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Description
icc estimates intraclass correlations for one-way random-effects models, two-way random-effects

models, or two-way mixed-effects models for both individual and average measurements. Intraclass

correlations measuring consistency of agreement or absolute agreement of the measurements may be

estimated.

Quick start
Individual and average absolute-agreement intraclass correlation coefficients (ICCs) for ratings y of tar-

gets identified by tid in a one-way random-effects model

icc y tid

Same as above, but test that the individual and average ICCs are equal to 0.5

icc y tid, testvalue(.5)

Absolute-agreement ICCs for targets identified by tid and raters identified by rid in a two-way random-

effects model

icc y tid rid

Same as above, but estimate consistency-of-agreement ICCs

icc y tid rid, consistency

Consistency-of-agreement ICCs when estimating random effects for targets and fixed effects for raters in

a mixed-effects model

icc y tid rid, mixed

Same as above, but estimate absolute-agreement ICCs

icc y tid rid, mixed absolute

Same as above, but report 90% confidence intervals and test that ICCs are equal to 0.3

icc y tid rid, mixed absolute level(90) testvalue(.3)

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Intraclass correlations
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Syntax
Calculate intraclass correlations for one-way random-effects model

icc depvar target [ if ] [ in ] [ , oneway options ]

Calculate intraclass correlations for two-way random-effects model

icc depvar target rater [ if ] [ in ] [ , twoway re options ]

Calculate intraclass correlations for two-way mixed-effects model

icc depvar target rater [ if ] [ in ], mixed [ twoway me options ]

oneway options Description

Main

absolute estimate absolute agreement; the default

testvalue(#) test whether intraclass correlations equal #;
default is testvalue(0)

Reporting

level(#) set confidence level; default is level(95)
format(% fmt) display format for statistics and confidence intervals;

default is format(%9.0g)

twoway re options Description

Main

absolute estimate absolute agreement; the default

consistency estimate consistency of agreement

testvalue(#) test whether intraclass correlations equal #;
default is testvalue(0)

Reporting

level(#) set confidence level; default is level(95)
format(% fmt) display format for statistics and confidence intervals;

default is format(%9.0g)

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/ricc.pdf#riccSyntaxoneway_options
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/ricc.pdf#riccSyntaxtwoway_re_options
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/ricc.pdf#riccSyntaxtwoway_me_options
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/d.pdf#dformat
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twoway me options Description

Main
∗ mixed estimate intraclass correlations for a mixed-effects model

consistency estimate consistency of agreement; the default

absolute estimate absolute agreement

testvalue(#) test whether intraclass correlations equal #;
default is testvalue(0)

Reporting

level(#) set confidence level; default is level(95)
format(% fmt) display format for statistics and confidence intervals;

default is format(%9.0g)
∗ mixed is required.

bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Options for one-way RE model

� � �
Main �

absolute specifies that intraclass correlations measuring absolute agreement of the measurements be

estimated. This is the default for random-effects models.

testvalue(#) tests whether intraclass correlations equal #. The default is testvalue(0).

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [R] level.

format(% fmt) specifies how the intraclass correlation estimates and confidence intervals are to be for-

matted. The default is format(%9.0g).

Options for two-way RE and ME models

� � �
Main �

mixed is required to calculate two-waymixed-effects models. mixed specifies that intraclass correlations
for a mixed-effects model be estimated.

absolute specifies that intraclass correlations measuring absolute agreement of the measurements be

estimated. This is the default for random-effects models. Only one of absolute or consistency
may be specified.

consistency specifies that intraclass correlations measuring consistency of agreement of the mea-

surements be estimated. This is the default for mixed-effects models. Only one of absolute or

consistency may be specified.

testvalue(#) tests whether intraclass correlations equal #. The default is testvalue(0).

https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rlevel.pdf#rlevel
https://www.stata.com/manuals/d.pdf#dformat
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� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [R] level.

format(% fmt) specifies how the intraclass correlation estimates and confidence intervals are to be for-

matted. The default is format(%9.0g).

Remarks and examples
Remarks are presented under the following headings:

Introduction
One-way random effects
Two-way random effects
Two-way mixed effects
Adoption study
Relationship between ICCs
Tests against nonzero values

Introduction
In some disciplines, such as psychology and sociology, data are often measured with error that can

seriously affect statistical interpretation of the results. Thus, it is important to assess the amount of mea-

surement error by evaluating the consistency or reliability of measurements. The intraclass correlation

coefficient (ICC) is often used to measure the consistency or homogeneity of measurements.

Several versions of ICCs are introduced in the literature depending on the experimental design and

goals of the study (see, for example, Shrout and Fleiss [1979] and McGraw andWong [1996a]). Follow-

ing Shrout and Fleiss (1979), we describe various forms of ICCs in the context of a reliability study of

ratings of different targets (or objects of measurements) by several raters.

Consider 𝑛 targets (for example, students, patients, athletes) that are randomly sampled from a popu-

lation of interest. Each target is rated independently by a set of 𝑘 raters (for example, teachers, doctors,

judges). One rating per target and rater is obtained. It is of interest to determine the extent of the agree-

ment of the ratings.

As noted by Shrout and Fleiss (1979) and McGraw and Wong (1996a), you need to answer several

questions to decide what version of ICC is appropriate to measure the agreement in your study:

1. Is a one-way or two-way analysis-of-variance model appropriate for your study?

2. Are differences between raters’ mean ratings relevant to the reliability of interest?

3. Is the unit of analysis an individual rating or the mean rating over several raters?

4. Is the consistency of agreement or the absolute agreement of ratings of interest?

https://www.stata.com/manuals/rlevel.pdf#rlevel
https://www.stata.com/manuals/d.pdf#dformat
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Three types of analysis-of-variance models are considered for the reliability study: one-way random

effects, two-way random effects, and two-way mixed effects. Mixed models contain both fixed effects

and random effects. In the one-way random-effects model, each target is rated by a different set of 𝑘
independent raters, who are randomly drawn from the population of raters. The target is the only random

effect in this model; the effects due to raters and possibly due to rater-and-target interaction cannot be

separated from random error. In the two-way random-effects model, each target is rated by the same

set of 𝑘 independent raters, who are randomly drawn from the population of raters. The random effects

in this model are target and rater and possibly their interaction, although in the absence of repeated

measurements for each rater on each target, the effect of an interaction cannot be separated from random

error. In the two-way mixed-effects model, each target is rated by the same set of 𝑘 independent raters.

Because they are the only raters of interest, rater is a fixed effect. The random effects are target and

possibly target-and-rater interaction, but again the interaction effect cannot be separated from random

error without repeated measurements for each rater and target. The definition of ICC depends on the

chosen random-effects model; see Methods and formulas for details.

In summary, use a one-way model if there are no systematic differences in measurements due to raters

and use a two-way model otherwise. If you want to generalize your results to a population of raters from

which the observed raters are sampled, use a two-way random-effects model, treating raters as random. If

you are interested only in the effects of the observed 𝑘 raters, use a two-waymixed-effects model, treating
raters as fixed. For example, suppose you compare judges’ ratings of targets from different groups. If you

use the combined data from 𝑘 judges to compare the groups, the random-effects model is appropriate. If

you compare groups separately for each judge and then pool the differences, the mixed-effects model is

appropriate.

