heckprobit postestimation — Postestimation tools for heckprobit

Postestimation commands predict margins Remarks and examples Also see

Postestimation commands

The following postestimation commands are available after heckprobit:

Command	Description
contrast	contrasts and ANOVA-style joint tests of parameters
estat ic	Akaike's, consistent Akaike's, corrected Akaike's, and Schwarz's Bayesian infor- mation criteria (AIC, CAIC, AICc, and BIC, respectively)
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE)
estat (svy)	postestimation statistics for survey data
estimates	cataloging estimation results
etable	table of estimation results
* hausman	Hausman's specification test
lincom	point estimates, standard errors, testing, and inference for linear combinations of parameters
* lrtest	likelihood-ratio test
margins	marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of parameters
predict	probabilities, linear predictions and their SEs, etc.
predictnl	point estimates, standard errors, testing, and inference for generalized predictions
pwcompare	pairwise comparisons of parameters
suest	seemingly unrelated estimation
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

*hausman and lrtest are not appropriate with svy estimation results.

predict

Description for predict

predict creates a new variable containing predictions such as probabilities, linear predictions, and standard errors.

Menu for predict

Statistics > Postestimation

Syntax for predict

```
predict [type] newvar [if] [in] [, statistic nooffset]
```

```
predict [type] stub* [if] [in], scores
```

statistic	Description
Main	
pmargin	$\Phi(\mathbf{x}_{j}\mathbf{b})$, success probability; the default
p11	$\Phi_2(\mathbf{x}_j \mathbf{b}, \mathbf{z}_j \mathbf{g}, \rho)$, predicted probability $\Pr(y_j^{\text{probit}} = 1, y_j^{\text{select}} = 1)$
p10	$\Phi_2(\mathbf{x}_i \mathbf{b}, -\mathbf{z}_i \mathbf{g}, -\rho)$, predicted probability $\Pr(y_i^{\text{probit}} = 1, y_i^{\text{select}} = 0)$
p01	$\Phi_2(-\mathbf{x}_j\mathbf{b}, \mathbf{z}_j\mathbf{g}, -\rho)$, predicted probability $\Pr(y_i^{\text{probit}} = 0, y_i^{\text{select}} = 1)$
p00	$\Phi_2(-\mathbf{x}_i\mathbf{b},-\mathbf{z}_i\mathbf{g},\rho)$, predicted probability $\Pr(y_i^{\text{probit}}=0,y_i^{\text{select}}=0)$
psel	$\Phi(\mathbf{z}_i \mathbf{g})$, selection probability
pcond	$\Phi_2(\mathbf{x}_i \mathbf{b}, \mathbf{z}_i \mathbf{g}, \rho) / \Phi(\mathbf{z}_i \mathbf{g})$, probability of success conditional on selection
xb	linear prediction
stdp	standard error of the linear prediction
<u>xbs</u> el	linear prediction for selection equation
stdpsel	standard error of the linear prediction for selection equation

 $\Phi(\cdot)$ is the standard normal distribution function, and $\Phi_2(\cdot)$ is the bivariate normal distribution function.

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

Options for predict

Main

- pmargin, the default, calculates the univariate (marginal) predicted probability of success $\Pr(y_i^{\text{probit}} = 1)$.
- p11 calculates the bivariate predicted probability $Pr(y_i^{probit} = 1, y_i^{select} = 1)$.
- p10 calculates the bivariate predicted probability $Pr(y_j^{\text{probit}} = 1, y_j^{\text{select}} = 0)$.
- p01 calculates the bivariate predicted probability $\Pr(y_i^{\text{probit}} = 0, y_i^{\text{select}} = 1)$.
- p00 calculates the bivariate predicted probability $Pr(y_i^{\text{probit}} = 0, y_i^{\text{select}} = 0)$.
- psel calculates the univariate (marginal) predicted probability of selection $Pr(y_i^{select} = 1)$.

pcond calculates the conditional (on selection) predicted probability of success

 $\Pr(y_j^{\text{probit}} = 1, y_j^{\text{select}} = 1) / \Pr(y_j^{\text{select}} = 1).$

xb calculates the probit linear prediction $\mathbf{x}_i \mathbf{b}$.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of the predicted expected value or mean for the observation's covariate pattern. The standard error of the prediction is also referred to as the standard error of the fitted value.

xbsel calculates the linear prediction for the selection equation.

stdpsel calculates the standard error of the linear prediction for the selection equation.

scores calculates equation-level score variables.

The first new variable will contain $\partial \ln L / \partial (\mathbf{x}_i \boldsymbol{\beta})$.

The second new variable will contain $\partial \ln L / \partial (\mathbf{z}_i \boldsymbol{\gamma})$.

The third new variable will contain $\partial \ln L / \partial (\operatorname{atanh} \rho)$.

nooffset is relevant only if you specified offset(*varname*) for heckprobit. It modifies the calculations made by predict so that they ignore the offset variable; the linear prediction is treated as $\mathbf{x}_j \mathbf{b}$ rather than as $\mathbf{x}_j \mathbf{b}$ + offset_j.

