hetregress — Heteroskedastic linear regression

Description

hetregress fits a multiplicative heteroskedastic linear regression by modeling the variance as an exponential function of the specified variables using either maximum likelihood (ML; the default) or Harvey’s two-step generalized least-squares (GLS) method.

Quick start

Heteroskedastic regression model of y on x1, using x2 to model the variance

```
hetregress y x1, het(x2)
```

Using Harvey’s two-step GLS estimator instead of the default ML

```
hetregress y x1, het(x2) twostep
```

With robust standard errors

```
hetregress y x1, het(x2) vce(robust)
```

Perform a Wald test on the variance instead of a likelihood-ratio (LR) test

```
hetregress y x1, het(x2) waldhet
```

Menu

Statistics > Linear models and related > Heteroskedastic linear regression
Syntax

Maximum likelihood estimation

```
hetregress depvar [ indepvars ] [ if ] [ in ] [ weight ] , ml_options
```

Two-step GLS estimation

```
hetregress depvar [ indepvars ] [ if ] [ in ] , twostep het(varlist) [ ts_options]
```

ml_options

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mle</td>
<td>use maximum likelihood estimator; the default</td>
</tr>
<tr>
<td>het(varlist)</td>
<td>independent variables to model the variance</td>
</tr>
<tr>
<td>noconstant</td>
<td>suppress constant term</td>
</tr>
<tr>
<td>constraints(constraints)</td>
<td>apply specified linear constraints</td>
</tr>
</tbody>
</table>

SE/Robust

```
vce(vcetype) vctype may be oim, robust, cluster clustvar, opg, bootstrap, or jackknife
```

Reporting

```
level(#) set confidence level; default is level(95)
```

```
lrmodel perform the LR model test instead of the default Wald model test
```

```
waldhet perform Wald test on variance instead of LR test
```

```
noconsreport do not display constraints
```

display_options

```
display_options control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
```

Maximization

```
maximize_options control the maximization process; seldom used
```

```
collinear keep collinear variables
```

```
coeflegend display legend instead of statistics
```
ts_options

Model

- ***twostep**
 - Use two-step GLS estimator; default is maximum likelihood
- **het(varlist)**
 - Independent variables to model the variance
- **noconstant**
 - Suppress constant term

SE

- **vce(vcetype)**
 - Vcetype may be conventional, bootstrap, or jackknife

Reporting

- **level(#)**
 - Set confidence level; default is level(95)
- **display_options**
 - Control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
- **coeflegend**
 - Display legend instead of statistics

*twostep and het() are required.

depvar, **indepvars** and **varlist** may contain factor variables; see [U] 11.4.3 Factor variables.

deprevar, **indepvars**, and **varlist** may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.

For more details, see [BAYES] bayes: hetregress.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

aweights are not allowed with the jackknife prefix; see [R] jackknife.

vce(), lrmodel, twostep, and weights are not allowed with the svy prefix; see [SVY] svy.

aweights, fweights, iweights, and pweights are allowed with maximum likelihood estimation; see [U] 11.1.6 weight.

collinear and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for maximum likelihood estimation

Model

- **mle**
 - Requests that the maximum likelihood estimator be used. This is the default.
- **het(varlist)**
 - Specifies the independent variables in the variance function. When the het() option is not specified, homoskedasticity is assumed and the waldhet option is not allowed.
- **noconstant**, **constraints(constraints)**; see [R] Estimation options.

SE/Robust

- **vce(vcetype)**
 - Specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

Reporting

- **level(#)**, **lrmodel**; see [R] Estimation options.
- **waldhet** specifies that the Wald test of whether lnsigma2 = 0 be performed instead of the LR test.
nocnsreport; see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nolabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] Estimation options.

Maximization

maximize_options: difficult, technique(algorithm_spec), iterate(#), [nolog, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with hetregress but are not shown in the dialog box:
collinear, coeflegend; see [R] Estimation options.

Options for two-step GLS estimation

twostep specifies that the model be fit using Harvey’s two-step GLS estimator. This option requires that the independent variables be specified in the het() option to model the variance.

het(varlist) specifies the independent variables in the variance function.

noconstant; see [R] Estimation options.

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (conventional) and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

vce(conventional), the default, uses the two-step variance estimator derived by Heckman.

level(#); see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, noheader, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] Estimation options.

