an n() option, allowing you to specify the 𝑁 to be used.

In summary,

1. if you are comparing results estimated by the same estimation command, using the default BIC,

CAIC, orAICc calculation is probably fine. There is an issue, but most researchers would ignore it.

2. if you are comparing results estimated by different estimation commands, you need to be on your

guard.

(a) If the different estimation commands share the same definitions of observations, indepen-

dence, and the like, you are back to case 1.

(b) If they differ in these regards, you need to think about the value of 𝑁 that should be used.

For example, logit and xtlogit differ in that the former assumes independent observations
and the latter, independent panels.

(c) If estimation commands differ in the events being used over which the likelihood function is

calculated, the information criteria may not be comparable at all. We say information criteria

because this would apply equally to the Akaike information criterion (AIC) and its possible

extensions AICc and CAIC, as well as to the BIC. For instance, streg and stcox produce

such incomparable results. The events used by streg are the actual survival times, whereas

the events used by stcox are failures within risk pools, conditional on the times at which

failures occurred.

Remarks and examples
Remarks are presented under the following headings:

Background
The problem of determining N
The problem of conformable likelihoods
The first problem does not arise with AIC; the second problem does
Calculating BIC, AICc, and CAIC correctly

1

https://www.stata.com/manuals/cmcm.pdf#cmcmChoiceModels
https://www.stata.com/manuals/rlogit.pdf#rlogit
https://www.stata.com/manuals/xtxtlogit.pdf#xtxtlogit
https://www.stata.com/manuals/ststreg.pdf#ststreg
https://www.stata.com/manuals/ststcox.pdf#ststcox
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Background
The AIC and the BIC are two popular measures for comparing maximum likelihood models. AIC and

BIC are defined as

AIC = −2 ln𝐿 + 2𝑘

BIC = −2 ln𝐿 + 𝑘 ln𝑁

where

ln𝐿 = maximized log-likelihood

𝑘 = number of parameters estimated

𝑁 = number of observations

However, when sample size is small,AIC is biased, and Burnham andAnderson (2002) suggest to use

AICc,

AICc = AIC + 2𝑘(𝑘 + 1)
𝑁 − 𝑘 − 1

CAIC is a consistent version of AIC and was proposed in Bozdogan (1987),

CAIC = −2 ln𝐿 + 𝑘( ln𝑁 + 1)

All four information criteria—AIC, BIC, CAIC, andAICc—can be viewed as measures that combine fit

and complexity. Fit is measured negatively by −2 ln𝐿; the larger the value, the worse the fit. Complexity
is measured positively, for example, by 2𝑘 (AIC) or 𝑘 ln𝑁 (BIC).

Given two models fit on the same data, the model with the smaller value of the information criterion

is considered to be better.

There is substantial literature on these measures: see Akaike (1974); Raftery (1995); Sakamoto, Ishig-

uro, andKitagawa (1986); Schwarz (1978); Burnham andAnderson (2002); andHurvich andTsai (1989).

When Stata calculates the above measures, it uses the rank of e(V) for 𝑘, and it uses e(N) for 𝑁.

e(V) and e(N) are Stata notation for results stored by the estimation command. e(V) is the vari-

ance–covariance matrix of the estimated parameters, and e(N) is the number of observations in the

dataset used in calculating the result.

The problem of determining N
The difference between AIC and the other three information criteria is that AIC uses the constant 2 to

weight 𝑘, whereas the complexity term for BIC, CAIC, and AICc depends on 𝑁.

Determining what value of 𝑁 should be used is problematic. Despite appearances, the definition “𝑁
is the number of observations” is not easy to make operational. 𝑁 does not appear in the likelihood

function itself, 𝑁 is not the output of a standard statistical formula, and what is an observation is often

subjective.
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Example 1
Oftenwhat ismeant by𝑁 is obvious. Consider a simple logit model. What ismeant by𝑁 is the number

of observations that is statistically independent and that corresponds to 𝑀, the number of observations

in the dataset used in the calculation. We will write 𝑁 = 𝑀.

But now assume that the same dataset has a grouping variable and the data are thought to be clustered

within group. To keep the problem simple, let’s pretend that there are 𝐺 groups and 𝑚 observations

within group, so that 𝑀 = 𝐺 × 𝑚. Because you are worried about intragroup correlation, you fit your

model with xtlogit, grouping on the grouping variable. Now, you wish to calculate BIC. What is the 𝑁
that should be used? 𝑁 = 𝑀 or 𝑁 = 𝐺?

That is a deep question. If the observations really are independent, then you should use 𝑁 = 𝑀. If

the observations within group are not just correlated but are duplicates of one another, and they had to

be so, then you should use 𝑁 = 𝐺 (Kass and Raftery 1995). Between those two extremes, you should

probably use a number between 𝑁 and 𝐺, but determining what that number should be from measured

correlations is difficult. Using 𝑁 = 𝑀 is conservative in that, if anything, it overweights complexity.

Conservativeness, however, is subjective, too: using 𝑁 = 𝐺 could be considered more conservative in

that fewer constraints are being placed on the data.

When the estimated correlation is high, our reaction would be that using 𝑁 = 𝐺 is probably more

reasonable. Our first reaction, however, would be that using BIC to compare models is probably a misuse

of the measure.

