Postestimation commands

The following postestimation commands are available after `heckprobit`:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>contrast</code></td>
<td>contrasts and ANOVA-style joint tests of estimates</td>
</tr>
<tr>
<td><code>estat ic</code></td>
<td>Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)</td>
</tr>
<tr>
<td><code>estat summarize</code></td>
<td>summary statistics for the estimation sample</td>
</tr>
<tr>
<td><code>estat vce</code></td>
<td>variance–covariance matrix of the estimators (VCE)</td>
</tr>
<tr>
<td><code>estat (svy)</code></td>
<td>postestimation statistics for survey data</td>
</tr>
<tr>
<td><code>estimates</code></td>
<td>cataloging estimation results</td>
</tr>
<tr>
<td><code>* hausman</code></td>
<td>Hausman’s specification test</td>
</tr>
<tr>
<td><code>lincom</code></td>
<td>point estimates, standard errors, testing, and inference for linear combinations of coefficients</td>
</tr>
<tr>
<td><code>* lrtest</code></td>
<td>likelihood-ratio test</td>
</tr>
<tr>
<td><code>margins</code></td>
<td>marginal means, predictive margins, marginal effects, and average marginal effects</td>
</tr>
<tr>
<td><code>marginsplot</code></td>
<td>graph the results from margins (profile plots, interaction plots, etc.)</td>
</tr>
<tr>
<td><code>nlcom</code></td>
<td>point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients</td>
</tr>
<tr>
<td><code>predict</code></td>
<td>predictions, residuals, influence statistics, and other diagnostic measures</td>
</tr>
<tr>
<td><code>predictnl</code></td>
<td>point estimates, standard errors, testing, and inference for generalized predictions</td>
</tr>
<tr>
<td><code>pwcompare</code></td>
<td>pairwise comparisons of estimates</td>
</tr>
<tr>
<td><code>suest</code></td>
<td>seemingly unrelated estimation</td>
</tr>
<tr>
<td><code>test</code></td>
<td>Wald tests of simple and composite linear hypotheses</td>
</tr>
<tr>
<td><code>testnl</code></td>
<td>Wald tests of nonlinear hypotheses</td>
</tr>
</tbody>
</table>

* `hausman` and `lrtest` are not appropriate with `svy` estimation results.
predict

Description for predict

predict creates a new variable containing predictions such as probabilities, linear predictions, and standard errors.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict \[type\] newvar \[if\] \[in\] \[,\ statistic \ nooffset\]

predict \[type\] \{ stub* | newvar_reg newvar_sel newvar_athrho \} \[if\] \[in\], scores

<table>
<thead>
<tr>
<th>statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmargin</td>
<td>(\Phi(x_j b)), success probability; the default</td>
</tr>
<tr>
<td>p11</td>
<td>(\Phi_2(x_j b, z_j g, \rho)), predicted probability (\Pr(y_j^{\text{probit}} = 1, y_j^{\text{select}} = 1))</td>
</tr>
<tr>
<td>p10</td>
<td>(\Phi_2(x_j b, -z_j g, -\rho)), predicted probability (\Pr(y_j^{\text{probit}} = 1, y_j^{\text{select}} = 0))</td>
</tr>
<tr>
<td>p01</td>
<td>(\Phi_2(-x_j b, z_j g, -\rho)), predicted probability (\Pr(y_j^{\text{probit}} = 0, y_j^{\text{select}} = 1))</td>
</tr>
<tr>
<td>p00</td>
<td>(\Phi_2(-x_j b, -z_j g, \rho)), predicted probability (\Pr(y_j^{\text{probit}} = 0, y_j^{\text{select}} = 0))</td>
</tr>
<tr>
<td>psel</td>
<td>(\Phi(z_j g)), selection probability</td>
</tr>
<tr>
<td>pcond</td>
<td>(\Phi_2(x_j b, z_j g, \rho) / \Phi(z_j g)), probability of success conditional on selection</td>
</tr>
<tr>
<td>xb</td>
<td>linear prediction</td>
</tr>
<tr>
<td>stdp</td>
<td>standard error of the linear prediction</td>
</tr>
<tr>
<td>xbsel</td>
<td>linear prediction for selection equation</td>
</tr>
<tr>
<td>stdpsel</td>
<td>standard error of the linear prediction for selection equation</td>
</tr>
</tbody>
</table>

\(\Phi(\cdot)\) is the standard normal distribution function, and \(\Phi_2(\cdot)\) is the bivariate normal distribution function.

