
gmm — Generalized method of moments estimation

Description Menu Syntax Options Remarks and examples
Stored results Methods and formulas References Also see

Description
gmm performs generalized method of moments (GMM) estimation. With the interactive version of the

command, you enter the residual equation for each moment condition directly into the dialog box or on

the command line by using substitutable expressions. The moment-evaluator program version gives you

greater flexibility in exchange for increased complexity; with this version, you write a program in an

ado-file that calculates the moments based on a vector of parameters passed to it.

gmm can fit both single- and multiple-equation models. It allows moment conditions of the form

𝐸{z𝑖𝑢𝑖(β)} = 0, where z𝑖 is a vector of instruments, and 𝑢𝑖(β) is an error term, as well as more general
moment conditions of the form 𝐸{h𝑖(z𝑖;β)} = 0. gmm works with cross-sectional, time-series, and

longitudinal (panel) data.

Menu
Statistics > Endogenous covariates > Generalized method of moments estimation
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Syntax
Interactive version

gmm ([reqname1:]rexp1) ([reqname2:]rexp2). . .[ if ] [ in ] [weight ] [ , options ]

Moment-evaluator program version

gmm moment prog [ if ] [ in ] [weight ] , { equations(namelist) | nequations(#) }

{ parameters(namelist) | nparameters(#) } [ options ] [ program options ]

reqname𝑗 is the 𝑗th residual equation name,
rexp𝑗 is the substitutable expression for the 𝑗th residual equation, and
moment prog is a moment-evaluator program.

options Description

Model

derivative([ reqname | # ]/name = dexp𝑗𝑘)
specify derivative of reqname (or #) with respect to parameter name;
can be specified more than once (interactive version only)

∗ twostep use two-step GMM estimator; the default
∗ onestep use one-step GMM estimator
∗ igmm use iterative GMM estimator

variables(varlist) specify variables in model

nocommonesample do not restrict estimation sample to be the same for all equations

Instruments

instruments([reqlist:]varlist[, noconstant])
specify instruments; can be specified more than once

xtinstruments([reqlist:]varlist, lags(#1/#2))
specify panel-style instruments; can be specified more than once

Weight matrix

wmatrix(wmtype[, independent])
specify weight matrix; wmtype may be robust, cluster clustvar,

hac hacspec, or unadjusted
center center moments in weight-matrix computation

winitial(iwtype[, independent])
specify initial weight matrix; iwtype may be unadjusted,
identity, xt xtspec, or the name of a Stata matrix

SE/Robust

vce(vcetype[, independent])
vcetype may be robust, cluster clustvar, bootstrap,
jackknife, hac hacspec, or unadjusted

quickderivatives use alternative method of computing numerical derivatives
for VCE

https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rgmm.pdf#rgmmSyntaxweight
https://www.stata.com/manuals/rgmm.pdf#rgmmSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rgmm.pdf#rgmmSyntaxweight
https://www.stata.com/manuals/rgmm.pdf#rgmmSyntaxoptions
https://www.stata.com/manuals/rgmm.pdf#rgmmSyntaxprogram_options
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rgmm.pdf#rgmmOptionshacspec
https://www.stata.com/manuals/rgmm.pdf#rgmmOptionsxtspec
https://www.stata.com/manuals/rgmm.pdf#rgmmOptionsvcetype
https://www.stata.com/manuals/rgmm.pdf#rgmmOptionshacspec
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Reporting

level(#) set confidence level; default is level(95)
title(string) display string as title above the table of parameter estimates

title2(string) display string as subtitle

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

from(initial values) specify initial values for parameters
‡ igmmiterate(#) specify maximum number of iterations for iterated GMM estimator
‡ igmmeps(#) specify # for iterated GMM parameter convergence criterion;

default is igmmeps(1e-6)
‡ igmmweps(#) specify # for iterated GMM weight-matrix convergence criterion;

default is igmmweps(1e-6)
optimization options control the optimization process; seldom used

coeflegend display legend instead of statistics

∗You can specify at most one of these options.
‡These options may be specified only when igmm is specified.

program options Description

Model

evaluator options additional options to be passed to the moment-evaluator program
∗ hasderivatives moment-evaluator program can calculate parameter-level derivatives
∗ haslfderivatives moment-evaluator program can calculate linear-form derivatives
† equations(namelist) specify residual equation names
† nequations(#) specify number of residual equations
‡ parameters(namelist) specify parameter names
‡ nparameters(#) specify number of parameters

∗You may not specify both hasderivatives and haslfderivatives.
†You must specify equations(namelist) or nequations(#); you may specify both.
‡You must specify parameters(namelist) or nparameters(#); you may specify both.

rexp𝑗 and dexp𝑗𝑘 may contain factor variables and time-series operators; see [U] 11.4.3 Factor variables and [U] 11.4.4 Time-

series varlists.

bayesboot, bootstrap, by, collect, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

rexp𝑗 and dexp𝑗𝑘 are substitutable expressions, that is, Stata expressions that also contain parameters

to be estimated. The parameters are enclosed in curly braces and must satisfy the naming requirements

for variables; {beta} is an example of a parameter. The notation {lcname:varlist} is allowed for linear
combinations of multiple covariates and their parameters. For example, {xb: mpg price turn cons}
defines a linear combination of the variables mpg, price, turn, and cons (the constant term). See

Substitutable expressions under Remarks and examples below.

https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/rgmm.pdf#rgmmOptionsdisplay_options
https://www.stata.com/manuals/rgmm.pdf#rgmmOptionsoptopts
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/rjackknife.pdf#rjackknife
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesSubstitutableexpressions
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Options

� � �
Model �

derivative([ reqname | # ]/name = dexp𝑗𝑘) specifies the derivative of residual equation reqname or #

with respect to parameter name. If reqname or # is not specified, gmm assumes that the derivative

applies to the first residual equation.

For a moment condition of the form 𝐸{z𝑗𝑖𝑢𝑗𝑖(β)} = 0, derivative(j/𝛽𝑘 = dexp𝑗𝑘) is to contain a
substitutable expression for 𝜕𝑢𝑗𝑖/𝜕𝛽𝑘. If you specified m as the reqname, then for a moment condition

of the form 𝐸{z𝑚𝑖𝑢𝑚𝑖(β)} = 0, you can specify derivative(m/𝛽𝑘 = dexp𝑚𝑘), where 𝑚 is the

index of m.

dexp𝑗𝑘 uses the same substitutable expression syntax as is used to specify residual equations. If you

declare a linear combination in a residual equation, you provide the derivative for the linear combina-

tion; gmm then applies the chain rule for you. See Specifying derivatives under Remarks and examples
below for examples.

If you do not specify the derivative() option, gmm calculates derivatives numerically. You must

either specify no derivatives or specify a derivative for each of the 𝑘 parameters that appears in each

of the 𝑗 residual equations unless the derivative is identically zero. You cannot specify some analytic
derivatives and have gmm compute the rest numerically.

twostep, onestep, and igmm specify which estimator is to be used. You can specify at most one of

these options. twostep is the default.

twostep requests the two-step GMM estimator. gmm obtains parameter estimates based on the initial

weight matrix, computes a new weight matrix based on those estimates, and then reestimates the

parameters based on that weight matrix.

onestep requests the one-step GMM estimator. The parameters are estimated based on an initial

weight matrix, and no updating of the weight matrix is performed except when calculating the appro-

priate variance–covariance (VCE) matrix.

igmm requests the iterativeGMM estimator. gmm obtains parameter estimates based on the initial weight
matrix, computes a new weight matrix based on those estimates, reestimates the parameters based

on that weight matrix, computes a new weight matrix, and so on, to convergence. Convergence is

declared when the relative change in the parameter vector is less than igmmeps(), the relative change
in the weight matrix is less than igmmweps(), or igmmiterate() iterations have been completed.

Hall (2005, sec. 2.4 and 3.6) mentions that there may be gains to finite-sample efficiency from using

the iterative estimator.

variables(varlist) specifies the variables in the model. gmm ignores observations for which any of

these variables has a missing value. If you do not specify variables(), then gmm assumes all the

observations are valid and issues an error message if any residual equations evaluate to missing for

any observations at the initial value of the parameter vector.

nocommonesample requests that gmm not restrict the estimation sample to be the same for all equations.
By default, gmm will restrict the estimation sample to observations that are available for all equations
in the model, mirroring the behavior of other multiple-equation estimators such as nlsur, sureg, or
reg3. For certain models, however, different equations can have different numbers of observations.
For these models, you should specify nocommonesample. See Dynamic panel-data models below for

one application of this option. You cannot specify weights if you specify nocommonesample.

https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesSpecifyingderivatives
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesDynamicpanel-datamodels
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� � �
Instruments �

instruments([reqlist:]varlist[, noconstant]) specifies a list of instrumental variables to be used.

If you specify a single residual equation, then you do not need to specify the equations to which

the instruments apply; you can omit the reqlist and simply specify instruments(varlist). By de-

fault, a constant term is included in varlist; to omit the constant term, specify instruments(varlist,
noconstant).

If your model has multiple moment conditions of the form

𝐸
⎧{
⎨{⎩

z1𝑖𝑢1𝑖(β)
· · ·

z𝑞𝑖𝑢𝑞𝑖(β)

⎫}
⎬}⎭

= 0

then you can specify multiple corresponding residual equations. Then, specify the reqname or an

reqlist to indicate the residual equations for which the list of variables is to be used as instruments if

you do not want that list applied to all the residual equations. For example, you might type

gmm (main:rexp1) (rexp2) (rexp3), instruments(z1 z2) ///
instruments(2: z3) instruments(main 3: z4)

Variables z1 and z2will be used as instruments for all three equations, z3will be used as an instrument
for the second equation, and z4 will be used as an instrument for the first and third equations. Notice
that we chose to supply a name for the first residual equation but not the second two, identifying each

by its equation number.

varlist may contain factor variables and time-series operators; see [U] 11.4.3 Factor variables and

[U] 11.4.4 Time-series varlists, respectively.

xtinstruments([reqlist:]varlist, lags(#1/#2)) is for use with panel-data models in which the set of
available instruments depends on the time period. As with instruments(), you can prefix the list of
variables with residual equation names or numbers to target instruments to specific equations. Unlike

with instruments(), a constant term is not included in varlist. You must xtset your data before

using this option; see [XT] xtset.

If you specify

gmm . . ., xtinstruments(x, lags(1/.)) . . .

then for panel 𝑖 and period 𝑡, gmm uses 𝑥𝑖,𝑡−1, 𝑥𝑖,𝑡−2, . . . , 𝑥𝑖1 as instruments. More generally, speci-

fying xtinstruments(x, lags(#1, #2)) uses 𝑥𝑖,𝑡−#1
, . . . , 𝑥𝑖,𝑡−#2

as instruments; setting #2 = .
requests all available lags. #1 and #2 must be zero or positive integers.

gmm automatically excludes observations for which no valid instruments are available. It does, how-
ever, include observations for which only a subset of the lags is available. For example, if you request

that lags one through three be used, then gmm will include the observations for the second and third

time periods even though fewer than three lags are available as instruments.

� � �
Weight matrix �

wmatrix(wmtype[ , independent ]) specifies the type of weight matrix to be used in conjunction with
the two-step and iterated GMM estimators.

wmatrix(robust), the default, requests a weight matrix that is appropriate when the errors are in-

dependent but not necessarily identically distributed.

wmatrix(cluster clustvar) requests a weight matrix that accounts for arbitrary correlation among
observations within clusters identified by clustvar.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/xtxtset.pdf#xtxtset
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wmatrix(hac hacspec) requests a heteroskedasticity- and autocorrelation-consistent (HAC) weight

matrix. The full syntax of hacspec is one of the following:

wmatrix(hac kernel [ # ]) requests a HAC weight matrix using the specified kernel (see below)

with optional # lags. The bandwidth of a kernel is equal to # + 1. If # is not specified, a kernel

with 𝑁 − 2 lags is used, where 𝑁 is the sample size.

wmatrix(hac kernel opt [ # ]) requests a HAC weight matrix using the specified kernel (see be-

low), and the lag order is selected using Newey and West’s (1994) optimal lag-selection algo-

rithm. # is an optional tuning parameter that affects the lag order selected; see the discussion

in Methods and formulas.

kernel may be one of the following:

bartlett or nwest requests the Bartlett (Newey–West) kernel.

parzen or gallant requests the Parzen (Gallant 1987) kernel.

quadraticspectral or andrews requests the quadratic spectral (Andrews 1991) kernel.

wmatrix(unadjusted) requests a weight matrix that is suitable when the errors are homoskedastic.
In some applications, the GMM estimator so constructed is known as the (nonlinear) two-stage

least-squares (2SLS) estimator.

independent creates a weight matrix that assumes moment conditions are independent. It is often

used to replicate other models that can be motivated outside the GMM framework, such as the

estimation of a system of equations by system-wide 2SLS. independent has no effect if only one
residual equation is specified.

wmatrix() has no effect if onestep is also specified.

center requests that the sample moments be centered (demeaned) when computing GMM weight matri-

ces. By default, centering is not done.

winitial(iwtype[ , independent ]) specifies theweightmatrix to use to obtain the first-step parameter
estimates.

winitial(unadjusted), the default, requests a weight matrix that assumes the moment conditions
are independent and identically distributed. This matrix is of the form (Z′Z)−1, whereZ represents

all the instruments specified in the instruments() option. To avoid a singular weight matrix, you
should specify at least 𝑞 − 1 moment conditions of the form 𝐸{zℎ𝑖𝑢ℎ𝑖(β)} = 0, where 𝑞 is the

number of moment conditions, or you should specify independent.

winitial(identity) requests that the identity matrix be used.

winitial(xt xtspec) is for use with dynamic panel-data models in which one of the residual equa-
tions is specified in first-differences form. xtspec is a string consisting of the letters “L” and “D”,

the length of which is equal to the number of residual equations in the model. You specify “L” for

a residual equation if that residual equation is written in levels, and you specify “D” for a residual

equation if it is written in first differences; xtspec is not case sensitive. When you specify this

option, you can specify at most one residual equation in levels and one residual equation in first

differences. See the examples listed in Dynamic panel-data models under Remarks and examples

below.

winitial(matname) requests that Stata matrixmatname be used. You cannot specify independent
if you specify winitial(matname).

https://www.stata.com/manuals/rgmm.pdf#rgmmMethodsandformulaswmatrixopt
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesDynamicpanel-datamodels
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independent creates a weight matrix that assumes moment conditions are independent. Elements of
the weight matrix corresponding to covariances between two moment conditions are set equal to

zero. independent has no effect if only one residual equation is specified.

� � �
SE/Robust �

vce(vcetype[ , independent ]) specifies the type of standard error reported, which includes types that
are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster
clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

vce(unadjusted) specifies that an unadjusted (nonrobust) VCE matrix be used; this, along with the
twostep option, results in the “optimal two-step GMM” estimates often discussed in textbooks.

The default vcetype is based on the wmtype specified in the wmatrix() option. If wmatrix() is

specified but vce() is not, then vcetype is set equal to wmtype. To override this behavior and obtain

an unadjusted (nonrobust) VCE matrix, specify vce(unadjusted).

The syntax for vcetypes other than bootstrap and jackknife is identical to those for wmatrix().

vce(bootstrap) or vce(jackknife) results in standard errors based on the bootstrap or jackknife,
respectively. See [R] vce option, [R] bootstrap, and [R] jackknife for more information on these

VCEs.

quickderivatives requests that an alternative method be used to compute the numerical derivatives

for the VCE. This option has no effect if you specify the derivatives(), hasderivatives, or
haslfderivatives option.

The VCE depends on a matrix of partial derivatives that gmm must compute numerically unless you

supply analytic derivatives. This Jacobian matrix will be especially large if your model has many

instruments, residual equations, or parameters.

By default, gmm computes each element of the Jacobian matrix individually, searching for an optimal
step size each time. Although this procedure results in accurate derivatives, it is computationally

taxing: gmm may have to evaluate the moments of your model five or more times for each element of
the Jacobian matrix.

When you specify the quickderivatives option, gmm computes all derivatives corresponding to a

parameter at once, using a fixed step size proportional to the parameter’s value. This method requires

just two evaluations of the model’s moments to compute an entire column of the Jacobian matrix and

therefore has the most impact when you specify many instruments or residual equations.

Most of the time, the two methods produce virtually identical results, but the quickderivatives
method may fail if a residual equation is highly nonlinear or if instruments differ by orders of magni-

tude. In the rare case where you specify quickderivatives and obtain suspiciously large or small

standard errors, try refitting your model without this option.

� � �
Reporting �

level(#); see [R] Estimation options.

title(string) specifies an optional title that will be displayed just above the table of parameter esti-

mates.

title2(string) specifies an optional subtitle that will be displayed between the title specified in

title() and the table of parameter estimates. If title2() is specified but title() is not, title2()
has the same effect as title().

https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/rgmm.pdf#rgmmOptionswmatrix()
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/rjackknife.pdf#rjackknife
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/u12.pdf#u12.4Strings
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display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

from(initial values) specifies the initial values to begin the estimation. You can specify a parameter

name, its initial value, another parameter name, its initial value, and so on, or you can specify a 1× 𝑘
matrix, where 𝑘 is the number of parameters in the model. For example, to initialize alpha to 1.23

and delta to 4.57, you would type

gmm ..., from(alpha 1.23 delta 4.57) ...

or equivalently

matrix define initval = (1.23, 4.57)
gmm ..., from(initval) ...

Initial values declared in the from() option override any that are declared within substitutable expres-
sions. If you specify a parameter that does not appear in your model, gmm exits with an error message.
If you specify a matrix, the values must be in the same order in which the parameters are declared in

your model.

igmmiterate(#), igmmeps(#), and igmmweps(#) control the iterative process for the iterative GMM

estimator. These options can be specified only if you also specify igmm.

igmmiterate(#) specifies the maximum number of iterations to perform with the iterative GMM

estimator. The default is the number set using set maxiter, which is 300 by default.

igmmeps(#) specifies the convergence criterion used for successive parameter estimates when the

iterative GMM estimator is used. The default is igmmeps(1e-6). Convergence is declared when
the relative difference between successive parameter estimates is less than igmmeps() and the

relative difference between successive estimates of the weight matrix is less than igmmweps().

igmmweps(#) specifies the convergence criterion used for successive estimates of the weight ma-

trix when the iterative GMM estimator is used. The default is igmmweps(1e-6). Convergence

is declared when the relative difference between successive parameter estimates is less than

igmmeps() and the relative difference between successive estimates of the weight matrix is less

than igmmweps().

optimization options: technique(), conv maxiter(), conv ptol(), conv vtol(),
conv nrtol(), tracelevel(). technique() specifies the optimization technique to use; gn (the

default), nr, dfp, and bfgs are allowed. conv maxiter() specifies the maximum number of iter-

ations; conv ptol(), conv vtol(), and conv nrtol() specify the convergence criteria for the

parameters, gradient, and scaled Hessian, respectively. tracelevel() allows you to obtain addi-

tional details during the iterative process. See [M-5] optimize( ).

https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/m-5optimize.pdf#m-5optimize()
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The following options pertain only to the moment-evaluator program version of gmm.

� � �
Model �

evaluator options refer to any options allowed by your moment prog.

hasderivatives and haslfderivatives indicate that you have written your moment-evaluator pro-

gram to compute derivatives. You may specify one or the other but not both. If you do not specify

either of these options, gmm computes the derivatives numerically.

hasderivatives indicates that your moment-evaluator program computes parameter-level deriva-

tives.

haslfderivatives indicates that your moment-evaluator program computes equation-level deriva-

tives and is useful only when you specify the parameters of your model using the {lcname:varlist}
syntax of the parameters() option.

See Details of moment-evaluator programs below for more information.

equations(namelist) specifies the names of the residual equations in the model. If you specify both

equations() and nequations(), the number of names in the former must match the number spec-
ified in the latter.

nequations(#) specifies the number of residual equations in the model. If you do not specify names

with the equations() option, gmm numbers the residual equations 1, 2, 3, . . . . If you specify both

equations() and nequations(), the number of names in the former must match the number spec-
ified in the latter.

parameters(namelist) specifies the names of the parameters in the model. The names of the parameters
must comply with the naming conventions of Stata’s variables; see [U] 11.3 Naming conventions.

Alternatively, you can use parameter equation notation to specify linear combinations of parame-

ters. Each linear combination is of the form {lcname:varlist}, where varlist is one or more variable

names. Specify the system variable cons in varlist to include a constant term. Distinguish between

{lcname:varlist}, in which lcname identifies the linear combination, and (reqname:rexp), in which
reqname identifies the residual equation. When you use linear-combination syntax, gmm prepends

each element of the parameter vector passed to your evaluator program with lcname: to generate

unique names.

If you specify both parameters() and nparameters(), the number of names in the former must

match the number specified in the latter.

nparameters(#) specifies the number of parameters in the model. If you do not specify names with

the parameters() option, gmm names them b1, b2, . . . , b#. If you specify both parameters() and
nparameters(), the number of names in the former must match the number specified in the latter.

The following option is available with gmm but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesdetailsofmoment
https://www.stata.com/manuals/u11.pdf#u11.3Namingconventions
https://www.stata.com/manuals/u13.pdf#u13.4Systemvariables(_variables)
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Substitutable expressions
The weight matrix and two-step estimation
Obtaining standard errors
Factor-variable coefficients in multiple residual functions
Parameter interpretation using margins
Exponential (Poisson) regression models
Specifying derivatives
Exponential regression models with panel data
Rational-expectations models
System estimators
Dynamic panel-data models
Details of moment-evaluator programs

Introduction
The GMM estimator is a workhorse of modern econometrics and is discussed in all the leading text-

books, including Cameron and Trivedi (2005, 2022), Davidson and MacKinnon (1993), Greene (2018,

500–534), Ruud (2000), Hayashi (2000), Wooldridge (2010), Hamilton (1994), and Baum (2006). An

excellent treatise on GMM with a focus on time-series applications is Hall (2005). The collection of

papers by Mátyás (1999) provides both theoretical and applied aspects of GMM. Here we give a brief

introduction to the methodology and emphasize how the various options of gmm are used.

The starting point for the GMM estimator is the analogy principle, which says we can estimate a

parameter by replacing a population moment condition with its sample analogue. For example, the mean

of an independent and identically distributed (i.i.d.) population is defined as the value 𝜇 such that the

first (central) population moment is zero; that is, 𝜇 solves 𝐸(𝑦 − 𝜇) = 0, where 𝑦 is a random draw

from the population. The analogy principle tells us that to obtain an estimate, ̂𝜇, of 𝜇, we replace the
population-expectations operator with its sample analogue (Manski 1988; Wooldridge 2010),

𝐸(𝑦 − 𝜇) = 0 ⟶ 1
𝑁

𝑁
∑
𝑖=1

(𝑦𝑖 − ̂𝜇) = 0 ⟶ ̂𝜇 = 1
𝑁

𝑁
∑
𝑖=1

𝑦𝑖

where 𝑁 denotes sample size, and 𝑦𝑖 represents the 𝑖th observation of 𝑦 in our dataset. The estimator

̂𝜇 is known as the method of moments (MM) estimator because we started with a population moment

condition and then applied the analogy principle to obtain an estimator that depends on the observed

data.

