Description

`hetprobit` fits a maximum-likelihood heteroskedastic probit model.

Quick start

Heteroskedastic probit model of y on x_1, using x_2 to model the variance

```
hetprobit y x1, het(x2)
```

With robust standard errors

```
hetprobit y x1, het(x2) vce(robust)
```

After fitting a model, reprint the table as a coefficient legend

```
hetprobit, coeflegend
```

Menu

Statistics > Binary outcomes > Heteroskedastic probit regression
hetprobit — Heteroskedastic probit model

Syntax

```
hetprobit depvar [ indepvars ] [ if ] [ in ] [ weight ],
het(varlist[ , offset(varname_o) ]) [ options ]
```

Options

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>het(varlist[...])*</td>
<td>independent variables to model the variance and optional offset variable</td>
</tr>
<tr>
<td>noconstant</td>
<td>suppress constant term</td>
</tr>
<tr>
<td>offset(varname)</td>
<td>include varname in model with coefficient constrained to 1</td>
</tr>
<tr>
<td>asis</td>
<td>retain perfect predictor variables</td>
</tr>
<tr>
<td>constraints(constraints)</td>
<td>apply specified linear constraints</td>
</tr>
</tbody>
</table>

SE/Robust

| vcetype | vcetype may be oim, robust, cluster clustvar, opg, bootstrap, or jackknife |

Reporting

level(#)	set confidence level; default is level(95)
lmodel	perform the likelihood-ratio model test instead of the default Wald test
waldhet	perform Wald test on variance instead of LR test
nocnsreport	do not display constraints
display_options	control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling

Maximization

maximize_options	control the maximization process; seldom used
collinear	keep collinear variables
coeflegend	display legend instead of statistics

*het() is required. The full specification is het(varlist[, offset(varname_o)]). indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables. depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists. bayes, bootstrap, by, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: hetprobit.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap. vce(), lmodel, and weights are not allowed with the svy prefix; see [SVY] svy. fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. collinear and coeflegend do not appear in the dialog box. See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

```
het(varlist[ , offset(varname_o) ]) specifies the independent variables and, optionally, the offset variable in the variance function. het() is required.
```
offset(varname_o) specifies that selection offset varname_o be included in the model with the coefficient constrained to be 1.

noconstant, offset(varname); see [R] Estimation options.

asis forces the retention of perfect predictor variables and their associated perfectly predicted observations and may produce instabilities in maximization; see [R] probit.

constraints(constraints); see [R] Estimation options.

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

level(#), lrmodel; see [R] Estimation options.

waldhet specifies that a Wald test of whether lnsigma = 0 be performed instead of the LR test.

nocnsreport; see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofylabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] Estimation options.

maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with hetprobit but are not shown in the dialog box: collinear, coeflegend; see [R] Estimation options.

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Robust standard errors

Introduction

hetprobit fits a maximum-likelihood heteroskedastic probit model, which is a generalization of the probit model. Let \(y_j, j = 1, \ldots, N \), be a binary outcome variable taking on the value 0 (failure) or 1 (success). In the probit model, the probability that \(y_j \) takes on the value 1 is modeled as a nonlinear function of a linear combination of the \(k \) independent variables \(x_j = (x_{1j}, x_{2j}, \ldots, x_{kj}) \),

\[
Pr(y_j = 1) = \Phi(x_j b)
\]
in which \(\Phi() \) is the cumulative distribution function (CDF) of a standard normal random variable, that is, a normally distributed (Gaussian) random variable with mean 0 and variance 1. The linear combination of the independent variables, \(x_j b \), is commonly called the index function, or index. Heteroskedastic probit generalizes the probit model by generalizing \(\Phi() \) to a normal CDF with a variance that is no longer fixed at 1 but can vary as a function of the independent variables. \texttt{hetprobit} models the variance as a multiplicative function of these \(m \) variables \(z_j = (z_{1j}, z_{2j}, \ldots, z_{mj}) \) following Harvey (1976):

\[
\sigma_j^2 = \{ \exp(z_j \gamma) \}^2
\]

Thus the probability of success as a function of all the independent variables is

\[
Pr(y_j = 1) = \Phi\left\{ x_j b / \exp(z_j \gamma) \right\}
\]

From this expression, it is clear that, unlike the index \(x_j b \), no constant term can be present in \(z_j \gamma \) if the model is to be identifiable.