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

Options for predict

pmargin, the default, calculates the univariate (marginal) predicted probability of success \(\Pr(y_j^{\text{probit}} = 1)\).

p11 calculates the bivariate predicted probability \(\Pr(y_j^{\text{probit}} = 1, y_j^{\text{select}} = 1)\).

p10 calculates the bivariate predicted probability \(\Pr(y_j^{\text{probit}} = 1, y_j^{\text{select}} = 0)\).

p01 calculates the bivariate predicted probability \(\Pr(y_j^{\text{probit}} = 0, y_j^{\text{select}} = 1)\).
p00 calculates the bivariate predicted probability \(\Pr(y_j^{\text{probit}} = 0, y_j^{\text{select}} = 0) \).

psel calculates the univariate (marginal) predicted probability of selection \(\Pr(y_j^{\text{select}} = 1) \).

pcond calculates the conditional (on selection) predicted probability of success
\(\Pr(y_j^{\text{probit}} = 1, y_j^{\text{select}} = 1) / \Pr(y_j^{\text{select}} = 1) \).

xb calculates the probit linear prediction \(x_j \beta \).

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value.

stdpsel calculates the linear prediction for the selection equation.

nooffset is relevant only if you specified offset(varname) for heckprobit. It modifies the
calculations made by predict so that they ignore the offset variable; the linear prediction is
treated as \(x_j \beta \) rather than as \(x_j \beta + \text{offset} \).

scores calculates equation-level score variables.

- The first new variable will contain \(\partial \ln L / \partial (x_j \beta) \).
- The second new variable will contain \(\partial \ln L / \partial (z_j \gamma) \).
- The third new variable will contain \(\partial \ln L / \partial (\text{atanh} \, \rho) \).
margins

Description for margins

`margins` estimates margins of response for probabilities and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

```
margins [ `marginlist` ] [ , `options` ]
margins [ `marginlist` ], `predict(statistic ...)` [ `predict(statistic ...)` ... ] [ `options` ]
```

<table>
<thead>
<tr>
<th>statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pmargin</code></td>
<td>$\Phi(x_j b)$, success probability; the default</td>
</tr>
<tr>
<td><code>p11</code></td>
<td>$\Phi_2(x_j b, z_j g, \rho)$, predicted probability $\Pr(y_j^{\text{probit}} = 1, y_j^{\text{select}} = 1)$</td>
</tr>
<tr>
<td><code>p10</code></td>
<td>$\Phi_2(x_j b, -z_j g, -\rho)$, predicted probability $\Pr(y_j^{\text{probit}} = 1, y_j^{\text{select}} = 0)$</td>
</tr>
<tr>
<td><code>p01</code></td>
<td>$\Phi_2(-x_j b, z_j g, -\rho)$, predicted probability $\Pr(y_j^{\text{probit}} = 0, y_j^{\text{select}} = 1)$</td>
</tr>
<tr>
<td><code>p00</code></td>
<td>$\Phi_2(-x_j b, -z_j g, \rho)$, predicted probability $\Pr(y_j^{\text{probit}} = 0, y_j^{\text{select}} = 0)$</td>
</tr>
<tr>
<td><code>pSEL</code></td>
<td>$\Phi(z_j g)$, selection probability</td>
</tr>
<tr>
<td><code>pcond</code></td>
<td>$\Phi_2(x_j b, z_j g, \rho)/\Phi(z_j g)$, probability of success conditional on selection</td>
</tr>
<tr>
<td><code>xb</code></td>
<td>linear prediction</td>
</tr>
<tr>
<td><code>xbSEL</code></td>
<td>linear prediction for selection equation</td>
</tr>
<tr>
<td><code>stdp</code></td>
<td>not allowed with <code>margins</code></td>
</tr>
<tr>
<td><code>stdpSEL</code></td>
<td>not allowed with <code>margins</code></td>
</tr>
</tbody>
</table>

Statistics not allowed with `margins` are functions of stochastic quantities other than $e(b)$.