Stata uses 𝑁 = 𝑀. An informal survey of web-based literature suggests that 𝑁 = 𝑀 is the popular

choice.

There is another reason, not so good, to choose 𝑁 = 𝑀. It makes across-model comparisons more

likely to be valid when performed without thinking about the issue. Say that you wish to compare the

logit and xtlogit results. Thus, you need to calculate

BIC𝑝 = −2 ln𝐿𝑝 + 𝑘 ln𝑁𝑝

BIC𝑥 = −2 ln𝐿𝑥 + 𝑘 ln𝑁𝑥

Whatever 𝑁 you use, you must use the same 𝑁 in both formulas. Stata’s choice of 𝑁 = 𝑀 at least

meets that test.

Example 2
In the above example, using 𝑁 = 𝑀 is reasonable. Now, let’s look at when using 𝑁 = 𝑀 is wrong,

even if popular.

Consider a model fit by stcox. Using 𝑁 = 𝑀 is certainly wrong if for no other reason than 𝑀 is

not even a well-defined number. The same data can be represented by different datasets with different

numbers of observations. For example, in one dataset, there might be one observation per subject. In

another, the same subjects could have two records each, the first recording the first half of the time at risk

and the second recording the remaining part. All statistics calculated by Stata on either dataset would be

the same, but 𝑀 would be different.

https://www.stata.com/manuals/rlogit.pdf#rlogit
https://www.stata.com/manuals/xtxtlogit.pdf#xtxtlogit
https://www.stata.com/manuals/ststcox.pdf#ststcox
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Deciding on the right definition, however, is difficult. Viewed one way, 𝑁 in the Cox regression case

should be the number of risk pools, 𝑅, because the Cox regression calculation is made on the basis of the

independent risk pools. Viewed another way, 𝑁 should be the number of subjects, 𝑁subj, because, even

though the likelihood function is based on risk pools, the parameters estimated are at the subject level.

You can decide which argument you prefer.

For parametric survival models, in single-record data, 𝑁 = 𝑀 is unambiguously correct. For multi-

record data, there is an argument for 𝑁 = 𝑀 and for 𝑁 = 𝑁subj.

The problem of conformable likelihoods
The problem of conformable likelihoods does not concern𝑁. Researchers sometimes use information

criteria such as BIC and AIC to make comparisons across models. For that to be valid, the likelihoods

must be conformable; that is, the likelihoods must all measure the same thing.

It is common to think of the likelihood function as the Pr(data | parameters), but in fact, the likelihood
is

Pr(particular events in the data | parameters)

You must ensure that the events are the same.

For instance, they are not the same in the semiparametric Cox regression and the various parametric

survival models. In Cox regression, the events are, at each failure time, that the subjects observed to fail

in fact failed, given that failures occurred at those times. In the parametric models, the events are that

each subject failed exactly when the subject was observed to fail.

The formula for AIC, AICc, CAIC, and BIC can be written as

measure = −2 ln𝐿 + complexity

When you are comparing models, if the likelihoods are measuring different events, even if the models

obtain estimates of the same parameters, differences in the information measures are irrelevant.

The first problem does not arise with AIC; the second problem does
Regardless of model, the problem of defining 𝑁 never arises with AIC because 𝑁 is not used in the

AIC calculation. AIC uses a constant 2 to weight complexity as measured by 𝑘, rather than ln𝑁.

However, for all four information criteria—AIC, AICc, CAIC, and BIC—the likelihood functions must

be conformable; that is, they must be measuring the same event.
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Calculating BIC, AICc, and CAIC correctly
When using BIC,AICc, or CAIC to compare results, and especially when using them to compare results

from different models, you should think carefully about how 𝑁 should be defined. Then, specify that

number by using the n() option:

. estimates stats full sub, all n(74)
Information criteria

Model N ll(null) ll(model) df

full 74 -45.03321 -20.59083 4
sub 74 -45.03321 -27.17516 3

Model AIC BIC AICc CAIC

full 49.18167 58.39793 49.76138 62.39793
sub 60.35031 67.26251 60.69317 70.26251

Legend: AIC is Akaike’s information criterion.
BIC is Bayesian information criterion.
AICc is corrected Akaike’s information criterion.
CAIC is consistent Akaike’s information criterion.

Both estimates stats and estat ic allow the n() option; see [R] estimates stats and [R] estat ic.

Methods and formulas
AIC, BIC, CAIC, and AICc are defined as

AIC = −2 ln𝐿 + 2𝑘

BIC = −2 ln𝐿 + 𝑘 ln𝑁

CAIC = −2 ln𝐿 + 𝑘( ln𝑁 + 1)

AICc = AIC + 2𝑘(𝑘 + 1)
𝑁 − 𝑘 − 1

where ln𝐿 is the maximized log-likelihood of the model; 𝑘 is the model degrees of freedom calculated as

the rank of variance–covariance matrix of the parameters e(V), unless the df() option is specified; and

𝑁 is the number of observations used in estimation or, more precisely, the number of independent terms

in the likelihood. Operationally, 𝑁 is defined as e(N), unless the estimation command returns e(N ic)
or the n() option is specified with estimates stats or estat ic.

https://www.stata.com/manuals/restimatesstats.pdf#restimatesstats
https://www.stata.com/manuals/restatic.pdf#restatic
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[R] estimates stats — Model-selection statistics
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