The definition of ICC also depends on the unit of analysis in a study—whether the agreement is

measured between individual ratings (individual ICC) or between the averages of ratings over several

raters (average ICC). The data on individual ratings are more common. The data on average ratings are

typically used when individual ratings are deemed unreliable. The average ICC can also be used when

teams of raters are used to rate a target. For example, the ratings of teams of physicians may be evaluated

in this manner. When the unit of analysis is an average rating, you should remember that the interpretation

of ICC pertains to average ratings and not individual ratings.

Finally, depending onwhether consistency of agreement or absolute agreement is of interest, two types

of ICC are used: consistency-of-agreement ICC (CA-ICC) and absolute-agreement ICC (AA-ICC). Under

consistency of agreement, the scores are considered consistent if the scores from any two raters differ

by the same constant value for all targets. This implies that raters give the same ranking to all targets.

Under absolute agreement, the scores are considered in absolute agreement if the scores from all raters

match exactly.

For example, suppose we observe three targets and two raters. The ratings are (2,4), (4,6), and (6,8),

with rater 1 giving the scores (2,4,6) and rater 2 giving the scores (4,6,8), two points higher than rater 1.

The CA-ICC between individual ratings is 1 because the scores from rater 1 and rater 2 differ by a constant

value (two points) for all targets. That rater 1 gives lower scores than rater 2 is deemed irrelevant under

the consistency measure of agreement. The raters have the same difference of opinion on every target,

and the variation between raters that is caused by this difference is not relevant. On the other hand, the

AA-ICC between individual ratings is 8/12 = 0.67, where 8 is the estimated between-target variance and

12 is the estimated total variance of ratings.

https://www.stata.com/manuals/ricc.pdf#riccMethodsandformulas
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Either CA-ICC or AA-ICC can serve as a useful measure of agreement depending on whether rater

variability is relevant for determining the degree of agreement. As McGraw and Wong (1996a) point

out, CA-ICC is useful when comparative judgments are made about objects of measurement. The CA-ICC

represents correlation when the rater is fixed; the AA-ICC represents correlation when the rater is random.

See Shrout and Fleiss (1979) and McGraw and Wong (1996a) for more detailed guidelines about the

choice of appropriate ICC.

Shrout and Fleiss (1979) and McGraw and Wong (1996a) describe 10 versions of ICCs based on

the concepts above: individual and average AA-ICCs for a one-way model (consistency of agreement is

not defined for this model); individual and average AA-ICCs and CA-ICCs for a two-way random-effects

model; and individual and average AA-ICCs and CA-ICCs for a two-way mixed-effects model. Although

each of these ICCs has its own definition and interpretation, the estimators for some are identical, leading

to the same estimates of those ICCs; see Relationship between ICCs andMethods and formulas for details.

The icc command calculates ICCs for each of the three analysis-of-variance models. You can use

option absolute to compute AA-ICCs or option consistency to compute CA-ICCs. By default, icc
computes ICCs corresponding to the correlation between ratings and between average ratings made on

the same target: AA-ICC for a random-effects model and CA-ICC for a mixed-effects model. As pointed

out by Shrout and Fleiss (1979), although the data on average ratings might be needed for reliability, the

generalization of interest might be individuals. For this reason, icc reports ICCs for both units, individual
and average, for each model.

In addition to estimates of ICCs, icc provides confidence intervals and one-sided 𝐹 tests. The 𝐹 test

of 𝐻𝑜∶ 𝜌 = 0 versus 𝐻𝑎∶ 𝜌 > 0 is the same for the individual and average ICCs, so icc reports one test.

This is not true, however, for nonzero null hypotheses (see Tests against nonzero values for details), so

icc reports a separate test in this case.

The icc command requires data in long form; see [D] reshape for how to convert data in wide form

to long form. The data must also be balanced and contain one observation per target and rater. For

unbalanced data, icc omits all targets with fewer than 𝑘 ratings from computation. Under one-way

models, 𝑘 is determined as the largest number of observed ratings for a target. Under two-way models,

𝑘 is the number of unique raters. If multiple observations per target and rater are detected, icc issues an

error.

We demonstrate the use of icc using datasets from Shrout and Fleiss (1979) and McGraw and Wong

(1996a). In the next three sections, we use an example from table 2 of Shrout and Fleiss (1979) with

six targets and four judges. For instructional purposes, we analyze these data under each of the three

different models: one-way random effects, two-way random effects, and two-way mixed effects.

https://www.stata.com/manuals/ricc.pdf#riccRemarksandexamplesRelationshipbetweenICCs
https://www.stata.com/manuals/ricc.pdf#riccMethodsandformulas
https://www.stata.com/manuals/ricc.pdf#riccRemarksandexamplesTestsagainstnonzerovalues
https://www.stata.com/manuals/dreshape.pdf#dreshape
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One-way random effects
In the one-way random-effects model, we assume that the 𝑛 targets being rated are randomly selected

from the population of potential targets. Each is rated by a different set of 𝑘 raters randomly drawn

from the population of potential raters. McGraw and Wong (1996a) describe an example of this setting,

where behavioral genetics data are used to assess familial resemblance. Family units can be viewed as

“targets”, and children can be viewed as “raters”. By taking a measurement on a child of the family

unit, we obtain the “rating” of the family unit by the “child-rater”. In this case, we can use ICC to assess

similarity between children within a family or, in other words, assess if there is a family effect in these

data.

As we mentioned in the introduction, only AA-ICC is defined for a one-way model. The consistency

of agreement is not defined in this case, as each target is evaluated by a different set of raters. Thus, there

is no between-rater variability in this model.

In a one-way model, the AA-ICC corresponds to the correlation coefficient between ratings within a

target. It is also a ratio of the between-target variance of ratings to the total variance of ratings, the sum

of the between-target and error variances.

Example 1: One-way random-effects ICCs
Consider data from table 2 of Shrout and Fleiss (1979) stored in judges.dta. The data contain 24

ratings of 𝑛 = 6 targets by 𝑘 = 4 judges. We list the first eight observations:

. use https://www.stata-press.com/data/r19/judges
(Ratings of targets by judges)
. list in 1/8, sepby(target)

rating target judge

1. 9 1 1
2. 2 1 2
3. 5 1 3
4. 8 1 4

5. 6 2 1
6. 1 2 2
7. 3 2 3
8. 2 2 4

For a moment, let’s ignore that targets are rated by the same set of judges. Instead, we assume that a

different set of four judges is used to rate each target. In this case, the only systematic variation in the

data is due to targets, so the one-way random-effects model is appropriate.
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We use icc to estimate the intraclass correlations for these data. To compute ICCs for a one-way

model, we specify the dependent variable rating followed by the target variable target:

. icc rating target
Intraclass correlations
One-way random-effects model
Absolute agreement
Random effects: target Number of targets = 6

Number of raters = 4

rating ICC [95% conf. interval]

Individual .1657418 -.1329323 .7225601
Average .4427971 -.8844422 .9124154

F test that
ICC=0.00: F(5.0, 18.0) = 1.79 Prob > F = 0.165

Note: ICCs estimate correlations between individual measurements
and between average measurements made on the same target.

icc reports the AA-ICCs for both individual and average ratings. The individual AA-ICC corresponds

to ICC(1) in McGraw and Wong (1996a) or ICC(1,1) in Shrout and Fleiss (1979). The average AA-ICC

corresponds to ICC(𝑘) in McGraw and Wong (1996a) or ICC(1,𝑘) in Shrout and Fleiss (1979).