For the full syntax, see [R] `margins`.
Remarks and examples

Example 1

It is instructive to compare the marginal predicted probabilities with the predicted probabilities that we would obtain by ignoring the selection mechanism. To compare the two approaches, we will synthesize data so that we know the “true” predicted probabilities.

First, we need to generate correlated error terms, which we can do using a standard Cholesky decomposition approach. For our example, we will clear any data from memory and then generate errors that have a correlation of 0.5 by using the following commands. We set the seed so that interested readers can type in these same commands and obtain the same results.

```
. set seed 12309
. set obs 5000
    number of observations (N) was 0, now 5,000
. generate c1 = rnormal()
. generate c2 = rnormal()
. matrix P = (1, .5 \ .5, 1)
. matrix A = cholesky(P)
. local fac1 = A[2,1]
. local fac2 = A[2,2]
. generate u1 = c1
. generate u2 = 'fac1'*c1 + 'fac2'*c2
```

We can check that the errors have the correct correlation by using the `correlate` command. We will also normalize the errors so that they have a standard deviation of one, so we can generate a bivariate probit model with known coefficients. We do that with the following commands:

```
. correlate u1 u2
(obs=5,000)
    u1   u2
----    ----
  u1  1.0000
  u2  0.5012  1.0000

. summarize u1
(output omitted)
. replace u1 = u1/r(sd)
(5,000 real changes made)

. summarize u2
(output omitted)
. replace u2 = u2/r(sd)
(5,000 real changes made)
. drop c1 c2
. generate x1 = runiform()-0.5
. generate x2 = runiform()+1/3
. generate y1s = 0.5 + 4*x1 + u1
. generate y2s = 3 - 3*x2 + .5*x1 + u2
. generate y1 = (y1s>0)
. generate y2 = (y2s>0)
```

We have now created two dependent variables, y1 and y2, which are defined by our specified coefficients. We also included error terms for each equation, and the error terms are correlated. We run `heckprobit` to verify that the data have been correctly generated according to the model.
\[
y_1 = 0.5 + 4x_1 + u_1 \\
y_2 = 3 + 0.5x_1 - 3x_2 + u_2
\]

where we assume that \(y_1\) is observed only if \(y_2 = 1\).

```
. heckprobit y1 x1, sel(y2 = x1 x2) nolog
Probit model with sample selection

Number of obs = 5,000
Selected = 3,182
Nonselected = 1,818
Wald chi2(1) = 947.76
Log likelihood = -3612.401 Prob > chi2 = 0.0000

Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

y1    
   x1   4.015564    0.130436   30.79   0.000    3.759914    4.271214
_cons   0.4795158    0.0471276   10.17   0.000    0.3871473    0.5718842

y2    
   x1   0.5361114    0.0711951    7.53   0.000    0.3965715    0.6756513
   x2  -3.017537    0.0817541  -36.91   0.000   -3.177772   -2.857302
_cons   2.990145    0.0765942   39.04   0.000    2.840024    3.140267

/athrho   0.5339516    0.0854577    6.25   0.000    0.3664575    0.7014457
rho   0.4883959    0.0650735    7.53   0.000    0.3508892    0.6052846

LR test of indep. eqns. (rho = 0):    chi2(1) =  41.36 Prob > chi2 = 0.0000
```

Now that we have verified that we have generated data according to a known model, we can obtain and then compare predicted probabilities from the probit model with sample selection and a (usual) probit model.

```
. predict pmarg  
   (option pmargin assumed; Pr(y1=1))
. probit y1 x1 if y2==1 
   (output omitted)
. predict phat  
   (option pr assumed; Pr(y1))

Using the (marginal) predicted probabilities from the probit model with sample selection (pmarg) and the predicted probabilities from the (usual) probit model (phat), we can also generate the “true” predicted probabilities from the synthesized \(y_1\)s variable and then compare the predicted probabilities:

```
. generate ptrue = normal(y1s)
. summarize pmarg ptrue phat
```

Here we see that ignoring the selection mechanism (comparing the phat variable with the true ptrue variable) results in predicted probabilities that are much higher than the true values. Looking at the marginal predicted probabilities from the model with sample selection, however, results in more accurate predictions.
Also see

[R] heckprobit — Probit model with sample selection

[U] 20 Estimation and postestimation commands