Ordinary least-squares (OLS) regression can also be viewed as an MM estimator. In the model

𝑦 = x′β + 𝑢

we assume that 𝑢 has mean zero conditional on x: 𝐸(𝑢|x) = 0. This conditional expectation implies the

unconditional expectation 𝐸(x𝑢) = 0 because, with the law of iterated expectations,

𝐸(x𝑢) = 𝐸x {𝐸(x𝑢|x)} = 𝐸x {x𝐸(𝑢|x)} = 0

(Using the law of iterated expectations to derive unconditional expectations based on conditional expec-

tations, perhaps motivated by subject theory, is extremely common in GMM estimation.) Continuing, we

see that

𝐸(x𝑢) = 𝐸 {x(𝑦 − x′β)} = 0
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Applying the analogy principle, we obtain

𝐸 {x(𝑦 − x′β)} ⟶ 1
𝑁

𝑁
∑
𝑖=1

x𝑖(𝑦𝑖 − x′
𝑖β) = 0

so that

β̂ = (∑
𝑖
x𝑖x

′
𝑖)

−1
∑

𝑖
x𝑖𝑦𝑖

which is just the more familiar formula β̂ = (X′X)−1
X′y written with summation notation.

In both of the previous examples, the number of parameters we were estimating equaled the number of

moment conditions. In the first example, we estimated one parameter, 𝜇, and had one moment condition
𝐸(𝑦 − 𝜇) = 0. In the second example, the parameter vector β had 𝑘 elements, as did the vector of

regressors x, yielding 𝑘 moment conditions. Ignoring peculiar cases, we see that a model of 𝑚 equations

in 𝑚 unknowns has a unique solution; and because the residual equations in these examples were linear,

we could solve for the parameters analytically. If the moment conditions had been nonlinear, we would

have had to use numerical techniques to solve for the parameters, but that is not a significant limitation

with modern computers.

What if we have more moment conditions than parameters? Say we have 𝑞 moment conditions and

𝑘 parameters. A model of 𝑞 > 𝑘 equations in 𝑘 unknowns does not have a unique solution. Any size-𝑘
subset of the moment conditions would yield a consistent parameter estimate, though the parameter

estimate would in general be different depending on which 𝑘 moment conditions we used.

For concreteness, let’s return to our regression model,

𝑦 = x′β + 𝑢

Now, however, we no longer wish to assume that 𝐸(x𝑢) = 0; we suspect that the error term 𝑢 affects one

or more elements of x. Thus, we can no longer use the OLS estimator. Suppose we have a vector z with

the properties that 𝐸(z𝑢) = 0, that the rank of 𝐸(z′z) equals 𝑞, and that the rank of 𝐸(z′x) = 𝑘. The
first assumption simply states that z is not correlated with the error term. The second assumption rules

out perfect collinearity among the elements of z. The third assumption, known as the rank condition in

econometrics, ensures that z is sufficiently correlated with x and that the estimator is feasible. If some

elements of x are not correlated with 𝑢, then they should also appear in z.
If 𝑞 < 𝑘, then the rank of 𝐸(z′x) < 𝑘, which violates the rank condition.
If 𝑞 = 𝑘, then we can use the simpler MM estimator we already discussed; we would obtain what

is sometimes called the simple instrumental-variables estimator β̂ = (∑𝑖 z𝑖x
′
𝑖)

−1
∑𝑖 z𝑖𝑦𝑖. The rank

condition ensures that ∑𝑖 z𝑖x
′
𝑖 is invertible, at least in the population.

If 𝑞 > 𝑘, the GMM estimator chooses the value, β̂, that minimizes a quadratic function of the moment
conditions. We could define

β̂ ≡ arg minβ { 1
𝑁

∑
𝑖
z𝑖𝑢𝑖(β)}

′
{ 1

𝑁
∑

𝑖
z𝑖𝑢𝑖(β)}

where for our linear regression example 𝑢𝑖(β) = 𝑦𝑖 − x′
𝑖β. This estimator tries to make the moment

conditions as close to zero as possible. This simple estimator, however, applies equal weight to each of

the moment conditions; and as we will see later, we can obtain more efficient estimators by choosing to

weight some moment conditions more highly than others.
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Consider the quadratic function

𝑄(β) = { 1
𝑁

∑
𝑖
z𝑖𝑢𝑖(β)}

′
W{ 1

𝑁
∑

𝑖
z𝑖𝑢𝑖(β)}

where W is a symmetric positive-definite matrix known as a weight matrix. Then we define the GMM

estimator as

β̂ ≡ arg minβ 𝑄(β) (1)

Continuing with our regression model example, if we choose

W = ( 1
𝑁

∑
𝑖
z𝑖z

′
𝑖)

−1

then we obtain

β̂ = {( 1
𝑁

∑
𝑖
x𝑖z

′
𝑖) ( 1

𝑁
∑

𝑖
z𝑖z

′
𝑖)

−1
( 1

𝑁
∑

𝑖
z𝑖x

′
𝑖)}

−1

×

( 1
𝑁

∑
𝑖
x𝑖z

′
𝑖) ( 1

𝑁
∑

𝑖
z𝑖z

′
𝑖)

−1
( 1

𝑁
∑

𝑖
z𝑖𝑦𝑖)

which is the well-known two-stage least-squares (2SLS) estimator. Our choice of weight matrix here was

based on the assumption that 𝑢 was homoskedastic. A feature of GMM estimation is that by selecting

different weight matrices, we can obtain estimators that can tolerate heteroskedasticity, clustering, auto-

correlation, and other features of 𝑢. See [R] ivregress for more information about the 2SLS and linear

GMM estimators.

Returning to the case where the model is “just identified”, meaning that 𝑞 = 𝑘, if we apply the GMM

estimator, we will obtain the same estimate, β̂, regardless of our choice ofW. Because 𝑞 = 𝑘, if a unique
solution exists, it will set all the sample moment conditions jointly to zero, so W has no impact on the

value of β that minimizes the objective function.

We will highlight other features of the GMM estimator and the gmm command as we proceed through
examples. First, though, we discuss how to specify moment conditions by using substitutable expres-

sions.

Substitutable expressions
To use the interactive version of gmm, you define the moment conditions by using substitutable expres-

sions. Your moment conditions are of the form 𝐸 {𝑧′
𝑖𝑢𝑖(β)} = 0, where 𝑢𝑖(β) is a residual expression

that depends on the parameter vector β as well as variables in your dataset, though we suppress express-

ing the variables for notational simplicity.

gmm requires you to write a substitutable expression for 𝑢𝑖(β). This substitutable expression is the

right-hand side of themodel written in terms of𝑢, or in the language of Stata syntax, a “residual equation”.
For example, suppose you want to fit the function 𝑦 = 𝑓(x;β) + 𝑢. In this example, 𝑢𝑖(β) = 𝑢 =
𝑦 − 𝑓(x;β), so you would type

gmm (y - expression for 𝑓(x;β)), ...

Note that we are not restricted to models with additive error terms.

https://www.stata.com/manuals/rivregress.pdf#rivregress
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In general, there are three rules to follow when defining substitutable expressions:

1. Parameters of the model are bound in curly braces: {b0}, {param}, etc. Parameter names must
follow the same conventions as variable names. See [U] 11.3 Naming conventions.

2. Initial values for parameters are given by including an equal sign and the initial value inside the

curly braces: {b0=1}, {param=3.571}, etc.

You can also specify initial values by using the from() option. Initial values specified in from()
override whatever initial values are given within the substitutable expression. If you do not specify

an initial value for a parameter, it is initialized to 0.

3. Linear combinations of variables can be included using the notation {lcname:varlist}: {xb: mpg
price weight}, {score: w x z}, etc. Parameters of linear combinations are initialized to 0.

Substitutable expressions may use any mathematical expression involving scalars and variables. See

[U] 13.2 Operators and [U] 13.3 Functions for more information on expressions.

The notation {xb:x1 x2 x3} tells gmm that you want a linear combination of the variables x1, x2, and
x3. We named this linear combination xb, so gmm will name the three parameters xb:x1, xb:x2, and
xb:x3, which corresponds to the three variables x1, x2, and x3 in the xb equation. Specify cons to

include a constant term in a linear combination. Factor variables and time-series operators are allowed;

see [U] 11.4.3 Factor variables and [U] 11.4.4 Time-series varlists.

Once we have declared the variables in the linear combination xb, we can refer to the linear com-

bination in our substitutable expression by using the notation xb:. The colon is not optional; it tells

gmm that you are referring to a previously declared linear combination, not an individual parameter. This
shorthand notation is also handy when specifying derivatives, as we will show later.

Example 1: OLS regression
In Introduction, we stated that OLS is an MM estimator. Say that we want to fit the model

mpg = 𝛽0 + 𝛽1weight + 𝛽2length + 𝑢

where 𝑢 is an i.i.d. error term. Recall that the moment condition for OLS regression is 𝐸(x𝑢) = 0, where

x, the list of instruments, is the same as the list of regressors in the model. Writing this in the form

required for a gmm substitutable expression, we have

𝑢 = mpg − 𝛽0 − 𝛽1weight − 𝛽2length

The right-hand side of the equation is the substitutable expression that we will provide to gmm. We give

𝛽0, 𝛽1, and 𝛽2 the parameter names b0, b1, and b2 and enclose them in curly braces. Because linear

combinations declared in substitutable expressions do not include a constant term by default, we include

our own (b0). We specify the regressors, weight and length, with their respective parameters and also
in the instruments() option. gmm includes a constant term in the instrument list by default, so we do

not need to add an additional term there. Thus, our command is

https://www.stata.com/manuals/u11.pdf#u11.3Namingconventions
https://www.stata.com/manuals/u13.pdf#u13.2Operators
https://www.stata.com/manuals/u13.pdf#u13.3Functions
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesIntroduction
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. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. gmm (mpg - {b1}*weight - {b2}*length - {b0}), instruments(weight length)
Step 1:
Iteration 0: GMM criterion Q(b) = 475.4138
Iteration 1: GMM criterion Q(b) = 2.696e-20
Iteration 2: GMM criterion Q(b) = 3.329e-27
Step 2:
Iteration 0: GMM criterion Q(b) = 5.109e-28
Iteration 1: GMM criterion Q(b) = 7.237e-32
note: model is exactly identified.
GMM estimation
Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 74
GMM weight matrix: Robust

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

/b1 -.0038515 .0019472 -1.98 0.048 -.0076678 -.0000351
/b2 -.0795935 .0677528 -1.17 0.240 -.2123866 .0531996
/b0 47.88487 7.50599 6.38 0.000 33.1734 62.59634

Instruments for equation 1: weight length _cons

Because the number of moments equals the number of parameters we are estimating, the model is said

to be “just identified” or “exactly identified”. Therefore, the choice of weight matrix has no impact on

the solution to (1), and the criterion function 𝑄(β) achieves its minimum value at 0.

The OLS estimator is a one-step GMM estimator, but we did not bother to specify the onestep option,
because the model is just identified. Doing a second step of GMM estimation affects neither the point

estimates nor the standard errors, so to keep the syntax as simple as possible, we did not include the

onestep option. The first step of estimation resulted in 𝑄(β) = 0 as expected, and the second step of

estimation did not change the minimized value of 𝑄(β). (The final iterations of the first and second steps
result in 𝑄(β) values of 0 for all practical purposes.)

When you do not specify either the wmatrix() or the vce() option, gmm reports heteroskedasticity-
robust standard errors. The parameter estimates reported here match those that we would obtain from

the command

. regress mpg weight length, vce(robust)

The standard errors reported by that regress command would be larger than those reported by gmm
by a factor of sqrt(74/71) because regress makes a small-sample adjustment to the estimated vari-

ance matrix while gmm does not. Likewise, if we had specified the vce(unadjusted) option with our

gmm command, then our standard errors would differ by a factor of sqrt(74/71) from those reported by

regress without the vce(robust) option.

We could have submitted our substitutable expression using the notation for linear combinations of

parameters. If we select xb as the name of our parameter equation, we could type

. gmm (mpg - {xb: weight length _cons}), instruments(weight length)
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and obtain identical results. With this syntax, instead of having parameters b1, b2, and b0, we would have
parameters xb:weight, xb:length, and xb: cons. Note that cons allows you to include a constant

in a linear combination, so this time, we do not have to specify a separate parameter from our varlist.

Factor variables and time-series–operated variables are allowed in the linear combinations. For ex-

ample,

. regress mpg i.foreign i.foreign#c.weight, vce(robust)

produces the same results as

. gmm (mpg - {xb:i.foreign i.foreign#c.weight _cons}),
> instruments(i.foreign i.foreign#c.weight)

See [U] 11.4.3 Factor variables and [U] 11.4.4 Time-series varlists for an introduction to factor

variables and time-series operators. See example 4 for an example of factor-variable syntax with gmm.
See example 15 for an example using time-series–operated variables.

Example 2: Instrumental-variables regression
In Introduction, we mentioned that 2SLS can be viewed as a GMM estimator. In example 1 of

[R] ivregress, we fit by a 2SLS model of rental rates (rent) as a function of the value of owner-occupied
housing (hsngval) and the percentage of the population living in urban areas (pcturban):

rent = 𝛽0 + 𝛽1hsngval + 𝛽2pcturban + 𝑢

We argued that random shocks that affect rental rates likely also affect housing values, so we treated

hsngval as an endogenous variable. As additional instruments, we used family income, faminc, and
three regional dummies (reg2–reg4).

To replicate the results of ivregress 2sls by using gmm, we type

. use https://www.stata-press.com/data/r19/hsng2, clear
(1980 Census housing data)
. gmm (rent - {xb:hsngval pcturban _cons}),
> instruments(pcturban faminc reg2-reg4) vce(unadjusted) onestep
Step 1:
Iteration 0: GMM criterion Q(b) = 56115.03
Iteration 1: GMM criterion Q(b) = 110.91583
Iteration 2: GMM criterion Q(b) = 110.91583
GMM estimation
Number of parameters = 3
Number of moments = 6
Initial weight matrix: Unadjusted Number of obs = 50

Coefficient Std. err. z P>|z| [95% conf. interval]

hsngval .0022398 .0003284 6.82 0.000 .0015961 .0028836
pcturban .081516 .2987652 0.27 0.785 -.5040531 .6670851

_cons 120.7065 15.22839 7.93 0.000 90.85942 150.5536

Instruments for equation 1: pcturban faminc reg2 reg3 reg4 _cons

We specified vce(unadjusted) so that we would obtain an unadjusted VCEmatrix and our standard

errors would match those reported in [R] ivregress.

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex4
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexampleseuler
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesIntroduction
https://www.stata.com/manuals/rivregress.pdf#rivregressRemarksandexamplesex_ivregress_2sls
https://www.stata.com/manuals/rivregress.pdf#rivregress
https://www.stata.com/manuals/rivregress.pdf#rivregress
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Note how we specified the instruments() option. In Introduction, we mentioned that the moment
conditions for the 2SLS estimator are 𝐸(z𝑢) = 0, and we mentioned that if some elements of x (the

regressors) are not endogenous, then they should also appear in z. In this model, we assume the re-

gressor pcturban is exogenous, so we included it in the list of instrumental variables. Commands like

ivregress, ivprobit, and ivtobit accept standard varlists, so they can deduce the exogenous regres-

sors in the model. Because gmm accepts arbitrary functions in the form of substitutable expressions, it

has no way of discerning the exogenous variables of the model on its own.

Also notice that we specified the onestep option. The 2SLS estimator is a one-step GMM estimator

that is based on a weight matrix that assumes the error terms are i.i.d. Unlike the previous example, this

example had more instruments than parameters, so the minimized value of 𝑄(β) is nonzero. We discuss

the weight matrix and its relationship to two-step estimation next.

The weight matrix and two-step estimation

Recall our definition of the GMM estimator given in (1). The estimator, β̂, depends on the choice of

the weight matrix,W. Under relatively mild assumptions, our estimator, β̂, is consistent regardless of the
choice ofW, so how are we to decide whatW to use? The most common solution is to use the two-step

estimator, which we now describe.

A key result in Hansen’s (1982) seminal paper is that if we denote by S the covariance matrix of the

moment conditions, then the optimal (in a way we make precise later) GMM estimator is the one that uses

a weight matrix equal to the inverse of the moment covariance matrix. That is, if we let S = Cov(z𝑢),
then we want to useW = S−1. But how do we obtain S in the first place?

If we assume that the errors are i.i.d., then

Cov(z𝑢) = 𝐸(𝑢2zz′) = 𝜎2𝐸(zz′)

where 𝜎2 is the variance of 𝑢. Because 𝜎2 is a positive scalar, we can ignore it when solving (1). Thus,

we compute

Ŵ1 = ( 1
𝑁

∑
𝑖
z𝑖z

′
𝑖)

−1
(2)

which does not depend on any unknown model parameters. (Notice that Ŵ1 is the same weight matrix

used in 2SLS.) Given Ŵ1, we can solve (1) to obtain an initial estimate, say, β̂1.

Our estimate, β̂1, is consistent, so by Slutsky’s theorem, the sample residuals 𝑢̂ computed at this value

of β will also be consistent. Using virtually the same arguments used to justify the Huber/Eicker/White

heteroskedasticity-robust VCE, if we assume that the residuals are independent though not identically

distributed, we can estimate S as

Ŝ = 1
𝑁

∑
𝑖

𝑢̂2
𝑖 z𝑖z

′
𝑖

Then, in the second step, we re-solve (1), using Ŵ2 = ̂S−1, which yields the two-step GMM estimate β̂2.

If the residuals exhibit clustering, you can specify wmatrix(cluster varname) so that gmm computes

a weight matrix that does not assume the 𝑢𝑖’s are independent within clusters identified by varname.

You can specify wmatrix(hac . . .) to obtain weight matrices that are suitable for when the 𝑢𝑖’s exhibit

autocorrelation as well as heteroskedasticity.

https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesIntroduction
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We could take the point estimates from the second round of estimation and use them to compute

yet another weight matrix, Ŵ3, say, re-solve (1) yet again, and so on, stopping when the parameters or

weight matrix do not change much from one iteration to the next. This procedure is known as the iterative

GMM estimator and is obtained with the igmm option. Asymptotically, the two-step and iterative GMM

estimators have the same distribution. However, Hall (2005, 90) suggests that the iterative estimator may

have better finite-sample properties.

Instead of computing Ŵ1 as in (2), we could simply choose Ŵ1 = I, the identity matrix.

The initial estimate, β̂1, would still be consistent. You can request this behavior by specifying the

winitial(identity) option. However, if you specify all of your moment conditions of the form

𝐸(z𝑢) = 0, we recommend using the default winitial(unadjusted) instead; the rescaling of the

moment conditions implied by using a homoskedastic initial weight matrix makes the numerical rou-

tines used to solve (1) more stable.

If you fit a model with more than one of the moment conditions of the form𝐸 {ℎ(z;β)} = 0, then you

must use winitial(identity) or winitial(unadjusted, independent). With moment conditions

of that form, you do not specify a list of instruments, and gmm cannot evaluate (2)—the matrix expression

in parentheses would necessarily be singular, so it cannot be inverted.

Example 3: Two-step linear GMM estimator
From the previous discussion and the comments in Introduction, we see that the linear 2SLS estimator

is a one-step GMM estimator where we use the weight matrix defined in (2) that assumes the errors are

i.i.d. If we use the 2SLS estimate of β to obtain the sample residuals, compute a new weight matrix based

on those residuals, and then do a second step of GMM estimation, we obtain the linear two-step GMM

estimator as implemented by ivregress gmm.

In example 3 of [R] ivregress, we fit the model of rental rates as discussed in example 2 above. We

now allow the residuals to be heteroskedastic, though we will maintain our assumption that they are

independent. We type

. gmm (rent - {xb:hsngval pcturban _cons}), instruments(pcturban faminc reg2-reg4)
Step 1:
Iteration 0: GMM criterion Q(b) = 56115.03
Iteration 1: GMM criterion Q(b) = 110.91583
Iteration 2: GMM criterion Q(b) = 110.91583
Step 2:
Iteration 0: GMM criterion Q(b) = .2406087
Iteration 1: GMM criterion Q(b) = .13672801
Iteration 2: GMM criterion Q(b) = .13672801
GMM estimation
Number of parameters = 3
Number of moments = 6
Initial weight matrix: Unadjusted Number of obs = 50
GMM weight matrix: Robust

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

hsngval .0014643 .0004473 3.27 0.001 .0005877 .002341
pcturban .7615482 .2895105 2.63 0.009 .1941181 1.328978

_cons 112.1227 10.80234 10.38 0.000 90.95052 133.2949

Instruments for equation 1: pcturban faminc reg2 reg3 reg4 _cons

https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesIntroduction
https://www.stata.com/manuals/rivregress.pdf#rivregressRemarksandexamplesivregress_gmmest
https://www.stata.com/manuals/rivregress.pdf#rivregress
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex2
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By default, gmm computes a heteroskedasticity-robust weight matrix before the second step of estima-
tion, though we could have specified wmatrix(robust) if we wanted to be explicit. Because we did not
specify the vce() option, gmm used a heteroskedasticity-robust one. Our results match those in exam-

ple 3 of [R] ivregress. Moreover, the only substantive difference between this example and example 2 is

that here we did not specify the onestep option, so we obtain the two-step estimates.

Obtaining standard errors
This section is a bit more theoretical and can be skipped on first reading. However, the information

is sufficiently important that you should return to this section at some point.

So far in our discussion, we have focused on point estimation without much mention of how we

obtain the standard errors of the estimates. We also mentioned that if we choose W to be the inverse

of the covariance matrix of the moment conditions, then we obtain the “optimal” GMM estimator. We

elaborate those points now.

