Postestimation commands

The following postestimation commands are available after `heckman`:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>contrast</code></td>
<td>contrasts and ANOVA-style joint tests of estimates</td>
</tr>
<tr>
<td><code>* estat ic</code></td>
<td>Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)</td>
</tr>
<tr>
<td><code>estat summarize</code></td>
<td>summary statistics for the estimation sample</td>
</tr>
<tr>
<td><code>estat vce</code></td>
<td>variance–covariance matrix of the estimators (VCE)</td>
</tr>
<tr>
<td><code>estat (svy)</code></td>
<td>postestimation statistics for survey data</td>
</tr>
<tr>
<td><code>estimates</code></td>
<td>cataloging estimation results</td>
</tr>
<tr>
<td><code>† hausman</code></td>
<td>Hausman’s specification test</td>
</tr>
<tr>
<td><code>lincom</code></td>
<td>point estimates, standard errors, testing, and inference for linear</td>
</tr>
<tr>
<td></td>
<td>combinations of coefficients</td>
</tr>
<tr>
<td><code>† lrtest</code></td>
<td>likelihood-ratio test; not available with two-step estimator</td>
</tr>
<tr>
<td><code>margins</code></td>
<td>marginal means, predictive margins, marginal effects, and average</td>
</tr>
<tr>
<td></td>
<td>marginal effects</td>
</tr>
<tr>
<td><code>marginsplot</code></td>
<td>graph the results from margins (profile plots, interaction plots, etc.)</td>
</tr>
<tr>
<td><code>nlcom</code></td>
<td>point estimates, standard errors, testing, and inference for nonlinear</td>
</tr>
<tr>
<td></td>
<td>combinations of coefficients</td>
</tr>
<tr>
<td><code>predict</code></td>
<td>predictions, residuals, influence statistics, and other diagnostic</td>
</tr>
<tr>
<td></td>
<td>measures</td>
</tr>
<tr>
<td><code>predictnl</code></td>
<td>point estimates, standard errors, testing, and inference for generalized</td>
</tr>
<tr>
<td></td>
<td>predictions</td>
</tr>
<tr>
<td><code>pwcompare</code></td>
<td>pairwise comparisons of estimates</td>
</tr>
<tr>
<td><code>* suest</code></td>
<td>seemingly unrelated estimation</td>
</tr>
<tr>
<td><code>test</code></td>
<td>Wald tests of simple and composite linear hypotheses</td>
</tr>
<tr>
<td><code>testnl</code></td>
<td>Wald tests of nonlinear hypotheses</td>
</tr>
</tbody>
</table>

* `estat ic` and `suest` are not appropriate after `heckman, twostep`.
† `hausman` and `lrtest` are not appropriate with `svy` estimation results.
predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, standard errors, probabilities, expected values, and nonselection hazards.

Menu for predict

Statistics > Postestimation

Syntax for predict

After ML or twostep

predict [type] newvar [if] [in] [, statistic nooffset]

After ML

predict [type] { stub* | newvar_reg newvarSel newvar_athrho newvar_lnsigma } [if] [in] , scores

statistic Description
Main
xb linear prediction; the default
stdp standard error of the prediction
stdf standard error of the forecast
xbsel linear prediction for selection equation
stdpsel standard error of the linear prediction for selection equation
pr(a,b) \(\Pr(y_j \mid a < y_j < b) \)
e(a,b) \(E(y_j \mid a < y_j < b) \)
ystar(a,b) \(E(y_j^*), y_j^* = \max\{a, \min(y_j, b)\} \)
ycond \(E(y_j \mid y_j \text{ observed}) \)
yexpected \(E(y_j^*), y_j \text{ taken to be } 0 \text{ where unobserved} \)
nshazard or mills nonselection hazard (also called the inverse of Mills’s ratio)
pSEL \(\Pr(y_j \text{ observed}) \)

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

stdf is not allowed with svy estimation results.

where \(a \) and \(b \) may be numbers or variables; \(a \) missing \((a \geq .) \) means \(-\infty\), and \(b \) missing \((b \geq .) \) means \(+\infty\); see [U] 12.2.1 Missing values.
Options for predict

xb, the default, calculates the linear prediction x_jb.

$stdp$ calculates the standard error of the prediction, which can be thought of as the standard error of the predicted expected value or mean for the observation’s covariate pattern. The standard error of the prediction is also referred to as the standard error of the fitted value.

$stdf$ calculates the standard error of the forecast, which is the standard error of the point prediction for 1 observation. It is commonly referred to as the standard error of the future or forecast value. By construction, the standard errors produced by $stdf$ are always larger than those produced by $stdp$; see Methods and formulas in [R] regress postestimation.

$xbsel$ calculates the linear prediction for the selection equation.

$stdpsel$ calculates the standard error of the linear prediction for the selection equation.