The estimated correlation between individual ratings is 0.17, indicating little similarity between rat-

ings within a target, low reliability of individual target ratings, or no target effect. The estimated intraclass

correlation between ratings averaged over 𝑘 = 4 judges is higher, 0.44. (The average ICC will typically

be higher than the individual ICC.) The estimated intraclass correlation measures the similarity or relia-

bility of mean ratings from groups of four judges. We do not have statistical evidence that either ICC is

different from zero based on reported confidence intervals and the one-sided 𝐹 test.

Note that although the estimates of ICCs cannot be negative in this setting, the lower bound of the

computed confidence interval may be negative. A common ad-hoc way of handling this is to truncate the

lower bound at zero.

The estimates of both the individual and the average AA-ICC are also computed by the loneway com-

mand (see [R] loneway), which performs a one-way analysis of variance.

Technical note
Mean rating is commonly used when individual rating is unreliable because the reliability of a mean

rating is always higher than the reliability of the individual rating when the individual reliability is posi-

tive.

In the previous example, we estimated low reliability of the individual ratings of a target, 0.17. The

reliability increased to 0.44 for the ratings averaged over four judges. What if we had more judges?

https://www.stata.com/manuals/rloneway.pdf#rloneway
https://www.stata.com/manuals/ricc.pdf#riccRemarksandexamplesex1
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We can use the Spearman–Brown formula (Spearman 1910; Brown 1910) to compute the 𝑚-average

ICC based on the individual ICC:

ICC(𝑚) = 𝑚ICC(1)
1 + (𝑚 − 1)ICC(1)

Using this formula for the previous example, we find that the mean reliability over, say, 10 judges is

10 × 0.17/(1 + 9 × 0.17) = 0.67.

Alternatively, we can invert the Spearman–Brown formula to determine the number of judges (or

the number of ratings of a target) we need to achieve the desired reliability. Suppose we would like an

average reliability of 0.9, then

𝑚 = ICC(𝑚){(1 − ICC(1))}
ICC(1){1 − ICC(𝑚)}

= 0.9(1 − 0.17)
0.17(1 − 0.9)

= 44

See, for example, Bliese (2000) for other examples.

Two-way random effects
As before, we assume that the targets being rated are randomly selected from the population of poten-

tial targets. We now also assume that each target is evaluated by the same set of 𝑘 raters, who have been

randomly sampled from the population of raters. In this scenario, we want to generalize our findings

to the population of raters from which the observed 𝑘 raters were sampled. For example, suppose we

want to estimate the reliability of doctors’ evaluations of patients with a certain condition. Unless the

reliability at a specific hospital is of interest, the doctors may be interchanged with others in the relevant

population of doctors.

As for a one-way model, the AA-ICC corresponds to the correlation between measurements on the

same target and is also a ratio of the between-target variance to the total variance of measurements in a

two-way random-effects model. The total variance is now the sum of the between-target, between-rater,

and error variances. Unlike a one-way model, the CA-ICC can be computed for a two-way random-

effects model when the consistency of agreement is of interest rather than the absolute agreement. The

CA-ICC is also the ratio of the between-target variance to the total variance, but the total variance does not

include the between-rater variance because the between-rater variability is irrelevant for the consistency

of agreement.

Again, the two versions, individual and average, are available for each ICC.

Example 2: Two-way random-effects ICCs
Continuing with example 1, recall that we previously ignored that each target is rated by the same

set of four judges and instead assumed different sets of judges. We return to the original data setting.

We want to evaluate the agreement between judges’ ratings of targets in a population represented by the

observed set of four judges.

https://www.stata.com/manuals/ricc.pdf#riccRemarksandexamplesex1
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In a two-way model, we must specify both the target and the rater variables. In icc, we now addi-

tionally specify the rater variable judge following the target variable target; the random-effects model
is assumed by default.

. icc rating target judge
Intraclass correlations
Two-way random-effects model
Absolute agreement
Random effects: target Number of targets = 6
Random effects: judge Number of raters = 4

rating ICC [95% conf. interval]

Individual .2897638 .0187865 .7610844
Average .6200505 .0711368 .927232

F test that
ICC=0.00: F(5.0, 15.0) = 11.03 Prob > F = 0.000

Note: ICCs estimate correlations between individual measurements
and between average measurements made on the same target.

As for a one-way random-effects model, icc by default reports AA-ICCs that correspond to the correlation
between ratings on a target. Notice that both individual and average ICCs are larger in the two-way

random-effects model than in the previous one-way model—0.29 versus 0.17 and 0.62 versus 0.44,

respectively. We also have statistical evidence to reject the null hypothesis that neither ICC is zero based

on confidence intervals and the 𝐹 test. If a one-way model is used when a two-way model is appropriate,

the true ICC will generally be underestimated.

The individual AA-ICC corresponds to ICC(𝐴,1) in McGraw and Wong (1996a) or ICC(2,1) in Shrout

and Fleiss (1979). The average AA-ICC corresponds to ICC(𝐴,𝑘) in McGraw andWong (1996a) or ICC(2,𝑘)
in Shrout and Fleiss (1979).

Instead of the absolute agreement, we can also assess the consistency of agreement. The individual and

average CA-ICCs are considered in McGraw and Wong (1996a) and denoted as ICC(C,1) and ICC(C,𝑘), re-
spectively. These ICCs are not considered in Shrout and Fleiss (1979) because they are not correlations in

the strict sense. Although CA-ICCs do not estimate correlation, they can provide useful information about

the reliability of the raters. McGraw and Wong (1996a) note that the practical value of the individual

and average CA-ICCs in the two-way random-effects model setting is well documented in measurement

theory, citing Hartmann (1982) and Suen (1988).

To estimate the individual and average CA-ICCs, we specify the consistency option:

. icc rating target judge, consistency
Intraclass correlations
Two-way random-effects model
Consistency of agreement
Random effects: target Number of targets = 6
Random effects: judge Number of raters = 4

rating ICC [95% conf. interval]

Individual .7148407 .3424648 .9458583
Average .9093155 .6756747 .9858917

F test that
ICC=0.00: F(5.0, 15.0) = 11.03 Prob > F = 0.000
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We estimate that the consistency of agreement of ratings in the considered population of raters is high,

0.71, based on the individual CA-ICC. On the other hand, the absolute agreement of ratings is low, 0.29,

based on the individual AA-ICC from the previous output.