Using mostly standard statistical arguments, we can show that for the GMM estimator defined in (1),

the variance of β̂ is given by

Var(β̂) = 1
𝑁

{G(β̂)′WG(β̂)}
−1
G(β̂)′WSWG(β̂) {G(β̂)′WG(β̂)}

−1
(3)

where

G(β̂) = 1
𝑁

∑
𝑖
z𝑖

𝜕𝑢𝑖
𝜕β

∣
β=β̂

or G(β̂) = 1
𝑁

∑
𝑖

𝜕h𝑖
𝜕β

∣
β=β̂

as the case may be and S = 𝐸(z𝑢𝑢′z′).
Assuming the vce(unadjusted) option is not specified, gmm reports standard errors based on the

robust variance matrix defined in (3). For the two-step estimator,W is the weight matrix requested with

the wmatrix() option, and it is calculated based on the residuals obtained after the first estimation step.
The second-step point estimates and residuals are obtained, and S is calculated based on the specification

of the vce() option. For the iterated estimator, W is calculated based on the second-to-last round of

estimation, while S is based on the residuals obtained after the last round of estimation. Computation of

the covariance matrix for the one-step estimator is, perhaps surprisingly, more involved; we discuss the

covariance matrix with the one-step estimator in the technical note at the end of this section.

If the model is exactly identified, the matrix G(β̂) is square, and (3) simplifies to the following:

Var(β̂) = 1
𝑁
G(β̂)−1S(G(β̂)′)−1

If we choose the weight matrix to be the inverse of the covariance matrix of the moment conditions

so thatW = S−1, then (3) simplifies substantially:

Var(β̂) = 1
𝑁

{G(β̂)′WG(β̂)}
−1

(4)

The GMM estimator constructed using this choice of weight matrix along with the covariance matrix in

(4) is known as the “optimal” GMM estimator. One can show that if in factW = S−1, then the variance in

(4) is smaller than the variance in (3) of any other GMM estimator based on the same moment conditions

but with a different choice of weight matrix. Thus, the optimal GMM estimator is also known as the

efficient GMM estimator because it has the smallest variance of any estimator based on the given moment

conditions.

https://www.stata.com/manuals/rivregress.pdf#rivregressRemarksandexamplesivregress_gmmest
https://www.stata.com/manuals/rivregress.pdf#rivregressRemarksandexamplesivregress_gmmest
https://www.stata.com/manuals/rivregress.pdf#rivregress
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex2
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To obtain standard errors from gmm based on the optimal GMM estimator, you specify the

vce(unadjusted) option. We call that VCE unadjusted because we do not recompute the residuals

after estimation to obtain the matrix S required in (3) or allow for the fact that those residuals may not be

i.i.d. Some statistical packages by default report standard errors based on (4) and offer standard errors

based on (3) only as an option or not at all. While the optimal GMM estimator is theoretically appealing,

Cameron and Trivedi (2005, 177) suggest that in finite samples, it need not perform better than the GMM

estimator that uses (3) to obtain standard errors.

Technical note
Computing the covariance matrix of the parameters after using the one-step estimator is actually a bit

more complex than after using the two-step or iterative estimator. We can illustrate most of the intricacies

by using linear regression with moment conditions of the form 𝐸{x(𝑦 − x′β)} = 0.

If you specify winitial(unadjusted) and vce(unadjusted), then the initial weight matrix will
be computed as

Ŵ1 = ( 1
𝑁

∑
𝑖
x𝑖x

′
𝑖)

−1

(5)

Moreover, for linear regression, we can show that

G(β̂) = 1
𝑁

∑
𝑖
x𝑖x

′
𝑖

so that (4) becomes

Var(β̂) = 1
𝑁

⎧{
⎨{⎩

( 1
𝑁

∑
𝑖
x𝑖x

′
𝑖) ( 1

𝑁
∑

𝑖
x𝑖x

′
𝑖)

−1

( 1
𝑁

∑
𝑖
x𝑖x

′
𝑖)

⎫}
⎬}⎭

−1

= (∑
𝑖
x𝑖x

′
𝑖)

−1

= (X′X)−1

(6)

However, we know that the nonrobust covariance matrix for the OLS estimator is actually 𝜎̂2(X′X)−1.

What is missing from (6) is the scalar 𝜎̂2, the estimated variance of the residuals. When you use the

one-step estimator and specify winitial(unadjusted), the weight matrix (5) does not include the 𝜎̂2

term because gmm does not have a consistent estimate of β from which it can then estimate 𝜎2. The point

estimates are still correct because multiplying the weight matrix by a scalar factor does not affect the

solution to the minimization problem.

To circumvent this issue, if you specify winitial(unadjusted) and vce(unadjusted), gmm uses
the estimated β̂ (which is consistent) to obtain a new unadjusted weight matrix that does include the term

𝜎̂2 so that evaluating (4) will yield correct standard errors.

If you use the two-step or iterated GMM estimator, this extra effort is not needed to obtain standard

errors because the first-step (and subsequent steps’) estimate ofβ is consistent and can be used to estimate

𝜎2 or some other weight matrix based on the wmatrix() option. Straightforward algebra shows that this
extra effort is also not needed if you request any type of adjusted (robust) covariance matrix with the

one-step estimator.
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Asimilar issue arises when you specify winitial(identity) and vce(unadjusted)with the one-
step estimator. Again the solution is to compute an unadjusted weight matrix after obtaining β̂ so that

(4) provides the correct standard errors.

We have illustrated the problem and solution using a single-equation linear model. However, the

problem arises whenever you use the one-step estimator with an unadjustedVCE, regardless of the number

of equations, and gmm handles all the details automatically. Computation of Hansen’s 𝐽 statistic presents

an identical issue, and gmm takes care of that as well.

If you supply your own initial weight matrix by using winitial(matname), then the standard errors
(as well as the 𝐽 statistic reported by estat overid) are based on that weight matrix. You should verify
that the weight matrix you provide will yield appropriate statistics.

Factor-variable coefficients in multiple residual functions
The long example in this section uses gmm to replicate the results produced by regress with factor

variables and margins. It illustrates how to refer to the coefficients on factor variables in linear combi-

nations in subsequent residual functions. The example also shows how to use gmm to address the two-step
estimation problem, or the inconsistency of standard errors produced by two-step estimators that depend

on previously estimated parameters.

Example 4: Means of linear combinations of factor variables
The mean of a variable when everyone in a population receives a given treatment level is known

as a potential-outcome mean. We use regress and margins to estimate the potential-outcome means

of a mother’s smoking behavior while pregnant on the birthweight of her baby after controlling for the

mother’s age and an indicator for whether the mother had a prenatal visit in the first trimester. We use

an extract of data from Cattaneo (2010) in which bweight is the baby’s birthweight in grams, mbsmoke
is a binary variable indicating whether a mother smoked while pregnant, mage is the mother’s age, and

prenatal1 is a binary variable indicating whether the mother had a prenatal visit in the first trimester.
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We use regress to estimate the regression coefficients.

. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. regress bweight ibn.mbsmoke ibn.mbsmoke#(c.mage i.prenatal1),
> noconstant vce(robust)
Linear regression Number of obs = 4,642

F(6, 4636) = 27751.75
Prob > F = 0.0000
R-squared = 0.9726
Root MSE = 565.08

Robust
bweight Coefficient std. err. t P>|t| [95% conf. interval]

mbsmoke
Nonsmoker 3073.201 48.68899 63.12 0.000 2977.748 3168.655

Smoker 3217.973 93.637 34.37 0.000 3034.4 3401.546

mbsmoke#
c.mage

Nonsmoker 9.737189 1.825552 5.33 0.000 6.158237 13.31614
Smoker -4.962403 3.852613 -1.29 0.198 -12.51536 2.590552

mbsmoke#
prenatal1
Nonsmoker #

Yes 95.11727 26.82039 3.55 0.000 42.53654 147.698
Smoker#Yes 64.61752 39.72317 1.63 0.104 -13.25879 142.4938

We used factor variables to interact mbsmoke with the other covariates to allow for separate coeffi-

cients for smoking and nonsmoking mothers.

The postestimation command margins uses the estimated regression coefficients to estimate the

potential-outcome means of bweight, first assuming that no mother smoked and then assuming that

all mothers smoked.

. margins i.mbsmoke, vce(unconditional)
Predictive margins Number of obs = 4,642
Expression: Linear prediction, predict()

Unconditional
Margin std. err. t P>|t| [95% conf. interval]

mbsmoke
Nonsmoker 3407.506 9.346894 364.56 0.000 3389.181 3425.83

Smoker 3138.23 21.20463 148.00 0.000 3096.659 3179.801

Note that the standard errors for the estimated means account for the estimation error in the estimated

coefficients used to compute them.
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Before using gmm to simultaneously estimate the regression coefficients and the potential-outcome

means, we demonstrate the equivalence of point estimates from gmm and regress and illustrate the two-
step estimation problem. First, we use gmm to estimate just the regression coefficients. Note that we

specify the factor variables in the linear combination xb: and in the instrument list.

. gmm (eq1: bweight - {xb:ibn.mbsmoke ibn.mbsmoke#(c.mage i.prenatal1)}),
> instruments(eq1: ibn.mbsmoke ibn.mbsmoke#(c.mage i.prenatal1), noconstant)
> coeflegend onestep
Step 1:
Iteration 0: GMM criterion Q(b) = 11316945
Iteration 1: GMM criterion Q(b) = 7.143e-19
Iteration 2: GMM criterion Q(b) = 2.051e-26
note: model is exactly identified.
GMM estimation
Number of parameters = 6
Number of moments = 6
Initial weight matrix: Unadjusted Number of obs = 4,642

Coefficient Legend

mbsmoke
Nonsmoker 3073.201 _b[0bn.mbsmoke]

Smoker 3217.973 _b[1.mbsmoke]

mbsmoke#
c.mage

Nonsmoker 9.737189 _b[0bn.mbsmoke#c.mage]
Smoker -4.962403 _b[1.mbsmoke#c.mage]

mbsmoke#
prenatal1
Nonsmoker #

Yes 95.11727 _b[0bn.mbsmoke#1.prenatal1]
Smoker#Yes 64.61752 _b[1.mbsmoke#1.prenatal1]

Instruments for equation eq1: 0.mbsmoke 1.mbsmoke 0.mbsmoke#c.mage
1.mbsmoke#c.mage 0o.mbsmoke#0b.prenatal1 0.mbsmoke#1.prenatal1
1o.mbsmoke#0b.prenatal1 1.mbsmoke#1.prenatal1

We specified the coeflegend option to learn the names of the coefficients on the factor variables in
the linear combination. As expected, the point estimates are the same as those reported by regress.

Next, we illustrate the effect of the two-step estimation problem if we calculate the potential-outcome

means by hand. We can calculate the mean when no mothers smoke by accessing these coefficients and

then estimate the standard errors in the estimated means:

. generate mean0 = _b[xb:0.mbsmoke] + _b[xb:0.mbsmoke#c.mage]*mage
> + _b[xb:0.mbsmoke#1.prenatal1]*prenatal1
. mean mean0
Mean estimation Number of obs = 4,642

Mean Std. err. [95% conf. interval]

mean0 3407.506 1.085503 3405.378 3409.634
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The estimated potential-outcome mean for no mothers smoking is the same as that reported by

margins, but the standard error is much smaller because mean ignores the estimation error in the co-

efficients. This underscores the importance of accounting for the estimation error when estimating the

standard errors.

Now, we use gmm to estimate the coefficients and the potential-outcome means simultaneously.

. gmm (eq1: bweight - {xb:ibn.mbsmoke ibn.mbsmoke#(c.mage i.prenatal1)})
> (eq2: {xb:0.mbsmoke} + {xb:0bn.mbsmoke#c.mage}*mage
> + {xb:0bn.mbsmoke#1.prenatal1}*1.prenatal1 - {m0})
> (eq3: {xb:1.mbsmoke} + {xb:1.mbsmoke#c.mage}*mage
> + {xb:1.mbsmoke#1.prenatal1}*1.prenatal1 - {m1}),
> instruments(eq1: ibn.mbsmoke ibn.mbsmoke#(c.mage i.prenatal1),
> noconstant)
> instruments(eq2 eq3:) winitial(identity) onestep
Step 1:
Iteration 0: GMM criterion Q(b) = 5.819e+09
Iteration 1: GMM criterion Q(b) = 3.108e-13
Iteration 2: GMM criterion Q(b) = 1.010e-22
note: model is exactly identified.
GMM estimation
Number of parameters = 8
Number of moments = 8
Initial weight matrix: Identity Number of obs = 4,642

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

mbsmoke
Nonsmoker 3073.201 48.65751 63.16 0.000 2977.834 3168.568

Smoker 3217.973 93.57647 34.39 0.000 3034.566 3401.379

mbsmoke#
c.mage

Nonsmoker 9.737189 1.824372 5.34 0.000 6.161485 13.31289
Smoker -4.962403 3.850123 -1.29 0.197 -12.5085 2.583699

mbsmoke#
prenatal1
Nonsmoker #

Yes 95.11727 26.80305 3.55 0.000 42.58425 147.6503
Smoker#Yes 64.61752 39.69749 1.63 0.104 -13.18813 142.4232

/m0 3407.506 9.340852 364.80 0.000 3389.198 3425.813
/m1 3138.23 21.19093 148.09 0.000 3096.696 3179.763

Instruments for equation eq1: 0.mbsmoke 1.mbsmoke 0.mbsmoke#c.mage
1.mbsmoke#c.mage 0o.mbsmoke#0b.prenatal1 0.mbsmoke#1.prenatal1
1o.mbsmoke#0b.prenatal1 1.mbsmoke#1.prenatal1

Instruments for equation eq2: _cons
Instruments for equation eq3: _cons

This output has five noteworthy features.

1. We specify three different residual equations. The first, eq1:, defines the moment conditions for
the regression using the covariates as instruments; eq2: is the moment condition for the potential
outcome when no mothers smoke; and eq3: is the moment condition for the potential outcome

when all mothers smoke.
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2. In eq2: and eq3:, we refer to the individual coefficients on the factor variables in the linear

combination xb: by enclosing their names in curly braces.

3. The instruments() option is repeatable. We first specify that the covariates in the regression

are the instruments for the residual equation eq1: and then specify that only the unit variable, also
known as the constant, is an instrument for each of eq2: and eq3:.

4. The point estimates and the standard errors match those reported by regress and margins, after
accounting for the small-sample adjustment performed by regress.

5. Although the point estimates match, the standard errors reported by gmm are much larger than those
reported by mean because gmm takes into account that the regression coefficients are estimated.

Parameter interpretation using margins
In the last section, we demonstrated how to use gmm to estimate potential-outcome means in a lin-

ear regression model jointly with the coefficients of the models. However, you can also estimate the

potential-outcome mean, or any other predictive margins, by using the margins command after gmm.
Using margins after gmm can allow more flexibility in the predictive margins that we estimate and is

also more convenient. See Obtaining margins of responses in [R] margins for more information about

predictive margins.

Example 5: Predicting treatment effects after estimation
In example 4, we used gmm to estimate potential-outcome means of a mother’s smoking behavior on

her baby’s birthweight (in grams) after controlling for age and whether she had a prenatal visit in the first

trimester. Here we demonstrate how to use margins after gmm to estimate the potential-outcome means.

https://www.stata.com/manuals/rmargins.pdf#rmarginsRemarksandexamplesObtainingmarginsofresponses
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex4
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First, we load the data and reestimate the regression coefficients.

. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. gmm (eq1: bweight - {xb:ibn.mbsmoke ibn.mbsmoke#(c.mage i.prenatal1)}),
> instruments(eq1: ibn.mbsmoke ibn.mbsmoke#(c.mage i.prenatal1), noconstant)
> onestep
Step 1:
Iteration 0: GMM criterion Q(b) = 11316945
Iteration 1: GMM criterion Q(b) = 7.143e-19
Iteration 2: GMM criterion Q(b) = 2.051e-26
note: model is exactly identified.
GMM estimation
Number of parameters = 6
Number of moments = 6
Initial weight matrix: Unadjusted Number of obs = 4,642

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

mbsmoke
Nonsmoker 3073.201 48.65752 63.16 0.000 2977.834 3168.568

Smoker 3217.973 93.57647 34.39 0.000 3034.566 3401.379

mbsmoke#
c.mage

Nonsmoker 9.737189 1.824372 5.34 0.000 6.161484 13.31289
Smoker -4.962403 3.850123 -1.29 0.197 -12.5085 2.583699

mbsmoke#
prenatal1
Nonsmoker #

Yes 95.11727 26.80305 3.55 0.000 42.58425 147.6503
Smoker#Yes 64.61752 39.69749 1.63 0.104 -13.18813 142.4232

Instruments for equation eq1: 0.mbsmoke 1.mbsmoke 0.mbsmoke#c.mage
1.mbsmoke#c.mage 0o.mbsmoke#0b.prenatal1 0.mbsmoke#1.prenatal1
1o.mbsmoke#0b.prenatal1 1.mbsmoke#1.prenatal1

Now, we use margins to estimate the potential-outcome means. We specify vce(unconditional)
to obtain standard errors for the potential-outcome means of the population rather than the sample. When

we specify this option, the standard errors for the estimated means will account for the estimation error

in the estimated coefficients from gmm.

. margins i.mbsmoke, vce(unconditional)
Predictive margins Number of obs = 4,642
Expression: Linear prediction, predict()

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

mbsmoke
Nonsmoker 3407.506 9.341858 364.76 0.000 3389.196 3425.815

Smoker 3138.23 21.19321 148.08 0.000 3096.692 3179.768
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Our point estimates of the potential-outcome means exactly match those that appear as \m0 and \m1
in example 4. However, the standard errors are slightly higher because gmm and margins use different

values in the denominator for the formula for the robust covariance matrix. gmm uses 𝑁 while margins
uses 𝑁 − 1, so the standard errors differ by a factor of √{𝑁/(𝑁 − 1)} = √4,642/4,641 ≈ 1.0002.

More details about the calculation of the standard errors are provided in Marginal predictions with un-

conditional standard errors in the Methods and formulas.

In addition to potential-outcome means, we can use margins to estimate the average treatment effect
(ATE) of the mother’s smoking behavior on birthweight. We use the contrast operator r. to instruct

margins to difference the potential-outcome means and estimate a treatment effect. We specify the

contrast(nowald) option to suppress the Wald test that margins displays by default for contrasts.

. margins r.mbsmoke, vce(unconditional) contrast(nowald)
Contrasts of predictive margins Number of obs = 4,642
Expression: Linear prediction, predict()

Unconditional
Contrast std. err. [95% conf. interval]

mbsmoke
(Smoker vs Nonsmoker) -269.2759 23.16069 -314.67 -223.8818

The ATE of −269.28 is interpreted as the difference between the average birthweight if all mothers in

the population smoked and the average birthweight if all mothers in the population did not smoke. The

average birthweight if all mothers were to smoke would be 269.28 grams less than if they did not smoke.

Exponential (Poisson) regression models
Exponential regression models are frequently encountered in applied work. For example, they can be

used as alternatives to linear regression models on log-transformed dependent variables, obviating the

need for post-hoc transformations to obtain predicted values in the original metric of the dependent vari-

able. When the dependent variable represents a discrete count variable, exponential regression models

are also known as Poisson regression models; see Cameron and Trivedi (2013).

For now, we consider models of the form

𝑦 = exp(x′β) + 𝑢 (7)

where 𝑢 is a zero-mean additive error term so that 𝐸(𝑦) = exp(x′β). Because the error term is additive,

if x represents strictly exogenous regressors, then we have the population moment condition

𝐸[x{𝑦 − exp(x′β)}] = 0 (8)

Moreover, because the number of parameters in the model is equal to the number of instruments, there

is no point to using the two-step GMM estimator.

https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex4
https://www.stata.com/manuals/rgmm.pdf#rgmmMethodsandformulasMarginalpredictionswithunconditionalstandarderrors
https://www.stata.com/manuals/rgmm.pdf#rgmmMethodsandformulasMarginalpredictionswithunconditionalstandarderrors
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Example 6: Exponential regression
Cameron and Trivedi (2022, 584) fit a model of the number of doctor visits based on whether the

patient has private insurance, whether the patient has a chronic disease, gender, and income. Here we fit

that model by using gmm. To allow for potential excess dispersion, we will obtain a robust VCE matrix,

which is the default for gmm anyway. We type

. use https://www.stata-press.com/data/r19/docvisits

. gmm (docvis - exp({xb:private chronic female income _cons})),
> instruments(private chronic female income) onestep
Step 1:
Iteration 0: GMM criterion Q(b) = 16.853973
Iteration 1: GMM criterion Q(b) = 2.2706472
Iteration 2: GMM criterion Q(b) = .19088097
Iteration 3: GMM criterion Q(b) = .00041101
Iteration 4: GMM criterion Q(b) = 3.939e-09
Iteration 5: GMM criterion Q(b) = 6.572e-19
note: model is exactly identified.
GMM estimation
Number of parameters = 5
Number of moments = 5
Initial weight matrix: Unadjusted Number of obs = 4,412

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

private .7986654 .1089891 7.33 0.000 .5850507 1.01228
chronic 1.091865 .0559888 19.50 0.000 .9821291 1.201601
female .4925481 .0585298 8.42 0.000 .3778317 .6072644
income .003557 .0010824 3.29 0.001 .0014356 .0056784
_cons -.2297263 .1108607 -2.07 0.038 -.4470093 -.0124434

Instruments for equation 1: private chronic female income _cons

Our point estimates agree with those reported by Cameron and Trivedi (2022) to at least six signifi-

cant digits; the small discrepancies are attributable to different optimization techniques and convergence

criteria being used by gmm and poisson. The standard errors differ by a factor of sqrt(4412/4411) be-
cause gmm uses 𝑁 in the denominator of the formula for the robust covariance matrix, while the robust

covariance matrix estimator used by poisson uses 𝑁 − 1.

Technical note
That the GMM and maximum likelihood estimators of the exponential regression model coincide is

not a general property of these two classes of estimators. The maximum likelihood estimator solves the

score equations

1
𝑁

𝑁
∑
𝑖=1

𝜕 ln ℓ𝑖
𝜕β

= 0

where ℓ𝑖 is the likelihood for the 𝑖th observation. These score equations can be viewed as the sample

analogues of the population moment conditions

𝐸 (𝜕 ln ℓ𝑖
𝜕β

) = 0

establishing that maximum likelihood estimators represent a subset of the class of GMM estimators.
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For the Poisson model,

ln ℓ𝑖 = −exp(x′
𝑖β) + 𝑦𝑖x

′
𝑖β − ln 𝑦𝑖!

so the score equations are

1
𝑁

𝑁
∑
𝑖=1

x𝑖 {𝑦𝑖 − exp(x′
𝑖β)} = 0

which are just the sample moment conditions implied by (8) that we used in the previous example. That

is why our results using gmm match Cameron and Trivedi’s (2022) results using poisson.