$pr(a,b)$ calculates $Pr(a < x_jb + u_1 < b)$, the probability that $y_j|x_j$ would be observed in the interval (a,b).

a and b may be specified as numbers or variable names; lb and ub are variable names;

$pr(20,30)$ calculates $Pr(20 < x_jb + u_1 < 30)$; $pr(lb,ub)$ calculates $Pr(lb < x_jb + u_1 < ub)$; and $pr(20,ub)$ calculates $Pr(20 < x_jb + u_1 < ub)$.

a missing ($a \geq$) means $-\infty$; $pr(.,30)$ calculates $Pr(-\infty < x_jb + u_1 < 30)$; $pr(lb,.)$ calculates $Pr(-\infty < x_jb + u_1 < +\infty)$ in observations for which $lb \geq$.

and calculates $Pr(lb < x_jb + u_1 < 30)$ elsewhere.

b missing ($b \geq$) means $+\infty$; $pr(20,.)$ calculates $Pr(+\infty > x_jb + u_1 > 20)$; $pr(.,ub)$ calculates $Pr(+\infty > x_jb + u_1 > ub)$ in observations for which $ub \geq$.

and calculates $Pr(20 < x_jb + u_1 < ub)$ elsewhere.

$e(a,b)$ calculates $E(x_jb + u_1 | a < x_jb + u_1 < b)$, the expected value of $y_j|x_j$ conditional on $y_j|x_j$ being in the interval (a,b), meaning that $y_j|x_j$ is truncated.

a and b are specified as they are for $pr()$.

$ystar(a,b)$ calculates $E(y_j^* | x_jb + u_1 < b)$, where $y_j^* = a$ if $x_jb + u_1 \leq a$, $y_j^* = b$ if $x_jb + u_1 \geq b$, and $y_j^* = x_jb + u_j$ otherwise, meaning that y_j^* is not selected. a and b are specified as they are for $pr()$.

$ycond$ calculates the expected value of the dependent variable conditional on the dependent variable being observed, that is, selected; $E(y_j | y_j$ observed).

$yexpected$ calculates the expected value of the dependent variable (y_j^*), where that value is taken to be 0 when it is expected to be unobserved; $y_j^* = Pr(y_j$ observed)$E(y_j | y_j$ observed).

The assumption of 0 is valid for many cases where nonselection implies nonparticipation (for example, unobserved wage levels, insurance claims from those who are uninsured) but may be inappropriate for some problems (for example, unobserved disease incidence).

$nshazard$ and $mills$ are synonyms; both calculate the nonselection hazard—what Heckman (1979) referred to as the inverse of the Mills ratio—from the selection equation.

$psel$ calculates the probability of selection (or being observed):

$Pr(y_j$ observed) = $Pr(z_j\gamma + u_{2j} > 0)$.

$nooffset$ is relevant when you specify $offset(varname)$ for heckman. It modifies the calculations made by $predict$ so that they ignore the offset variable; the linear prediction is treated as x_jb rather than as $x_jb + offset_j$.
scores, not available with twostep, calculates equation-level score variables.

The first new variable will contain $\partial \ln L / \partial (x_j \beta)$.
The second new variable will contain $\partial \ln L / \partial (z_j \gamma)$.
The third new variable will contain $\partial \ln L / \partial (\text{atanh} \ \rho)$.
The fourth new variable will contain $\partial \ln L / \partial (\ln \sigma)$.

margins

Description for margins

margins estimates margins of response for linear predictions, probabilities, expected values, and nonselection hazards.

Menu for margins

Statistics > Postestimation

Syntax for margins

```
margins [ marginlist ] [ , options ]
margins [ marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]
```

<table>
<thead>
<tr>
<th>statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xb</td>
<td>linear prediction; the default</td>
</tr>
<tr>
<td>xbsel</td>
<td>linear prediction for selection equation</td>
</tr>
<tr>
<td>pr(a,b)</td>
<td>$\Pr(y_j \mid a < y_j < b)$</td>
</tr>
<tr>
<td>e(a,b)</td>
<td>$E(y_j \mid a < y_j < b)$</td>
</tr>
<tr>
<td>ystar(a,b)</td>
<td>$E(y_j^), \ y_j^ = \max{a, \min(y_j, b)}$</td>
</tr>
<tr>
<td>*ycond</td>
<td>$E(y_j \mid y_j \text{ observed})$</td>
</tr>
<tr>
<td>*yexpected</td>
<td>$E(y_j^*), \ y_j$ taken to be 0 where unobserved</td>
</tr>
<tr>
<td>nshazard</td>
<td>nonselection hazard (also called the inverse of Mills’s ratio)</td>
</tr>
<tr>
<td>mills psel</td>
<td>$\Pr(y_j \mid y_j \text{ observed})$</td>
</tr>
<tr>
<td>stdp</td>
<td>not allowed with margins</td>
</tr>
<tr>
<td>stdf</td>
<td>not allowed with margins</td>
</tr>
<tr>
<td>stdpsel</td>
<td>not allowed with margins</td>
</tr>
</tbody>
</table>

*_*ycond and yexpected* are not allowed with *margins* after *heckman, twostep*.

Statistics not allowed with *margins* are functions of stochastic quantities other than $e(b)$.

For the full syntax, see [R] *margins*.
Remarks and examples

Example 1

The default statistic produced by `predict` after `heckman` is the expected value of the dependent variable from the underlying distribution of the regression model. In the wage model of `[R] heckman`, this is the expected wage rate among all women, regardless of whether they were observed to participate in the labor force:

```
use https://www.stata-press.com/data/r16/womenwk
. heckman wage educ age, select(married children educ age) vce(cluster county)
(output omitted)
. predict heckwage
(option xb assumed; fitted values)
```

It is instructive to compare these predicted wage values from the Heckman model with an ordinary regression model—a model without the selection adjustment:

```
. regress wage educ age
Source         SS        df       MS          Number of obs = 1,343
Model            13524.0337   2 6762.01687      F(2, 1340) = 227.49
Residual        39830.8609 1,340  29.7245231     Prob > F = 0.0000
Total          53354.8946 1,342 39.7577456     R-squared = 0.2535
Adj R-squared = 0.2524

wage         Coef.     Std. Err.     t     P>|t|     [95% Conf. Interval]
education    .8965829   .0498061   18.00   0.000      .7988765    .9942893
age          .1465739   .0187135    7.83   0.000       .109863    .1832848
_cons        6.084875    .8896182    6.84   0.000      4.339679    7.830071
```

```
. predict regwage
(option xb assumed; fitted values)
. summarize heckwage regwage
Variable        Obs  Mean    Std. Dev.     Min     Max
 heckwage      2,000 21.15532    3.83965 14.6479  32.85949
 regwage       2,000 23.12291    3.24191 17.98218 32.66439
```

Because this dataset was concocted, we know the true coefficients of the wage regression equation to be 1, 0.2, and 1, respectively. We can compute the true mean wage for our sample.

```
. generate truewage = 1 + .2*age + 1*educ
. summarize truewage
Variable        Obs  Mean    Std. Dev.     Min     Max
 truewage      2,000 21.3256    3.797904   15   32.8
```

Whereas the mean of the predictions from `heckman` is within 18 cents of the true mean wage, ordinary regression yields predictions that are on average about $1.80 per hour too high because of the selection effect. The regression predictions also show somewhat less variation than the true wages.

The coefficients from `heckman` are so close to the true values that they are not worth testing. Conversely, the regression equation is significantly off but seems to give the right sense. Would we be led far astray if we relied on the OLS coefficients? The effect of age is off by more than 5 cents per year of age, and the coefficient on education level is off by about 10%. We can test the OLS coefficient on education level against the true value by using `test`.

```
```
The OLS coefficient on education is substantially lower than the true parameter; moreover, the difference from the true parameter is also statistically significant beyond the 5% level. We can perform a similar test for the OLS age coefficient:

```
. test age = .2
( 1) age = .2
F( 1, 1340) = 8.15
Prob > F = 0.0044
```

We find even stronger evidence that the OLS regression results are biased away from the true parameters.

Example 2

Several other interesting aspects of the Heckman model can be explored with `predict`. Continuing with our wage model, we can obtain the expected wages for women conditional on participating in the labor force with the `ycond` option. Let’s get these predictions and compare them with actual wages for women participating in the labor force.

```
. use https://www.stata-press.com/data/r16/womenwk, clear
. heckman wage educ age, select(married children educ age)
(output omitted)
. predict hcndwage, ycond
. summarize wage hcndwage if wage != .
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>wage</td>
<td>1343</td>
<td>23.6922</td>
<td>6.3054</td>
<td>5.8850</td>
<td>45.8098</td>
</tr>
<tr>
<td>hcndwage</td>
<td>1343</td>
<td>23.6824</td>
<td>3.3351</td>
<td>16.1834</td>
<td>33.7567</td>
</tr>
</tbody>
</table>

We see that the average predictions from `heckman` are close to the observed levels but do not have the same mean. These conditional wage predictions are available for all observations in the dataset but can be directly compared only with observed wages, where individuals are participating in the labor force.

What if we were interested in making predictions about mean wages for all women? Here the expected wage is 0 for those who are not expected to participate in the labor force, with expected participation determined by the selection equation. These values can be obtained with the `yexpected` option of `predict`. For comparison, a variable can be generated where the wage is set to 0 for nonparticipants.

```
. predict hexpwage, yexpected
. generate wage0 = wage
(657 missing values generated)
. replace wage0 = 0 if wage == .
(657 real changes made)
```
Again we note that the predictions from `heckman` are close to the observed mean hourly wage rate for all women. Why aren’t the predictions using `ycond` and `yexpected` equal to their observed sample equivalents? For the Heckman model, unlike linear regression, the sample moments implied by the optimal solution to the model likelihood do not require that these predictions match observed data. Properly accounting for the additional variation from the selection equation requires that the model use more information than just the sample moments of the observed wages.

Reference

Also see

[R] `heckman` — Heckman selection model

[U] 20 Estimation and postestimation commands