The following option is available with hetregress, twostep but is not shown in the dialog box:
coeflegend; see [R] Estimation options.
Introduction

`hetregress` fits a multiplicative heteroskedastic linear regression model using either ML or Harvey’s two-step GLS method. Multiplicative heteroskedasticity occurs when the variances of the error terms are assumed to be a multiplicative function of one or more variables. When variables are not specified in the `het()` option, `hetregress` fits a homoskedastic linear regression model.

Heteroskedasticity arises in a regression when the variances of the error terms are not constant across observations. For example, wages may be heteroskedastic when predicted by age group. While there is little variability in wages among workers in their teens and early 20s, wages among workers in their 50s may vary greatly because of a variety of factors. Heteroskedasticity is often found in time-series data and cross-sectional measurements and is a common issue in econometrics, social science, and many other fields. For more detailed information on how to detect the presence of heteroskedasticity, see `Tests for violation of assumptions` in [R] `regress postestimation`.

We can use `hetregress` when the variance is assumed to have a form that is an exponential function of a linear combination of one or more variables. This is known as multiplicative heteroskedasticity and includes most of the useful formulations for variance as special cases. For example, in the special case of groupwise heteroskedasticity, the sample can be divided into groups where each group has a different variance.

A model with multiplicative heteroskedasticity can be written as

\[y_i = x_i \beta + \epsilon_i; \quad \sigma_i^2 = \exp(z_i \alpha) \] (1)

where \(y_i, i = 1, \ldots, n \), is the dependent variable; \(x_i = (x_{1i}, x_{2i}, \ldots, x_{ki}) \) are the \(k \) independent variables that model the mean function; and \(z_i = (z_{1i}, z_{2i}, \ldots, z_{mi}) \) are the \(m \) variables that model the variance function. \(\beta \)'s are unknown parameters in the mean function, and \(\alpha \)'s are unknown parameters in the variance function. \(\epsilon_i \)'s are errors that are independent and identically distributed with mean 0 and variance \(\sigma_i^2 \). Groupwise heteroskedasticity is modeled using (1) but where the \(z_i \)'s are all indicator (dummy) variables for groups.

Harvey (1976) introduced two methods for dealing with multiplicative heteroskedasticity: ML estimation and two-step GLS estimation. By default, `hetregress` fits the multiplicative heteroskedastic regression model using ML. If the `twostep` option is specified, `hetregress` fits the model using the two-step GLS method. The ML estimates are more efficient than those obtained by the GLS estimator if the mean and variance function are correctly specified and the errors are normally distributed. By contrast, the two-step GLS estimates are more robust if the variance function is incorrect or the errors are nonnormal.

If the form of the variance is completely unknown, we may be better off using the OLS estimator instead of the ML and GLS estimators because it remains unbiased. However, we should then use the robust standard errors to correct for heteroskedasticity. Using robust standard errors for the OLS estimator allows us to make appropriate inferences without specifying any form for the variance. We discuss three modifications of the robust variance calculation in `Robust standard errors` of [R] `regress`.
If the form of the variance is known and does not contain any unknown parameters, we can use the weighted least-squares estimator, also called the generalized least-squares estimator. For example, we can use weighted least squares to correct for heteroskedasticity if the variance is proportional to one of the regressors. See section 9.5.2 of Greene (2018) for details, and also see Weighted regression in [R] regress.

Greene (2018) and Hill, Griffiths, and Lim (2018) compare the ML estimator and the GLS estimator with the robust OLS estimator. If the form of the heteroskedasticity is specified correctly, the ML and GLS estimators are more efficient than the robust OLS estimator. However, if the form of the heteroskedasticity is misspecified, the robust OLS estimator may be more efficient than the ML and GLS estimators.