On the other hand, an intuitive set of moment conditions to consider for GMM estimation of a probit

model is

𝐸[x{𝑦 − Φ(x′β)}] = 0

whereΦ() is the standard normal cumulative distribution function. Differentiating the likelihood function
for the maximum-likelihood probit estimator, we can show that the corresponding score equations are

1
𝑁

𝑁
∑
𝑖=1

[x𝑖 {𝑦𝑖
𝜙(x′

𝑖β)
Φ(x′

𝑖β)
− (1 − 𝑦𝑖)

𝜙(x′
𝑖β)

1 − Φ(x′
𝑖β)

}] = 0

where 𝜙() is the standard normal density function. These two moment conditions are not equivalent, so
the maximum likelihood and GMM probit estimators are distinct.

Example 7: Comparison of GMM and maximum likelihood
Using the automobile dataset, we fit a probit model of foreign on gear ratio, length, and

headroom using first the score equations and then the intuitive set of GMM equations. We type

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. gmm (foreign*normalden({xb:gear_ratio length headroom _cons})/
> normal({xb:}) - (1-foreign)*normalden({xb:})/(1-normal({xb:}))),
> instruments(gear_ratio length headroom) onestep
(output omitted )

. estimates store ml

. gmm (foreign - normal({xb:gear_ratio length headroom _cons})),
> instruments(gear_ratio length headroom) onestep
(output omitted )

. estimates store gmm

. estimates table ml gmm, b se

Variable ml gmm

gear_ratio 2.9586277 2.8489213
.64042341 .63570247

length -.02148933 -.02056033
.01382043 .01396954

headroom .01136927 .02240761
.27278528 .2849891

_cons -6.0222289 -5.8595615
3.5594588 3.5188029

Legend: b/se

https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex4
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The coefficients on gear ratio and length are close for the two estimators. The GMM estimate of

the coefficient on headroom is twice that of the maximum likelihood estimate, though the relatively

large standard errors imply that this difference is not significant. You can verify that the coefficients

in the column marked “ml” match those you would obtain with probit. We have not discussed the

differences among standard errors based on the various GMM andmaximum-likelihood covariancematrix

estimators to avoid tedious algebra. However, you can verify that the robust covariance matrix after one-

step GMM estimation differs by only a finite-sample adjustment factor of (𝑁/𝑁 − 1) from the robust

covariance matrix reported by probit. Both the maximum likelihood and GMM probit estimators require

the normality assumption, and the maximum likelihood estimator is efficient if that normality assumption

is correct; therefore, in this example, there is no reason to prefer the GMM estimator.

We can modify (8) easily to allow for endogenous regressors. Suppose that 𝑥𝑗 is endogenous in the

sense that 𝐸(𝑢|𝑥𝑗) ≠ 0. Then, (8) is no longer a valid moment condition. However, suppose we have

some variables other than x such that 𝐸(𝑢|z) = 0. We can instead use the moment conditions

𝐸(z𝑢) = 𝐸[z{𝑦 − exp(x′β)}] = 0

As usual, if some elements of x are exogenous, then they should appear in z as well.

Example 8: Exponential regression with endogenous regressors
Returning to the model discussed in example 6, we treat income as endogenous; unobservable factors

that determine a person’s income may also affect the number of times a person visits a doctor. We use

a person’s age and race as instruments. These are valid instruments if we believe that age and race

influence a person’s income but do not have a direct impact on the number of doctor visits. (Whether

this belief is justified is another matter; we test that belief in [R] gmm postestimation.) Because we

have more instruments (seven) than parameters (five), we have an overidentified model. Therefore, the

choice of weight matrix does matter. We will use the default two-step GMM estimator. In the first step,

we will use a weight matrix that assumes the errors are i.i.d. In the second step, we will use a weight

matrix that assumes heteroskedasticity. When you specify twostep, these are the defaults for the first-
and second-step weight matrices, so we do not have to use the winitial() or wmatrix() options. We

will again obtain a robust VCE, which is also the default. We type

. use https://www.stata-press.com/data/r19/docvisits

. gmm (docvis - exp({xb:private chronic female income _cons})),
> instruments(private chronic female age black hispanic) twostep
Step 1:
Iteration 0: GMM criterion Q(b) = 16.910173
Iteration 1: GMM criterion Q(b) = .82276104
Iteration 2: GMM criterion Q(b) = .21832032
Iteration 3: GMM criterion Q(b) = .12685935
Iteration 4: GMM criterion Q(b) = .12672369
Iteration 5: GMM criterion Q(b) = .12672365
Step 2:
Iteration 0: GMM criterion Q(b) = .00234641
Iteration 1: GMM criterion Q(b) = .00215957
Iteration 2: GMM criterion Q(b) = .00215911
Iteration 3: GMM criterion Q(b) = .00215911

https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex6
https://www.stata.com/manuals/rgmmpostestimation.pdf#rgmmpostestimation


gmm — Generalized method of moments estimation 30

GMM estimation
Number of parameters = 5
Number of moments = 7
Initial weight matrix: Unadjusted Number of obs = 4,412
GMM weight matrix: Robust

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

private .535335 .1599039 3.35 0.001 .2219291 .8487409
chronic 1.090126 .0617659 17.65 0.000 .9690668 1.211185
female .6636579 .0959884 6.91 0.000 .4755241 .8517918
income .0142855 .0027162 5.26 0.000 .0089618 .0196092
_cons -.5983477 .138433 -4.32 0.000 -.8696713 -.327024

Instruments for equation 1: private chronic female age black hispanic _cons

Once we control for the endogeneity of income, we find that its coefficient has quadrupled in size. Addi-

tionally, access to private insurance has less of an impact on the number of doctor visits and gender has

more of an impact.

Technical note
Although you may be tempted to try, you cannot, as you can in a Poisson model, replace x in the

moment conditions for the probit (or logit) model with a vector of instruments, z, if you have endogenous

regressors. See Wilde (2008).

Mullahy (1997) considers a slightly more complicated version of the exponential regression model

that incorporates nonadditive unobserved heterogeneity. His model can be written as

𝑦𝑖 = exp(x′
𝑖β)𝜂𝑖 + 𝜖𝑖

where 𝜂𝑖 > 0 is an unobserved heterogeneity term that may be correlated with x𝑖. One result from his

article is that instead of using the additive moment condition (8), we can use the multiplicative moment

condition

𝐸 {z𝑦 − exp(x′β)
exp(x′β)

} = 𝐸[z{𝑦exp(−x′β) − 1}] = 0

Windmeijer and Santos Silva (1997) discuss the use of additive versus multiplicative moment conditions

with endogenous regressors and note that a set of instruments that satisfies the additive moment con-

ditions will not also satisfy the multiplicative moment conditions. They remark that the decision about

which to use is an empirical issue that can at least partially be settled by using the test of overidentifying

restrictions that is implemented by estat overid after gmm to see whether the instruments for a given

model are valid. See [R] gmm postestimation for information on the test of overidentifying restrictions.

Specifying derivatives
By default, gmm calculates derivatives numerically, and the method used produces accurate results

for the vast majority of applications. However, if you refit the same model repeatedly or else have the

derivatives available, then gmm will run more quickly if you supply it with analytic derivatives.

https://www.stata.com/manuals/rgmmpostestimation.pdf#rgmmpostestimation


gmm — Generalized method of moments estimation 31

When you use the interactive version of gmm, you specify derivatives using substitutable expressions
in much the same way you specify the residual equations. There are three rules you must follow:

1. As with the substitutable expressions that define residual equations, you bind parameters of the

model in curly braces: {b0}, {param}, etc.

2. You must specify a derivative for each parameter that appears in each residual equation. If a

parameter does not appear in a residual equation, then you do not specify a derivative for that

parameter in that residual equation.

3. If you declare a linear combination in an equation, then you specify a derivative with respect to

that linear combination. gmm applies the chain rule to obtain the derivatives with respect to the

individual parameters encompassed by that linear combination.

Example 9: Derivatives for a single-equation model
Consider a simple exponential regression model with one exogenous regressor and a constant term.

We have

𝑢𝑖 = 𝑦𝑖 − exp(𝛽0 + 𝛽1𝑥𝑖)

Now,
𝜕𝑢𝑖
𝜕𝛽0

= −exp(𝛽0 + 𝛽1𝑥𝑖) and
𝜕𝑢𝑖
𝜕𝛽1

= −𝑥𝑖 exp(𝛽0 + 𝛽1𝑥𝑖)

In Stata, we type

. gmm (docvis - exp({b0} + {b1}*income)), instruments(income)
> deriv(/b0 = -1*exp({b0} + {b1}*income))
> deriv(/b1 = -1*income*exp({b0}+{b1}*income)) onestep
Step 1:
Iteration 0: GMM criterion Q(b) = 9.1548611
Iteration 1: GMM criterion Q(b) = 3.5146131
Iteration 2: GMM criterion Q(b) = .01344695
Iteration 3: GMM criterion Q(b) = 3.690e-06
Iteration 4: GMM criterion Q(b) = 4.606e-13
Iteration 5: GMM criterion Q(b) = 1.502e-26
note: model is exactly identified.
GMM estimation
Number of parameters = 2
Number of moments = 2
Initial weight matrix: Unadjusted Number of obs = 4,412

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

/b0 1.204888 .0462355 26.06 0.000 1.114268 1.295507
/b1 .0046702 .0009715 4.81 0.000 .0027662 .0065743

Instruments for equation 1: income _cons

Notice how we specified the derivative() option for each parameter. We simply specified a slash,

the name of the parameter, an equal sign, then a substitutable expression that represents the derivative.

Because our model has only one residual equation, we do not need to specify equation numbers in the

derivative() options.
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When you specify a linear combination of variables, your derivative should be with respect to the

entire linear combination. For example, say we have the residual equation

𝑢𝑖 = 𝑦 − exp(x′
𝑖β + 𝛽0)

for which we would type

. gmm (y - exp({xb: x1 x2 x3} + {b0}) ...

Then, in addition to the derivative 𝜕𝑢𝑖/𝜕𝛽0, we are to compute and specify

𝜕𝑢𝑖
𝜕x′

𝑖β
= −exp(x′

𝑖β + 𝛽0)

Using the chain rule, 𝜕𝑢𝑖/𝜕𝛽𝑗 = 𝜕𝑢𝑖/𝜕(x′
𝑖β) × 𝜕(x′

𝑖β)/𝜕𝛽𝑗 = −𝑥𝑖𝑗exp(x′
𝑖β+ 𝛽0). Stata does this last

calculation automatically. It knows the variables in the linear combination, so all it needs is the derivative

of the residual equation with respect to the linear combination. This allows you to change the variables

in your linear combination without having to change the derivatives.

Example 10: Derivatives with a linear combination
We refit the model described in the example illustrating exponential regression with endogenous re-

gressors, now providing analytic derivatives. We type

. gmm (docvis - exp({xb:private chronic female income _cons})),
> instruments(private chronic female age black hispanic)
> derivative(/xb = -1*exp({xb:}))
Step 1:
Iteration 0: GMM criterion Q(b) = 16.910173
Iteration 1: GMM criterion Q(b) = .82270871
Iteration 2: GMM criterion Q(b) = .21831995
Iteration 3: GMM criterion Q(b) = .12685934
Iteration 4: GMM criterion Q(b) = .12672369
Iteration 5: GMM criterion Q(b) = .12672365
Step 2:
Iteration 0: GMM criterion Q(b) = .00234641
Iteration 1: GMM criterion Q(b) = .00215957
Iteration 2: GMM criterion Q(b) = .00215911
Iteration 3: GMM criterion Q(b) = .00215911
GMM estimation
Number of parameters = 5
Number of moments = 7
Initial weight matrix: Unadjusted Number of obs = 4,412
GMM weight matrix: Robust

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

private .535335 .159904 3.35 0.001 .221929 .848741
chronic 1.090126 .0617659 17.65 0.000 .9690668 1.211185
female .6636579 .0959885 6.91 0.000 .475524 .8517918
income .0142855 .0027162 5.26 0.000 .0089618 .0196092
_cons -.5983477 .138433 -4.32 0.000 -.8696714 -.327024

Instruments for equation 1: private chronic female age black hispanic _cons

https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex8
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In the first derivative() option, we specified the name of the linear combination, xb, instead of an

individual parameter’s name. We already declared the variables of our linear combination in the substi-

tutable expression for the residual equation, so in our substitutable expressions for the derivatives, we

can use the shorthand notation {xb:} to refer to it.

Our point estimates are identical to those we obtained earlier. The standard errors and confidence

intervals differ by only trivial amounts.

Exponential regression models with panel data
In addition to supporting cross-sectional and time-series data, gmm also works with panel-data mod-

els. Here we illustrate gmm’s panel-data capabilities by expanding our discussion of exponential regres-
sion models to allow for panel data. This also provides us the opportunity to demonstrate the moment-

evaluator program version of gmm. Our discussion is based on Blundell, Griffith, andWindmeijer (2002).

Also see Wooldridge (1999) for further discussion of nonlinear panel-data models.

First, we expand (7) for panel data. With individual heterogeneity term 𝜂𝑖, we have

𝐸(𝑦𝑖𝑡|x𝑖𝑡, 𝜂𝑖) = exp(x′
𝑖𝑡β + 𝜂𝑖) = 𝜇𝑖𝑡𝜈𝑖

where 𝜇𝑖𝑡 = exp(x′
𝑖𝑡β) and 𝜈𝑖 = exp(𝜂𝑖). Note that there is no constant term in this model, because its

effect cannot be disentangled from 𝜈𝑖. With an additive idiosyncratic error term, we have the regression

model

𝑦𝑖𝑡 = 𝜇𝑖𝑡𝜈𝑖 + 𝜖𝑖𝑡

We do not impose the assumption 𝐸(x𝑖𝑡𝜂𝑖) = 0, so 𝜂𝑖 can be considered a fixed effect in the sense that

it may be correlated with the regressors.

As discussed by Blundell, Griffith, and Windmeijer (2002), if x𝑖𝑡 is strictly exogenous, meaning

𝐸(x𝑖𝑡𝜖𝑖𝑠) = 0 for all 𝑡 and 𝑠, then we can estimate the parameters of the model by using the sample

moment conditions

∑
𝑖

∑
𝑡
x𝑖𝑡 (𝑦𝑖𝑡 − 𝜇𝑖𝑡

𝑦𝑖
𝜇𝑖

) = 0 (9)

where 𝑦𝑖 and 𝜇𝑖 are the means of 𝑦𝑖𝑡 and 𝜇𝑖𝑡 for panel 𝑖, respectively. Because 𝜇𝑖 depends on the

parameters of the model, it must be recomputed each time gmm needs to evaluate the residual equation.

Therefore, we cannot use the substitutable expression version of gmm. Instead, we must use the moment-
evaluator program version.
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The moment-evaluator program version of gmm functions much like the function-evaluator program

versions of nl and nlsur. The program you write is passed one or more variables to be filled in with

the residuals evaluated at the parameter values specified in an option passed to your program. For the

fixed-effects Poisson model with strictly exogenous regressors, our first crack at a function-evaluator

program is

program gmm_poi
version 19.5 // (or version 19 if you do not have StataNow)
syntax varlist if, at(name)
quietly {

tempvar mu mubar ybar
generate double ‘mu’ = exp(x1*‘at’[1,1] + x2*‘at’[1,2] ///

+ x3*‘at’[1,3]) ‘if’
egen double ‘mubar’ = mean(‘mu’) ‘if’, by(id)
egen double ‘ybar’ = mean(y) ‘if’, by(id)
replace ‘varlist’ = y - ‘mu’*‘ybar’/‘mubar’ ‘if’

}
end

You can save your program in an ado-file named name.ado, where name is the name you use for your

program; here wewould save the program in the ado-file gmm poi.ado. Alternatively, if you are working
from within a do-file, you can simply define the program before calling gmm. The syntax statement

declares we are expecting to receive varlist that will contain the names of variables whose values we are

to replace with the values of the residual equations and an if expression that will mark the estimation

sample; because our model has one residual equation, varlist will consist of one variable. at() is a

required option to our program, and it will contain the name of a matrix containing the parameter values

at which we are to evaluate the residual equation. All moment-evaluator programsmust accept the varlist,

if condition, and at() option.

The first part of our program computes 𝜇𝑖𝑡. In the model we will fit shortly, we have three regressors,

named x1, x2, and x3. The ‘at’ vector will have three elements, one for each of those variables. Notice
that we included ‘if’ at the end of each statement that affects variables to restrict the computations to

the relevant estimation sample. The two egen statements compute 𝜇𝑖 and 𝑦𝑖; in the example dataset

we will use shortly, the panel variable is named id, and for simplicity, we hardcoded that variable into
our program as well. Finally, we compute the residual equation, which is the portion of (9) bound in

parentheses.

Example 11: Panel Poisson with strictly exogenous regressors
To fit our model, we type

. use https://www.stata-press.com/data/r19/poisson1

. gmm gmm_poi, nequations(1) parameters(b1 b2 b3)
> instruments(x1 x2 x3, noconstant) vce(cluster id) onestep
Step 1:
Iteration 0: GMM criterion Q(b) = 51.99142
Iteration 1: GMM criterion Q(b) = .04345191
Iteration 2: GMM criterion Q(b) = 8.720e-06
Iteration 3: GMM criterion Q(b) = 7.115e-13
Iteration 4: GMM criterion Q(b) = 5.130e-27
note: model is exactly identified.
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GMM estimation
Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 409

(Std. err. adjusted for 45 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

/b1 1.94866 .1000265 19.48 0.000 1.752612 2.144709
/b2 -2.966119 .0923592 -32.12 0.000 -3.14714 -2.785099
/b3 1.008634 .1156561 8.72 0.000 .781952 1.235315

Instruments for equation 1: x1 x2 x3

All three of our regressors are strictly exogenous, so they can serve as their own regressors. There

is no constant term in the model (it would be unidentified), so we exclude a constant term from our

list of instruments. We have one residual equation as indicated by nequations(1), and we have three
parameters, named b1, b2, and b3. The order in which you declare parameters in the parameters()
option determines the order in which they appear in the ‘at’ vector in the moment-evaluator program.

We specified vce(cluster id) to obtain standard errors that allow for correlation among observations

within each panel.

The program we just wrote is sufficient to fit the model to the poisson1 dataset, but if we want to

fit that model to other datasets, we need to change the variable names and perhaps account for having a

different number of parameters as well. Despite those limitations, if you just want to fit a single model,

that program is adequate.

Next, we take advantage of the ability to specify full equation names in the parameters() option

and rewrite our evaluator program so that we can more easily change the variables in our model. This

approach is particularly useful if some of the residual equations are linear in the parameters because then

we can use matrix score (see [P] matrix score) to evaluate those moments.

Our new evaluator program is

program gmm_poieq
version 19.5 // (or version 19 if you do not have StataNow)
syntax varlist if, at(name)
quietly {

tempvar mu mubar ybar
matrix score double ‘mu’ = ‘at’ ‘if’, eq(#1)
replace ‘mu’ = exp(‘mu’)
egen double ‘mubar’ = mean(‘mu’) ‘if’, by(id)
egen double ‘ybar’ = mean(y) ‘if’, by(id)
replace ‘varlist’ = y - ‘mu’*‘ybar’/‘mubar’ ‘if’

}
end

Rather than using generate to compute the temporary variable ‘mu’, we used matrix score to

obtain the linear combination x′
𝑖𝑡β and then called replace to compute exp(x′

𝑖𝑡β).

https://www.stata.com/manuals/pmatrixscore.pdf#pmatrixscore
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Example 12: Panel Poisson using matrix score
To fit our model, we type

. use https://www.stata-press.com/data/r19/poisson1

. gmm gmm_poieq, nequations(1) parameters({y:x1 x2 x3})
> instruments(x1 x2 x3, noconstant) vce(cluster id) onestep
Step 1:
Iteration 0: GMM criterion Q(b) = 51.99142
Iteration 1: GMM criterion Q(b) = .04345191
Iteration 2: GMM criterion Q(b) = 8.720e-06
Iteration 3: GMM criterion Q(b) = 7.115e-13
Iteration 4: GMM criterion Q(b) = 5.130e-27
note: model is exactly identified.
GMM estimation
Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 409

(Std. err. adjusted for 45 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

x1 1.94866 .1000265 19.48 0.000 1.752612 2.144709
x2 -2.966119 .0923592 -32.12 0.000 -3.14714 -2.785099
x3 1.008634 .1156561 8.72 0.000 .781952 1.235315

Instruments for equation 1: x1 x2 x3

Instead of specifying simple parameter names in the parameters() option, we specified a linear

combination name and the variables associated with that combination. We named our linear combination

y, but you could use any valid Stata name. When we use this syntax, the rows of the coefficient table are

grouped by the equation names.

Say we wanted to refit our model using just x1 and x3 as regressors. We do not need to make any

changes to gmm poieq. We just change the specification of the parameters() option:

. gmm gmm_poieq, nequations(1) parameters(y:x1 y:x3)
> instruments(x1 x3, noconstant) vce(cluster id) onestep

In this evaluator program, we have still hardcoded the name of the dependent variable. The next two

examples include methods to tackle that shortcoming.

Technical note
Say we specify the parameters() option like this:

. gmm ..., parameters({y1:x1 x2 _cons} {y2:_cons} {y3:x1 _cons})

Then, the ‘at’ vector passed to our program will have the following column names attached to it:

‘at’[1,6]
y1: y1: y1: y2: y3: y3:
x1 x2 _cons _cons x1 _cons
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Typing

. matrix score double eq1 = ‘at’, eq(#1)

is equivalent to typing

. generate double eq1 = x1*‘at’[1,1] + x2*‘at’[1,2] + ‘at’[1,3]

with one important difference. If we change some of the variables in the parameters() option when we
call gmm, matrix score will compute the correct linear combination. If we were to use the generate
statement instead, then every time we wanted to change the variables in our model, we would have to

modify that statement as well.

The command

. matrix score double alpha = ‘at’, eq(#2)

is equivalent to

. scalar alpha = ‘at’[1,4]

Thus, even if you specify linear combination and variable names in the parameters() option, you can
still have scalar parameters in your model.

When past values of the idiosyncratic error term affect the value of a regressor, we say that regressor

is predetermined. When one or more regressors are predetermined, sample moment condition (8) is

no longer valid. However, Chamberlain (1992) shows that a simple alternative is to consider moment

conditions of the form

∑
𝑖

𝑇
∑
𝑡=2

x𝑖,𝑡−1 (𝑦𝑖,𝑡−1 − 𝜇𝑖,𝑡−1
𝑦𝑖𝑡
𝜇𝑖𝑡

) = 0 (10)

Also see Wooldridge (1997) and Windmeijer (2000) for other moment conditions that can be used with

predetermined regressors.