margins

Description for margins

margins estimates margins of response for probabilities and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

```
margins [marginlist] [, options]
margins [marginlist], predict(statistic ...) [predict(statistic ...) [ options ]
```

statistic	Description
pmargin	$\Phi(\mathbf{x}_{i}\mathbf{b})$, success probability; the default
p11	$\Phi_2(\mathbf{x}_j \mathbf{b}, \mathbf{z}_j \mathbf{g}, \rho)$, predicted probability $\Pr(y_j^{\text{probit}} = 1, y_j^{\text{select}} = 1)$
p10	$\Phi_2(\mathbf{x}_j \mathbf{b}, -\mathbf{z}_j \mathbf{g}, -\rho)$, predicted probability $\Pr(y_j^{\text{probit}} = 1, y_j^{\text{select}} = 0)$
p01	$\Phi_2(-\mathbf{x}_j\mathbf{b}, \mathbf{z}_j\mathbf{g}, -\rho)$, predicted probability $\Pr(y_j^{\text{probit}} = 0, y_j^{\text{select}} = 1)$
p00	$\Phi_2(-\mathbf{x}_i\mathbf{b},-\mathbf{z}_i\mathbf{g},\rho)$, predicted probability $\Pr(y_i^{\text{probit}}=0,y_i^{\text{select}}=0)$
psel	$\Phi(\mathbf{z}_{i}\mathbf{g})$, selection probability
pcond	$\Phi_2(\mathbf{x}_j \mathbf{b}, \mathbf{z}_j \mathbf{g}, \rho) / \Phi(\mathbf{z}_j \mathbf{g})$, probability of success conditional on selection
xb	linear prediction
<u>xbs</u> el	linear prediction for selection equation
stdp	not allowed with margins
stdpsel	not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

Example 1

It is instructive to compare the marginal predicted probabilities with the predicted probabilities that we would obtain by ignoring the selection mechanism. To compare the two approaches, we will synthesize data so that we know the "true" predicted probabilities.

First, we need to generate correlated error terms, which we can do using a standard Cholesky decomposition approach. For our example, we will clear any data from memory and then generate errors that have a correlation of 0.5 by using the following commands. We set the seed so that interested readers can type in these same commands and obtain the same results.

```
. set seed 12309
. set obs 5000
Number of observations (_N) was 0, now 5,000.
. generate c1 = rnormal()
. generate c2 = rnormal()
. matrix P = (1,.5\.5,1)
. matrix A = cholesky(P)
. local fac1 = A[2,1]
. local fac2 = A[2,2]
. generate u1 = c1
. generate u2 = 'fac1'*c1 + 'fac2'*c2
```

We can check that the errors have the correct correlation by using the correlate command. We will also normalize the errors so that they have a standard deviation of one, so we can generate a bivariate probit model with known coefficients. We do that with the following commands:

. correlate u1 (obs=5,000)	u2			
	u1	u2		
u1 u2	1.0000 0.5012	1.0000		
. summarize u1 (output omitted	-			
. replace u1 = (5,000 real ch)		
. summarize u2 (output omitted	-			
. replace u2 = (5,000 real ch)		
. drop c1 c2				
. generate x1	= runiform(()5		
. generate x2 = runiform()+1/3				
. generate y1s	s = 0.5 + 4*	*x1 + u1		
. generate y2s	$s = 3 - 3 + x^2$	2 + .5*x1 + u2		
. generate y1	= (y1s>0)			
. generate y2	= (y2s>0)			

We have now created two dependent variables, y1 and y2, which are defined by our specified coefficients. We also included error terms for each equation, and the error terms are correlated. We run heckprobit to verify that the data have been correctly generated according to the model

```
\begin{array}{l} y_1 = 0.5 + 4 x_1 + u_1 \\ y_2 = 3 + 0.5 x_1 - 3 x_2 + u_2 \end{array}
```

where we assume that y_1 is observed only if $y_2 = 1$.

. heckprobit y1 x1, sel(y2 = x1 x2) nolog						
Probit model with sample selection Log likelihood = -3612.401				S	of obs = delected = donselected =	5,000 3,182 1,818
				Wald ch Prob >		947.76 0.0000
	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
y1						
x1	4.015564	.130436	30.79	0.000	3.759914	4.271214
_cons	.4795158	.0471276	10.17	0.000	.3871473	.5718842
у2						
x1	.5361114	.0711951	7.53	0.000	.3965715	.6756513
x2	-3.017537	.0817541	-36.91	0.000	-3.177772	-2.857302
_cons	2.990145	.0765942	39.04	0.000	2.840024	3.140267
/athrho	.5339516	.0854577	6.25	0.000	.3664575	.7014457
rho	. 4883959	.0650735			.3508892	.6052846
LR test of in	dep. eqns. (rh	10 = 0): chi	2(1) = 4	1.36	Prob > chi	2 = 0.0000

Now that we have verified that we have generated data according to a known model, we can obtain and then compare predicted probabilities from the probit model with sample selection and a (usual) probit model.

```
. predict pmarg
(option pmargin assumed; Pr(y1=1))
. probit y1 x1 if y2==1
  (output omitted)
. predict phat
(option pr assumed; Pr(y1))
```

Using the (marginal) predicted probabilities from the probit model with sample selection (pmarg) and the predicted probabilities from the (usual) probit model (phat), we can also generate the "true" predicted probabilities from the synthesized y1s variable and then compare the predicted probabilities:

```
. generate ptrue = normal(y1s)
```

•	summarize pr	narg ptrue phat	;			
	Variable	Obs	Mean	Std. dev.	Min	Max
	pmarg ptrue phat	5,000 5,000 5,000	.6089004 .5967872 .6588519	.3249993 .3534232 .3113716	.0632337 2.78e-07 .0910951	.99354 1 .997021

Here we see that ignoring the selection mechanism (comparing the phat variable with the true ptrue variable) results in predicted probabilities that are much higher than the true values. Looking at the marginal predicted probabilities from the model with sample selection, however, results in more accurate predictions.

Also see

[R] heckprobit — Probit model with sample selection

[U] 20 Estimation and postestimation commands

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

4

For suggested citations, see the FAQ on citing Stata documentation.