Maximum likelihood estimation

Example 1: Multiplicative heteroskedasticity

Consider the following dataset from a study of household expenditure on food described in Hill, Griffiths, and Lim (2018, chap. 8). We want to investigate the relationship between average household expenditure on food and household income by fitting a model of weekly food expenditure (food_exp) on weekly income (income) using OLS.

```
. use https://www.stata-press.com/data/r16/foodexp
(Household Expenditure on Food)
. regress food_exp income
(output omitted)
```

However, we suspect that the variance for low-income families may be lower than that for high-income families, because low-income families usually have less money to spend on food, while high-income families can choose to spend more or less on food. We plot the least-squares residuals against the value of income by using the rvpplot command after regress.

```
. rvpplot income, yline(0)
```

The graph confirms our suspicions about a relationship between income and the residuals. We believe that the variance is some power function of income. Therefore, we fit a multiplicative heteroskedastic regression model. The model for each observation is

\[
\text{food}_\text{exp}_i = \beta_0 + \beta_1 \times \text{income}_i + \epsilon_i
\]
and the variance function can be written as

\[\sigma_i^2 = \sigma^2 \times \text{income}_i^\gamma \]

where \(\gamma \) is an unknown parameter of the variance function. To ensure that we will get positive values for the variance \(\sigma_i^2 \) for all possible values of the unknown parameter \(\gamma \), we rewrite this function so that \(\sigma_i^2 \) is an exponential function of a linear combination of \(\ln(\text{income}_i) \) and a constant term:

\[\sigma_i^2 = \exp\{\alpha_0 + \alpha_1 \times \ln(\text{income}_i)\} \]

where \(\alpha_0 = \ln(\sigma^2) \) and \(\alpha_1 = \gamma \).

To fit this model using `hetregress`, we first create a variable that contains the logarithm of income (\(\text{logincome} \)) and use it in the `het()` option to model the variance function. The constant term in the variance function is always assumed.

```stata
. generate double logincome = ln(income)
. hetregress food_exp income, het(logincome)
```

Fitting full model:

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Log likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-227.889</td>
</tr>
<tr>
<td>1</td>
<td>-226.61039</td>
</tr>
<tr>
<td>2</td>
<td>-225.72188</td>
</tr>
<tr>
<td>3</td>
<td>-225.71519</td>
</tr>
<tr>
<td>4</td>
<td>-225.71519</td>
</tr>
</tbody>
</table>

```
Heteroskedastic linear regression
Number of obs = 40
ML estimation
Wald chi2(1) = 135.11
Log likelihood = -225.7152 Prob > chi2 = 0.0000
```

| food_exp | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|-------|-----------|-------|------|----------------------|
| food_exp | | | | | |
| income | 10.63444 | .9148876 | 11.62 | 0.000 | 8.841295 12.42759 |
| _cons | 76.07294 | 7.369143 | 10.32 | 0.000 | 61.62969 90.5162 |

logincome					
_cons	2.769762	.4481606	6.18	0.000	1.891383 3.648141
	.4684052	1.310337	0.36	0.721	-2.099809 3.036619

LR test of lnsigma2=0: chi2(1) = 19.59 Prob > chi2 = 0.0000

The LR test at the bottom of the output is a test for the parameters of the variance function. The \(\chi^2(1) \) statistic of 19.59 is significant, indicating that heteroskedasticity is present. If we had preferred the Wald test for heteroskedasticity instead of the LR test, we would have specified the `waldhet` option.

In addition to the estimated parameters for the mean function (under `food_exp`), `hetregress` reports estimated parameters and test statistics for the variance function. The significant \(z \) statistic for `logincome` also suggests the presence of heteroskedasticity. Relating the output back to our model, \(\exp(0.47) \approx 1.60 \) is our estimate of \(\sigma^2 \). The coefficient for `logincome` is 2.77. This is our estimate of \(\gamma \), and it can be interpreted as the multiplicative factor of the variance associated with income.
We can obtain more formal results by using `nlcom`:

```bash
.nlcom (sigma2: exp(_b[lnsigma2:_cons]))
sigma2: exp(_b[lnsigma2:_cons])
```

| food_exp | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|-------|-----------|-------|------|---------------------|
| sigma2 | 1.597445 | 2.093191 | 0.76 | 0.445 | -2.505135 5.700024 |

Here `sigma2` refers to σ^2 in the variance function given above.

Two-step GLS estimation

> **Example 2: Groupwise heteroskedasticity**

Here we will use a dataset of 725 faculty members’ salaries described in DeMaris (2004) to determine whether there is evidence of a difference in salaries between male faculty and female faculty. In addition to sex (`female`), other variables that might affect the salaries are prior experience (`priorexp`), years in rank (`yrrank`), years at the university (`yrbg`), and marketability of discipline (`salfac`). We will treat `female` as a factor variable and all other variables as continuous variables.