Example 13: Panel Poisson with predetermined regressors
Here we refit the previous model, treating all the regressors as predetermined and using the moment

conditions in (10). Our moment-evaluator program is

program gmm_poipre
version 19.5 // (or version 19 if you do not have StataNow)
syntax varlist if, at(name) mylhs(varlist)
quietly {

tempvar mu
matrix score double ‘mu’ = ‘at’ ‘if’, eq(#1)
replace ‘mu’ = exp(‘mu’)
replace ‘varlist’ = L.‘mylhs’ - L.‘mu’*‘mylhs’/‘mu’ ‘if’

}
end

To compute the residual equation, we used lag-operator notation so that Stata properly handles gaps in

our panel dataset. We also made our program accept an additional option that we will use to pass in the

dependent variable. When we specify this option in our gmm statement, it will get passed to our evaluator
program because gmm will not recognize the option as one of its own. Equation (10) shows that we are

to use the first lags of the regressors as instruments, so we type
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. gmm gmm_poipre, mylhs(y) nequations(1) vce(cluster id) onestep
> parameters({y:x1 x2 x3}) instruments(L.(x1 x2 x3), noconstant)
note: 45 missing values returned for equation 1 at initial values.
Step 1:
Iteration 0: GMM criterion Q(b) = 76.652367
Iteration 1: GMM criterion Q(b) = 1.9118192
Iteration 2: GMM criterion Q(b) = .06634724
Iteration 3: GMM criterion Q(b) = .0000233
Iteration 4: GMM criterion Q(b) = 2.998e-12
Iteration 5: GMM criterion Q(b) = 4.888e-26
note: model is exactly identified.
GMM estimation
Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 364

(Std. err. adjusted for 45 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

x1 2.088246 .2513626 8.31 0.000 1.595584 2.580907
x2 -2.905504 .2133908 -13.62 0.000 -3.323742 -2.487266
x3 1.121081 .201654 5.56 0.000 .7258459 1.516315

Instruments for equation 1: L.x1 L.x2 L.x3

Here, like earlier with strictly exogenous regressors, the number of instruments equals the number of

parameters, so there is no gain to using the two-step or iterated estimator. However, if you do have more

instruments than parameters, you will most likely want to use one of those other estimators instead.

The note at the top of the output is given because we have 45 panels in our dataset. Our residual

equation includes lagged terms and therefore cannot be evaluated for the first time period within each

panel. Notes like this can be ignored once you know why they occurred. If you receive a note that you

were not expecting, you should first investigate the cause of the note before trusting the results.

Instead of making our program accept the mylhs() option, we could have used Stata’s coleq macro
function to determine the dependent variable based on the column names attached to the ‘at’ vector; see
[P] macro. Then, we could refit our model with a different dependent variable by changing the lcname

used in the parameters() option. In the next example, we take this approach.

In the previous example, we used x𝑖,𝑡−1 as instruments. A more efficient GMM estimator would also

use x𝑖,𝑡−2, x𝑖,𝑡−3, . . . , x𝑖,1 as instruments in period 𝑡 as well. gmm’s xtinstruments() option allows

you to specify instrument lists that grow as 𝑡 increases. Later, we discuss the xtinstruments() option
in detail in the context of linear dynamic panel-data models.

When a regressor is contemporaneously correlated with the idiosyncratic error term, we say that re-

gressor is endogenous. Windmeijer (2000) shows that we can use the moment condition

∑
𝑖

𝑇
∑
𝑡=3

x𝑖,𝑡−2 ( 𝑦𝑖𝑡
𝜇𝑖𝑡

−
𝑦𝑖,𝑡−1

𝜇𝑖,𝑡−1
)

Here we use the second lag of the endogenous regressor as an instrument. If a variable is strictly exoge-

nous, it can of course serve as its own instrument.

https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex14
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex12
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Example 14: Panel Poisson with endogenous regressors
Here we refit the model, treating x3 as endogenous and x1 and x2 as strictly exogenous. Our moment-

evaluator program is

program gmm_poiend
version 19.5 // (or version 19 if you do not have StataNow)
syntax varlist if, at(name)
quietly {

tempvar mu
matrix score double ‘mu’ = ‘at’ ‘if’, eq(#1)
replace ‘mu’ = exp(‘mu’)
local mylhs : coleq ‘at’
local mylhs : word 1 of ‘mylhs’
replace ‘varlist’ = ‘mylhs’/‘mu’ - L.‘mylhs’/L.‘mu’ ‘if’

}
end

Now, we call gmm using x1, x2, and L2.x3 as instruments:

. use https://www.stata-press.com/data/r19/poisson2

. gmm gmm_poiend, nequations(1) vce(cluster id) onestep
> parameters(y:x1 y:x2 y:x3) instruments(x1 x2 L2.x3, noconstant)
note: 500 missing values returned for equation 1 at initial values.
Step 1:
Iteration 0: GMM criterion Q(b) = 61.832288
Iteration 1: GMM criterion Q(b) = .03402584
Iteration 2: GMM criterion Q(b) = .01101288
Iteration 3: GMM criterion Q(b) = 6.339e-06
Iteration 4: GMM criterion Q(b) = 1.620e-12
Iteration 5: GMM criterion Q(b) = 1.312e-25
note: model is exactly identified.
GMM estimation
Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 3,766

(Std. err. adjusted for 500 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

x1 1.8141 .2688318 6.75 0.000 1.2872 2.341001
x2 -2.982671 .1086666 -27.45 0.000 -3.195653 -2.769688
x3 4.126518 6.369334 0.65 0.517 -8.357147 16.61018

Instruments for equation 1: x1 x2 L2.x3

The note at the top of the output is given because that we have 500 panels in our dataset. As in the

previous example, our residual equation includes lagged terms and therefore cannot be evaluated for the

first time period within each panel. Instead of using just x𝑖,𝑡−2 as an instrument, we could use all further

lags of x𝑖𝑡 as instruments as well.

https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex13
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Rational-expectations models
Macroeconomic models typically assume that agents’ expectations about the future are formed ratio-

nally. By rational expectations, we mean that agents use all information available when forming their

forecasts, so the forecast error is uncorrelated with the information available when the forecast was made.

Say that at time 𝑡, people make a forecast, ̂𝑦𝑡+1, of variable 𝑦 in the next period. IfΩ𝑡 denotes all available

information at time 𝑡, then rational expectations implies that 𝐸 {( ̂𝑦𝑡+1 − 𝑦𝑡+1)|Ω𝑡} = 0. If Ω𝑡 denotes

observable variables such as interest rates or prices, then this conditional expectation can serve as the

basis of a moment condition for GMM estimation.

Example 15: Fitting a Euler equation
In a well-known article, Hansen and Singleton (1982) consider a model of portfolio decision making

and discuss parameter estimation using GMM. We will consider a simple example with one asset in which

the agent can invest. Aconsumer wants to maximize the present value of his or her lifetime utility derived

from buying a good. On the one hand, the consumer is impatient, so he or she would rather buy today

than wait until tomorrow. On the other hand, by buying less today, the consumer can invest more money,

earning more interest that can be used to buy more of the good tomorrow. Thus, there is a tradeoff

between having cake today or sacrificing a bit today to have more cake tomorrow.

If we assume a specific form for the agent’s utility function, known as the constant relative-risk aver-

sion utility function, we can show that the Euler equation is

𝐸 [z𝑡 {1 − 𝛽(1 + 𝑟𝑡+1)(𝑐𝑡+1/𝑐𝑡)−𝛾}] = 0

where 𝛽 and 𝛾 are the parameters to estimate, 𝑟𝑡 is the return to the financial asset, and 𝑐𝑡 is consumption

in period 𝑡. 𝛽 measures the agent’s discount factor. If 𝛽 is near 1, the agent is patient and is more willing

to forgo consumption this period. If 𝛽 is close to 0, the agent is less patient and prefers to consume more

now. The parameter 𝛾 characterizes the agent’s utility function. If 𝛾 = 0, the utility function is linear.

As 𝛾 tends toward 1, the utility function tends toward 𝑢 = log(𝑐).
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We have data on three-month Treasury bills (𝑟𝑡) and consumption expenditures (𝑐𝑡). As instruments,

we will use lagged rates of return and past growth rates of consumption. We will use the two-step

estimator and a weight matrix that allows for heteroskedasticity and autocorrelation up to four lags with

the Bartlett kernel. In Stata, we type

. use https://www.stata-press.com/data/r19/cr

. generate cgrowth = c / L.c
(1 missing value generated)
. gmm (1 - {b=1}*(1+F.r)*(F.c/c)^(-1*{gamma=1})),
> inst(L.r L2.r cgrowth L.cgrowth) wmat(hac nw 4) twostep
note: 1 missing value returned for equation 1 at initial values.
Step 1:
Iteration 0: GMM criterion Q(b) = .00226482
Iteration 1: GMM criterion Q(b) = .00054369
Iteration 2: GMM criterion Q(b) = .00053904
Iteration 3: GMM criterion Q(b) = .00053904
Step 2:
Iteration 0: GMM criterion Q(b) = .0600729
Iteration 1: GMM criterion Q(b) = .0596369
Iteration 2: GMM criterion Q(b) = .0596369
GMM estimation
Number of parameters = 2
Number of moments = 5
Initial weight matrix: Unadjusted Number of obs = 239
GMM weight matrix: HAC Bartlett 4

HAC
Coefficient std. err. z P>|z| [95% conf. interval]

/b .9204617 .0134646 68.36 0.000 .8940716 .9468518
/gamma -4.222361 1.473895 -2.86 0.004 -7.111143 -1.333579

HAC standard errors based on Bartlett kernel with 4 lags.
Instruments for equation 1: L.r L2.r cgrowth L.cgrowth _cons

The note at the top of the output is given because the forward operator in our substitutable expression

says that residuals cannot be computed for the last observation. In addition, two observations are omitted

because the L2.r instrument has missing values in the first two time periods. Therefore, of the 242

observations in our dataset, 239 are used to fit the model. Our estimate of 𝛽 is near 1, in line with

expectations and published results. However, our estimate of 𝛾 implies risk-loving behavior and therefore
a poorly specified model.

Also notice our use of the forward operator to refer to the values of 𝑟 and 𝑐 one period ahead; time-
series operators are allowed in substitutable expressions as long as you have previously tsset (see

[TS] tsset) your data. See [U] 13.10 Time-series operators for more information on time-series op-

erators.

System estimators
In many economic models, two or more variables are determined jointly through a system of si-

multaneous equations. Indeed, some of the earliest work in econometrics, including that of the Cowles

Commission, was centered around estimation of the parameters of simultaneous equations. The 2SLS and

https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/u13.pdf#u13.10Time-seriesoperators
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instrumental-variables estimators we have already discussed are used in some circumstances to estimate

such parameters. Here we focus on the joint estimation of all the parameters of systems of equations,

and we begin with the well-known three-stage least-squares (3SLS) estimator.

Recall that the 2SLS estimator is based on the moment conditions 𝐸(z𝑢) = 0. The 2SLS estimator can

be used to estimate the parameters of one equation of a system of structural equations. Moreover, with the

2SLS estimator, we do not even need to specify the structural relationship among all the endogenous vari-

ables; we need to specify only the equation on which interest focuses and simply assume reduced-form

relationships among the endogenous regressors of the equation of interest and the exogenous variables

of the model. If we are willing to specify the complete system of structural equations, then assuming

our model is correctly specified, by estimating all the equations jointly, we can obtain estimates that are

more efficient than equation-by-equation 2SLS.

In [R] reg3, we fit a simple two-equation macroeconomic model,

consump = 𝛽0 + 𝛽1wagepriv + 𝛽2wagegovt + 𝜖1 (11)

wagepriv = 𝛽3 + 𝛽4consump + 𝛽5govt + 𝛽6capital1 + 𝜖2 (12)

where consump represents aggregate consumption; wagepriv and wagegovt are total wages paid by

the private and government sectors, respectively; govt is government spending; and capital1 is the

previous period’s capital stock. We are not willing to assume that 𝜖1 and 𝜖2 are independent, so we must

treat both consump and wagepriv as endogenous. Suppose that a random shock makes 𝜖2 positive.

Then by (12), wagepriv will be higher than it otherwise would. Moreover, 𝜖1 will be either higher or

lower, depending on the correlation between it and 𝜖2. The shock to 𝜖2 has made both wagepriv and

𝜖1 move, which implies that in (11), wagepriv is an endogenous regressor. A similar argument shows

that consump is an endogenous regressor in the second equation. In our model, wagegovt, govt, and
capital1 are all exogenous variables.

Let z1 and z2 denote the instruments for the first and second equations, respectively; we will discuss

what comprises them shortly. We have two sets of moment conditions:

𝐸 { z1(consump − 𝛽0 − 𝛽1wagepriv − 𝛽2wagegovt)
z2(wagepriv − 𝛽3 − 𝛽4consump − 𝛽5govt − 𝛽6capital1)} = 0 (13)

One of the defining characteristics of 3SLS is that the errors are homoskedastic conditional on the instru-

mental variables. Using this assumption, we have

𝐸 [{z1𝜖1
z2𝜖2

} {z′
1𝜖1 z′

2𝜖2}] = {𝜎11𝐸(z1z
′
1) 𝜎12𝐸(z1z

′
2)

𝜎21𝐸(z2z
′
1) 𝜎22𝐸(z2z

′
2)} (14)

where 𝜎𝑖𝑗 = cov(𝜖𝑖, 𝜖𝑗). Let 𝚺 denote the 2 × 2 matrix with typical element 𝜎𝑖𝑗.

The second defining characteristic of the 3SLS estimator is that it uses all the exogenous variables as

instruments for all equations; here z1 = z2 = (wagegovt, govt, capital1, 1), where the 1 indicates a
constant term. From our discussion on the weight matrix and two-step estimation, we want to use the

sample analogue of the matrix inverse of the right-hand side of (14) as our weight matrix.

To implement the 3SLS estimator, we apparently need to know𝚺 or at least have a consistent estimator

of it. The solution is to fit (11) and (11) by 2SLS, use the sample residuals 𝜖1 and 𝜖2 to estimate 𝚺, then

estimate the parameters of (13) via GMM by using the weight matrix just discussed.

https://www.stata.com/manuals/rreg3.pdf#rreg3
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Example 16: 3SLS estimation
3SLS is easier to do using gmm than it sounds. The 3SLS estimator is a two-step GMM estimator. In the

first step, we do the equivalent of 2SLS on each equation, and then we compute a weight matrix based on

(14). Finally, we perform a second step of GMM with this weight matrix.

In Stata, we type

. use https://www.stata-press.com/data/r19/klein, clear

. gmm (eq1: consump - {xb: wagepriv wagegovt _cons})
> (eq2: wagepriv - {xc: consump govt capital1 _cons}),
> instruments(eq1: wagegovt govt capital1)
> instruments(eq2: wagegovt govt capital1)
> winitial(unadjusted, independent) wmatrix(unadjusted) twostep
Step 1:
Iteration 0: GMM criterion Q(b) = 4195.4487
Iteration 1: GMM criterion Q(b) = .22175631
Iteration 2: GMM criterion Q(b) = .22175631 (backed up)
Step 2:
Iteration 0: GMM criterion Q(b) = .09716589
Iteration 1: GMM criterion Q(b) = .07028208
Iteration 2: GMM criterion Q(b) = .07028208
GMM estimation
Number of parameters = 7
Number of moments = 8
Initial weight matrix: Unadjusted Number of obs = 22
GMM weight matrix: Unadjusted

Coefficient Std. err. z P>|z| [95% conf. interval]

xb
wagepriv .8012754 .1279329 6.26 0.000 .5505314 1.052019
wagegovt 1.029531 .3048424 3.38 0.001 .432051 1.627011

_cons 19.3559 3.583772 5.40 0.000 12.33184 26.37996

xc
consump .4026076 .2567312 1.57 0.117 -.1005764 .9057916

govt 1.177792 .5421253 2.17 0.030 .1152461 2.240338
capital1 -.0281145 .0572111 -0.49 0.623 -.1402462 .0840173

_cons 14.63026 10.26693 1.42 0.154 -5.492552 34.75306

Instruments for equation eq1: wagegovt govt capital1 _cons
Instruments for equation eq2: wagegovt govt capital1 _cons

The independent suboption of the winitial() option tells gmm to assume that the residuals are in-

dependent across moment conditions; this suboption sets 𝜎21 = 𝜎12 = 0 in (14). Assuming both ho-

moskedasticity and cross-equation independence is equivalent to fitting the two equations of our model

independently by 2SLS. The wmatrix() option controls how the weight matrix is computed on the basis

of the first-step parameter estimates before the second step of estimation; here we request a weight matrix

that assumes conditional homoskedasticity but that does not impose the cross-equation independence like

the initial weight matrix we used. In this example, we also illustrated how to name residual equations

and how equation names can be used in the instruments() option. Our results are identical to those in
[R] reg3.

https://www.stata.com/manuals/rreg3.pdf#rreg3


gmm — Generalized method of moments estimation 44

We could have specified our instruments with the syntax

instruments(wagegovt govt capital1)

because gmm uses the variables listed in the instruments() option for all equations unless you specify
which equations the list of instruments is to be used with. However, we wanted to emphasize that the

same instruments are being used for both equations; in a moment, we will discuss an estimator that does

not use the same instruments in all equations.

In the previous example, if we omit the twostep option, the resulting coefficients will be equivalent
to equation-by-equation 2SLS, which Wooldridge (2010, 216) calls the “system 2SLS estimator”. Elimi-

nating the twostep option makes the wmatrix() option irrelevant, so that option can be eliminated as

well.

So far, we have developed the traditional 3SLS estimator. Wooldridge (2010, chap. 8) discusses the

“GMM 3SLS” estimator, which extends the traditional 3SLS estimator by allowing for heteroskedasticity

and different instruments for different equations.

Generalizing (14) to an arbitrary number of equations, we have

𝐸 (Z′εε′Z) = 𝐸 (Z′𝚺Z) (15)

where

Z =
⎡
⎢⎢
⎣

z1 0 · · · 0

0 z2 · · · 0

⋮ ⋮ ⋱ ⋮
0 0 · · · z𝑚

⎤
⎥⎥
⎦

and 𝚺 is now 𝑚 × 𝑚. Equation (15) is the multivariate analogue of a homoskedasticity assumption; for

each equation, the error variance is constant for all observations, as is the covariance between any two

equations’ errors.

We can relax this homoskedasticity assumption by considering different weight matrices. For exam-

ple, if we continue to assume that observations are independent but not necessarily identically distributed,

then by specifying wmatrix(robust), we would obtain a weight matrix that allows for heteroskedas-

ticity:

𝑊 = 1
𝑁

∑
𝑖
Z′

𝑖 ̂𝜖𝑖 ̂𝜖′
𝑖Z𝑖

This is the weight matrix in Wooldridge’s (2010, 218) Procedure 8.1, “GMM with Optimal Weighting

Matrix”. By default, gmm would report standard errors based on his covariance matrix (8.27); specify-

ing vce(unadjusted) would provide the optimal GMM standard errors. If you have multiple obser-

vations for each individual or firm in your dataset, you could specify wmatrix(cluster id), where id

identifies individuals or firms. This would allow arbitrary within-individual correlation, though it does

not account for an individual-specific fixed or random effect. In both cases, we would continue to use

winitial(unadjusted, independent) so that the first-step estimates are the system 2SLS estimates.

Wooldridge (2010, sec. 9.6) discusses instances where it is necessary to use different instruments

in different equations. The GMM 3SLS estimator with different instruments in different equations but

with conditional homoskedasticity is what Hayashi (2000, 275) calls the “full-information instrumental-

variables efficient” (FIVE) estimator. Implementing the FIVE estimator is easy with gmm. For example,
say we have a two-equation system where kids, age, income, and education are all valid instruments
for the first equation but where education is not a valid instrument for the second equation. Then, our
syntax would take the form

https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex16


gmm — Generalized method of moments estimation 45

gmm (rexp 1) (rexp 2), instruments(1:kids age income education) ///
instruments(2:kids age income)

The following syntax is equivalent:

gmm (rexp1) (rexp2), instruments(kids age income)
instruments(1:education)

Because we did not specify a list of equations in the second example’s first instruments() option,

those variables are used as instruments in both equations. You can use whichever syntax you prefer. The

first requires a bit more typing but is arguably more transparent.

If all the regressors in the model are exogenous, then the traditional 3SLS estimator is the seemingly

unrelated regression (SUR) estimator. Here you would specify all the regressors as instruments.

Dynamic panel-data models
Commands in Stata that work with panel data expect the data to be in the “long” format, meaning

that each row of the dataset consists of one subobservation that is a member of a logical observation

(represented by the panel identifier variable). See [D] reshape for a discussion of the long versus “wide”

data forms. gmm is no exception in this respect when used with panel data. From a theoretical perspective,

however, it is sometimes easier to view GMM estimators for panel data as system estimators in which we

have 𝑁 observations on a system of 𝑇 equations, where 𝑁 and 𝑇 are the number of observations and

panels, respectively, rather than a single-equation estimator with 𝑁𝑇 observations. Usually, each of the

𝑇 equations will in fact be the same, though we will want to specify different instruments for each of

these equations.

In a dynamic panel-data model, lagged values of the dependent variable are included as regressors.

Here we consider a simple model with one lag of the dependent variable 𝑦 as a regressor and a vector of

strictly exogenous regressors, x𝑖𝑡:

𝑦𝑖𝑡 = 𝜌𝑦𝑖,𝑡−1 + x′
𝑖𝑡β + 𝑢𝑖 + 𝜖𝑖𝑡 (16)

𝑢𝑖 can be either a fixed- or a random-effect term in the sense that we do not require x𝑖𝑡 to be independent

of it. Even with the assumption that 𝜖𝑖𝑡 is i.i.d., the presence of both 𝑦𝑖,𝑡−1 and 𝑢𝑖 in (16) renders both

the standard fixed- and random-effects estimators to be inconsistent because of the well-known Nickell

(1981) bias. OLS regression of 𝑦𝑖𝑡 on 𝑦𝑖,𝑡−1 and x𝑖𝑡 also produces inconsistent estimates because 𝑦𝑖,𝑡−1
will be correlated with the error term.

Technical note
Stata has the xtabond, xtdpd, and xtdpdsys commands (see [XT] xtabond, [XT] xtdpd, and

[XT] xtdpdsys) to fit equations like (16); for everyday use, those commands are preferred because they

offer features such as Windmeijer (2005) bias-corrected standard errors to account for the bias of tra-

ditional two-step GMM standard errors seen in dynamic panel-data models and, being linear estimators,

only require you to specify variable names instead of complete equations. However, using gmm has sev-
eral pedagogical advantages, including the ability to tie those model-specific commands into a more

general framework, a clear illustration of how certain types of instrument matrices for panel-data models

are formed, and demonstrations of several advanced features of gmm.