Suppose that the binary outcomes \(y_j \) are generated by thresholding an unobserved random variable, \(w \), which is normally distributed with mean \(x_j b \) and variance 1 such that

\[
y_j = \begin{cases}
1 & \text{if } w_j > 0 \\
0 & \text{if } w_j \leq 0
\end{cases}
\]

This process gives the probit model:

\[
Pr(y_j = 1) = Pr(w_j > 0) = \Phi(x_j b)
\]

Now suppose that the unobserved \(w_j \) are heteroskedastic with variance

\[
\sigma_j^2 = \{ \exp(z_j \gamma) \}^2
\]

Relaxing the homoskedastic assumption of the probit model in this manner yields our multiplicative heteroskedastic probit model:

\[
Pr(y_j = 1) = \Phi\left\{ x_j b / \exp(z_j \gamma) \right\}
\]
Example 1

For this example, we generate simulated data for a simple heteroskedastic probit model and then estimate the coefficients with `hetprobit`:

```stata
. set obs 1000
  number of observations (_N) was 0, now 1,000
. set seed 1234567
. generate x = 1-2*runiform()
. generate xhet = runiform()
. generate sigma = exp(1.5*xhet)
. generate p = normal((0.3+2*x)/sigma)
. generate y = cond(runiform()<=p,1,0)
. hetprobit y x, het(xhet)
```

Fitting probit model:

```
Iteration 0: log likelihood = -688.33746
Iteration 1: log likelihood = -610.48362
Iteration 2: log likelihood = -610.3626
Iteration 3: log likelihood = -610.3626
```

Fitting full model:

```
Iteration 0: log likelihood = -610.3626
Iteration 1: log likelihood = -600.8767
Iteration 2: log likelihood = -600.10154
Iteration 3: log likelihood = -600.01544
Iteration 4: log likelihood = -600.01521
Iteration 5: log likelihood = -600.01521
```

```
Heteroskedastic probit model
Number of obs = 1,000
Zero outcomes = 451
Nonzero outcomes = 549
Wald chi2(1) = 54.20
Log likelihood = -600.0152 Prob > chi2 = 0.0000
```

```
Coef. Std. Err. z P>|z| [95% Conf. Interval]
y
   x  1.782479  .2421117  7.36  0.000   1.307949   2.257009
_cons .3140616  .0871121  3.61  0.000   .1433249   .4847982
lnsigma
   xhet  1.31152  .3011689  4.35  0.000   .7212402   1.901801
```

| LR test of lnsigma=0: chi2(1) = 20.69 | Prob > chi2 = 0.0000 |

Above we created two variables, \(x\) and \(x_{het}\), and then simulated the model

\[
\Pr(y = 1) = F\left\{\frac{(\beta_0 + \beta_1 x)}{\exp(\gamma_1 x_{het})}\right\}
\]

for \(\beta_0 = 0.3\), \(\beta_1 = 2\), and \(\gamma_1 = 1.5\). According to `hetprobit`’s output, all coefficients are significant, and, as we would expect, the Wald test of the full model versus the constant-only model—for example, the index consisting of \(\beta_0 + \beta_1 x\) versus that of just \(\beta_0\)—is significant with \(\chi^2(1) = 54\). Likewise, the likelihood-ratio test of heteroskedasticity, which tests the full model with heteroskedasticity against the full model without, is significant with \(\chi^2(1) = 21\). See [R] Maximize for more explanation of the output. For this simple model, `hetprobit` took five iterations to converge. As stated elsewhere (Greene 2018, 764), this is a difficult model to fit, and it is not uncommon for it to require many iterations or for the optimizer to print out warnings and informative messages during the optimization. Slow convergence is especially common for models in which one or more of the independent variables appear in both the index and variance functions.
Technical note

Stata interprets a value of 0 as a negative outcome (failure) and treats all other values (except missing) as positive outcomes (successes). Thus if your dependent variable takes on the values 0 and 1, then 0 is interpreted as failure and 1 as success. If your dependent variable takes on the values 0, 1, and 2, then 0 is still interpreted as failure, but both 1 and 2 are treated as successes.

Robust standard errors

If you specify the `vce(robust)` option, `hetprobit` reports robust standard errors as described in [U] 20.22 Obtaining robust variance estimates. To illustrate the effect of this option, we will reestimate our coefficients by using the same model and data in our example, this time adding `vce(robust)` to our `hetprobit` command.

Example 2

```
. hetprobit y x, het(xhet) vce(robust) nolog
```

```
Heteroskedastic probit model
Number of obs = 1,000
Zero outcomes = 451
Nonzero outcomes = 549
Wald chi2(1) = 50.49
Log pseudolikelihood = -600.0152 Prob > chi2 = 0.0000

Robust
        Coef. Std. Err. z    P>|z|  [95% Conf. Interval]
        y
        x  1.782479   .2508447  7.11   0.000    1.290832    2.274126
        _cons .3140616   .087195   3.60   0.000    .1431625    .4849607
        Insigma
        xhet  1.31152   .3059137  4.29   0.000    .7119406    1.91111

Wald test of Insigma=0: chi2(1) = 18.38 Prob > chi2 = 0.0000
```

The `vce(robust)` standard errors for two of the three parameters are larger than the previously reported conventional standard errors. This is to be expected, even though (by construction) we have perfect model specification because this option trades off efficient estimation of the coefficient variance–covariance matrix for robustness against misspecification.

Specifying the `vce(cluster clustvar)` option relaxes the usual assumption of independence between observations to the weaker assumption of independence just between clusters; that is, `hetprobit, vce(cluster clustvar)` is robust with respect to within-cluster correlation. This option is less efficient than the `xtgee` population-averaged models because `hetprobit` inefficiently sums within cluster for the standard-error calculation rather than attempting to exploit what might be assumed about the within-cluster correlation.
hetprobit stores the following in e():

Scalars

- e(N) number of observations
- e(N_f) number of zero outcomes
- e(N_s) number of nonzero outcomes
- e(k) number of parameters
- e(k_eq) number of equations in e(b)
- e(k_eq_model) number of equations in overall model test
- e(k_dv) number of dependent variables
- e(df_m) model degrees of freedom
- e(ll) log likelihood
- e(ll_0) log likelihood, constant-only model
- e(ll_c) log likelihood, comparison model
- e(N_clust) number of clusters
- e(chi2) χ^2
- e(chi2_c) χ^2 for heteroskedasticity test
- e(p_c) p-value for heteroskedasticity test
- e(df_m_c) degrees of freedom for heteroskedasticity test
- e(p) p-value for model test
- e(rank) rank of e(V)
- e(rank0) rank of e(V) for constant-only model
- e(ic) number of iterations
- e(rc) return code
- e(converged) 1 if converged, 0 otherwise

Macros

- e(cmd) hetprobit
- e(cmdline) command as typed
- e(depvar) name of dependent variable
- e(wtype) weight type
- e(wexp) weight expression
- e(title) title in estimation output
- e(clustvar) name of cluster variable
- e(offset1) offset for probit equation
- e(offset2) offset for variance equation
- e(chi2type) Wald or LR: type of model χ^2 test
- e(chi2_ct) Wald or LR: type of model χ^2 test corresponding to e(chi2_c)
- e(vcetype) vcetype specified in vce();
- e(vce) vcetype specified in vce();
- e(opt) type of optimization
- e(which) max or min; whether optimizer is to perform maximization or minimization
- e(method) ml
- e(ml_method) type of ml method
- e(user) name of likelihood-evaluator program
- e(technique) maximization technique
- e(properties) b V
- e(predict) program used to implement predict
- e(asbalanced) factor variables fvset as asbalanced
- e(asobserved) factor variables fvset as asobserved

Matrices

- e(b) coefficient vector
- e(Cns) constraints matrix
- e(ilog) iteration log (up to 20 iterations)
- e(gradient) gradient vector
- e(V) variance–covariance matrix of the estimators
- e(V_modelbased) model-based variance

Functions

- e(sample) marks estimation sample
Methods and formulas

The heteroskedastic probit model is a generalization of the probit model because it allows the scale of the inverse link function to vary from observation to observation as a function of the independent variables.

The log-likelihood function for the heteroskedastic probit model is

$$
\ln L = \sum_{j \in S} w_j \ln \Phi \left(\frac{x_j \beta}{\exp(z \gamma)} \right) + \sum_{j \notin S} w_j \ln \left[1 - \Phi \left(\frac{x_j \beta}{\exp(z \gamma)} \right) \right]
$$

where S is the set of all observations j such that $y_j \neq 0$ and w_j denotes the optional weights. $\ln L$ is maximized as described in [R] Maximize.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version using `vce(robust)` and `vce(cluster clustvar)`, respectively. See [P] _robust, particularly Maximum likelihood estimators and Methods and formulas.

`hetprobit` also supports estimation with survey data. For details on VCEs with survey data, see [SVY] Variance estimation.

References

Also see

[R] `hetprobit postestimation` — Postestimation tools for `hetprobit`

[R] `hetoprobit` — Heteroskedastic ordered probit regression

[R] `logistic` — Logistic regression, reporting odds ratios

[R] `probit` — Probit regression

[BAYES] `bayes: hetprobit` — Bayesian heteroskedastic probit regression

[SVY] `svy estimation` — Estimation commands for survey data

[XT] `xtprobit` — Random-effects and population-averaged probit models

[U] 20 Estimation and postestimation commands