The measure of consistency of agreement among means, the average CA-ICC, is equivalent to Cron-

bach’s alpha (Cronbach 1951); see [MV] alpha. The individual CA-ICC can also be equivalent to the

Pearson’s correlation coefficient between raters when 𝑘 = 2; see McGraw andWong (1996a) for details.

In the next example, we will see that the actual estimates of the individual and average AA-ICCs

and CA-ICCs are the same whether we examine a random-effects model or a mixed-effects model. The

differences between these ICCs are in their definitions and interpretations.

Two-way mixed effects
As in a two-way random-effects model, we assume that the targets are randomly selected from the

population of potential targets and that each is evaluated by the same set of 𝑘 raters. In a mixed-effects

model, however, we assume that these raters are the only raters of interest. So as before, the targets are

random, but now the raters are fixed.

In the two-way mixed-effects model, the fixed effect of the rater does not contribute to the between-

rater random variance component to the total variance. As such, the definitions and interpretations of

ICCs are different in a mixed-effects model than in a random-effects model. However, the estimates

of ICCs as well as test statistics and confidence intervals are the same. The only exceptions are average

AA-ICCs and CA-ICCs. These are not estimable in a two-way mixed-effects model including an interaction

term between target and rater; see Relationship between ICCs and Methods and formulas for details.

In a two-way mixed-effects model, the CA-ICC corresponds to the correlation between measurements

on the same target. As pointed out by Shrout and Fleiss (1979), when the rater variance is ignored, the

correlation coefficient is interpreted in terms of rater consistency rather than rater absolute agreement.

Formally, the CA-ICC is the ratio of the covariance between measurements on the target to the total vari-

ance of the measurements. The AA-ICC corresponds to the same ratio, but includes a variance of the fixed

factor, rater, in its denominator.

Example 3: Two-way mixed-effects ICCs
Continuing with example 2, suppose that we are now interested in assessing the agreement of ratings

from only the observed four judges. The judges are now fixed effects, and the appropriate model is a

two-way mixed-effects model.

https://www.stata.com/manuals/mvalpha.pdf#mvalpha
https://www.stata.com/manuals/ricc.pdf#riccRemarksandexamplesRelationshipbetweenICCs
https://www.stata.com/manuals/ricc.pdf#riccMethodsandformulas
https://www.stata.com/manuals/ricc.pdf#riccRemarksandexamplesex2
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To estimate ICCs for a two-way mixed-effects model, we specify the mixed option with icc:

. icc rating target judge, mixed
Intraclass correlations
Two-way mixed-effects model
Consistency of agreement
Random effects: target Number of targets = 6
Fixed effects: judge Number of raters = 4

rating ICC [95% conf. interval]

Individual .7148407 .3424648 .9458583
Average .9093155 .6756747 .9858917

F test that
ICC=0.00: F(5.0, 15.0) = 11.03 Prob > F = 0.000

Note: ICCs estimate correlations between individual measurements
and between average measurements made on the same target.

Aswe described in the introduction, icc by default reports ICCs corresponding to the correlations. So, for
a mixed-effects model, icc reports CA-ICCs by default. The individual and average CA-ICCs are denoted

as ICC(3,1) and ICC(3,𝑘) in Shrout and Fleiss (1979) and ICC(𝐶,1) and ICC(𝐶,𝑘) in McGraw and Wong

(1996a).

Our estimates of the individual and average CA-ICCs are identical to the CA-ICC estimates obtained

under the two-way random-effects model in example 2, but our interpretation of the results is different.

Under a mixed-effects model, 0.71 and 0.91 are the estimates, respectively, of the correlation between

individual measurements and the correlation between average measurements made on the same target.

We can also estimate the AA-ICCs in this setting by specifying the absolute option:

. icc rating target judge, mixed absolute
Intraclass correlations
Two-way mixed-effects model
Absolute agreement
Random effects: target Number of targets = 6
Fixed effects: judge Number of raters = 4

rating ICC [95% conf. interval]

Individual .2897638 .0187865 .7610844
Average .6200505 .0711368 .927232

F test that
ICC=0.00: F(5.0, 15.0) = 11.03 Prob > F = 0.000

The intraclass correlation estimates match the individual and average AA-ICCs obtained under the two-

way random-effects model in example 2; but in a mixed-effects model, they do not represent correlations.

We demonstrate the use of an individual AA-ICC in a mixed-effects setting in the next example.

The AA-ICCs under a mixed-effects model are not considered by Shrout and Fleiss (1979). They are

denoted as ICC(𝐴,1) and ICC(𝐴,𝑘) in McGraw and Wong (1996a).

https://www.stata.com/manuals/ricc.pdf#riccRemarksandexamplesex2
https://www.stata.com/manuals/ricc.pdf#riccRemarksandexamplesex2
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Adoption study
In this section, we consider the adoption study described in McGraw and Wong (1996a). Adoption

studies commonly include two effects of interest. One is the mean difference between the adopted child

and its biological parents. It is used to determine if characteristics of adopted children differ on average

from those of their biological parents. Another effect of interest is the correlation between genetically

paired individuals and genetically unrelated individuals who live together. This effect is used to evaluate

the impact of genetic differences on individual differences.

As discussed in McGraw and Wong (1996a), a consistent finding from adoption research using IQ as

a trait characteristic is that while adopted children typically have higher IQs than their biological parents,

their IQs correlate better with those of their biological parents than with those of their adoptive parents.

Both effects are important, and there is additional need to reconcile the two findings. McGraw andWong

(1996a) propose to use the individual AA-ICC for this purpose.

Example 4: Absolute-agreement ICC in a mixed-effects model
The adoption.dta dataset contains the data from table 6 ofMcGraw andWong (1996a) on IQ scores:

. use https://www.stata-press.com/data/r19/adoption
(Biological mother and adopted child IQ scores)
. describe
Contains data from https://www.stata-press.com/data/r19/adoption.dta
Observations: 20 Biological mother and adopted

child IQ scores
Variables: 5 15 May 2024 13:50

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

family byte %9.0g Adoptive family ID
mc byte %9.0g mcvalues Whether mother or child
iq3 int %9.0g IQ scores, mother-child

difference of 3 pts
iq9 int %9.0g IQ scores, mother-child

difference of 9 pts
iq15 int %9.0g IQ scores, mother-child

difference of 15 pts

Sorted by:



icc — Intraclass correlation coefficients 14

The family variable contains adoptive family identifiers, the mc variable records a mother or a child,

and the iq3, iq9, and iq15 variables record IQ scores with differences between mother and child mean

IQ scores of 3, 9, and 15 points, respectively.

. by mc, sort: summarize iq*

-> mc = Mother
Variable Obs Mean Std. dev. Min Max

iq3 10 97 15.0037 62 116
iq9 10 91 15.0037 56 110

iq15 10 85 15.0037 50 104

-> mc = Child
Variable Obs Mean Std. dev. Min Max

iq3 10 100 15.0037 65 119
iq9 10 100 15.0037 65 119

iq15 10 100 15.0037 65 119

The variances of the mother and child IQ scores are the same.

Children are fixed effects, so the mixed-effects model is appropriate for these data. We want to com-

pare individual CA-ICC with individual AA-ICC for each of the three IQ variables. We could issue a sep-

arate icc command for each of the three IQ variables to obtain the intraclass correlations. Instead, we

use reshape to convert our data to long form with one iq variable and the new diff variable recording

mean differences:

. reshape long iq, i(family mc) j(diff)
(j = 3 9 15)
Data Wide -> Long

Number of observations 20 -> 60
Number of variables 5 -> 4
j variable (3 values) -> diff
xij variables:

iq3 iq9 iq15 -> iq
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We can now use the by prefix with icc to estimate intraclass correlations for the three groups of

interest:

. by diff, sort: icc iq family mc, mixed

-> diff = 3
Intraclass correlations
Two-way mixed-effects model
Consistency of agreement
Random effects: family Number of targets = 10
Fixed effects: mc Number of raters = 2

iq ICC [95% conf. interval]

Individual .7142152 .1967504 .920474
Average .8332853 .3288078 .9585904

F test that
ICC=0.00: F(9.0, 9.0) = 6.00 Prob > F = 0.007

Note: ICCs estimate correlations between individual measurements
and between average measurements made on the same target.

-> diff = 9
Intraclass correlations
Two-way mixed-effects model
Consistency of agreement
Random effects: family Number of targets = 10
Fixed effects: mc Number of raters = 2

iq ICC [95% conf. interval]

Individual .7142152 .1967504 .920474
Average .8332853 .3288078 .9585904

F test that
ICC=0.00: F(9.0, 9.0) = 6.00 Prob > F = 0.007

Note: ICCs estimate correlations between individual measurements
and between average measurements made on the same target.

-> diff = 15
(output omitted )

The estimated CA-ICCs are the same in all three groups and are equal to the corresponding estimates of

the Pearson’s correlation coefficients because mothers’and childrens’ IQ scores have the same variability.

The scores differ only in means, and mean differences are irrelevant when measuring the consistency of

agreement.
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The AA-ICCs, however, differ across the three groups:

. by diff, sort: icc iq family mc, mixed absolute

-> diff = 3
Intraclass correlations
Two-way mixed-effects model
Absolute agreement
Random effects: family Number of targets = 10
Fixed effects: mc Number of raters = 2

iq ICC [95% conf. interval]

Individual .7204023 .2275148 .9217029
Average .8374812 .3706917 .9592564

F test that
ICC=0.00: F(9.0, 9.0) = 6.00 Prob > F = 0.007

-> diff = 9
Intraclass correlations
Two-way mixed-effects model
Absolute agreement
Random effects: family Number of targets = 10
Fixed effects: mc Number of raters = 2

iq ICC [95% conf. interval]

Individual .6203378 .0293932 .8905025
Average .7656895 .0571077 .9420802

F test that
ICC=0.00: F(9.0, 9.0) = 6.00 Prob > F = 0.007

-> diff = 15
Intraclass correlations
Two-way mixed-effects model
Absolute agreement
Random effects: family Number of targets = 10
Fixed effects: mc Number of raters = 2

iq ICC [95% conf. interval]

Individual .4854727 -.1194157 .8466905
Average .6536272 -.2712191 .9169815

F test that
ICC=0.00: F(9.0, 9.0) = 6.00 Prob > F = 0.007

As the mean differences increase, the AA-ICCs decrease. Their attenuation reflects the difference in

means between biological mother and child IQs while still measuring their agreement. Notice that for

small mean differences, the estimates of AA-ICCs and CA-ICCs are very similar.

Note that our estimates match those given in McGraw and Wong (1996b), who correct the original

table 6 of McGraw and Wong (1996a).
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Relationship between ICCs
In examples 2 and 3, we saw that the estimates of AA-ICCs and CA-ICCs are the same for two-way

random-effects and two-way mixed-effects models. In this section, we consider the relationship between

various forms of ICCs in more detail; also see Methods and formulas.

There are 10 different versions of ICCs, but only 6 different estimators are needed to compute them.

These estimators include the two estimators for the individual and average AA-ICCs in a one-way model,

the two estimators for the individual and average AA-ICCs in two-way models, and the two estimators for

the individual and average CA-ICCs in two-way models.

Only individual and average AA-ICCs are defined for the one-way model. The estimates of AA-ICCs

based on the one-way model will typically be smaller than individual and average estimates of AA-ICCs

and CA-ICCs based on two-way models. The estimates of individual and average CA-ICCs will typically

be larger than the estimates of individual and average AA-ICCs.

Although AA-ICCs and CA-ICCs have the same respective estimators in two-way random-effects and

mixed-effects models, their definitions and interpretations are different. The AA-ICCs based on a random-

effects model contain the between-rater variance component in the denominator of the variance ratio. The

AA-ICCs based on a mixed-effects model contain the variance of the fixed-factor rater instead of the ran-

dom between-rater variability. The AA-ICCs in a random-effects model represent correlations between

any two measurements made on a target. The AA-ICCs in a mixed-effects model measure absolute agree-

ment of measurements treating raters as fixed. The CA-ICCs for random-effects and mixed-effects models

have the same definition but different interpretations. The CA-ICCs represent correlations between any

two measurements made on a target in a mixed-effects model but estimate the degree of consistency

among measurements treating raters as random in a random-effects model. The difference in the defini-

tions of AA-ICCs and CA-ICCs is that CA-ICCs do not contain the between-rater variance in the denominator

of the variance ratio.

For two-way models, the definitions and interpretations (but not the estimators) of ICCs also depend

on whether the model contains an interaction between target and rater. For two-way models with inter-

action, ICCs include an additional variance component for the target-rater interaction in the denominator

of the variance ratio. This component cannot be separated from random error because there is only one

observation per target and rater.

Also, under a two-way mixed-effects model including interaction, the interaction components are not

mutually independent, as they are in a two-way random-effects model. The considered version of the

mixed-effects model places a constraint on the interaction effects—the sum of the interaction effects

over levels of the fixed factor is zero; see, for example, chapter 7 in Kuehl (2000) for an introductory

discussion of mixed models. In this version of the model, there is a correlation between the interaction

effects. Specifically, the two interaction effects for the same target and two different raters are negatively

correlated. As a result, the estimated intraclass correlation can be negative under a two-waymixed-effects

model with interaction. Also, average AA-ICC and average CA-ICC cannot be estimated in a two-way

mixed-effects model including interaction; see Methods and formulas and McGraw and Wong (1996a)

for details.

Tests against nonzero values
It may be of interest to test whether the intraclass correlation is equal to a value other than zero.

icc supports testing against positive values through the use of the testvalue() option. Specifying

testvalue(#) provides a one-sided hypothesis test of 𝐻𝑜 ∶ 𝜌 = # versus 𝐻𝑎 ∶ 𝜌 > #. The test is

provided separately for both individual and average ICCs.

https://www.stata.com/manuals/ricc.pdf#riccRemarksandexamplesex2
https://www.stata.com/manuals/ricc.pdf#riccRemarksandexamplesex3
https://www.stata.com/manuals/ricc.pdf#riccMethodsandformulas
https://www.stata.com/manuals/ricc.pdf#riccMethodsandformulas
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Example 5: Testing ICC against a nonzero value
We return to the two-way random-effects model for the judge and target data from Shrout and Fleiss

(1979). Suppose we want to test whether the individual and average AA-ICCs are each equal to 0.2. We

specify the testvalue(0.2) option with icc:
. use https://www.stata-press.com/data/r19/judges, clear
(Ratings of targets by judges)
. icc rating target judge, testvalue(0.2)
Intraclass correlations
Two-way random-effects model
Absolute agreement
Random effects: target Number of targets = 6
Random effects: judge Number of raters = 4

rating ICC [95% conf. interval]

Individual .2897638 .0187865 .7610844
Average .6200505 .0711368 .927232

F test that
ICC(1)=0.20: F(5.0, 5.3) = 1.54 Prob > F = 0.317
ICC(k)=0.20: F(5.0, 9.4) = 4.35 Prob > F = 0.026

Note: ICCs estimate correlations between individual measurements
and between average measurements made on the same target.

We reject the null hypothesis that the average AA-ICC, labeled as ICC(𝑘) in the output, is equal to 0.2, but
we do not have statistical evidence to reject the null hypothesis that the individual AA-ICC, labeled as

ICC(1), is equal to 0.2.

Stored results
icc stores the following in r():

Scalars

r(N target) number of targets

r(N rater) number of raters

r(icc i) intraclass correlation for individual measurements

r(icc i F) 𝐹 test statistic for individual ICC

r(icc i df1) numerator degrees of freedom for r(icc i F)
r(icc i df2) denominator degrees of freedom for r(icc i F)
r(icc i p) 𝑝-value for F test of individual ICC

r(icc i lb) lower endpoint for confidence intervals of individual ICC

r(icc i ub) upper endpoint for confidence intervals of individual ICC

r(icc avg) intraclass correlation for average measurements

r(icc avg F) 𝐹 test statistic for average ICC

r(icc avg df1) numerator degrees of freedom for r(icc avg F)
r(icc avg df2) denominator degrees of freedom for r(icc avg F)
r(icc avg p) 𝑝-value for 𝐹 test of average ICC

r(icc avg lb) lower endpoint for confidence intervals of average ICC

r(icc avg ub) upper endpoint for confidence intervals of average ICC

r(testvalue) null hypothesis value

r(level) confidence level

Macros

r(model) analysis-of-variance model

r(depvar) name of dependent variable
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r(target) target variable

r(rater) rater variable

r(type) type of ICC estimated (absolute or consistency)

Methods and formulas
We observe 𝑦𝑖𝑗, where 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑘. 𝑦𝑖𝑗 is the 𝑗th rating on the 𝑖th target. Let

𝛼 = 1 − 𝑙/100, where 𝑙 is the significance level specified by the user.
Methods and formulas are presented under the following headings:

Mean squares
One-way random effects
Two-way random effects
Two-way mixed effects

Mean squares
The mean squares within targets are

WMS = ∑
𝑖

∑
𝑗

(𝑦𝑖𝑗 − 𝑦𝑖⋅)
2

𝑛(𝑘 − 1)

where 𝑦𝑖⋅ = ∑𝑗 𝑦𝑖𝑗/𝑘.

The mean squares between targets are

BMS = ∑
𝑖

(𝑦𝑖⋅ − 𝑦⋅⋅)
2

𝑛 − 1

where 𝑦⋅⋅ = ∑𝑖 𝑦𝑖⋅/𝑛.
These are the only mean squares needed to estimate ICC in the one-way random-effects model. For

the two-way models, we need two additional mean squares.

The mean squares between raters are

JMS = ∑
𝑗

(𝑦⋅𝑗 − 𝑦⋅⋅)
2

𝑘 − 1

where 𝑦⋅𝑗 = ∑𝑖 𝑦𝑖𝑗/𝑛 and 𝑦⋅⋅ = ∑𝑗 𝑦⋅𝑗/𝑘.

The residual or error mean square is

EMS =
∑𝑖 ∑𝑗(𝑦𝑖𝑗 − 𝑦)2 − (𝑘 − 1)JMS − (𝑛 − 1)BMS

(𝑛 − 1)(𝑘 − 1)
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One-way random effects
Under the one-way random-effects model, we observe

𝑦𝑖𝑗 = 𝜇 + 𝑟𝑖 + 𝜖𝑖𝑗 (M1)

where 𝜇 is the mean rating, 𝑟𝑖 is the target random effect, and 𝜖𝑖𝑗 is random error. The 𝑟𝑖s are

i.i.d. 𝑁(0, 𝜎2
𝑟); 𝜖𝑖𝑗s are i.i.d. 𝑁(0, 𝜎2

𝜖 ) and are independent of 𝑟𝑖s. There is no rater effect separate from

the residual error because each target is evaluated by a different set of raters.

The individual AA-ICC is the correlation between individual measurements on the same target:

𝜌1 = ICC(1) = Corr(𝑦𝑖𝑗, 𝑦𝑖𝑗′) = 𝜎2
𝑟

𝜎2
𝑟 + 𝜎2

𝜖

The average AA-ICC is the correlation between average measurements of size 𝑘 made on the same

target:

𝜌𝑘 = ICC(𝑘) = Corr(𝑦𝑖., 𝑦′
𝑖.) = 𝜎2

𝑟
𝜎2

𝑟 + 𝜎2
𝜖 /𝑘

They are estimated by

̂𝜌1 = ̂ICC(1) = BMS − WMS

BMS + (𝑘 − 1)WMS

̂𝜌𝑘 = ̂ICC(𝑘) = BMS − WMS

BMS

Confidence intervals. Let 𝐹obs = BMS/WMS, let 𝐹𝑙 be the (1 − 𝛼/2) × 100th percentile of the

𝐹𝑛−1,𝑛(𝑘−1) distribution, and let 𝐹𝑢 be the (1 − 𝛼/2) × 100th percentile of the 𝐹𝑛(𝑘−1),𝑛−1 distribu-

tion. Let 𝐹𝐿 = 𝐹obs/𝐹𝑙 and 𝐹𝑈 = 𝐹obs𝐹𝑢.

A (1 − 𝛼) × 100% confidence interval for 𝜌1 is

( 𝐹𝐿 − 1
𝐹𝑙 + 𝑘 − 1

, 𝐹𝑈 − 1
𝐹𝑈 + 𝑘 − 1

) (1)

A (1 − 𝛼) × 100% confidence interval for 𝜌𝑘 is

(1 − 1
𝐹𝐿

, 1 − 1
𝐹𝑈

) (2)

Hypothesis tests. Consider a one-sided hypothesis test of 𝐻𝑜∶ ICC = 𝜌0 versus 𝐻𝑎∶ ICC > 𝜌0.