First-differencing (16) removes the panel-specific 𝑢𝑖 term:

𝑦𝑖𝑡 − 𝑦𝑖,𝑡−1 = 𝜌(𝑦𝑖,𝑡−1 − 𝑦𝑖,𝑡−2) + (x𝑖𝑡 − x𝑖,𝑡−1)′β + (𝜖𝑖𝑡 − 𝜖𝑖,𝑡−1) (17)

https://www.stata.com/manuals/dreshape.pdf#dreshape
https://www.stata.com/manuals/xtxtabond.pdf#xtxtabond
https://www.stata.com/manuals/xtxtdpd.pdf#xtxtdpd
https://www.stata.com/manuals/xtxtdpdsys.pdf#xtxtdpdsys
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However, now (𝑦𝑖,𝑡−1 − 𝑦𝑖,𝑡−2) is correlated with (𝜖𝑖𝑡 − 𝜖𝑖,𝑡−1). Thus, we need an instrument that is

correlated with the former but not the latter. The lagged variables in (17) mean that the equation is not

estimable for 𝑡 < 3, so consider when 𝑡 = 3. We have

𝑦𝑖3 − 𝑦𝑖2 = 𝜌(𝑦𝑖2 − 𝑦𝑖1) + (x𝑖3 − x𝑖2)′β + (𝜖𝑖3 − 𝜖𝑖2) (18)

In the Arellano–Bond (1991) estimator, lagged levels of the dependent variable are used as instruments.

With our assumption that the 𝜖𝑖𝑡 are i.i.d., (16) intimates that 𝑦𝑖1 can serve as an instrumental variable

when we fit (18).

Next, consider (17) when 𝑡 = 4. We have

𝑦𝑖4 − 𝑦𝑖3 = 𝜌(𝑦𝑖3 − 𝑦𝑖2) + (x𝑖4 − x𝑖3)′β + (𝜖𝑖4 − 𝜖𝑖3)

Now, (16) shows that both 𝑦𝑖1 and 𝑦𝑖2 are uncorrelated with the error term (𝜖𝑖4 − 𝜖𝑖3), so we have two
instruments available. For 𝑡 = 5, you can show that 𝑦𝑖1, 𝑦𝑖2, and 𝑦𝑖3 can serve as instruments. As

may now be apparent, one of the key features of these dynamic panel-data models is that the available

instruments depend on the time period, 𝑡, as was the case for some of the panel Poisson models we

considered earlier. Because the x𝑖𝑡 are strictly exogenous by assumption, they can serve as their own

instruments.

The initial weight matrix that is appropriate for the GMM dynamic panel-data estimator is slightly

more involved than the unadjusted matrix that we have used in most of our previous examples and that

assumes the errors are i.i.d. First, rewrite (17) for panel 𝑖 as

y𝑖 − y𝐿
𝑖 = 𝜌 (y𝐿

𝑖 − y𝐿𝐿
𝑖 ) + (X𝑖 − X𝐿

𝑖 )β + (ε𝑖 − ε𝐿
𝑖 )

where y𝑖 = (𝑦𝑖3, . . . , 𝑦𝑖𝑇) and y𝐿
𝑖 = (𝑦𝑖2, . . . , 𝑦𝑖,𝑇 −1), y𝐿𝐿

𝑖 = (𝑦𝑖1, . . . , 𝑦𝑖,𝑇 −2), and X𝑖, X
𝐿
𝑖 , ε𝑖, and ε

𝐿
𝑖

are defined analogously. Let Z denote the full matrix of instruments for panel 𝑖, including the variables
specified in both the instruments() and xtinstruments() options; the exact structure is detailed in
Methods and formulas.

By assumption, 𝜖𝑖𝑡 is i.i.d., so the first difference (𝜖𝑖𝑡 − 𝜖𝑖,𝑡−1) is necessarily autocorrelated with

correlation −0.5. Therefore, we should not use a weight matrix that assumes the errors are independent.

For dynamic panel-data models, we can show that the appropriate initial weight matrix is

Ŵ = ( 1
𝑁

∑
𝑖
Z′

𝑖H𝐷Z𝑖)
−1

where

H𝐷 =
⎡
⎢
⎢
⎢
⎣

1 −0.5 0 . . . 0 0
−0.5 1 −0.5 . . . 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 . . . 1 −0.5
0 0 0 . . . −0.5 1

⎤
⎥
⎥
⎥
⎦

We can obtain this initial weight matrix by specifying winitial(xt D). The letter D indicates that the

equation we are estimating is specified in first differences.

https://www.stata.com/manuals/rgmm.pdf#rgmmMethodsandformulas
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Example 17: Arellano–Bond estimator
Say we want to fit the model

n𝑖𝑡 = 𝜌 n𝑖,𝑡−1 + 𝛽1w𝑖𝑡 + 𝛽2w𝑖,𝑡−1 + 𝛽3k𝑖𝑡 + 𝛽4k𝑖,𝑡−1 + 𝑢𝑖 + 𝜖𝑖𝑡 (19)

where we assume that w𝑖𝑡 and k𝑖𝑡 are strictly exogenous. First-differencing, our residual equation is

𝜖∗
𝑖𝑡 = (𝜖𝑖𝑡 − 𝜖𝑖,𝑡−1) =n𝑖𝑡 − n𝑖,𝑡−1 − 𝜌 (n𝑖,𝑡−1 − n𝑖,𝑡−2) − 𝛽1(w𝑖𝑡 − w𝑖,𝑡−1)

− 𝛽2(w𝑖,𝑡−1 − w𝑖,𝑡−2) − 𝛽3(k𝑖𝑡 − k𝑖,𝑡−1) − 𝛽4(k𝑖,𝑡−1 − k𝑖,𝑡−2)
(20)

In Stata, we type

. use https://www.stata-press.com/data/r19/abdata

. gmm (D.n - {rho}*LD.n - {xb:D.w LD.w D.k LD.k}),
> xtinstruments(n, lags(2/.)) instruments(D.w LD.w D.k LD.k, noconstant)
> deriv(/rho = -1*LD.n) deriv(/xb = -1) winitial(xt D) onestep
Step 1:
Iteration 0: GMM criterion Q(b) = .0011455
Iteration 1: GMM criterion Q(b) = .00009103
Iteration 2: GMM criterion Q(b) = .00009103
GMM estimation
Number of parameters = 5
Number of moments = 32
Initial weight matrix: XT D Number of obs = 751

(Std. err. adjusted for 140 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

rho
_cons .8041712 .1199819 6.70 0.000 .5690111 1.039331

xb
w

D1. -.5600476 .1619472 -3.46 0.001 -.8774583 -.242637
LD. .3946699 .1092229 3.61 0.000 .1805969 .6087429

k
D1. .3520286 .0536546 6.56 0.000 .2468676 .4571897
LD. -.2160435 .0679689 -3.18 0.001 -.3492601 -.0828269

Instruments for equation 1:
XT-style: L(2/.).n
Standard: D.w LD.w D.k LD.k

Because w and k are strictly exogenous, we specified their variants that appear in (20) in the

instruments() option; because there is no constant term in the model, we specified noconstant to

omit the constant from the instrument list.

We specified xtinstruments(n, lags(2/.)) to tell gmm what instruments to use for the lagged

dependent variable included as a regressor in (19). On the basis of our previous discussion, lags two

and higher of n𝑖𝑡 can serve as instruments. The lags(2/.) suboption tells gmm that the first available

instrument for n𝑖𝑡 is the lag-two value n𝑖,𝑡−2. The “.” tells gmm to use all further lags of n𝑖𝑡 as instruments

as well. The instrument matrices in dynamic panel-data models can become large if the dataset has many

time periods per panel. In those cases, you could specify, for example, lags(2/4) to use just lags two

through four instead of using all available lags.
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Our results are identical to those we would obtain using xtabond with the syntax

xtabond n L(0/1).w L(0/1).k, lags(1) noconstant vce(robust)

If we had left off the vce(robust) option in our call to xtabond, we would have had to specify

vce(unadjusted) in our call to gmm to obtain the same standard errors.

Technical note
gmm automatically excludes observations for which there are no valid observations for the panel-style

instruments. However, it keeps in the estimation sample those observations for which fewer than themax-

imum number of instruments you requested are available. For example, if you specify the lags(2/4)
suboption, you have requested three instruments, but gmm will keep observations even if only one or two
instruments are available.

Example 18: Two-step Arellano–Bond estimator
Here we refit the model from example 17, using the two-step GMM estimator.

. gmm (D.n - {rho}*LD.n - {xb:D.w LD.w D.k LD.k}),
> xtinstruments(n, lags(2/.)) instruments(D.w LD.w D.k LD.k, noconstant)
> deriv(/rho = -1*LD.n) deriv(/xb = -1) winitial(xt D) wmatrix(robust)
> vce(unadjusted)
Step 1:
Iteration 0: GMM criterion Q(b) = .0011455
Iteration 1: GMM criterion Q(b) = .00009103
Iteration 2: GMM criterion Q(b) = .00009103
Step 2:
Iteration 0: GMM criterion Q(b) = .44107941
Iteration 1: GMM criterion Q(b) = .4236729
Iteration 2: GMM criterion Q(b) = .4236729 (backed up)
GMM estimation
Number of parameters = 5
Number of moments = 32
Initial weight matrix: XT D Number of obs = 751
GMM weight matrix: Robust

Coefficient Std. err. z P>|z| [95% conf. interval]

rho
_cons .8044783 .0534763 15.04 0.000 .6996667 .90929

xb
w

D1. -.5154978 .0335506 -15.36 0.000 -.5812557 -.4497399
LD. .4059309 .0637294 6.37 0.000 .2810235 .5308384

k
D1. .3556204 .0390892 9.10 0.000 .2790071 .4322337
LD. -.2204521 .046439 -4.75 0.000 -.3114709 -.1294332

Instruments for equation 1:
XT-style: L(2/.).n
Standard: D.w LD.w D.k LD.k

https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex17
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Our results match those you would obtain with the command

xtabond n L(0/1).(w k), lags(1) noconstant twostep

Technical note
If we had specified vce(robust) in our call to gmm, we would have obtained the traditional sandwich-

based robust covariance matrix, but our standard errors would not match those we would obtain by

specifying vce(robust)with the xtabond command. The xtabond, xtdpd, and xtdpdsys commands
implement a bias-corrected robust VCE for the two-step GMM dynamic panel-data estimator. Traditional

VCEs computed after the two-step dynamic panel-data estimator have been shown to exhibit often-severe

bias; see Windmeijer (2005).

Neither of the two dynamic panel-data examples (17 and 18) we have fit so far include a constant

term. When a constant term is included, the dynamic panel-data estimator is in fact a two-equation

system estimator. For notational simplicity, consider a simple model containing just a constant term and

one lag of the dependent variable:

𝑦𝑖𝑡 = 𝛼 + 𝜌𝑦𝑖,𝑡−1 + 𝑢𝑖 + 𝜖𝑖𝑡

First-differencing to remove the 𝑢𝑖 term, we have

𝑦𝑖𝑡 − 𝑦𝑖,𝑡−1 = 𝜌(𝑦𝑖,𝑡−1 − 𝑦𝑖,𝑡−2) + (𝜖𝑖𝑡 − 𝜖𝑖,𝑡−1) (21)

This has also eliminated the constant term. If we assume 𝐸(𝑢𝑖) = 0, which is reasonable if a constant
term is included in the model, then we can recover 𝛼 by including the moment condition

𝑦𝑖𝑡 = 𝛼 + 𝜌𝑦𝑖,𝑡−1 + 𝜖′
𝑖𝑡 (22)

where 𝜖′
𝑖𝑡 = 𝑢𝑖 + 𝜖𝑖𝑡. The parameter 𝜌 continues to be identified by (21), so the only instrument we use

with (22) is a constant term. As before, the error term (𝜖𝑖,𝑡 − 𝜖𝑖,𝑡−1) is necessarily autocorrelated with

correlation coefficient −0.5, though the error term 𝜖′
𝑖𝑡 is white noise. Therefore, our initial weight matrix

should be

Ŵ = ( 1
𝑁

∑
𝑖
Z′

𝑖HZ𝑖)
−1

where

H = [H𝐷 0

0 I
]

and I is a conformable identity matrix.

One complication arises concerning the relevant estimation sample. Looking at (21), we apparently

lose the first two observations from each panel because of the presence of 𝑦𝑖,𝑡−2, but in (22), we need

to sacrifice only one observation for 𝑦𝑖,𝑡−1. For most multiple-equation models, we need to use the

same estimation sample for all equations. However, in dynamic panel-data models, we can use more

observations to fit the equation in level form [(22) here] than the equation in first differences [equation

(21)]. To request this behavior, we specify the nocommonesample option to gmm. That option tells gmm to
use as many observations as possible for each equation, ignoring the loss of observations due to lagging

or differencing.

https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex17
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex18
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Example 19: Arellano–Bond estimator with constant term
Here we fit the model

n𝑖𝑡 = 𝛼 + 𝜌 n𝑖,𝑡−1 + 𝑢𝑖 + 𝜖𝑖𝑡

Without specifying derivatives, our command would be

. gmm (D.n - {rho}*LD.n) (n - {alpha} - {rho}*L.n),
> xtinstruments(1: n, lags(2/.)) instruments(1:, noconstant) onestep
> winitial(xt DL) vce(unadj) nocommonesample

We would specify winitial(xt DL) to obtain the required initial weight matrix. The notation DL in-

dicates that our first residual equation is in first differences and that the second residual equation is in

levels (not first-differenced). We exclude a constant in the instrument list for the first equation because

first-differencing removed the constant term. Because we do not specify the instruments() option for
the second residual equation, a constant is used by default.

This example also provides us the opportunity to illustrate how to specify derivatives for multiple-

equation GMMmodels. Within the derivative() option, instead of specifying just the parameter name,
now you must specify the equation name or number, a slash, and the parameter name to which the deriva-

tive applies. In Stata, we type

. gmm (D.n - {rho}*LD.n) (n - {alpha} - {rho}*L.n),
> xtinstruments(1: n, lags(2/.)) instruments(1:, noconstant)
> derivative(1/rho = -1*LD.n) derivative(2/alpha = -1)
> derivative(2/rho = -1*L.n) winitial(xt DL) vce(unadj) nocommonesample onestep
Step 1:
Iteration 0: GMM criterion Q(b) = .09894466
Iteration 1: GMM criterion Q(b) = .00023508
Iteration 2: GMM criterion Q(b) = .00023508
GMM estimation
Number of parameters = 2
Number of moments = 29
Initial weight matrix: XT DL Number of obs = *

Coefficient Std. err. z P>|z| [95% conf. interval]

/rho 1.023349 .0608293 16.82 0.000 .9041259 1.142572
/alpha -.0690864 .0660343 -1.05 0.295 -.1985112 .0603384

* Number of observations for equation 1: 751
Number of observations for equation 2: 891

Instruments for equation 1:
XT-style: L(2/.).n

Instruments for equation 2:
Standard: _cons

These results are identical to those we would obtain by typing

xtabond n, lags(1)

Because we specified nocommonesample, gmm did not report the number of observations used in the
header of the output. In this dataset, there are in fact 1,031 observations on 140 panels. In the second

equation, the presence of the lagged value of n reduces the sample size for that equation to 1031−140 =
891. In the first equation, we lose the first two observations per panel because of lagging and differencing,

which leads to 751 usable observations. These tallies are listed after the coefficient table in the output.
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Technical note
Specifying

xtinstruments(x1 x2 x3, lags(1/3))

differs from

instruments(L(1/3).(x1 x2 x3))

in how observations are excluded from the estimation sample. When you use the latter syntax, gmmmust
exclude the first three observations from each panel when computing the residual equation: you requested

that three lags of each regressor be used as instruments, so the first residual that could be interacted with

those instruments is the one for 𝑡 = 4. On the other hand, when you use xtinstruments(), you are

telling gmm that you would like to use up to the first three lags of x1, x2, and x3 as instruments but that

using just one lag is acceptable. Because most panel datasets have a relatively modest number of obser-

vations per panel, dynamic instrument lists are typically used so that the number of usable observations

is maximized. Dynamic instrument lists also accommodate the fact that there are more valid instruments

for later time periods than earlier time periods.

Specifying panel-style instruments using the xtinstruments() option also affects how the standard

instruments specified in the instruments() option are treated. To illustrate, we will suppose that we

have a balanced panel dataset with 𝑇 = 5 observations per panel and that we specify

. gmm ..., xtinstruments(w, lags(1/2)) instruments(x)

We will lose the first observation because we need at least one lag of w to serve as an instrument. Our

instrument matrix for panel 𝑖 will therefore be

Z𝑖 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑤𝑖1 0 0 0
0 𝑤𝑖1 0 0
0 𝑤𝑖2 0 0
0 0 𝑤𝑖2 0
0 0 𝑤𝑖3 0
0 0 0 𝑤𝑖3
0 0 0 𝑤𝑖4

𝑥𝑖2 𝑥𝑖3 𝑥𝑖4 𝑥𝑖5
1 1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(23)

The vector of ones in the final row represents the constant term implied by the instruments() option.
Because we lost the first observation, the residual vector u𝑖 will be 4 × 1. Thus, our moment conditions

for the 𝑖th panel can be written in matrix notation as

𝐸{Z𝑖u𝑖(β)} = 𝐸
⎧
{
⎨
{
⎩

Z𝑖
⎡
⎢⎢
⎣

𝑢𝑖2(β)
𝑢𝑖3(β)
𝑢𝑖4(β)
𝑢𝑖5(β)

⎤
⎥⎥
⎦

⎫
}
⎬
}
⎭

= 0

The moment conditions corresponding to the final two rows of (23) say that

𝐸 {
𝑇 =4
∑
𝑡=2

𝑥𝑖𝑡𝑢𝑖𝑡(β)} = 0 and 𝐸 {
𝑇 =4
∑
𝑡=2

𝑢𝑖𝑡(β)} = 0
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Because we specified panel-style instruments with the xtinstruments() option, gmm no longer uses

moment conditions for strictly exogenous variables of the form 𝐸{𝑥𝑖𝑡𝑢𝑖𝑡(β)} = 0 for each 𝑡. Instead,
the moment conditions now stipulate that the average (over 𝑡) of 𝑥𝑖𝑡𝑢𝑖𝑡(β) has expectation zero. This

corresponds to the approach proposed by Arellano and Bond (1991, 280) and others.

When you request panel-style instruments with the xtinstruments() option, the number of instru-
ments in the Z𝑖 matrix increases quadratically in the number of periods. The dynamic panel-data estima-

tors we have discussed in this section are designed for datasets that contain a large number of panels and

a modest number of time periods. When the number of time periods is large, estimators that use standard

(non-panel-style) instruments are more appropriate.

We have focused on theArellano–Bond dynamic panel-data estimator because of its relative simplic-

ity. gmm can additionally fit any models that can be formulated using the xtdpd and xtdpdsys com-

mands; see [XT] xtdpd and [XT] xtdpdsys. The key is to determine the appropriate instruments to use

for the level and difference equations. You may find it useful to fit a version of your model with those

commands to determine what instruments and XT-style instruments to use. We conclude this section with

an example using the Arellano–Bover/Blundell–Bond estimator.

Example 20: Arellano–Bover/Blundell–Bond estimator
We fit a small model that includes one lag of the dependent variable n as a regressor as well as the

contemporaneous and first lag of w, which we assume are strictly exogenous. When we apply virtually

all the syntax issues we have discussed so far, the gmm command is

. gmm (n - {rho}*L.n - {w}*w - {lagw}*L.w - {c})
> (D.n - {rho}*LD.n - {w}*D.w - {lagw}*LD.w),
> xtinst(1: D.n, lags(1/1)) xtinst(2: n, lags(2/.))
> inst(2: D.w LD.w, noconstant)
> deriv(1/rho = -1*L.n) deriv(1/w = -1*w)
> deriv(1/lagw = -1*L.w) deriv(1/c = -1)
> deriv(2/rho = -1*LD.n) deriv(2/w = -1*D.w)
> deriv(2/lagw = -1*LD.w)
> winit(xt LD) wmatrix(robust) vce(unadjusted) nocommonesample
Step 1:
Iteration 0: GMM criterion Q(b) = .10170339
Iteration 1: GMM criterion Q(b) = .00022772
Iteration 2: GMM criterion Q(b) = .00022772
Step 2:
Iteration 0: GMM criterion Q(b) = .59965014
Iteration 1: GMM criterion Q(b) = .56578186
Iteration 2: GMM criterion Q(b) = .56578186

https://www.stata.com/manuals/xtxtdpd.pdf#xtxtdpd
https://www.stata.com/manuals/xtxtdpdsys.pdf#xtxtdpdsys
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GMM estimation
Number of parameters = 4
Number of moments = 39
Initial weight matrix: XT LD Number of obs = *
GMM weight matrix: Robust

Coefficient Std. err. z P>|z| [95% conf. interval]

/rho 1.122738 .0206512 54.37 0.000 1.082263 1.163214
/w -.6719909 .0246148 -27.30 0.000 -.7202351 -.6237468

/lagw .571274 .0403243 14.17 0.000 .4922398 .6503083
/c .154309 .17241 0.90 0.371 -.1836084 .4922263

* Number of observations for equation 1: 891
Number of observations for equation 2: 751

Instruments for equation 1:
XT-style: LD.n
Standard: _cons

Instruments for equation 2:
XT-style: L(2/.).n
Standard: D.w LD.w

Alternatively, we could have fit this model with xtdpdsys by typing the following:

xtdpdsys n L(0/1).w, lags(1) twostep

Details of moment-evaluator programs
In examples 11, 12, 13, and 14, we used moment-evaluator programs to evaluate moment conditions

that could not be specified using the interactive version of gmm. In example 13, we also showed how to

pass additional information to an evaluator program. Here we discuss how to make moment-evaluator

programs provide derivatives and accept weights.

The complete specification for a moment-evaluator program’s syntax statement is
syntax varlist if [weight], at(name) options [derivatives(varlist)]

The macro ‘varlist’ contains the list of variables that we are to fill in with the values of our residual
equations. The macro ‘if’ represents an if condition that restricts the estimation sample. The macro

‘at’ represents a vector containing the parameter values at which we are to evaluate our residual equa-
tions. options represent other options that you specify in your call to gmm and want to have passed to

your moment-evaluator programs. In example 13, we included the mylhs() option so that we could pass
the name of the dependent variable to our evaluator program.

Two new elements of the syntax statement allow for weights and derivatives. weight specifies the
types of weights your program allows. The interactive version of gmm allows for fweights, aweights,
and pweights. However, unless you explicitly allow your moment evaluator program to accept weights,

you cannot specify weights in your call to gmm with the moment-evaluator program version.

The derivatives() option is used to pass to your program a set of variables that you are to fill in

with the derivatives of your residual equations with respect to the parameters.