We could fit this model with `regress` by including main effects and the interaction terms between `female` and all other variables (by using *factor-variable notation*).
. use https://www.stata-press.com/data/r16/salary, clear
(DeMaris (2004) - Faculty salaries)
. regress salary i.female##(c.priorexp c.yrrank c.yrbg c.salfac)

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 725</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>8.9287e+10</td>
<td>9</td>
<td>9.9207e+09</td>
<td>F(9, 715) = 135.23</td>
</tr>
<tr>
<td>Residual</td>
<td>5.2453e+10</td>
<td>715</td>
<td>73360978.8</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>1.4174e+11</td>
<td>724</td>
<td>195773163</td>
<td>R-squared = 0.6299</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adj R-squared = 0.6253</td>
</tr>
</tbody>
</table>

| salary | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------------------|------------------|-----------|-------|--------|---------------------|
| 1.female | 5735.113 | 4987.433 | 1.15 | 0.251 | -4056.65 to 15526.88 |
| priorexp | 1042.845 | 82.62092 | 12.62 | 0.000 | 880.6366 to 1205.054 |
| yrrank | -47.80904 | 99.85936 | -0.48 | 0.632 | -243.8617 to 148.2436 |
| yrbg | 1009.12 | 75.5161 | 13.36 | 0.000 | 860.8607 to 1157.38 |
| salfac | 33601.3 | 2531.61 | 13.27 | 0.000 | 28631.02 to 38571.58 |
| female# | | | | | |
| c.priorexp | -662.7972 | 159.6171 | -4.15 | 0.000 | -976.1715 to -349.4228 |
| female# | | | | | |
| c.yrrank | -447.8621 | 218.8695 | -2.05 | 0.041 | -877.5659 to -18.15833 |
| female#c.yrbg | 115.4784 | 157.9372 | 0.73 | 0.465 | -194.5976 to 425.5545 |
| female# | | | | | |
| c.salfac | -7618.157 | 5142.204 | -1.48 | 0.139 | -17713.78 to 2477.467 |
| _cons | 2137.718 | 2634.266 | 0.81 | 0.417 | -3034.103 to 7309.539 |

However, we believe that the variances differ between female faculty and male faculty. In this case, we will use estat hettest to perform the Breusch and Pagan (1979) test for heteroskedasticity. See Tests for violation of assumptions in \texttt{[R] regress postestimation} for more detailed information.

. estat hettest i.female

Bresuch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: i.female
 chi2(1) = 11.80
 Prob > chi2 = 0.0006

The results above suggest the presence of heteroskedasticity with respect to sex. This is a case of groupwise heteroskedasticity and can be modeled using \texttt{hetregress} by treating the sex variable (female) as a factor variable (i.female) in the \texttt{het()} option.
We add the `twostep` option to obtain two-step GLS estimates instead of ML estimates.

```stata
.hetregress salary i.female##(c.priorexp c.yrrank c.yrbg c.salfac), > het(i.female) twostep
```

Heteroskedastic linear regression
Number of obs = 725
Two-step GLS estimation

| salary | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|-----------|-----------|------|-------|---------------------|
| salary | 5735.113 | 4459.648 | 1.29 | 0.198 | -3005.635 to 14475.86 |
| 1.female | | | | | |
| priorexp | 1042.845 | 89.0886 | 11.71| 0.000 | 868.2348 to 1217.456 |
| yrrank | -47.80904 | 107.6765 | -0.44| 0.657 | -258.851 to 163.233 |
| yrbg | 1009.12 | 81.4276 | 12.39| 0.000 | 849.5253 to 1168.716 |
| salfac | 33601.3 | 2729.788 | 12.31| 0.000 | 28251.01 to 38951.59 |
| female# | | | | | |
| c.priorexp| -662.7972 | 142.2286 | -4.66| 0.000 | -941.5601 to 384.0342 |
| 1 | | | | | |
| female# | -447.8621 | 191.2937 | -2.34| 0.019 | -822.7908 to -72.93342 |
| c.yrrank | 1 | | | | |
| female#c.yrbg | 115.4784 | 138.9659 | 0.83 | 0.406 | -156.8988 to 387.8467 |
| 1 | | | | | |
| female# | -7618.157 | 4544.735 | -1.68| 0.094 | -16525.67 to 1289.359 |
| c.salfac | 1 | | | | |
| _cons | 2137.718 | 2840.48 | 0.75 | 0.452 | -3429.52 to 7704.956 |