The test statistic for 𝜌1 is

𝐹𝜌1
= BMS

WMS

1 − 𝜌0
1 + (𝑘 − 1)𝜌0

(3)

The test statistic for 𝜌𝑘 is

𝐹𝜌𝑘
= BMS

WMS
(1 − 𝜌0) (4)

Under the null hypothesis, both 𝐹𝜌1
and 𝐹𝜌𝑘

have the 𝐹𝑛−1,𝑛(𝑘−1) distribution. When 𝜌0 = 0, the

two test statistics coincide.
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Two-way random effects
In this setting, the target is evaluated by the same set of raters, who are randomly drawn from the

population of raters. The underlying models with and without interaction are

𝑦𝑖𝑗 = 𝜇 + 𝑟𝑖 + 𝑐𝑗 + (𝑟𝑐)𝑖𝑗 + 𝜖𝑖𝑗 (M2)

𝑦𝑖𝑗 = 𝜇 + 𝑟𝑖 + 𝑐𝑗 + 𝜖𝑖𝑗 (M2A)

where 𝑦𝑖𝑗 is the rating of the 𝑖th target by the 𝑗th rater, 𝜇 is the mean rating, 𝑟𝑖 is the target random effect,

𝑐𝑗 is the rater random effect, (𝑟𝑐)𝑖𝑗 is the target-rater random effect, and 𝜖𝑖𝑗 is random error. The 𝑟𝑖s

are i.i.d. 𝑁(0, 𝜎2
𝑟), 𝑐𝑗s are i.i.d. 𝑁(0, 𝜎2

𝑐 ), (𝑟𝑐)𝑖𝑗s are i.i.d. 𝑁(0, 𝜎2
𝑟𝑐), and 𝜖𝑖𝑗s are i.i.d. 𝑁(0, 𝜎2

𝜖 ). Each
effect is mutually independent of the others.

Below, we provide formulas for ICCs for model (M2). The corresponding ICCs for model (M2A) can

be obtained by setting 𝜎2
𝑟𝑐 = 0.

The individual AA-ICC is the correlation between individual measurements on the same target:

𝜌𝐴,1 = ICC(𝐴,1) = Corr(𝑦𝑖𝑗, 𝑦𝑖𝑗′) = 𝜎2
𝑟

𝜎2
𝑟 + 𝜎2

𝑐 + (𝜎2
𝑟𝑐 + 𝜎2

𝜖 )

The average AA-ICC is the correlation between average measurements of size 𝑘 made on the same

target:

𝜌𝐴,𝑘 = ICC(𝐴,𝑘) = Corr(𝑦𝑖., 𝑦′
𝑖.) = 𝜎2

𝑟
𝜎2

𝑟 + (𝜎2
𝑐 + 𝜎2

𝑟𝑐 + 𝜎2
𝜖 )/𝑘

The consistency-of-agreement intraclass correlation for individual measurements, individual CA-ICC,

is

𝜌𝐶,1 = ICC(𝐶,1) = 𝜎2
𝑟

𝜎2
𝑟 + (𝜎2

𝑟𝑐 + 𝜎2
𝜖 )

The consistency-of-agreement intraclass correlation for average measurements of size 𝑘, average
CA-ICC, is

𝜌𝐶,𝑘 = ICC(𝐶,𝑘) = 𝜎2
𝑟

𝜎2
𝑟 + (𝜎2

𝑟𝑐 + 𝜎2
𝜖 )/𝑘

With one observation per target and rater, 𝜎2
𝑟𝑐 and 𝜎2

𝜖 cannot be estimated separately.

The estimators of intraclass correlations, confidence intervals, and test statistics are the same for

models (M2) and (M2A). The estimators of ICCs are

̂𝜌𝐴,1 = ̂ICC(𝐴,1) = BMS − EMS

BMS + (𝑘 − 1)EMS + 𝑘
𝑛 (JMS − EMS)

̂𝜌𝐴,𝑘 = ̂ICC(𝐴,𝑘) = BMS − EMS

BMS + 1
𝑛 (JMS − EMS)

̂𝜌𝐶,1 = ̂ICC(𝐶,1) = BMS − EMS

BMS + (𝑘 − 1)EMS

̂𝜌𝐶,𝑘 = ̂ICC(𝐶,k) = BMS − EMS

BMS
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Confidence intervals. Let 𝑎 = 𝑘 ̂𝜌𝐴,1/{𝑛(1 − ̂𝜌𝐴,1)}, 𝑏 = 1 + 𝑘 ̂𝜌𝐴,1(𝑛 − 1)/{𝑛(1 − ̂𝜌𝐴,1)}, and

𝑣 = (𝑎JMS + 𝑏EMS)2

𝑎2JMS
2

𝑘−1 + 𝑏2EMS
2

(𝑛−1)(𝑘−1)

(5)

Let 𝐹𝑙 be the (1−𝛼/2)×100th percentile of the 𝐹𝑛−1,𝑣 distribution and 𝐹𝑢 be the (1−𝛼/2)×100th

percentile of the 𝐹𝑣,𝑛−1 distribution.

A (1 − 𝛼) × 100% confidence interval for 𝜌𝐴,1 is given by (𝐿, 𝑈), where

𝐿 = 𝑛(BMS − 𝐹𝑙EMS)
𝐹𝑙 {𝑘JMS + (𝑘𝑛 − 𝑘 − 𝑛)EMS} + 𝑛BMS

𝑈 = 𝑛(𝐹𝑢BMS − EMS)
𝑘JMS + (𝑘𝑛 − 𝑘 − 𝑛)EMS + 𝑛𝐹𝑢BMS

(6)

A (1 − 𝛼) × 100% confidence intervals for 𝜌𝐴,𝑘 is a special case of (6) with 𝑘 = 1, where 𝑎 =
̂𝜌𝐴,𝑘/{𝑛(1 − ̂𝜌𝐴,𝑘)}, 𝑏 = 1 + ̂𝜌𝐴,𝑘(𝑛 − 1)/{𝑛(1 − ̂𝜌𝐴,𝑘)}, and 𝑣 is defined in (5).

To define confidence intervals for 𝜌𝐶,1 and 𝜌𝐶,𝑘, let 𝐹obs = BMS/EMS, 𝐹𝑙 be the (1 − 𝛼/2) ×
100th percentile of the 𝐹𝑛−1,(𝑛−1)(𝑘−1) distribution, and 𝐹𝑢 be the (1 − 𝛼/2) × 100th percentile of the

𝐹(𝑛−1)(𝑘−1),𝑛−1 distribution. Let 𝐹𝐿 = 𝐹obs/𝐹𝑙 and 𝐹𝐿 = 𝐹obs𝐹𝑢.

A (1 − 𝛼) × 100% confidence intervals for 𝜌𝐶,1 and 𝜌𝐶,𝑘 are then as given by (1) and (2) for

model (M1).

Hypothesis tests. Consider a one-sided hypothesis test of 𝐻𝑜 ∶ ICC = 𝜌0 versus 𝐻𝑎 ∶ ICC > 𝜌0. Let

𝑎 = 𝑘𝜌0/{𝑛(1 − 𝜌0)} and 𝑏 = 1 + 𝑘𝜌0(𝑛 − 1)/{𝑛(1 − 𝜌0)}.
The test statistic for 𝜌𝐴,1 is

𝐹𝜌𝐴,1
= BMS

𝑎JMS + 𝑏EMS

Under the null hypothesis, 𝐹𝜌𝐴,1
has the 𝐹𝑛−1,𝑣 distribution, where 𝑣 is defined in (5).

The test statistic for 𝜌𝐴,𝑘 is defined similarly, except 𝑎 = 𝜌0/{𝑛(1 − 𝜌0)} and 𝑏 = 1 +
𝜌0(𝑛 − 1)/{𝑛(1−𝜌0)}. Under the null hypothesis, 𝐹𝜌𝐴,𝑘

has the 𝐹𝑛−1,𝑣 distribution, where 𝑣 is defined
in (5). When 𝜌0 = 0, then 𝑎 = 0, 𝑏 = 1, and the two test statistics coincide.

The test statistics for 𝜌𝐶,1 and 𝜌𝐶,𝑘 are defined by (3) and (4), respectively, with WMS replaced by

EMS. Under the null hypothesis, both 𝐹𝜌𝐶,1
and 𝐹𝜌𝐶,𝑘

have the 𝐹𝑛−1,(𝑛−1)(𝑘−1) distribution. They also

both have the same value when 𝜌0 = 0.

Two-way mixed effects
In this setting, every target is evaluated by the same set of judges, who are the only judges of interest.

The underlying models with and without interaction are

𝑦𝑖𝑗 = 𝜇 + 𝑟𝑖 + 𝑐𝑗 + (𝑟𝑐)𝑖𝑗 + 𝜖𝑖𝑗 (M3)

𝑦𝑖𝑗 = 𝜇 + 𝑟𝑖 + 𝑐𝑗 + 𝜖𝑖𝑗 (M3A)
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where 𝑦𝑖𝑗 is the rating of the 𝑖th target by the 𝑗th rater, 𝜇 is the mean rating, 𝑟𝑖 is the target random effect,

𝑐𝑗 is the rater random effect, (𝑟𝑐)𝑖𝑗 is an interaction effect between target and rater, and 𝜖𝑖𝑗 is random

error. The 𝑟𝑖s are i.i.d. 𝑁(0, 𝜎2
𝑟), (𝑟𝑐)𝑖𝑗s are 𝑁(0, 𝜎2

𝑟𝑐), and 𝜖𝑖𝑗s are i.i.d. 𝑁(0, 𝜎2
𝜖 ). Each random effect

is mutually independent of the others. The 𝑐𝑗s are fixed such that ∑𝑗 𝑐𝑗 = 0. The variance of 𝑐𝑗s is

𝜃2
𝑐 = ∑ 𝑐2

𝑗 /(𝑘 − 1).
In the presence of an interaction, two versions of a mixed-effects model may be considered. One

assumes that (𝑟𝑐)𝑖𝑗s are i.i.d. 𝑁(0, 𝜎2
𝑟𝑐). Another assumes that (𝑟𝑐)𝑖𝑗s are 𝑁(0, 𝜎2

𝑟𝑐) with an additional
constraint that ∑𝑗(𝑟𝑐)𝑖𝑗 = 0 (for example, Kuehl [2000]), so only interaction terms involving different

targets are independent. The latter model is considered here.

We now define the intraclass correlations for individual measurements for model (M3).

The individual CA-ICC, the correlation between individual measurements on the same target, is

𝜌𝐶,1 = ICC(𝐶,1) = Corr(𝑦𝑖𝑗, 𝑦𝑖𝑗′) = 𝜎2
𝑟 − 𝜎2

𝑟𝑐/(𝑘 − 1)
𝜎2

𝑟 + (𝜎2
𝑟𝑐 + 𝜎2

𝜖 )

The absolute-agreement intraclass correlation for individual measurements, individual AA-ICC, is

𝜌𝐴,1 = ICC(𝐴,1) = 𝜎2
𝑟 − 𝜎2

𝑟𝑐/(𝑘 − 1)
𝜎2

𝑟 + 𝜃2
𝑐 + (𝜎2

𝑟𝑐 + 𝜎2
𝜖 )

Shrout and Fleiss (1979) show that the individual ICC could be negative in this case—a phenomenon

first pointed out by Sitgreaves (1960). This can happen when the interaction term has a high variance

relative to the targets and there are not many raters.

The individual intraclass correlations for model (M3A) have similar definitions with 𝜎2
𝑟𝑐 = 0. The

individual CA-ICC is the correlation between individual measurements on the same target, Corr(𝑦𝑖𝑗, 𝑦𝑖𝑗′).
We now discuss the intraclass correlations that correspond to average measurements. Neither average

AA-ICC, 𝜌𝐴,𝑘, nor average CA-ICC, 𝜌𝐶,𝑘, can be estimated under model (M3) (Shrout and Fleiss 1979;

McGraw and Wong 1996a). The problem is that in this model, 𝜎2
𝑟 , which is the covariance between two

means based on 𝑘 raters, cannot be estimated.

Specifically, the parameter 𝜎2
𝑟 appears only in the expectation of the between-target mean squares

BMS. Under the restriction ∑𝑗(𝑟𝑐)𝑖𝑗 = 0,

𝐸(BMS) = 𝑘𝜎2
𝑟 + 𝜎2

𝜖

Note that 𝜎2
𝑟𝑐 does not appear in the expectation of between-target mean squares. With one observation

per target and rater, 𝜎2
𝑟𝑐 and 𝜎2

𝜖 cannot be estimated separately (only their sum 𝜎2
𝑟𝑐 +𝜎2

𝜖 can be estimated),

so BMS alone cannot be used to estimate 𝜎2
𝑟 .

Under model (M3A), however, there is no interaction (and thus no interaction variance component

𝜎2
𝑟𝑐), so 𝜌𝐴,𝑘 or 𝜌𝐶,𝑘 can be estimated.

The average AA-ICC, the absolute-agreement intraclass correlation for average measurements of size

𝑘, is

𝜌𝐴,𝑘 = ICC(𝐴,𝑘) = 𝜎2
𝑟

𝜎2
𝑟 + (𝜃2

𝑐 + 𝜎2
𝜖 )/𝑘

The average CA-ICC, the correlation between average measurements of size 𝑘made on the same target,
is

𝜌𝐶,𝑘 = ICC(𝐶,𝑘) = Corr(𝑦𝑖., 𝑦′
𝑖.) = 𝜎2

𝑟
𝜎2

𝑟 + 𝜎2
𝜖 /𝑘
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The estimators of ICCs, their confidence intervals, and hypothesis tests are as described for two-way

random-effects models, except 𝜌𝐴,𝑘 and 𝜌𝐶,𝑘 are not defined under model (M3).
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