To indicate that your program can calculate derivatives, you specify either the hasderivatives
or the haslfderivatives option to gmm. The hasderivatives option indicates that your program

calculates parameter-level derivatives; that method requires more work but can be applied to any GMM

https://www.stata.com/manuals/xtxtdpdsys.pdf#xtxtdpdsys
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex11
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex12
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex13
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex14
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex13
https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex13


gmm — Generalized method of moments estimation 54

problem. The haslfderivatives option requires less work but can be used only when the model’s

residual equations satisfy certain restrictions and when you use the {lcname:varlist} syntax with the

parameters() option.

We first consider how to write the derivative computation logic to work with the hasderivatives
option and provide an example; then, we do the same for the haslfderivatives option.

Say that you specify 𝑘 parameters in the nparameters() or parameters() option and 𝑞 equa-

tions in the nequations() or equations() option and that you specify hasderivatives. Then,

‘derivatives’ will contain 𝑘 × 𝑞 variables. The first 𝑘 variables are for the derivatives of the first

residual equation with respect to the 𝑘 parameters, the second 𝑘 variables are for the derivatives of the

second residual equation, and so on.

Example 21: Specifying derivatives with simple parameter names
To focus on how to specify derivatives, we return to the simple moment-evaluator program we used in

example 11, in which we had three regressors, and extend it to supply derivatives. The residual equation

corresponding to moment condition (9) is

𝑢𝑖𝑡(β) = 𝑦𝑖𝑡 − 𝜇𝑖𝑡
𝑦𝑖
𝜇𝑖

where 𝜇𝑖𝑡, 𝜇𝑖, and 𝑦𝑖 were defined previously. Now,

𝜕
𝜕𝛽𝑗

𝑢𝑖𝑡(β) = −𝜇𝑖𝑡
𝑦𝑖
𝜇2

𝑖
(𝑥(𝑗)

𝑖𝑡 𝜇𝑖 − 1
𝑇

𝑙=𝑇
∑
𝑙=1

𝑥(𝑗)
𝑖𝑙 𝜇𝑖𝑙) (24)

where 𝑥(𝑗)
𝑖𝑡 represents the 𝑗th element of x𝑖𝑡.

Our moment-evaluator program is

program gmm_poideriv
version 19.5 // (or version 19 if you do not have StataNow)
syntax varlist if, at(name) [derivatives(varlist)]
quietly {

// Calculate residuals as before
tempvar mu mubar ybar
generate double ‘mu’ = exp(x1*‘at’[1,1] + x2*‘at’[1,2] ///

+ x3*‘at’[1,3]) ‘if’
egen double ‘mubar’ = mean(‘mu’) ‘if’, by(id)
egen double ‘ybar’ = mean(y) ‘if’, by(id)
replace ‘varlist’ = y - ‘mu’*‘ybar’/‘mubar’ ‘if’
// Did -gmm- request derivatives?
if ”‘derivatives’” == ”” {

exit // no, so we are done
}
// Calculate derivatives
// We need the panel means of x1*mu, x2*mu, and x3*mu
tempvar work x1mubar x2mubar x3mubar
generate double ‘work’ = x1*‘mu’ ‘if’
egen double ‘x1mubar’ = mean(‘work’) ‘if’, by(id)
replace ‘work’ = x2*‘mu’ ‘if’
egen double ‘x2mubar’ = mean(‘work’) ‘if’, by(id)

https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex11
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replace ‘work’ = x3*‘mu’ ‘if’
egen double ‘x3mubar’ = mean(‘work’) ‘if’, by(id)
local d1: word 1 of ‘derivatives’
local d2: word 2 of ‘derivatives’
local d3: word 3 of ‘derivatives’
replace ‘d1’ = -1*‘mu’*‘ybar’/‘mubar’^2*(x1*‘mubar’ - ‘x1mubar’)
replace ‘d2’ = -1*‘mu’*‘ybar’/‘mubar’^2*(x2*‘mubar’ - ‘x2mubar’)
replace ‘d3’ = -1*‘mu’*‘ybar’/‘mubar’^2*(x3*‘mubar’ - ‘x3mubar’)

}
end

The derivatives() option is made optional in the syntax statement by placing it in square brackets.

If gmm needs to evaluate your residual equations but does not need derivatives at that time, then the

derivatives() option will be empty. In our program, we check to see whether that is the case and,

if so, exit without calculating derivatives. As is often the case with [R] ml as well, the portion of our

program devoted to derivatives is longer than the code to compute the objective function.

The first part of our derivative code computes the term

1
𝑇

𝑙=𝑇
∑
𝑙=1

𝑥(𝑗)
𝑖𝑙 𝜇𝑖𝑙 (25)

for 𝑥(𝑗)
𝑖𝑡 = x1, x2, and, x3. The ‘derivatives’ macro contains three variable names corresponding

to the three parameters of the ‘at’ matrix. We extract those names into local macros ‘d1’, ‘d2’, and
‘d3’ and then fill in the variables those macros represent with the derivatives shown in (24).

With our program written, we fit our model by typing

. use https://www.stata-press.com/data/r19/poisson1, clear

. gmm gmm_poideriv, nequations(1) parameters(b1 b2 b3)
> instruments(x1 x2 x3, noconstant) vce(cluster id) onestep hasderivatives
Step 1:
Iteration 0: GMM criterion Q(b) = 51.99142
Iteration 1: GMM criterion Q(b) = .04345191
Iteration 2: GMM criterion Q(b) = 8.720e-06
Iteration 3: GMM criterion Q(b) = 7.115e-13
Iteration 4: GMM criterion Q(b) = 5.130e-27
note: model is exactly identified.
GMM estimation
Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 409

(Std. err. adjusted for 45 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

/b1 1.94866 .1000265 19.48 0.000 1.752612 2.144709
/b2 -2.966119 .0923592 -32.12 0.000 -3.14714 -2.785099
/b3 1.008634 .1156561 8.72 0.000 .781952 1.235315

Instruments for equation 1: x1 x2 x3

https://www.stata.com/manuals/rml.pdf#rml
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Our results are identical to those in example 11. Another way to verify that our program calculates

derivatives correctly would be to type

. gmm gmm_poideriv, nequations(1) parameters(b1 b2 b3)
> instruments(x1 x2 x3, noconstant) vce(cluster id) onestep

Without the hasderivatives or haslfderivatives option, gmmwill not request derivatives from your

program, even if it contains code to compute them. If you have trouble obtaining convergence with the

hasderivatives or haslfderivatives option but do not have trouble without specifying one of them,
then you need to recheck your derivatives.

After example 11, we remarked that the evaluator programwould have to be changed to accommodate

different regressors. We then showed how you can specify parameters using the syntax {lcname:varlist}
and then use matrix score to compute linear combinations of variables. To specify derivatives when

you specify parameters using this notation, ensure that your residual equations satisfy the “linear-form

restriction” analogous to the restrictions of linear-form evaluators used by ml. See [R] ml and Pitblado,

Poi, and Gould (2024) for more information about linear-form evaluators.

AGMM residual equation satisfies the linear-form restriction if the equation can be written in terms of a

single observation in the dataset and if the equation for observation 𝑖 does not depend on any observations
𝑗 ≠ 𝑖. Cross-sectional models satisfy the linear-form restriction. Time-series models satisfy the linear-

form restriction only when no lags or leads are used.

Panel-data models often do not satisfy the linear-form restriction. For example, recall moment con-

dition (9) for a panel Poisson model. That residual equation included panel-level mean terms 𝑦𝑖 and 𝜇𝑖,

so the residual equation for an individual observation depends on all the observations in the same panel.

When a residual equation does not satisfy the linear-form restriction, neither will its derivatives. To

apply the chain rule, we need a way to multiply the lcname-level derivative by each of the variables in

the equation to obtain parameter-level derivatives. In (24), for example, there is no way to factor out

each 𝑥(𝑗)
𝑖𝑡 variable and obtain an lcname-level derivative that we then multiply by each of the 𝑥(𝑗)

𝑖𝑡 s.

Suppose we do have a model with 𝑞 = 2 moment conditions, both of which do satisfy the linear-form

restriction, and we specify the parameters() option like this:

. gmm ..., parameters({eq1:x1 x2 _cons} {eq2:_cons} {eq3:x1 x2 _cons})

We have specified 𝑛 = 3 lcnames in the parameters() option: eq1, eq2, and eq3. When we specify

the haslfderivatives option, gmm will pass 𝑛 × 𝑞 = 3 × 2 = 6 variables in the derivatives()
option. The first three variables are to be filled with

𝜕
𝜕eq1

𝑢1𝑖(β) 𝜕
𝜕eq2

𝑢1𝑖(β) and
𝜕

𝜕eq3
𝑢1𝑖(β)

where 𝑢1𝑖(β) is the 𝑖th observation for the first moment equation. Then, the second three variables are
to be filled with

𝜕
𝜕eq1

𝑢2𝑖(β) 𝜕
𝜕eq2

𝑢2𝑖(β) and
𝜕

𝜕eq3
𝑢2𝑖(β)

where 𝑢2𝑖(β) is the second moment equation. In this example, we filled in a total of six variables with
derivatives. If we instead used the hasderivatives option, we would have filled 𝑘 × 𝑞 = 7 × 2 = 14

variables; moreover, if we wanted to change the number of variables in our model, we would have

modified our evaluator program.

https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex11
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Example 22: Specifying derivatives with linear-form residual equations
In examples 9 and 10, we showed how to specify derivatives with an exponential regression model

when using the interactive version of gmm. Here we show how to write a moment-evaluator program for

the exponential regression model, including derivatives.

The residual equation for observation 𝑖 is

𝑢𝑖 = 𝑦𝑖 − exp(x′
𝑖β)

where x𝑖 may include a constant term. The derivative with respect to the linear combination x
′
𝑖β is

𝜕𝑢𝑖
𝜕x′

𝑖β
= − exp(x′

𝑖β)

To verify that this residual equation satisfies the linear-form restriction, we see that for the 𝑗th element
of β, we have

𝜕𝑢𝑖
𝜕𝛽𝑗

= −𝑥𝑖𝑗 exp(x′
𝑖β) = 𝜕𝑢𝑖

𝜕x′
𝑖β

× 𝑥𝑖𝑗

so that given 𝜕𝑢𝑖/𝜕x′
𝑖β, gmm can apply the chain rule to obtain the derivatives with respect to the indi-

vidual parameters.

Our moment-evaluator program is

program gmm_poideriv2
version 19.5 // (or version 19 if you do not have StataNow)
syntax varlist if, at(name) [derivatives(varlist)]
quietly {

tempvar mu
matrix score double ‘mu’ = ‘at’ ‘if’, eq(#1)
replace ‘mu’ = exp(‘mu’)
local depvar : coleq ‘at’
local depvar : word 1 of ‘depvar’
replace ‘varlist’ = ‘depvar’ - ‘mu’ ‘if’
// Did -gmm- request derivatives?
if ”‘derivatives’” == ”” {

exit // no, so we are done
}
// Calculate derivatives
// The derivatives macro only has one variable
// for this model.
replace ‘derivatives’ = -1*‘mu’ ‘if’

}
end

https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex9
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To fit our model of doctor visits treating income as an endogenous regressor, we type

. use https://www.stata-press.com/data/r19/docvisits

. gmm gmm_poideriv2, nequations(1)
> instruments(private chronic female age black hispanic)
> parameters({docvis:private chronic female income _cons}) haslfderivatives
Step 1:
Iteration 0: GMM criterion Q(b) = 16.910173
Iteration 1: GMM criterion Q(b) = .82270871
Iteration 2: GMM criterion Q(b) = .21831995
Iteration 3: GMM criterion Q(b) = .12685934
Iteration 4: GMM criterion Q(b) = .12672369
Iteration 5: GMM criterion Q(b) = .12672365
Step 2:
Iteration 0: GMM criterion Q(b) = .00234641
Iteration 1: GMM criterion Q(b) = .00215957
Iteration 2: GMM criterion Q(b) = .00215911
Iteration 3: GMM criterion Q(b) = .00215911
GMM estimation
Number of parameters = 5
Number of moments = 7
Initial weight matrix: Unadjusted Number of obs = 4,412
GMM weight matrix: Robust

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

private .535335 .159904 3.35 0.001 .221929 .848741
chronic 1.090126 .0617659 17.65 0.000 .9690668 1.211185
female .6636579 .0959885 6.91 0.000 .475524 .8517918
income .0142855 .0027162 5.26 0.000 .0089618 .0196092
_cons -.5983477 .138433 -4.32 0.000 -.8696714 -.327024

Instruments for equation 1: private chronic female age black hispanic _cons

Our results match those shown in example 10.

We can change the variables in our model just by changing the parameters() and instruments()
options; we do not need to make any changes to the moment-evaluator program, because we used linear-

form derivatives.

Depending on your model, allowing your moment-evaluator program to accept weights may be as

easy as modifying the syntax command to allow them, or it may require significantly more work. If

your program uses only commands such as generate and replace, then just modifying the syntax
command is all you need to do; gmm takes care of applying the weights to the observation-level residuals
when computing the sample moments, derivatives, and weight matrices. On the other hand, if your

moment-evaluator program computes residuals using statistics that depend on multiple observations,

then you must apply the weights passed to your program when computing those statistics.

In our examples of panel Poisson with strictly exogenous regressors (11 and 21), we used the statistics

𝜇𝑖 and 𝑦𝑖 when computing the residuals. If we are to allow weights with our moment-evaluator program,

then we must incorporate those weights when computing 𝜇𝑖 and 𝑦𝑖. Moreover, looking at the derivative

in (24), we see that the term highlighted in (25) is in fact a sample mean, so we must incorporate weights

when computing it.

https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex10
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Example 23: Panel Poisson with derivatives and weights
Here we modify the program in example 21 to accept frequency weights. One complication arises:

we had been using egen to compute 𝜇𝑖 and 𝑦𝑖. egen does not accept weights, so we must compute 𝜇𝑖
and 𝑦𝑖 ourselves, incorporating any weights the user may specify. Our program is

program gmm_poiderivfw
version 19.5 // (or version 19 if you do not have StataNow)
syntax varlist if [fweight/], at(name) [derivatives(varlist)]
quietly {

if ”‘exp’” == ”” { // no weights
local exp 1 // weight each observation equally

}
// Calculate residuals as before
tempvar mu mubar ybar sumwt
generate double ‘mu’ = exp(x1*‘at’[1,1] + x2*‘at’[1,2] ///

+ x3*‘at’[1,3]) ‘if’
bysort id: generate double ‘sumwt’ = sum(‘exp’)
by id: generate double ‘mubar’ = sum(‘mu’*‘exp’)
by id: generate double ‘ybar’ = sum(y*‘exp’)
by id: replace ‘mubar’ = ‘mubar’[_N] / ‘sumwt’[_N]
by id: replace ‘ybar’ = ‘ybar’[_N] / ‘sumwt’[_N]
replace ‘varlist’ = y - ‘mu’*‘ybar’/‘mubar’ ‘if’
// Did -gmm- request derivatives?
if ”‘derivatives’” == ”” {

exit // no, so we are done
}
// Calculate derivatives
// We need the panel means of x1*mu, x2*mu, and x3*mu
tempvar work x1mubar x2mubar x3mubar
generate double ‘work’ = x1*‘mu’ ‘if’
by id: generate double ‘x1mubar’ = sum(‘work’*‘exp’)
by id: replace ‘x1mubar’ = ‘x1mubar’[_N] / ‘sumwt’[_N]
replace ‘work’ = x2*‘mu’ ‘if’
by id: generate double ‘x2mubar’ = sum(‘work’*‘exp’)
by id: replace ‘x2mubar’ = ‘x2mubar’[_N] / ‘sumwt’[_N]
replace ‘work’ = x3*‘mu’ ‘if’
by id: generate double ‘x3mubar’ = sum(‘work’*‘exp’)
by id: replace ‘x3mubar’ = ‘x3mubar’[_N] / ‘sumwt’[_N]
local d1: word 1 of ‘derivatives’
local d2: word 2 of ‘derivatives’
local d3: word 3 of ‘derivatives’
replace ‘d1’ = -1*‘mu’*‘ybar’/‘mubar’^2*(x1*‘mubar’ - ‘x1mubar’)
replace ‘d2’ = -1*‘mu’*‘ybar’/‘mubar’^2*(x2*‘mubar’ - ‘x2mubar’)
replace ‘d3’ = -1*‘mu’*‘ybar’/‘mubar’^2*(x3*‘mubar’ - ‘x3mubar’)

}
end

Our syntax command now indicates that fweights are allowed. The first part of our code looks at the
macro ‘exp’. If it is empty, then the user did not specify weights in their call to gmm; and we set the

macro equal to 1 so that we weight each observation equally. After we compute 𝜇𝑖𝑡, we calculate 𝜇𝑖 and

𝑦𝑖, accounting for weights. To compute frequency-weighted means for each panel, we just multiply each

observation by its respective weight, sum over all observations in the panel, then divide by the sum of the

weights for the panel. (See [U] 20.24Weighted estimation for information on how to handle aweights
and pweights.) We use the same procedure to compute the frequency-weighted variant of expression

(25) in the derivative calculations. To use our program, we type

https://www.stata.com/manuals/rgmm.pdf#rgmmRemarksandexamplesex21
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. use https://www.stata-press.com/data/r19/poissonwts

. gmm gmm_poiderivfw [fw=fwt], nequations(1) parameters(b1 b2 b3)
> instruments(x1 x2 x3, noconstant) vce(cluster id) onestep hasderivatives
Step 1:
Iteration 0: GMM criterion Q(b) = 49.8292
Iteration 1: GMM criterion Q(b) = .11136736
Iteration 2: GMM criterion Q(b) = .00008519
Iteration 3: GMM criterion Q(b) = 7.110e-11
Iteration 4: GMM criterion Q(b) = 5.596e-23
note: model is exactly identified.
GMM estimation
Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 819

(Std. err. adjusted for 45 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

/b1 1.967766 .111795 17.60 0.000 1.748652 2.186881
/b2 -3.060838 .0935561 -32.72 0.000 -3.244205 -2.877472
/b3 1.037594 .1184227 8.76 0.000 .80549 1.269698

Instruments for equation 1: x1 x2 x3

Testing whether our program works correctly with frequency weights is easy. A frequency-weighted

dataset is just a compact form of a larger dataset in which identical observations are omitted and a

frequency-weight variable is included to tell us how many times each observation in the smaller dataset

appears in the larger dataset. Therefore, we can expand our smaller dataset by the frequency-weight

variable and then refit our model without specifying frequency weights. If we obtain the same results,

our program works correctly. When we type

. expand fw

. gmm gmm_poiderivfw, nequations(1) parameters(b1 b2 b3)
> instruments(x1 x2 x3, noconstant) vce(cluster id) onestep

we obtain the same results as before.

Stored results
gmm stores the following in e():
Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k aux) number of auxiliary parameters

e(n moments) number of moments

e(n eq) number of equations in moment-evaluator program

e(Q) criterion function

e(J) Hansen 𝐽 𝜒2 statistic

e(J df) 𝐽 statistic degrees of freedom

e(k i) number of parameters in equation 𝑖
e(has xtinst) 1 if panel-style instruments specified, 0 otherwise
e(N clust) number of clusters
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e(type) 1 if interactive version, 2 if moment-evaluator program version

e(rank) rank of e(V)
e(ic) number of iterations used by iterative GMM estimator

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) gmm
e(cmdline) command as typed

e(title) title specified in title()
e(title 2) title specified in title2()
e(clustvar) name of cluster variable

e(inst i) equation 𝑖 instruments
e(eqnames) equation names

e(winit) initial weight matrix used

e(winitname) name of user-supplied initial weight matrix

e(estimator) onestep, twostep, or igmm
e(rhs) variables specified in variables()
e(params i) equation 𝑖 parameters
e(wmatrix) wmtype specified in wmatrix()
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(params) parameter names

e(sexp i) substitutable expression for equation 𝑖
e(evalprog) moment-evaluator program

e(evalopts) options passed to moment-evaluator program

e(nocommonesample) nocommonesample, if specified
e(technique) optimization technique

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsprop) signals to the margins command
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(init) initial values of the estimators

e(Wuser) user-supplied initial weight matrix

e(W) weight matrix used for final round of estimation

e(S) moment covariance matrix used in robust VCE computations

e(G) averages of derivatives of moment conditions

e(N byequation) number of observations per equation, if nocommonesample specified
e(V) variance–covariance matrix

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.
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Methods and formulas
Let 𝑞 denote the number of moment conditions. For observation 𝑖, 𝑖 = 1, . . . , 𝑁, write the 𝑗th moment

equation as z𝑖𝑗𝑢𝑖𝑗(β𝑗) for 𝑗 = 1, . . . , 𝑞. z𝑖𝑗 is a 1 × 𝑚𝑗 vector, where 𝑚𝑗 is the number of instruments

specified for equation 𝑗. Let 𝑚 = 𝑚1 + · · · + 𝑚𝑞.

Our notation can incorporate moment conditions of the form ℎ𝑖𝑗(w𝑖𝑗;β𝑗) with instruments w𝑖𝑗 by

defining z𝑖𝑗 = 1 and 𝑢𝑖𝑗(β𝑗) = ℎ𝑖𝑗(w𝑖𝑗;β𝑗), so except when necessary, we do not distinguish between
the two types of moment conditions. We could instead use notation so that all our moment conditions

are of the form ℎ𝑖𝑗(w𝑖𝑗;β𝑗), or we could adopt notation that explicitly combines both forms of moment
equations. However, because moment conditions of the form z′

𝑖𝑗𝑢𝑖𝑗(β𝑗) are arguably more common, we
use that notation.

Let β denote a 𝑘 × 1 vector of parameters, consisting of all the unique parameters of β1, . . . ,β𝑞.

Then, we can stack the moment conditions and write them more compactly as Z′
𝑖u𝑖(β), where

Z′
𝑖 =

⎡
⎢⎢
⎣

z𝑖1 0 · · · 0

0 z𝑖2 · · · 0

⋮ ⋮ ⋱ ⋮
0 0 · · · z𝑖𝑞

⎤
⎥⎥
⎦

and u𝑖(β) =
⎡
⎢
⎢
⎣

𝑢𝑖1(β1)
𝑢𝑖2(β2)

⋮
𝑢𝑖𝑞(β𝑞)

⎤
⎥
⎥
⎦

The GMM estimator β̂ is the value of β that minimizes

𝑄(β) = {𝑁−1
𝑁

∑
𝑖=1

Z′
𝑖u𝑖(β)}

′

W{𝑁−1
𝑁

∑
𝑖=1

Z′
𝑖u𝑖(β)} (A1)

for 𝑞 × 𝑞 weight matrixW.

By default, gmm minimizes (A1) using the Gauss–Newton method. See Hayashi (2000, 498) for a

derivation. This technique is typically faster than quasi-Newton methods and does not require second-

order derivatives.

Methods and formulas are presented under the following headings:

Initial weight matrix
Weight matrix
Variance–covariance matrix
Hansen’s J statistic
Panel-style instruments
Marginal predictions with unconditional standard errors

Initial weight matrix
If you specify winitial(unadjusted), then we create matrix 𝚲 with typical submatrix

𝚲𝑟𝑠 = 𝑁−1
𝑁

∑
𝑖=1

z′
𝑖𝑟z𝑖𝑠

for 𝑟 = 1, . . . , 𝑞 and 𝑠 = 1, . . . , 𝑞. If you include the independent suboption, then we set 𝚲𝑟𝑠 = 0 for

𝑟 ≠ 𝑠. The weight matrixW equals 𝚲−1.

If you specify winitial(identity), then we setW = I𝑞.
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If you specify winitial(xt xtspec), then you must specify one or two items in xtspec, one for each

equation. gmm allows you to specify at most two moment equations when you specify winitial(xt
xtspec), one in first-differences, and one in levels. We create the block-diagonal matrix H with typical

block H𝑗. If the 𝑗th element of xtspec is “L”, then H𝑗 is the identity matrix of suitable dimension. If the

𝑗th element of xtspec is “D”, then

H𝑗 =
⎡
⎢
⎢
⎢
⎣

1 −0.5 0 . . . 0 0
−0.5 1 −0.5 . . . 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 . . . 1 −0.5
0 0 0 . . . −0.5 1

⎤
⎥
⎥
⎥
⎦

Then,

𝚲𝐻 = 𝑁−1
𝐺

𝑔=𝑁𝐺

∑
𝑔=1

Z′
𝑔HZ𝑔

where 𝑔 indexes panels in the dataset, 𝑁𝐺 is the number of panels, Z𝑔 is the full instrument matrix for

panel 𝑔, andW = 𝚲−1
𝐻 . See Panel-style instruments below for a discussion of how Z𝑔 is formed.

If you specify winitial(matname), then we setW equal to Stata matrix matname.

Weight matrix
Specification of the weight matrix applies only to the two-step and iterative estimators. When you

use the onestep option, the wmatrix() option is ignored.

We first evaluate (A1) using the initial weight matrix described above and then compute u𝑖(β̂). In all
cases,W = 𝚲−1. If you specify wmatrix(unadjusted), then we create 𝚲 to have typical submatrix

𝚲𝑟𝑠 = 𝜎𝑟𝑠 𝑁−1
𝑁

∑
𝑖=1

z′
𝑖𝑟z𝑖𝑠

where

𝜎𝑟𝑠 = 𝑁−1
𝑁

∑
𝑖=1

𝑢𝑖𝑟(β̂)𝑢𝑖𝑠(β̂)

and 𝑟 and 𝑠 index moment equations. For all types of weight matrices, if the independent suboption is
specified, then 𝚲𝑟𝑠 = 0 for 𝑟 ≠ 𝑠, where 𝚲𝑟𝑠 measures the covariance between moment conditions for

equations 𝑟 and 𝑠.
If you specify wmatrix(robust), then

𝚲 = 𝑁−1
𝑁

∑
𝑖=1

Z𝑖u𝑖(β̂)u′
𝑖(β̂)Z′

𝑖

If you specify wmatrix(cluster clustvar), then

𝚲 = 𝑁−1
𝑐=𝑁𝐶

∑
𝑐=1

q𝑐q
′
𝑐

where 𝑐 indexes clusters, 𝑁𝐶 is the number of clusters, and

q𝑐 = ∑
𝑖∈𝑐𝑗

Z𝑖u𝑖(β̂)

https://www.stata.com/manuals/rgmm.pdf#rgmmMethodsandformulasPanel-styleinstruments
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If you specify wmatrix(hac kernel [ #]), then

𝚲 =𝑁−1
𝑁

∑
𝑖=1

Z𝑖u𝑖(β̂)u𝑖(β̂)′Z′
𝑖 +

𝑁−1
𝑙=𝑁−1
∑
𝑙=1

𝑁
∑

𝑖=𝑙+1
𝐾(𝑙, 𝜆) {Z𝑖u𝑖(β̂)u′

𝑖−𝑙(β̂)Z′
𝑖−𝑙 + Z𝑖−𝑙u𝑖−𝑙(β̂)u′

𝑖(β̂)Z′
𝑖}

where 𝜆 = # if # is specified and 𝜆 = 𝑁 − 2 otherwise. Define 𝑧 = 𝑙/(𝜆 + 1). If kernel is bartlett
or nwest, then

𝐾(𝑙, 𝜆) = {1 − 𝑧 0 ≤ 𝑧 ≤ 1
0 otherwise

If kernel is parzen or gallant, then

𝐾(𝑙, 𝜆) =
⎧{
⎨{⎩

1 − 6𝑧2 + 6𝑧3 0 ≤ 𝑧 ≤ 0.5
2(1 − 𝑧)3 0.5 < 𝑧 ≤ 1
0 otherwise

If kernel is quadraticspectral or andrews, then

𝐾(𝑙, 𝜆) = {1 𝑧 = 0
3{sin(𝜃)/𝜃 − cos(𝜃)}/𝜃2 otherwise

where 𝜃 = 6𝜋𝑧/5.
If wmatrix(hac kernel opt) is specified, then gmm uses Newey and West’s (1994) automatic lag-

selection algorithm, which proceeds as follows. Define h to be an 𝑚 × 1 vector of ones. Note that this

definition of h is slightly different from the one used by ivregress. There the element of h correspond-
ing to the constant term equals 0, effectively ignoring the effect of the constant in determining the optimal

lag length. Here we include the effect of the constant term. Now, define

𝑓𝑖 = {Z′
𝑖u𝑖(β)}′

h

𝜎̂𝑗 = 𝑁−1
𝑁

∑
𝑖=𝑗+1

𝑓𝑖𝑓𝑖−𝑗 𝑗 = 0, . . . , 𝜆∗

̂𝑠(𝑞) = 2
𝑗=𝜆∗

∑
𝑗=1

𝜎̂𝑗𝑗𝑞

̂𝑠(0) = 𝜎̂0 + 2
𝑗=𝜆∗

∑
𝑗=1

𝜎̂𝑗

̂𝛾 = 𝑐𝛾 {( ̂𝑠(𝑞)

̂𝑠(0) )
2

}
1/(2𝑞+1)

𝜆 = ̂𝛾𝑁1/(2𝑞+1)

where 𝑞, 𝜆∗, and 𝑐𝛾 depend on the kernel specified:

Kernel 𝑞 𝜆∗ 𝑐𝛾
Bartlett/Newey–West 1 int{20(𝑇 /100)2/9} 1.1447

Parzen/Gallant 2 int{20(𝑇 /100)4/25} 2.6614

Quadratic spectral/Andrews 2 int{20(𝑇 /100)2/25} 1.3221
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Here int(𝑥) denotes the integer obtained by truncating 𝑥 toward zero. For the Bartlett and Parzen kernels,

the optimal lag is min{int(𝜆), 𝜆∗}. For the quadratic spectral kernel, the optimal lag is min{𝜆, 𝜆∗}.
If wmatrix(hac kernel opt #) is specified, then gmm uses # instead of 20 in the definition of 𝜆∗ above

to select the optimal lag.

Variance–covariance matrix
If you specify vce(unadjusted), then the VCE matrix is computed as

Var(β̂) = 𝑁−1 {G(β̂)′WG(β̂)}
−1

(A2)

where

G(β̂) = 𝑁−1
𝑁

∑
𝑖=1

Z′
𝑖

𝜕u𝑖(β)
𝜕β′ ∣

β=β̂
(A3)

For the two-step and iterated estimators, we use the weight matrix W that was used to compute the

final-round estimate β̂.

When you do not specify analytic derivatives, gmm must compute the Jacobian matrix (A3) numer-

ically. By default, gmm computes each element of the matrix individually by using the Mata deriv()
function; see [M-5] deriv( ). This procedure results in accurate derivatives but can be slow if your model

has many instruments or parameters.

When you specify the quickderivatives option, gmm computes all derivatives corresponding to

parameter 𝛽𝑗, 𝑗 = 1, . . . , 𝑞, at once, using two-sided derivatives with a step size of |𝛽𝑗|𝜖1/3, where 𝜖
is the machine precision of a double precision number (approximately 2.22045 × 10−16). This method

requires just two evaluations of the model’s moments to compute an entire column of (A3) and therefore

has the most impact when you specify many instruments or moment equations so that (A3) has many

rows.

For the one-step estimator, how the unadjusted VCE is computed depends on the type of initial weight

matrix requested and the form of the moment equations. If you specify two or more moment equations

of the form ℎ𝑖𝑗(w𝑖𝑗;β𝑗), then gmm issues a note and computes a heteroskedasticity-robust VCE because

here the matrix Z′Z is necessarily singular; moreover, here you must use the identity matrix as the

initial weight matrix. Otherwise, if you specify winitial(unadjusted) or winitial(identity),
then gmm first computes an unadjusted weight matrix based on β̂ before evaluating (A2). If you spec-

ify winitial(matname), then (A2) is evaluated on the basis of matname; the user is responsible for

verifying that the VCE and other statistics so produced are appropriate.

All types of robust VCEs computed by gmm take the form

Var(β̂) = 𝑁−1 {G(β̂)′WG(β̂)}
−1
G(β̂)′WSWG(β̂) {G(β̂)′WG(β̂)}

−1

For the one-step estimator,W represents the initial weight matrix requested using the winitial() op-

tion, and S is computed on the basis of the specification of the vce() option. The formulas for the S

matrix are identical to the ones that define the 𝚲 matrix in Weight matrix above, except that S is com-

puted after the moment equations are reevaluated using the final estimate of β̂. For the two-step and

iterated GMM estimators, computation of W is controlled by the wmatrix() option on the basis of the

penultimate estimate of β̂.

For details on computation of the VCEmatrix with dynamic panel-data models, see Panel-style instru-

ments below.

https://www.stata.com/manuals/m-5deriv.pdf#m-5deriv()
https://www.stata.com/manuals/rgmm.pdf#rgmmMethodsandformulasWeightmatrix
https://www.stata.com/manuals/rgmm.pdf#rgmmMethodsandformulasPanel-styleinstruments
https://www.stata.com/manuals/rgmm.pdf#rgmmMethodsandformulasPanel-styleinstruments
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Hansen’s J statistic
Hansen’s (1982) 𝐽 test of overidentifying restrictions is 𝐽 = 𝑁 × 𝑄(β̂). 𝐽 ∼ 𝜒2(𝑚 − 𝑘). If 𝑚 < 𝑘,

gmm issues an error message without estimating the parameters. If 𝑚 = 𝑘, the model is just-identified
and 𝐽 is saved as missing (“.”). For the two-step and iterated GMM estimators, the 𝐽 statistic is based

on the last-computed weight matrix as determined by the wmatrix() option. For the one-step estimator,
gmm recomputes a weight matrix as described in the second paragraph of Variance–covariance matrix

above. To obtain Hansen’s 𝐽 statistic, you use estat overid; see [R] gmm postestimation.

Panel-style instruments
Here we discuss several issues that arise only when you specify panel-style instruments by using the

xtinstruments() option. When you specify the xtinstruments() option, we can no longer consider
the instruments for one observation in isolation; instead, we must consider the instrument matrix for an

entire panel at once. In the following discussion, we let 𝑇 denote the number of time periods in a panel.

To accommodate unbalanced datasets, conceptually we simply use zeros as instruments and residuals for

time periods that are missing in a panel.

We consider the case where you specify both an equation in levels and an equation in differences,

yielding two residual equations. Let 𝑢𝐿
𝑝𝑡(β) denote the residual for the level equation for panel 𝑝 in

period 𝑡, and let 𝑢𝐷
𝑝𝑡(β) denote the residual for the corresponding difference equation. Now, define the

(2𝑇 − 1) × 1 vector u𝑝(β) as

u𝑝(β) = [𝑢𝐿
𝑝1(β), 𝑢𝐿

𝑝2(β), . . . , 𝑢𝐿
𝑝𝑇(β), 𝑢𝐷

𝑝2(β), 𝑢𝐷
𝑝3(β), . . . , 𝑢𝐷

𝑝𝑇(β)]

The 𝑇 +1 element of u𝑝 is 𝑢𝐷
𝑝2(β) because we lose the first observation of the difference equation because

of differencing.

We write the moment conditions for the 𝑝th panel as Z𝑝u𝑝(β). To see how Z𝑝 is defined, we will

let w𝐿
𝑝𝑡 and w𝐷

𝑝𝑡 denote the vectors of panel-style instruments for the level and difference equations,

respectively, and let time be denoted by 𝑡; we discuss their dimensions momentarily. Also let x𝐿
𝑝𝑡 and x

𝐷
𝑝𝑡

denote the vectors of instruments specified in instruments() for the level and difference equations at
time 𝑡. Without loss of generality, for our discussion, we assume that you specify the level equation first.

Then, Z𝑝 has the form

Z𝑝 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w𝐿
1 0 · · · 0 0 0 · · · 0

0 w𝐿
2 · · · 0 0 0 · · · 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 · · · w𝐿

𝑇 0 0 · · · 0

x𝐿
1 x𝐿

2 · · · x𝐿
𝑇 0 0 · · · 0

0 0 · · · 0 w𝐷
1 0 · · · 0

0 0 · · · 0 0 w𝐷
2 · · · 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 · · · 0 0 0 · · · w𝐷

𝑇
0 0 · · · 0 x𝐷

1 x𝐷
2 · · · x𝐷

𝑇

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A4)

To see how the w vectors are formed, we will suppose you specify

xtinstruments(1: d, lags(a/b))

https://www.stata.com/manuals/rgmm.pdf#rgmmMethodsandformulasVariance--covariancematrix
https://www.stata.com/manuals/rgmmpostestimation.pdf#rgmmpostestimation
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Then, w𝐿
𝑡 will be a (𝑏 − 𝑎 + 1) × 1 vector consisting of 𝑑𝑡−𝑎, . . . , 𝑑𝑡−𝑏. If (𝑡 − 𝑎) ≤ 0, then instead,

we set w𝐿
𝑡 = 0. If (𝑡 − 𝑎) > 0 but (𝑡 − 𝑏) ≤ 0, then we create w𝐿

𝑡 to consist of 𝑑𝑡−𝑎, . . . , 𝑑1. With this

definition, (𝑏 − 𝑎 + 1) defines the maximum number of lags of 𝑑 used, but gmm will proceed with fewer
lags if all (𝑏 − 𝑎 + 1) lags are not available. If you specify two panel-style instruments, d and e, say,
then w𝐿

𝑡 will consist of 𝑑𝑡−𝑎, . . . , 𝑑𝑡−𝑏, 𝑒𝑡−𝑎, . . . , 𝑒𝑡−𝑏. w
𝐷
𝑡 is handled analogously.

The x𝐿
𝑡 vectors are simply 𝑗 × 1 vectors, where 𝑗 is the number of regular instruments specified with

the instruments() option; these vectors include a “1” unless you specify the noconstant suboption.

Looking carefully at (A4), you will notice that for dynamic panel-data models, moment conditions

corresponding to the instruments x𝐿
𝑝𝑡 take the form

𝐸 [
𝑡=𝑇
∑
𝑡=1

x𝐿
𝑝𝑡𝑢𝐿

𝑝𝑡(β)] = 0

and likewise for x𝐷
𝑝𝑡. Instead of having separate moment conditions for each time period, there is one

moment condition equal to the average of individual periods’ moments. See Arellano and Bond (1991,

280). To include separate moment conditions for each time period, instead of specifying, say,

instruments(1: x)

you could instead first generate a variable called one equal to unity for all observations and specify

xtinstruments(1: x one)

(Creating the variable one is necessary because a constant is not automatically included in variable lists
specified in xtinstruments().)

Unbalanced panels are essentially handled by including zeros in rows and columns of Z𝑝 and u𝑝(β)
corresponding to missing time periods. However, the numbers of instruments and moment conditions

reported by gmm do not reflect this trickery and instead reflect the numbers of instruments and moment

conditions that are not manipulated in this way. Moreover, gmm includes code to work through these

situations efficiently without actually having to fill in zeros.

When you specify winitial(xt . . .), the one-step unadjusted VCE is computed as

Var(β̂) = 𝜎̂2
1𝚲𝐻

where 𝚲𝐻 is as defined previously,

𝜎̂2
1 = (𝑁 − 𝑘)−1

𝑝=𝑃

∑
𝑝=1

u𝐷
𝑝 (β̂)′u𝐷

𝑝 (β̂)

and u𝐷
𝑝 (β̂) = [𝑢𝐷

𝑝2(β̂), . . . , 𝑢𝐷
𝑝𝑇(β̂)]. Here we use (𝑁 − 𝑘)−1 instead of 𝑁−1 to match xtdpd.

Marginal predictions with unconditional standard errors
Here we describe how margins computes unconditional standard errors when used with the

vce(unconditional) option after gmm. These standard errors account for the estimation of parame-

ters in gmm before margins is used to make marginal predictions. They also account for variation in the
covariates over the population.

https://www.stata.com/manuals/rmargins.pdf#rmargins
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marginswith the vce(unconditional) option uses linearization to estimate the unconditional vari-
ance of β̂. Linearization uses the variance estimator for the total of a score variable for the marginal

prediction 𝑝(β̂) as an approximate estimator for Var{𝑝(β̂)}. See [SVY] Variance estimation for more

details. Our derivation of the standard errors here is similar to the derivation of the standard errors for

two-step 𝑀 estimators. See Wooldridge (2010, sec. 12.4) for the latter.

Let x𝑖 be a vector of covariate values, which includes all variables used in calculating the moment

conditions, and let 𝑓(x𝑖,β) be a scalar-valued function returning the value of the predictions of interest.
Let 𝛿𝑖(𝑆𝑝) indicate whether observation 𝑖 is in the subpopulation of interest, 𝑆𝑝,

𝛿𝑖(𝑆𝑝) = {1, 𝑖 ∈ 𝑆𝑝
0, 𝑖 ∉ 𝑆𝑝

margins computes ̂𝜃 = 𝑝(β̂) via

̂𝜃 = 1
𝑤⋅

𝑁
∑
𝑖=1

𝛿𝑖(𝑆𝑝)𝑤𝑖𝑓(x𝑖, β̂)

where

𝑤⋅ =
𝑁

∑
𝑖=1

𝛿𝑖(𝑆𝑝)𝑤𝑖

and 𝑤𝑖 is the weight for the 𝑖th observation.

In minimizing (A1), we see that the GMM estimator β̂ is the value of β that solves the score equations

0 = G(β)′W{𝑁−1
𝑁

∑
𝑖=1

Z′
𝑖u𝑖(β)}

where G(β) was defined in (A3).

By the mean-value theorem, for some points β1, . . . ,β𝑞 between β and β̂, we have

0 = G(β̂)′W[{𝑁−1
𝑁

∑
𝑖=1

Z′
𝑖u𝑖(β)} + G𝑚 (β̂ − β)]

where

G𝑚(𝑗,𝑙) = 𝑁−1
𝑁

∑
𝑖=1

⎡⎢
⎣

𝜕 {Z′
𝑖u𝑖(β𝑗)}𝑙
𝜕β′

𝑗

⎤⎥
⎦𝑗,𝑙

So we have

√
𝑁 (β̂ − β) = − {G(β̂)′WG𝑚}

−1
G(β̂)′W{𝑁−0.5

𝑁
∑
𝑖=1

Z′
𝑖u𝑖(β)} (A5)

The margin ̂𝜃 is the solution to the score equations

1
𝑁

𝑁
∑
𝑖=1

𝑠𝑖(𝜃, β̂) = 0

https://www.stata.com/manuals/svyvarianceestimation.pdf#svyVarianceestimation
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where

𝑠𝑖(𝜃,β) = 𝑤𝑖𝛿𝑖(𝑆𝑝) {𝑓(x𝑖,β) − 𝜃}

When we do a mean-value expansion about point 𝜃1 between 𝜃 and ̂𝜃, we get

0 = 1
𝑁

𝑁
∑
𝑖=1

𝑠𝑖(𝜃, β̂) − 𝑤⋅( ̂𝜃 − 𝜃)

So we have
√

𝑁( ̂𝜃 − 𝜃) = 𝑤⋅
−1𝑁−0.5

𝑁
∑
𝑖=1

𝑠𝑖(𝜃, β̂)

Using the mean-value theorem again, for point β𝑚 between β and β̂, we have

𝑤⋅
−1𝑁−0.5

𝑁
∑
𝑖=1

𝑠𝑖(𝜃, β̂) = 𝑤⋅
−1 {𝑁−0.5

𝑁
∑
𝑖=1

𝑠𝑖(𝜃,β) +
√

𝑁J(β𝑚) (β̂ − β)}

where J(β𝑚) is the Jacobian of the margin at β𝑚,

J(β𝑚) = {𝑁−1
𝑁

∑
𝑖=1

𝑤𝑖𝛿𝑖(𝑆𝑝)
𝜕𝑓(x𝑖,β𝑚)

𝜕β′
𝑚

}

Using (A5), we get

√
𝑁( ̂𝜃 − 𝜃) = 𝑤⋅

−1𝑁−0.5 [
𝑁

∑
𝑖=1

𝑠𝑖(𝜃,β) − J(β𝑚) {G(β̂)′WG𝑚}
−1
G(β̂)′W{

𝑁
∑
𝑖=1

Z′
𝑖u𝑖(β)}]

̂𝜃 is asymptotically normal, and a consistent estimator of its variance is given by

V̂ar{
√

𝑁( ̂𝜃 − 𝜃)} =
𝑁

∑
𝑖=1

𝑤⋅
−2 [𝑠𝑖( ̂𝜃, β̂) − J(β̂) {G(β̂)′WG(β̂)}

−1
G(β̂)′WZ′

𝑖u𝑖(β̂)]
2

See Wooldridge (2010, sec 12.4 and 12.5) for details.

gmm returns 𝑁−1 {G(β̂)′WG(β̂)}
−1

as the model-based variance. The scores are

−G(β̂)′WZ′
𝑖u𝑖(β̂) and may be predicted in postestimation; see [R] gmm postestimation. These scores

correspond to derivatives of the criterion function 𝑄(𝛽), scaled by −1/2. See Cameron and Trivedi

(2005, sec. 6.3.2) for more details.

margins estimates the asymptotic standard error of ̂𝜃 from the model-based variance, the scores, and

its own predictions of 𝑠𝑖 and the Jacobian J(β̂).
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