<table>
<thead>
<tr>
<th>lnsigma2</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.female</td>
<td>-.5676939</td>
<td>.1808783</td>
<td>-3.14</td>
<td>0.002</td>
<td>-.9222088 to -.2131789</td>
</tr>
<tr>
<td>_cons</td>
<td>17.90879</td>
<td>.0982708</td>
<td>182.24</td>
<td>0.000</td>
<td>17.71618 to 18.1014</td>
</tr>
</tbody>
</table>

Wald test of lnsigma2=0: chi2(1) = 9.85
Prob > chi2 = 0.0017

The Wald test for heteroskedasticity is reported at the bottom of the coefficient table instead of the LR test because there is no likelihood computed for the two-step GLS estimation.

Compared with the OLS results obtained using `regress`, the estimated coefficients for the mean function are not affected by heteroskedasticity, but their standard errors are. Also, the estimated variance in salaries for female faculty is about \(\exp(-0.6) \approx 0.5 \) times the estimated variance in salaries for male faculty.

The results above suggest that `priorexp`, `yrbg`, and `salfac` have significant effects on the salary of male faculty. We see also that the effects of `priorexp` and `yrrank` on salaries are significantly different between males and females. For example, each additional year of experience for male faculty increases their salary by $1,042.85, and the estimated difference in effect is $662.80 less for female faculty than for male faculty.
To obtain an estimate for female faculty of the effect of experience on salary, we can use `lincom`.

```
. lincom priorexp + 1.female#c.priorexp
    ( 1) [salary]priorexp + [salary]1.female#c.priorexp = 0

          salary |     Coef.   Std. Err.     z  P>|z|   [95% Conf. Interval]
-------------+-------------------------------------------
        (1) |  380.0481   110.8702    3.43  0.001      162.7465    597.3497
```

We see that each additional year of experience increases salary by only $380.05 and that this effect is significant.

We can estimate the effect of each of the other variables on the salaries of female faculty if we wish.

```
. lincom yrrank + 1.female#c.yrrank
    ( 1) [salary]yrrank + [salary]1.female#c.yrrank = 0

          salary |     Coef.   Std. Err.     z  P>|z|   [95% Conf. Interval]
-------------+-------------------------------------------
        (1) | -495.6711   158.1108   -3.13  0.002     -805.5627    -185.7796
```

The effect of `yrrank` is associated with a decrease in salary. The effect is significant for female faculty but not for male faculty.

Stored results

`hetregress` (ML) stores the following in `e()`:

** Scalars**
- `e(N)` number of observations
- `e(k)` number of parameters
- `e(k_eq)` number of equations in `e(b)`
- `e(k_eq_model)` number of equations in overall model test
- `e(k_dv)` number of dependent variables
- `e(df_m)` model degrees of freedom
- `e(ll)` log likelihood, full model
- `e(ll0)` log likelihood, constant-only model
- `e(llc)` log likelihood, comparison model
- `e(N_clust)` number of clusters
- `e(chi2)` χ^2 for mean model test
- `e(chi2_c)` χ^2 for heteroskedasticity test
- `e(p)` p-value for heteroskedasticity test
- `e(df_m_c)` degrees of freedom for heteroskedasticity test
- `e(rank)` rank of `e(V)`
- `e(rank0)` rank of `e(V)` for constant-only model
- `e(ic)` number of iterations
- `e(rc)` return code
- `e(converged)` 1 if converged, 0 otherwise

** Macros**
- `e(cmd)` `hetregress`
- `e(cmdline)` command as typed
- `e(depvar)` name of dependent variable
- `e(wtype)` weight type
- `e(wexp)` weight expression
- `e(title)` title in estimation output
- `e(title2)` secondary title in estimation output
hetregress — Heteroskedastic linear regression

name of cluster variable
Wald or LR: type of model \(\chi^2 \) test
Wald or LR: type of heteroskedastic \(\chi^2 \) test corresponding to \(e(chi2_c) \)
vcetype specified in vce()
title used to label Std. Err.
type of optimization
max or min; whether optimizer is to perform maximization or minimization
ml method
name of likelihood-evaluator program
maximization technique
program used to implement predict
predictions allowed by margins
predictions disallowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved

Matrices

e(b)
coefficient vector
e(Cns)
constraints matrix
e(llg)
itration log (up to 20 iterations)
e(gradient)
gradient vector
e(V)
variance–covariance matrix of the estimators
model-based variance

Functions

e(sample)
marks estimation sample

r()

Matrices

r(table)
matrix containing the coefficients with their standard errors, test statistics, \(p \)-values, and confidence intervals

hetregress (two-step GLS) stores the following in e():

Scalars

number of observations
number of parameters
model degrees of freedom
\(\chi^2 \) for mean model test
\(\chi^2 \) for heteroskedasticity test
\(p \)-value for heteroskedasticity test
degrees of freedom for heteroskedasticity test
\(p \)-value for the mean model test
rank of \(e(V) \)

Macros

hetregress
command as typed
name of dependent variable
title in estimation output
secondary title in estimation output
Wald; type of model \(\chi^2 \) test
Wald; type of heteroskedastic \(\chi^2 \) test corresponding to \(e(chi2_c) \)
vcetype specified in vce()
two step
ml method
b V
program used to implement predict
predictions allowed by margins
hetregress — Heteroskedastic linear regression

predictions disallowed by margins

factor variables fvset as asbalanced

factor variables fvset as asobserved

coefficients vector

variance–covariance matrix of the estimators

marks estimation sample

In addition to the above, the following is stored in r():

matrix containing the coefficients with their standard errors, test statistics, p-values, and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any r-class command is run after the estimation command.

Methods and formulas

Methods and formulas are presented under the following headings:

Maximum likelihood estimation

Two-step GLS estimation

Maximum likelihood estimation

By default, hetregress fits a multiplicative heteroskedastic regression using ML estimation. The log-likelihood function is

\[\ln L = \sum_{i=1}^{n} \frac{w_i}{2} \left\{ \frac{(y_i - x_i \beta)^2}{\exp(z_i \alpha)} - \ln(2\pi) - z_i \alpha \right\} \]

where \(y_i, i = 1, \ldots, n, \) is the dependent variable; \(x_i = (x_{1i}, x_{2i}, \ldots, x_{ki}) \) are the \(k \) independent variables that model the mean function; \(z_i = (z_{1i}, z_{2i}, \ldots, z_{mi}) \) are the \(m \) variables that model the variance function; and \(w_i \) are the weights. \(\beta \) is a column vector of unknown parameters in the mean function, and \(\alpha \) is a column vector of unknown parameters in the variance function. The GLS estimates \(\hat{\beta}_{GLS} \) and \(\hat{\alpha}_{GLS} \) (described below) are used as the initial values in ML estimation. The \(\ln L \) function is maximized as described in [R] Maximize.

hetregress supports the Huber/White/sandwich estimator of the variance and its clustered version using vce(robust) and vce(cluster clustvar), respectively. See [P] _robust, particularly Maximum likelihood estimators and Methods and formulas.

hetregress also supports estimation with survey data. For details on VCEs with survey data, see [SVY] Variance estimation.
Two-step GLS estimation

hetregress uses two-step GLS estimation when the twostep option is specified. Harvey (1976) describes the procedure in detail, but here are the main steps.

1. Use OLS to estimate regression coefficients β and compute residuals $e_i, i = 1, \ldots, n$.
2. Use OLS to regress the log-squared residuals, $\ln(e_i^2)$, on z and estimate α.
3. Perform correction for the OLS estimates of α to obtain $\hat{\alpha}_c$ and their covariance matrix based on Harvey (1976).
4. Compute $\hat{\sigma}_i^2 = \exp(z_i \hat{\alpha}_c), i = 1, \ldots, n$.
5. Refit the original regression model using $\hat{\sigma}_i^2$'s as weights to obtain the GLS estimates $\hat{\alpha}_{GLS}$ and $\hat{\beta}_{GLS}$.

References

Also see

[R] hetregress postestimation — Postestimation tools for hetregress

[R] regress — Linear regression

[BAYES] bayes: hetregress — Bayesian heteroskedastic linear regression

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands