
glm — Generalized linear models
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Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
glm fits generalized linear models. It can fit models by using either IRLS (maximum quasilikelihood)

or Newton–Raphson (maximum likelihood) optimization, which is the default.

See [U] 27 Overview of Stata estimation commands for a description of all of Stata’s estimation

commands, several of which fit models that can also be fit using glm.

Quick start
Model of y as a function of x when y is a proportion

glm y x, family(binomial)

Logit model of y events occurring in 15 trials as a function of x
glm y x, family(binomial 15) link(logit)

Probit model of y events as a function of x using grouped data with group sizes n
glm y x, family(binomial n) link(probit)

Model of discrete y with user-defined family myfamily and link mylink
glm y x, family(myfamily) link(mylink)

Bootstrap standard errors in a model of y as a function of x with a gamma family and log link

glm y x, family(gamma) link(log) vce(bootstrap)

Menu
Statistics > Generalized linear models > Generalized linear models (GLM)
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Syntax
glm depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

family(familyname) distribution of depvar; default is family(gaussian)
link(linkname) link function; default is canonical link for family() specified

Model 2

noconstant suppress constant term

exposure(varname) include ln(varname) in model with coefficient constrained to 1

offset(varname) include varname in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

asis retain perfect predictor variables

mu(varname) use varname as the initial estimate for the mean of depvar

init(varname) synonym for mu(varname)

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, eim, opg,
bootstrap, jackknife, hac kernel, jackknife1, or unbiased

vfactor(#) multiply variance matrix by scalar #

disp(#) quasilikelihood multiplier

scale(x2 | dev | #) set the scale parameter

Reporting

level(#) set confidence level; default is level(95)
eform report exponentiated coefficients

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

ml use maximum likelihood optimization; the default

irls use iterated, reweighted least-squares optimization of the deviance

maximize options control the maximization process; seldom used

fisher(#) use the Fisher scoring Hessian or expected information matrix (EIM)

search search for good starting values

noheader suppress header table from above coefficient table

notable suppress coefficient table

nodisplay suppress the output; iteration log is still displayed

collinear keep collinear variables

coeflegend display legend instead of statistics

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rglm.pdf#rglmSyntaxweight
https://www.stata.com/manuals/rglm.pdf#rglmSyntaxfamilyname
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rglm.pdf#rglmSyntaxlinkname
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rglm.pdf#rglmOptionsvcetype
https://www.stata.com/manuals/rglm.pdf#rglmOptionskernel
https://www.stata.com/manuals/rglm.pdf#rglmOptionsdisplay_options
https://www.stata.com/manuals/rglm.pdf#rglmOptionsmaxopts
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familyname Description

gaussian Gaussian (normal)

igaussian inverse Gaussian

binomial [ varname𝑁 | #𝑁 ] Bernoulli/binomial

poisson Poisson

nbinomial [ #𝑘 | ml ] negative binomial

gamma gamma

linkname Description

identity identity

log log

logit logit

probit probit

cloglog cloglog

power # power

opower # odds power

nbinomial negative binomial

loglog log–log

logc log-complement

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bayesboot, bootstrap, by, collect, fmm, fp, jackknife, mfp, mi estimate, nestreg, rolling, statsby,
stepwise, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: glm and
[FMM] fmm: glm.

vce(bootstrap), vce(jackknife), and vce(jackknife1) are not allowed with the mi estimate prefix; see [MI] mi

estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

aweights are not allowed with the jackknife prefix; see [R] jackknife.

vce(), vfactor(), disp(), scale(), irls, fisher(), noheader, notable, nodisplay, and weights are not allowed
with the svy prefix; see [SVY] svy.

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
noheader, notable, nodisplay, collinear, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

family( familyname) specifies the distribution of depvar; family(gaussian) is the default.

link(linkname) specifies the link function; the default is the canonical link for the family() specified

(except for family(nbinomial)).

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/bayesbayesglm.pdf#bayesbayesglm
https://www.stata.com/manuals/fmmfmmglm.pdf#fmmfmmglm
https://www.stata.com/manuals/mimiestimate.pdf#mimiestimate
https://www.stata.com/manuals/mimiestimate.pdf#mimiestimate
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/rjackknife.pdf#rjackknife
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/rglm.pdf#rglmSyntaxfamilyname
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rglm.pdf#rglmSyntaxlinkname
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� � �
Model 2 �

noconstant, exposure(varname), offset(varname), constraints(constraints); see [R] Estima-

tion options. constraints(constraints) is not allowed with irls.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations

andmay produce instabilities in maximization; see [R] probit. This option is allowed only with option

family(binomial) with a denominator of 1.

mu(varname) specifies varname as the initial estimate for the mean of depvar. This option can be useful

withmodels that experience convergence difficulties, such as family(binomial)models with power
or odds-power links. init(varname) is a synonym.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from

asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

In addition to the standard vcetypes, glm allows the following alternatives:

vce(eim) specifies that the EIM estimate of variance be used.

vce(jackknife1) specifies that the one-step jackknife estimate of variance be used.

vce(hac kernel [#]) specifies that a heteroskedasticity- and autocorrelation-consistent (HAC) vari-

ance estimate be used. HAC refers to the general form for combining weighted matrices to form

the variance estimate. There are three kernels built into glm. kernel is a user-written program or

one of

nwest | gallant | anderson

# specifies the number of lags. If # is not specified, 𝑁 − 2 is assumed. If you wish to specify

vce(hac ...), you must tsset your data before calling glm.

vce(unbiased) specifies that the unbiased sandwich estimate of variance be used.

vfactor(#) specifies a scalar by which to multiply the resulting variance matrix. This option allows

you to match output with other packages, which may apply degrees of freedom or other small-sample

corrections to estimates of variance.

disp(#)multiplies the variance of depvar by # and divides the deviance by #. The resulting distributions
are members of the quasilikelihood family. This option is allowed only with option irls.

scale(x2 | dev | #) overrides the default scale parameter. This option is allowed only with Hessian

(information matrix) variance estimates.

By default, scale(1) is assumed for the discrete distributions (binomial, Poisson, and negative bi-

nomial), and scale(x2) is assumed for the continuous distributions (Gaussian, gamma, and inverse

Gaussian).

scale(x2) specifies that the scale parameter be set to the Pearson 𝜒2 (or generalized 𝜒2) statistic

divided by the residual degrees of freedom, which is recommended by McCullagh and Nelder (1989)

as a good general choice for continuous distributions.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rprobit.pdf#rprobit
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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scale(dev) sets the scale parameter to the deviance divided by the residual degrees of freedom.

This option provides an alternative to scale(x2) for continuous distributions and overdispersed or

underdispersed discrete distributions. This option is allowed only with option irls.

scale(#) sets the scale parameter to #. For example, using scale(1) in family(gamma) mod-

els results in exponential-errors regression. Additional use of link(log) rather than the default

link(power -1) for family(gamma) essentially reproduces Stata’s streg, dist(exp) nohr com-

mand (see [ST] streg) if all the observations are uncensored.

� � �
Reporting �

level(#); see [R] Estimation options.

eform displays the exponentiated coefficients and corresponding standard errors and confidence in-

tervals. For family(binomial) link(logit) (that is, logistic regression), exponentiation re-

sults are odds ratios; for family(nbinomial) link(log) (that is, negative binomial regression)

and for family(poisson) link(log) (that is, Poisson regression), exponentiated coefficients are

incidence-rate ratios.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

ml requests that optimization be carried out using Stata’s ml commands and is the default.

irls requests iterated, reweighted least-squares (IRLS) optimization of the deviance instead of New-

ton–Raphson optimization of the log likelihood. If the irls option is not specified, the optimization

is carried out using Stata’s ml commands, in which case all options of ml maximize are also available.

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization method to technique(bhhh) resets the default vcetype to vce(opg).

If option irls is specified, only maximize options iterate(), nolog, trace, and ltolerance()
are allowed. With irls specified, the convergence criterion is satisfied when the absolute

change in deviance from one iteration to the next is less than or equal to ltolerance(), where
ltolerance(1e-6) is the default.

fisher(#) specifies the number of Newton–Raphson steps that should use the Fisher scoring Hessian

or EIM before switching to the observed information matrix (OIM). This option is useful only for

Newton–Raphson optimization (and not when using irls).

search specifies that the command search for good starting values. This option is useful only for New-

ton–Raphson optimization (and not when using irls).

https://www.stata.com/manuals/ststreg.pdf#ststreg
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
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The following options are available with glm but are not shown in the dialog box:

noheader suppresses the header information from the output. The coefficient table is still displayed.

notable suppresses the table of coefficients from the output. The header information is still displayed.

nodisplay suppresses the output. The iteration log is still displayed.

collinear, coeflegend; see [R] Estimation options. collinear is not allowed with irls.

Remarks and examples
Remarks are presented under the following headings:

General use
Variance estimators
User-defined functions

General use
glm fits generalized linear models of 𝑦 with covariates x:

𝑔{𝐸(𝑦)} = xβ, 𝑦 ∼ 𝐹

𝑔( ) is called the link function, and 𝐹 is the distributional family. Substituting various definitions for 𝑔( )
and 𝐹 results in a surprising array of models. For instance, if 𝑦 is distributed as Gaussian (normal) and

𝑔( ) is the identity function, we have

𝐸(𝑦) = xβ, 𝑦 ∼ Normal

or linear regression. If 𝑔( ) is the logit function and 𝑦 is distributed as Bernoulli, we have

logit{𝐸(𝑦)} = xβ, 𝑦 ∼ Bernoulli

or logistic regression. If 𝑔( ) is the natural log function and 𝑦 is distributed as Poisson, we have

ln{𝐸(𝑦)} = xβ, 𝑦 ∼ Poisson

or Poisson regression, also known as the log-linear model. Other combinations are possible.

Although glm can be used to perform linear regression (and, in fact, does so by default), this regression

should be viewed as an instructional feature; regress produces such estimates more quickly, and many

postestimation commands are available to explore the adequacy of the fit; see [R] regress and [R] regress

postestimation.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/rregresspostestimation.pdf#rregresspostestimation
https://www.stata.com/manuals/rregresspostestimation.pdf#rregresspostestimation
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In any case, you specify the link function by using the link() option and specify the distributional

family by using family(). The available link functions are

Link function glm option

identity link(identity)
log link(log)
logit link(logit)
probit link(probit)
complementary log–log link(cloglog)
odds power link(opower #)
power link(power #)
negative binomial link(nbinomial)
log–log link(loglog)
log-complement link(logc)

Define 𝜇 = 𝐸(𝑦) and 𝜂 = 𝑔(𝜇), meaning that 𝑔(⋅) maps 𝐸(𝑦) to 𝜂 = xβ + offset.

Link functions are defined as follows:

identity is defined as 𝜂 = 𝑔(𝜇) = 𝜇.
log is defined as 𝜂 = ln(𝜇).
logit is defined as 𝜂 = ln{𝜇/(1 − 𝜇)}, the natural log of the odds.
probit is defined as 𝜂 = Φ−1(𝜇), where Φ−1( ) is the inverse Gaussian cumulative.
cloglog is defined as 𝜂 = ln{ − ln(1 − 𝜇)}.

opower is defined as 𝜂 = [{𝜇/(1− 𝜇)}𝑛 − 1]/𝑛, the power of the odds. The function is generalized
so that link(opower 0) is equivalent to link(logit), the natural log of the odds.

power is defined as 𝜂 = 𝜇𝑛. Specifying link(power 1) is equivalent to specifying

link(identity). The power function is generalized so that 𝜇0 ≡ ln(𝜇). Thus, link(power 0)
is equivalent to link(log). Negative powers are, of course, allowed.

nbinomial is defined as 𝜂 = ln{𝜇/(𝜇 + 𝑘)}, where 𝑘 = 1 if family(nbinomial) is speci-

fied, 𝑘 = #𝑘 if family(nbinomial #𝑘) is specified, and 𝑘 is estimated via maximum likelihood

if family(nbinomial ml) is specified.

loglog is defined as 𝜂 = −ln{−ln(𝜇)}.
logc is defined as 𝜂 = ln(1 − 𝜇).

The available distributional families are

Family glm option

Gaussian (normal) family(gaussian)
inverse Gaussian family(igaussian)
Bernoulli/binomial family(binomial)
Poisson family(poisson)
negative binomial family(nbinomial)
gamma family(gamma)

family(normal) is a synonym for family(gaussian).
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The binomial distribution can be specified as 1) family(binomial), 2) family(binomial #𝑁),
or 3) family(binomial varname𝑁). In case 2, #𝑁 is the value of the binomial denominator 𝑁, the

number of trials. Specifying family(binomial 1) is the same as specifying family(binomial). In
case 3, varname𝑁 is the variable containing the binomial denominator, allowing the number of trials to

vary across observations.

The negative binomial distribution can be specified as 1) family(nbinomial),
2) family(nbinomial #𝑘), or 3) family(nbinomial ml). Omitting #𝑘 is equivalent to speci-

fying family(nbinomial 1). In case 3, the value of #𝑘 is estimated via maximum likelihood. The

value #𝑘 enters the variance and deviance functions. Typical values range between 0.01 and 2; see the

technical note below.

You do not have to specify both family() and link(); the default link() is the canonical link for

the specified family() (except for nbinomial):

Family Default link

family(gaussian) link(identity)
family(igaussian) link(power -2)
family(binomial) link(logit)
family(poisson) link(log)
family(nbinomial) link(log)
family(gamma) link(power -1)

If you specify both family() and link(), not all combinations make sense. You may choose from the

following combinations:

identity log logit probit cloglog power opower nbinomial loglog logc

Gaussian x x x

inverse Gaussian x x x

binomial x x x x x x x x x

Poisson x x x

negative binomial x x x x

gamma x x x

Technical note
Some family() and link() combinations result in models already fit by Stata. These are

family() link() Options Equivalent Stata command

gaussian identity nothing | irls | irls vce(oim) regress
gaussian identity t(var) vce(hac nwest #) newey, t(var) lag(#) (see note 1)

vfactor(#𝑣)
binomial cloglog nothing | irls vce(oim) cloglog (see note 2)

binomial probit nothing | irls vce(oim) probit (see note 2)

binomial logit nothing | irls | irls vce(oim) logit or logistic (see note 3)

poisson log nothing | irls | irls vce(oim) poisson (see note 3)

nbinomial log nothing | irls vce(oim) nbreg (see note 4)

gamma log scale(1) streg, dist(exp) nohr (see note 5)

https://www.stata.com/manuals/rglm.pdf#rglmRemarksandexamplestechnote
https://www.stata.com/manuals/rglm.pdf#rglmRemarksandexamplestechnote1
https://www.stata.com/manuals/rglm.pdf#rglmRemarksandexamplestechnote2
https://www.stata.com/manuals/rglm.pdf#rglmRemarksandexamplestechnote2
https://www.stata.com/manuals/rglm.pdf#rglmRemarksandexamplestechnote3
https://www.stata.com/manuals/rglm.pdf#rglmRemarksandexamplestechnote3
https://www.stata.com/manuals/rglm.pdf#rglmRemarksandexamplestechnote4
https://www.stata.com/manuals/rglm.pdf#rglmRemarksandexamplestechnote5
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Notes:

1. The variance factor #𝑣 should be set to 𝑛/(𝑛 − 𝑘), where 𝑛 is the number of observations and 𝑘 the

number of regressors. If the number of regressors is not specified, the estimated standard errors will,

as a result, differ by this factor.

2. Because the link is not the canonical link for the binomial family, you must specify the vce(oim)
option if using irls to get equivalent standard errors. If irls is used without vce(oim), the regres-
sion coefficients will be the same but the standard errors will be only asymptotically equivalent. If

no options are specified (nothing), glm will optimize using Newton–Raphson, making it equivalent

to the other Stata command.

See [R] cloglog and [R] probit for more details about these commands.

3. Because the canonical link is being used, the standard errors will be equivalent whether the EIM or the

OIM estimator of variance is used.

4. Family negative binomial, log-link models—also known as negative binomial regression mod-

els—are used for data with an overdispersed Poisson distribution. Although glm can be used to

fit such models, using Stata’s maximum likelihood nbreg command is probably better. In the GLM

approach, you specify family(nbinomial #𝑘) and then search for a #𝑘 that results in the deviance-

based dispersion being 1. You can also specify family(nbinomial ml) to estimate #𝑘 via maximum

likelihood, which will report the same value returned from nbreg. However, nbreg also reports a

confidence interval for it; see [R] nbreg and Rogers (1993). Of course, glm allows links other than

log, and for those links, including the canonical nbinomial link, you will need to use glm.

5. glm can be used to estimate parameters from exponential regressions, but this method requires spec-

ifying scale(1). However, censoring is not available. Censored exponential regression may be

modeled using glm with family(poisson). The log of the original response is entered into a Pois-
son model as an offset, whereas the new response is the censor variable. The result of such modeling

is identical to the log relative hazard parameterization of streg, dist(exp) nohr. See [ST] streg
for details about the streg command.

In general, where there is overlap between a capability of glm and that of some other Stata command,

we recommend using the other Stata command. Our recommendation is not because of some inferiority

of the GLM approach. Rather, those other commands, by being specialized, provide options and ancillary

commands that are missing in the broader glm framework. Nevertheless, glm does produce the same

answers where it should.

Special note. When equivalence is expected, for some datasets, you may still see very slight differences

in the results, most often only in the later digits of the standard errors. When you compare glm output

to an equivalent Stata command, these tiny discrepancies arise for many reasons:

a. glm uses a general methodology for starting values, whereas the equivalent Stata command may be

more specialized in its treatment of starting values.

b. When using a canonical link, glm, irls should be equivalent to the maximum likelihood method of

the equivalent Stata command, yet the convergence criterion is different (one is for deviance, the other

for log likelihood). These discrepancies are easily resolved by adjusting one convergence criterion to

correspond to the other.

https://www.stata.com/manuals/rcloglog.pdf#rcloglog
https://www.stata.com/manuals/rprobit.pdf#rprobit
https://www.stata.com/manuals/rnbreg.pdf#rnbreg
https://www.stata.com/manuals/ststreg.pdf#ststreg
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c. When both glm and the equivalent Stata command use Newton–Raphson, small differences may still

occur if the Stata command has a different default convergence criterion from that of glm. Adjusting
the convergence criterion will resolve the difference. See [R]ml and [R]Maximize for more details.

Example 1
In example 1 of [R] logistic, we fit a model based on data from a study of risk factors associated with

low birthweight (Hosmer, Lemeshow, and Sturdivant 2013, 24). We can replicate the estimation by using

glm:

. use https://www.stata-press.com/data/r19/lbw
(Hosmer & Lemeshow data)
. glm low age lwt i.race smoke ptl ht ui, family(binomial) link(logit)
Iteration 0: Log likelihood = -101.0213
Iteration 1: Log likelihood = -100.72519
Iteration 2: Log likelihood = -100.724
Iteration 3: Log likelihood = -100.724
Generalized linear models Number of obs = 189
Optimization : ML Residual df = 180

Scale parameter = 1
Deviance = 201.4479911 (1/df) Deviance = 1.119156
Pearson = 182.0233425 (1/df) Pearson = 1.011241
Variance function: V(u) = u*(1-u) [Bernoulli]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 1.1611
Log likelihood = -100.7239956 BIC = -742.0665

OIM
low Coefficient std. err. z P>|z| [95% conf. interval]

age -.0271003 .0364504 -0.74 0.457 -.0985418 .0443412
lwt -.0151508 .0069259 -2.19 0.029 -.0287253 -.0015763

race
Black 1.262647 .5264101 2.40 0.016 .2309024 2.294392
Other .8620792 .4391532 1.96 0.050 .0013548 1.722804

smoke .9233448 .4008266 2.30 0.021 .137739 1.708951
ptl .5418366 .346249 1.56 0.118 -.136799 1.220472
ht 1.832518 .6916292 2.65 0.008 .4769494 3.188086
ui .7585135 .4593768 1.65 0.099 -.1418484 1.658875

_cons .4612239 1.20459 0.38 0.702 -1.899729 2.822176

glm, by default, presents coefficient estimates, whereas logistic presents the exponentiated coeffi-

cients—the odds ratios. glm’s eform option reports exponentiated coefficients, and glm, like Stata’s
other estimation commands, replays results.

https://www.stata.com/manuals/rml.pdf#rml
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/rlogistic.pdf#rlogisticRemarksandexamplesex1_logistic
https://www.stata.com/manuals/rlogistic.pdf#rlogistic
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. glm, eform
Generalized linear models Number of obs = 189
Optimization : ML Residual df = 180

Scale parameter = 1
Deviance = 201.4479911 (1/df) Deviance = 1.119156
Pearson = 182.0233425 (1/df) Pearson = 1.011241
Variance function: V(u) = u*(1-u) [Bernoulli]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 1.1611
Log likelihood = -100.7239956 BIC = -742.0665

OIM
low Odds ratio std. err. z P>|z| [95% conf. interval]

age .9732636 .0354759 -0.74 0.457 .9061578 1.045339
lwt .9849634 .0068217 -2.19 0.029 .9716834 .9984249

race
Black 3.534767 1.860737 2.40 0.016 1.259736 9.918406
Other 2.368079 1.039949 1.96 0.050 1.001356 5.600207

smoke 2.517698 1.00916 2.30 0.021 1.147676 5.523162
ptl 1.719161 .5952579 1.56 0.118 .8721455 3.388787
ht 6.249602 4.322408 2.65 0.008 1.611152 24.24199
ui 2.1351 .9808153 1.65 0.099 .8677528 5.2534

_cons 1.586014 1.910496 0.38 0.702 .1496092 16.8134

Note: _cons estimates baseline odds.

These results are the same as those reported in example 1 of [R] logistic.

Included in the output header are values for the Akaike (1973) information criterion (AIC) and the

Bayesian information criterion (BIC) (Raftery 1995). Both are measures of model fit adjusted for the

number of parameters that can be compared across models. In both cases, a smaller value generally

indicates a better model fit. AIC is based on the log likelihood and thus is available only when New-

ton–Raphson optimization is used. BIC is based on the deviance and thus is always available.

Technical note
The values forAIC and BIC reported in the output after glm are different from those reported by estat

ic:

. estat ic
Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

. 189 . -100.724 9 219.448 248.6237

Note: BIC uses N = number of observations. See [R] IC note.

https://www.stata.com/manuals/rlogistic.pdf#rlogisticRemarksandexamplesex1_logistic
https://www.stata.com/manuals/rlogistic.pdf#rlogistic
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There are various definitions of these information criteria (IC) in the literature; glm and estat ic
use different definitions. glm bases its computation of the BIC on deviance, whereas estat ic uses the

likelihood. Both glm and estat ic use the likelihood to compute theAIC; however, theAIC from estat
ic is equal to 𝑁, the number of observations, times the AIC from glm. Refer to Methods and formulas

in this entry and [R] estat ic for the references and formulas used by glm and estat ic, respectively, to
compute AIC and BIC. Inferences based on comparison of IC values reported by glm for different GLM

models will be equivalent to those based on comparison of IC values reported by estat ic after glm.

Example 2
We use data from an early insecticide experiment, given in Pregibon (1980). The variables are ldose,

the log dose of insecticide; n, the number of flour beetles subjected to each dose; and r, the number killed.

. use https://www.stata-press.com/data/r19/ldose

. list, sep(4)

ldose n r

1. 1.6907 59 6
2. 1.7242 60 13
3. 1.7552 62 18
4. 1.7842 56 28

5. 1.8113 63 52
6. 1.8369 59 53
7. 1.861 62 61
8. 1.8839 60 60

The aim of the analysis is to estimate a dose–response relationship between 𝑝, the proportion killed,
and 𝑋, the log dose.

As a first attempt, we will formulate the model as a linear logistic regression of 𝑝 on ldose; that is,
we will take the logit of 𝑝 and represent the dose–response curve as a straight line in 𝑋:

ln{𝑝/(1 − 𝑝)} = 𝛽0 + 𝛽1𝑋

https://www.stata.com/manuals/rglm.pdf#rglmMethodsandformulas
https://www.stata.com/manuals/restatic.pdf#restatic
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Because the data are grouped, we cannot use Stata’s logistic command to fit the model. Instead, we

will fit the model by using glm:

. glm r ldose, family(binomial n) link(logit)
Iteration 0: Log likelihood = -18.824848
Iteration 1: Log likelihood = -18.715271
Iteration 2: Log likelihood = -18.715123
Iteration 3: Log likelihood = -18.715123
Generalized linear models Number of obs = 8
Optimization : ML Residual df = 6

Scale parameter = 1
Deviance = 11.23220702 (1/df) Deviance = 1.872035
Pearson = 10.0267936 (1/df) Pearson = 1.671132
Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(u/(n-u)) [Logit]

AIC = 5.178781
Log likelihood = -18.71512262 BIC = -1.244442

OIM
r Coefficient std. err. z P>|z| [95% conf. interval]

ldose 34.27034 2.912141 11.77 0.000 28.56265 39.97803
_cons -60.71747 5.180713 -11.72 0.000 -70.87149 -50.56346

We specified family(binomial n), meaning that variable n contains the denominator.

An alternative model, which gives asymmetric sigmoid curves for 𝑝, involves the complementary

log–log, or cloglog, function:

ln{− ln(1 − 𝑝)} = 𝛽0 + 𝛽1𝑋

We fit this model by using glm:

. glm r ldose, family(binomial n) link(cloglog)
Iteration 0: Log likelihood = -14.883594
Iteration 1: Log likelihood = -14.822264
Iteration 2: Log likelihood = -14.822228
Iteration 3: Log likelihood = -14.822228
Generalized linear models Number of obs = 8
Optimization : ML Residual df = 6

Scale parameter = 1
Deviance = 3.446418004 (1/df) Deviance = .574403
Pearson = 3.294675153 (1/df) Pearson = .5491125
Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log--log]

AIC = 4.205557
Log likelihood = -14.82222811 BIC = -9.030231

OIM
r Coefficient std. err. z P>|z| [95% conf. interval]

ldose 22.04118 1.793089 12.29 0.000 18.52679 25.55557
_cons -39.57232 3.229047 -12.26 0.000 -45.90114 -33.24351

The cloglog model is preferred; the deviance for the logistic model, 11.23, is much higher than the

deviance for the cloglog model, 3.45. This change also is evident by comparing log likelihoods, or

equivalently, AIC values.
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This example also shows the advantage of the glm command—we can vary assumptions easily. Note

the minor difference in what we typed to obtain the logistic and cloglog models:

. glm r ldose, family(binomial n) link(logit)

. glm r ldose, family(binomial n) link(cloglog)

If we were performing this work for ourselves, we would have typed the commands in a more abbreviated

form:

. glm r ldose, f(b n) l(l)

. glm r ldose, f(b n) l(cl)

Technical note
Factor variables may be used with glm. Say that, in the example above, we had ldose, the log dose

of insecticide; n, the number of flour beetles subjected to each dose; and r, the number killed—all

as before—except that now we have results for three different kinds of beetles. Our hypothetical data

include beetle, which contains the values 1 (“Destructive flour”), 2 (“Red flour”), and 3 (“Mealworm”).

. use https://www.stata-press.com/data/r19/beetle

. list, sep(0)

beetle ldose n r

1. Destructive flour 1.6907 59 6
2. Destructive flour 1.7242 60 13
3. Destructive flour 1.7552 62 18
4. Destructive flour 1.7842 56 28
5. Destructive flour 1.8113 63 52

(output omitted )
23. Mealworm 1.861 64 23
24. Mealworm 1.8839 58 22

https://www.stata.com/manuals/rglm.pdf#rglmRemarksandexamplesex_glm_insectexp
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Let’s assume that, at first, we wish merely to add a shift factor for the type of beetle. We could type

. glm r i.beetle ldose, family(bin n) link(cloglog)
Iteration 0: Log likelihood = -79.012269
Iteration 1: Log likelihood = -76.94951
Iteration 2: Log likelihood = -76.945645
Iteration 3: Log likelihood = -76.945645
Generalized linear models Number of obs = 24
Optimization : ML Residual df = 20

Scale parameter = 1
Deviance = 73.76505595 (1/df) Deviance = 3.688253
Pearson = 71.8901173 (1/df) Pearson = 3.594506
Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log--log]

AIC = 6.74547
Log likelihood = -76.94564525 BIC = 10.20398

OIM
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.0910396 .1076132 -0.85 0.398 -.3019576 .1198783
Mealworm -1.836058 .1307125 -14.05 0.000 -2.09225 -1.579867

ldose 19.41558 .9954265 19.50 0.000 17.46458 21.36658
_cons -34.84602 1.79333 -19.43 0.000 -38.36089 -31.33116
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We find strong evidence that the insecticide works differently on the mealworm. We now check whether

the curve is merely shifted or also differently sloped:

. glm r beetle##c.ldose, family(bin n) link(cloglog)
Iteration 0: Log likelihood = -67.270188
Iteration 1: Log likelihood = -65.149316
Iteration 2: Log likelihood = -65.147978
Iteration 3: Log likelihood = -65.147978
Generalized linear models Number of obs = 24
Optimization : ML Residual df = 18

Scale parameter = 1
Deviance = 50.16972096 (1/df) Deviance = 2.787207
Pearson = 49.28422567 (1/df) Pearson = 2.738013
Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log--log]

AIC = 5.928998
Log likelihood = -65.14797776 BIC = -7.035248

OIM
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.79933 4.470882 -0.18 0.858 -9.562098 7.963438
Mealworm 17.78741 4.586429 3.88 0.000 8.798172 26.77664

ldose 22.04118 1.793089 12.29 0.000 18.52679 25.55557

beetle#c.ldose
Red flour .3838708 2.478477 0.15 0.877 -4.473855 5.241596
Mealworm -10.726 2.526412 -4.25 0.000 -15.67768 -5.774321

_cons -39.57232 3.229047 -12.26 0.000 -45.90114 -33.24351

We find that the (complementary log–log) dose–response curve for the mealworm has roughly half the

slope of that for the destructive flour beetle.

See [U] 26Working with categorical data and factor variables; what is said there concerning linear

regression is applicable to any GLM model.

https://www.stata.com/manuals/u26.pdf#u26Workingwithcategoricaldataandfactorvariables
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Variance estimators
glm offers many variance options and gives different types of standard errors when used in various

combinations. We highlight some of them here, but for a full explanation, see Hardin and Hilbe (2018).

Example 3
Continuingwith our flour beetle data, we rerun themost recently displayedmodel, this time requesting

estimation via IRLS.

. use https://www.stata-press.com/data/r19/beetle

. glm r beetle##c.ldose, f(bin n) l(cloglog) ltol(1e-13) irls
Iteration 1: Deviance = 54.41414
Iteration 2: Deviance = 50.19424
Iteration 3: Deviance = 50.16973
(output omitted )

Generalized linear models Number of obs = 24
Optimization : MQL Fisher scoring Residual df = 18

(IRLS EIM) Scale parameter = 1
Deviance = 50.16972096 (1/df) Deviance = 2.787207
Pearson = 49.28422528 (1/df) Pearson = 2.738013
Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log--log]

BIC = -7.035248

EIM
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.79933 4.586649 -0.17 0.862 -9.788997 8.190337
Mealworm 17.78741 4.624834 3.85 0.000 8.7229 26.85192

ldose 22.04118 1.799356 12.25 0.000 18.5145 25.56785

beetle#c.ldose
Red flour .3838708 2.544068 0.15 0.880 -4.602411 5.370152
Mealworm -10.726 2.548176 -4.21 0.000 -15.72033 -5.731665

_cons -39.57232 3.240274 -12.21 0.000 -45.92314 -33.2215

Note our use of the ltol() option, which, although unrelated to our discussion on variance estimation,

was used so that the regression coefficients would match those of the previous Newton–Raphson (NR)

fit.
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Because IRLS uses the EIM for optimization, the variance estimate is also based on EIM. If we want

optimization via IRLS but the variance estimate based on OIM, we specify glm, irls vce(oim):

. glm r beetle##c.ldose, f(b n) l(cl) ltol(1e-15) irls vce(oim) noheader nolog

OIM
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.79933 4.470882 -0.18 0.858 -9.562098 7.963438
Mealworm 17.78741 4.586429 3.88 0.000 8.798172 26.77664

ldose 22.04118 1.793089 12.29 0.000 18.52679 25.55557

beetle#c.ldose
Red flour .3838708 2.478477 0.15 0.877 -4.473855 5.241596
Mealworm -10.726 2.526412 -4.25 0.000 -15.67768 -5.774321

_cons -39.57232 3.229047 -12.26 0.000 -45.90114 -33.24351

This approach is identical to NR except for the convergence path. Because the cloglog link is not the

canonical link for the binomial family, EIM and OIM produce different results. Both estimators, however,

are asymptotically equivalent.

Going back to NR, we can also specify vce(robust) to get the Huber/White/sandwich estimator of

variance:

. glm r beetle##c.ldose, f(b n) l(cl) vce(robust) noheader nolog

Robust
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.79933 5.733049 -0.14 0.889 -12.0359 10.43724
Mealworm 17.78741 5.158477 3.45 0.001 7.676977 27.89784

ldose 22.04118 .8998551 24.49 0.000 20.27749 23.80486

beetle#c.ldose
Red flour .3838708 3.174427 0.12 0.904 -5.837892 6.605633
Mealworm -10.726 2.800606 -3.83 0.000 -16.21508 -5.236912

_cons -39.57232 1.621306 -24.41 0.000 -42.75003 -36.39462

The sandwich estimator gets its name from the form of the calculation—it is the multiplication of

three matrices, with the outer two matrices (the “bread”) set to the OIM variance matrix. When irls
is used along with vce(robust), the EIM variance matrix is instead used as the bread. Using a result

from McCullagh and Nelder (1989), Newson (1999) points out that the EIM and OIM variance matrices

are equivalent under the canonical link. Thus if irls is specified with the canonical link, the resulting

variance is labeled “Robust”. When the noncanonical link for the family is used, which is the case

in the example below, the EIM and OIM variance matrices differ, so the resulting variance is labeled

“Semirobust”.
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. glm r beetle##c.ldose, f(b n) l(cl) irls ltol(1e-15) vce(robust) noheader
> nolog

Semirobust
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.79933 6.288963 -0.13 0.899 -13.12547 11.52681
Mealworm 17.78741 5.255307 3.38 0.001 7.487194 28.08762

ldose 22.04118 .9061566 24.32 0.000 20.26514 23.81721

beetle#c.ldose
Red flour .3838708 3.489723 0.11 0.912 -6.455861 7.223603
Mealworm -10.726 2.855897 -3.76 0.000 -16.32345 -5.128542

_cons -39.57232 1.632544 -24.24 0.000 -42.77205 -36.3726

The outer product of the gradient (OPG) estimate of variance is one that avoids the calculation of

second derivatives. It is equivalent to the “middle” part of the sandwich estimate of variance and can be

specified by using glm, vce(opg), regardless of whether NR or IRLS optimization is used.

. glm r beetle##c.ldose, f(b n) l(cl) vce(opg) noheader nolog

OPG
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.79933 6.664045 -0.12 0.905 -13.86062 12.26196
Mealworm 17.78741 6.838505 2.60 0.009 4.384183 31.19063

ldose 22.04118 3.572983 6.17 0.000 15.03826 29.0441

beetle#c.ldose
Red flour .3838708 3.700192 0.10 0.917 -6.868372 7.636114
Mealworm -10.726 3.796448 -2.83 0.005 -18.1669 -3.285097

_cons -39.57232 6.433101 -6.15 0.000 -52.18097 -26.96368

The OPG estimate of variance is a component of the BHHH (Berndt et al. 1974) optimization technique.

This method of optimization is also available with glm with the technique() option; however, the

technique() option is not allowed with the irls option.

Example 4
The Newey–West (1987) estimator of variance is a sandwich estimator with the “middle” of the

sandwich modified to account for possible autocorrelation between the observations. These estimators

are a generalization of those given by the Stata command newey for linear regression. See [TS] newey

for more details.

https://www.stata.com/manuals/tsnewey.pdf#tsnewey
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For example, consider the dataset given in [TS] newey, which has time-series measurements on usr
and idle. We want to perform a linear regression with Newey–West standard errors.

. use https://www.stata-press.com/data/r19/idle2

. list usr idle time

usr idle time

1. 0 100 1
2. 0 100 2
3. 0 97 3
4. 1 98 4
5. 2 94 5

(output omitted )
29. 1 98 29
30. 1 98 30

Examining Methods and formulas of [TS] newey, we see that the variance estimate is multiplied by a

correction factor of 𝑛/(𝑛 − 𝑘), where 𝑘 is the number of regressors. glm, vce(hac . . .) does not make

this correction, so to get the same standard errors, we must use the vfactor() option within glm to make
the correction manually.

. display 30/28
1.0714286
. tsset time
Time variable: time, 1 to 30

Delta: 1 unit
. glm usr idle, vce(hac nwest 3) vfactor(1.0714286)
Iteration 0: Log likelihood = -71.743396
Generalized linear models Number of obs = 30
Optimization : ML Residual df = 28

Scale parameter = 7.493297
Deviance = 209.8123165 (1/df) Deviance = 7.493297
Pearson = 209.8123165 (1/df) Pearson = 7.493297
Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = u [Identity]
HAC kernel (lags): Newey--West (3)

AIC = 4.916226
Log likelihood = -71.74339627 BIC = 114.5788

HAC
usr Coefficient std. err. z P>|z| [95% conf. interval]

idle -.2281501 .0690928 -3.30 0.001 -.3635694 -.0927307
_cons 23.13483 6.327033 3.66 0.000 10.73407 35.53558

The glm command above reproduces the results given in [TS] newey. We may now generalize this output

to models other than simple linear regression and to different kernel weights.

https://www.stata.com/manuals/tsnewey.pdf#tsnewey
https://www.stata.com/manuals/tsnewey.pdf#tsneweyMethodsandformulas
https://www.stata.com/manuals/tsnewey.pdf#tsnewey
https://www.stata.com/manuals/tsnewey.pdf#tsnewey
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. glm usr idle, fam(gamma) link(log) vce(hac gallant 3)
Iteration 0: Log likelihood = -61.76593
Iteration 1: Log likelihood = -60.963233
Iteration 2: Log likelihood = -60.95097
Iteration 3: Log likelihood = -60.950965
Generalized linear models Number of obs = 30
Optimization : ML Residual df = 28

Scale parameter = .431296
Deviance = 9.908506707 (1/df) Deviance = .3538752
Pearson = 12.07628677 (1/df) Pearson = .431296
Variance function: V(u) = u^2 [Gamma]
Link function : g(u) = ln(u) [Log]
HAC kernel (lags): Gallant (3)

AIC = 4.196731
Log likelihood = -60.95096484 BIC = -85.32502

HAC
usr Coefficient std. err. z P>|z| [95% conf. interval]

idle -.0796609 .0184647 -4.31 0.000 -.115851 -.0434708
_cons 7.771011 1.510198 5.15 0.000 4.811078 10.73094

glm also offers variance estimators based on the bootstrap (resampling your data with replacement)

and the jackknife (refitting the model with each observation left out in succession). Also included is

the one-step jackknife estimate, which, instead of performing full reestimation when each observation is

omitted, calculates a one-step NR estimate, with the full data regression coefficients as starting values.

. set seed 1

. glm usr idle, fam(gamma) link(log) vce(bootstrap, reps(100) nodots)
Generalized linear models Number of obs = 30
Optimization : ML Residual df = 28

Scale parameter = .431296
Deviance = 9.908506707 (1/df) Deviance = .3538752
Pearson = 12.07628677 (1/df) Pearson = .431296
Variance function: V(u) = u^2 [Gamma]
Link function : g(u) = ln(u) [Log]

AIC = 4.196731
Log likelihood = -60.95096484 BIC = -85.32502

Observed Bootstrap Normal-based
usr coefficient std. err. z P>|z| [95% conf. interval]

idle -.0796609 .016657 -4.78 0.000 -.1123081 -.0470137
_cons 7.771011 1.378037 5.64 0.000 5.070108 10.47192

See Hardin and Hilbe (2018) for a full discussion of the variance options that go with glm and, in par-

ticular, of how the different variance estimators are modified when vce(cluster clustvar) is specified.

Finally, not all variance options are supported with all types of weights. See help glm for a current table

of the variance options that are supported with the different weights.
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User-defined functions
glm may be called with a community-contributed link function, variance (family) function,

Newey–West kernel-weight function, or any combination of the three.

Syntax of link functions

program progname
version 19.5 // (or version 19 if you do not have StataNow)
args todo eta mu return

if ‘todo’ == -1 {
/* Set global macros for output */
global SGLM_lt ”title for link function”
global SGLM_lf ”subtitle showing link definition”
exit

}
if ‘todo’ == 0 {

/* set 𝜂 = 𝑔(𝜇) */
/* Intermediate calculations go here */
generate double ‘eta’ = . . .
exit

}
if ‘todo’ == 1 {

/* set 𝜇 = 𝑔−1(𝜂) */
/* Intermediate calculations go here */
generate double ‘mu’ = . . .
exit

}
if ‘todo’ == 2 {

/* set return= 𝜕𝜇/𝜕𝜂 */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 3 {

/* set return= 𝜕2𝜇/𝜕𝜂2 */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
display as error ”Unknown call to glm link function”
exit 198

end
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Syntax of variance functions

program progname
version 19.5 // (or version 19 if you do not have StataNow)
args todo eta mu return

if ‘todo’ == -1 {
/* Set global macros for output */
/* Also check that depvar is in proper range */
/* Note: For this call, eta contains indicator for whether each obs. is in est. sample */
global SGLM_vt ”title for variance function”
global SGLM_vf ”subtitle showing function definition”
global SGLM_mu ”program to call to enforce boundary conditions on 𝜇”
exit

}
if ‘todo’ == 0 {

/* set 𝜂 to initial value. */
/* Intermediate calculations go here */
generate double ‘eta’ = . . .
exit

}
if ‘todo’ == 1 {

/* set return = 𝑉 (𝜇) */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 2 {

/* set return = 𝜕𝑉 (𝜇)/𝜕𝜇 */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 3 {

/* set return = squared deviance (per observation) */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 4 {

/* set return = Anscombe residual */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 5 {

/* set return = log likelihood */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 6 {

/* set return = adjustment for deviance residuals */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
display as error ”Unknown call to glm variance function”
exit 198

end
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Syntax of Newey–West kernel-weight functions

program progname, rclass
version 19.5 // (or version 19 if you do not have StataNow)
args G j
/* G is the maximum lag */
/* j is the current lag */

/* Intermediate calculations go here */

return scalar wt = computed weight
return local setype ”Newey-West”
return local sewtype ”name of kernel”

end

Global macros available for community-contributed programs

Global macro Description

SGLM V program name of variance (family) evaluator
SGLM L program name of link evaluator
SGLM y dependent variable name
SGLM m binomial denominator
SGLM a negative binomial 𝑘
SGLM p power if power() or opower() is used, or

an argument from a user-specified link function
SGLM s1 indicator; set to one if scale is equal to one
SGLM ph value of scale parameter

Example 5
Suppose that we wish to perform Poisson regression with a log-link function. Although this regression

is already possible with standard glm, we will write our own version for illustrative purposes.

Because we want a log link, 𝜂 = 𝑔(𝜇) = ln(𝜇), and for a Poisson family the variance function is

𝑉 (𝜇) = 𝜇.
The Poisson density is given by

𝑓(𝑦𝑖) = 𝑒−exp(𝜇𝑖)𝑒𝜇𝑖𝑦𝑖

𝑦𝑖!

resulting in a log likelihood of

𝐿 =
𝑛

∑
𝑖=1

{−𝑒𝜇𝑖 + 𝜇𝑖𝑦𝑖 − ln(𝑦𝑖!)}

The squared deviance of the 𝑖th observation for the Poisson family is given by

𝑑2
𝑖 = {

2 ̂𝜇𝑖 if 𝑦𝑖 = 0

2{𝑦𝑖ln(𝑦𝑖/ ̂𝜇𝑖) − (𝑦𝑖 − ̂𝜇𝑖)} otherwise
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We now have enough information to write our own Poisson-log glm module. We create the file

mylog.ado, which contains

program mylog
version 19.5 // (or version 19 if you do not have StataNow)
args todo eta mu return

if ‘todo’ == -1 {
global SGLM_lt ”My Log” // Titles for output
global SGLM_lf ”ln(u)”
exit

}
if ‘todo’ == 0 {

gen double ‘eta’ = ln(‘mu’) // 𝜂 = ln(𝜇)
exit

}
if ‘todo’ == 1 {

gen double ‘mu’ = exp(‘eta’) // 𝜇 = exp(𝜂)
exit

}
if ‘todo’ == 2 {

gen double ‘return’ = ‘mu’ // 𝜕𝜇/𝜕𝜂 = exp(𝜂) = 𝜇
exit

}
if ‘todo’ == 3 {

gen double ‘return’ = ‘mu’ // 𝜕2𝜇/𝜕𝜂2 = exp(𝜂) = 𝜇
exit

}
di as error ”Unknown call to glm link function”
exit 198

end

and we create the file mypois.ado, which contains

program mypois
version 19.5 // (or version 19 if you do not have StataNow)
args todo eta mu return

if ‘todo’ == -1 {
local y ”$SGLM y”
local touse ”‘eta’” // ‘eta’ marks estimation sample here

capture assert ‘y’>=0 if ‘touse’ // check range of 𝑦
if _rc {

di as error ‘”dependent variable ‘y’ has negative values”’
exit 499

}
global SGLM vt ”My Poisson” // Titles for output
global SGLM vf ”u”
global SGLM mu ”glim_mu 0 .” // see note 1
exit

}
if ‘todo’ == 0 { // Initialization of 𝜂; see note 2

gen double ‘eta’ = ln(‘mu’)
exit

}

https://www.stata.com/manuals/rglm.pdf#rglmRemarksandexamplesnote1
https://www.stata.com/manuals/rglm.pdf#rglmRemarksandexamplesnote2
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if ‘todo’ == 1 {
gen double ‘return’ = ‘mu’ // 𝑉 (𝜇) = 𝜇
exit

}
if ‘todo’ == 2 { // 𝜕 𝑉 (𝜇)/𝜕𝜇

gen byte ‘return’ = 1
exit

}
if ‘todo’ == 3 { // squared deviance, defined above

local y ”$SGLM y”
if ”‘y’” == ”” {

local y ”‘e(depvar)’”
}
gen double ‘return’ = cond(‘y’==0, 2*‘mu’, /*

*/ 2*(‘y’*ln(‘y’/‘mu’)-(‘y’-‘mu’)))
exit

}
if ‘todo’ == 4 { // Anscombe residual; see note 3

local y ”$SGLM y”
if ”‘y’” == ”” {

local y ”‘e(depvar)’”
}
gen double ‘return’ = 1.5*(‘y’^(2/3)-‘mu’^(2/3)) / ‘mu’^(1/6)
exit

}
if ‘todo’ == 5 { // log likelihood; see note 4

local y ”$SGLM y”
if ”‘y’” == ”” {

local y ”‘e(depvar)’”
}
gen double ‘return’ = -‘mu’+‘y’*ln(‘mu’)-lngamma(‘y’+1)
exit

}
if ‘todo’ == 6 { // adjustment to residual; see note 5

gen double ‘return’ = 1/(6*sqrt(‘mu’))
exit

}
di as error ”Unknown call to glm variance function”
error 198

end

Notes:

1. glim mu is a Stata program that will, at each iteration, bring ̂𝜇 back into its plausible range, should it

stray out of it. Here glim mu is called with the arguments zero and missing, meaning that zero is the

lower bound of ̂𝜇 and there exists no upper bound—such is the case for Poisson models.

2. Here the initial value of 𝜂 is easy because we intend to fit this model with our user-defined log link.

In general, however, the initialization may need to vary according to the link to obtain convergence.

If so, the global macro SGLM L is used to determine which link is being utilized.

3. The Anscombe formula is given here because we know it. If we were not interested in Anscombe

residuals, we could merely set ‘return’ to missing. Also, the local macro y is set either to SGLM y
if it is in current estimation or to e(depvar) if this function is being accessed by predict.

4. If we were not interested in ML estimation, we could omit this code entirely and just leave an exit
statement in its place. Similarly, if we were not interested in deviance or IRLS optimization, we could

set ‘return’ in the deviance portion of the code (‘todo’==3) to missing.

https://www.stata.com/manuals/rglm.pdf#rglmRemarksandexamplesnote3
https://www.stata.com/manuals/rglm.pdf#rglmRemarksandexamplesnote4
https://www.stata.com/manuals/rglm.pdf#rglmRemarksandexamplesnote5
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5. This code defines the term to be added to the predicted residuals if the adjusted option is specified.

Again, if we were not interested, we could set ‘return’ to missing.

We can now test our Poisson-log module by running it on the airline data presented in [R] poisson.

. use https://www.stata-press.com/data/r19/airline

. list airline injuries n XYZowned

airline injuries n XYZowned

1. 1 11 0.0950 1
2. 2 7 0.1920 0
3. 3 7 0.0750 0
4. 4 19 0.2078 0
5. 5 9 0.1382 0

6. 6 4 0.0540 1
7. 7 3 0.1292 0
8. 8 1 0.0503 0
9. 9 3 0.0629 1

. generate lnN=ln(n)

. glm injuries XYZowned lnN, f(mypois) l(mylog) scale(1)
Iteration 0: Log likelihood = -22.557572
Iteration 1: Log likelihood = -22.332861
Iteration 2: Log likelihood = -22.332276
Iteration 3: Log likelihood = -22.332276
Generalized linear models Number of obs = 9
Optimization : ML Residual df = 6

Scale parameter = 1
Deviance = 12.70432823 (1/df) Deviance = 2.117388
Pearson = 12.7695081 (1/df) Pearson = 2.128251
Variance function: V(u) = u [My Poisson]
Link function : g(u) = ln(u) [My Log]

AIC = 5.629395
Log likelihood = -22.33227605 BIC = -.4790192

OIM
injuries Coefficient std. err. z P>|z| [95% conf. interval]

XYZowned .6840668 .3895877 1.76 0.079 -.0795111 1.447645
lnN 1.424169 .3725155 3.82 0.000 .6940517 2.154286

_cons 4.863891 .7090501 6.86 0.000 3.474178 6.253603

(Standard errors scaled using dispersion equal to square root of 1.)

These are precisely the results given in [R] poisson and are those that would have been given had we run

glm, family(poisson) link(log). The only minor adjustment we needed to make was to specify the
scale(1) option. If scale() is left unspecified, glm assumes scale(1) for discrete distributions and

scale(x2) for continuous ones. By default, glm assumes that any user-defined family is continuous

because it has no way of checking. Thus, we needed to specify scale(1) because our model is discrete.

Because we were careful in defining the squared deviance, we could have fit this model with IRLS.

Because log is the canonical link for the Poisson family, we would not only get the same regression

coefficients but also the same standard errors.

https://www.stata.com/manuals/rpoisson.pdf#rpoisson
https://www.stata.com/manuals/rpoisson.pdf#rpoisson
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Example 6
Suppose now that we wish to use our log link (mylog.ado) with glm’s binomial family. This task

requires some modification because our current function is not equipped to deal with the binomial de-

nominator, which we are allowed to specify. This denominator is accessible to our link function through

the global macro SGLM m. We now make the modifications and store them in mylog2.ado.

program mylog2 // <-- changed
version 19.5 // (or version 19 if you do not have StataNow)
args todo eta mu return
if ‘todo’ == -1 {

global SGLM_lt ”My Log, Version 2” // <-- changed
if ”$SGLM m” == ”1” { // <-- changed

global SGLM lf ”ln(u)” // <-- changed
} // <-- changed
else global SGLM lf ”ln(u/$SGLM m)” // <-- changed
exit

}
if ‘todo’ == 0 {

gen double ‘eta’ = ln(‘mu’/$SGLM m) // <-- changed
exit

}
if ‘todo’ == 1 {

gen double ‘mu’ = $SGLM m*exp(‘eta’) // <-- changed
exit

}
if ‘todo’ == 2 {

gen double ‘return’ = ‘mu’
exit

}
if ‘todo’ == 3 {

gen double ‘return’ = ‘mu’
exit

}
di as error ”Unknown call to glm link function”
exit 198

end

We can now run our new log link with glm’s binomial family. Using the flour beetle data from earlier,

we have



glm — Generalized linear models 29

. use https://www.stata-press.com/data/r19/beetle, clear

. glm r ldose, f(bin n) l(mylog2) irls
Iteration 1: Deviance = 2212.108
Iteration 2: Deviance = 452.9352
Iteration 3: Deviance = 429.95
Iteration 4: Deviance = 429.2745
Iteration 5: Deviance = 429.2192
Iteration 6: Deviance = 429.2082
Iteration 7: Deviance = 429.2061
Iteration 8: Deviance = 429.2057
Iteration 9: Deviance = 429.2056
Iteration 10: Deviance = 429.2056
Iteration 11: Deviance = 429.2056
Iteration 12: Deviance = 429.2056
Generalized linear models Number of obs = 24
Optimization : MQL Fisher scoring Residual df = 22

(IRLS EIM) Scale parameter = 1
Deviance = 429.205599 (1/df) Deviance = 19.50935
Pearson = 413.088142 (1/df) Pearson = 18.77673
Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(u/n) [My Log, Version 2]

BIC = 359.2884

EIM
r Coefficient std. err. z P>|z| [95% conf. interval]

ldose 8.478908 .4702808 18.03 0.000 7.557175 9.400642
_cons -16.11006 .8723167 -18.47 0.000 -17.81977 -14.40035

For a more detailed discussion on user-defined functions, and for an example of a user-defined

Newey–West kernel weight, see Hardin and Hilbe (2018).� �
John Ashworth Nelder (1924–2010) was born in Somerset, England. He studied mathematics and

statistics at Cambridge and worked as a statistician at the National Vegetable Research Station and

then Rothamsted Experimental Station. In retirement, he was actively affiliated with Imperial Col-

lege London. Nelder was especially well known for his contributions to the theory of linear models

and to statistical computing. He was the principal architect of generalized and hierarchical general-

ized linear models and of the programs GenStat and GLIM.

Robert WilliamMaclaganWedderburn (1947–1975) was born in Edinburgh and studied mathemat-

ics and statistics at Cambridge. At Rothamsted Experimental Station, he developed the theory of

generalized linear models with Nelder and originated the concept of quasilikelihood. He died of

anaphylactic shock from an insect bite on a canal holiday.� �
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Stored results
glm, ml stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(df) residual degrees of freedom

e(phi) scale parameter

e(aic) model AIC

e(bic) model BIC

e(ll) log likelihood, if NR

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(deviance) deviance

e(deviance s) scaled deviance

e(deviance p) Pearson deviance

e(deviance ps) scaled Pearson deviance

e(dispers) dispersion

e(dispers s) scaled dispersion

e(dispers p) Pearson dispersion

e(dispers ps) scaled Pearson dispersion

e(nbml) 1 if negative binomial parameter estimated via ML, 0 otherwise

e(vf) factor set by vfactor(), 1 if not set
e(power) power set by link(power #) or link(opower #)
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) glm
e(cmdline) command as typed

e(depvar) name of dependent variable

e(varfunc) program to calculate variance function

e(varfunct) variance title

e(varfuncf) variance function

e(link) program to calculate link function

e(linkt) link title

e(linkf) link function

e(m) number of binomial trials

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2type) Wald; type of model 𝜒2 test

e(cons) noconstant, if specified
e(hac kernel) HAC kernel

e(hac lag) HAC lag

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) ml or irls
e(opt1) optimization title, line 1

e(opt2) optimization title, line 2
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e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method

e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

glm, irls stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq model) number of equations in overall model test

e(df m) model degrees of freedom

e(df) residual degrees of freedom

e(phi) scale parameter

e(disp) dispersion parameter

e(bic) model BIC

e(N clust) number of clusters

e(deviance) deviance

e(deviance s) scaled deviance

e(deviance p) Pearson deviance

e(deviance ps) scaled Pearson deviance

e(dispers) dispersion

e(dispers s) scaled dispersion

e(dispers p) Pearson dispersion

e(dispers ps) scaled Pearson dispersion

e(nbml) 1 if negative binomial parameter estimated via ML, 0 otherwise

e(vf) factor set by vfactor(), 1 if not set
e(power) power set by link(power #) or link(opower #)
e(rank) rank of e(V)
e(rc) return code

Macros

e(cmd) glm
e(cmdline) command as typed

e(depvar) name of dependent variable
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e(varfunc) program to calculate variance function

e(varfunct) variance title

e(varfuncf) variance function

e(link) program to calculate link function

e(linkt) link title

e(linkf) link function

e(m) number of binomial trials

e(wtype) weight type

e(wexp) weight expression

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(cons) noconstant, if specified
e(hac kernel) HAC kernel

e(hac lag) HAC lag

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) ml or irls
e(opt1) optimization title, line 1

e(opt2) optimization title, line 2

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
The canonical reference on GLM is McCullagh and Nelder (1989). The term “generalized linear

model” is from Nelder and Wedderburn (1972). Many people use the acronym GLIM for GLM mod-

els because of the classic GLM software tool GLIM, by Baker and Nelder (1985). See Dobson and Barnett

(2018) for a concise introduction and overview. See Rabe-Hesketh and Everitt (2007) for more examples

of GLM using Stata. Hoffmann (2004) focuses on applying generalized linear models, using real-world

datasets, along with interpreting computer output, which for the most part is obtained using Stata.
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This discussion highlights the details of parameter estimation and predicted statistics. For a more de-

tailed treatment, and for information on variance estimation, see Hardin and Hilbe (2018). glm supports

estimation with survey data. For details on VCEs with survey data, see [SVY] Variance estimation.

glm obtains results by IRLS, as described in McCullagh and Nelder (1989), or by maximum likelihood

using Newton–Raphson. The implementation here, however, allows user-specified weights, which we

denote as 𝑣𝑗 for the 𝑗th observation. Let 𝑀 be the number of “observations” ignoring weights. Define

𝑤𝑗 =
⎧{
⎨{⎩

1 if no weights are specified

𝑣𝑗 if fweights or iweights are specified
𝑀𝑣𝑗/(∑𝑘 𝑣𝑘) if aweights or pweights are specified

The number of observations is then 𝑁 = ∑𝑗 𝑤𝑗 if fweights are specified and 𝑁 = 𝑀 otherwise. Each

IRLS step is performed by regress using 𝑤𝑗 as the weights.

Let 𝑑2
𝑗 denote the squared deviance residual for the 𝑗th observation:

For the Gaussian family, 𝑑2
𝑗 = (𝑦𝑗 − ̂𝜇𝑗)2.

For the Bernoulli family (binomial with denominator 1),

𝑑2
𝑗 = {−2ln(1 − ̂𝜇𝑗) if 𝑦𝑗 = 0

−2ln( ̂𝜇𝑗) otherwise

For the binomial family with denominator 𝑚𝑗,

𝑑2
𝑗 =

⎧
{
⎨
{
⎩

2𝑦𝑗ln(𝑦𝑗/ ̂𝜇𝑗) + 2(𝑚𝑗 − 𝑦𝑗)ln{(𝑚𝑗 − 𝑦𝑗)/(𝑚𝑗 − ̂𝜇𝑗)} if 0 < 𝑦𝑗 < 𝑚𝑗

2𝑚𝑗ln{𝑚𝑗/(𝑚𝑗 − ̂𝜇𝑗)} if 𝑦𝑗 = 0

2𝑦𝑗ln(𝑦𝑗/ ̂𝜇𝑗) if 𝑦𝑗 = 𝑚𝑗

For the Poisson family,

𝑑2
𝑗 = {

2 ̂𝜇𝑗 if 𝑦𝑗 = 0

2{𝑦𝑗ln(𝑦𝑗/ ̂𝜇𝑗) − (𝑦𝑗 − ̂𝜇𝑗)} otherwise

For the gamma family, 𝑑2
𝑗 = −2{ln(𝑦𝑗/ ̂𝜇𝑗) − (𝑦𝑗 − ̂𝜇𝑗)/ ̂𝜇𝑗}.

For the inverse Gaussian, 𝑑2
𝑗 = (𝑦𝑗 − ̂𝜇𝑗)2/( ̂𝜇2

𝑗 𝑦𝑗).
For the negative binomial,

𝑑2
𝑗 = {

2ln(1 + 𝑘 ̂𝜇𝑗)/𝑘 if 𝑦𝑗 = 0

2𝑦𝑗ln(𝑦𝑗/ ̂𝜇𝑗) − 2{(1 + 𝑘𝑦𝑗)/𝑘}ln{(1 + 𝑘𝑦𝑗)/(1 + 𝑘 ̂𝜇𝑗)} otherwise

Let 𝜙 = 1 if the scale parameter is set to one; otherwise, define 𝜙 = ̂𝜙0(𝑛 − 𝑘)/𝑛, where ̂𝜙0 is the

estimated scale parameter and 𝑘 is the number of covariates in the model (including intercept).

https://www.stata.com/manuals/svyvarianceestimation.pdf#svyVarianceestimation
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Let ln𝐿𝑗 denote the log likelihood for the 𝑗th observation:
For the Gaussian family,

ln𝐿𝑗 = −1
2

[{
(𝑦𝑗 − ̂𝜇𝑗)2

𝜙
} + ln(2𝜋𝜙)]

For the binomial family with denominator 𝑚𝑗 (Bernoulli if all 𝑚𝑗 = 1),

ln𝐿𝑗 = 𝜙 ×

⎧
{
{
⎨
{
{
⎩

ln{Γ(𝑚𝑗 + 1)} − ln{Γ(𝑦𝑗 + 1)} − ln{Γ(𝑚𝑗 − 𝑦𝑗 + 1)} if 0 < 𝑦𝑗 < 𝑚𝑗
+(𝑚𝑗 − 𝑦𝑗) ln(1 − ̂𝜇𝑗/𝑚𝑗) + 𝑦𝑗 ln( ̂𝜇𝑗/𝑚𝑗)

𝑚𝑗 ln(1 − ̂𝜇𝑗/𝑚𝑗) if 𝑦𝑗 = 0

𝑚𝑗 ln( ̂𝜇𝑗/𝑚𝑗) if 𝑦𝑗 = 𝑚𝑗

For the Poisson family,

ln𝐿𝑗 = 𝜙 [𝑦𝑗 ln( ̂𝜇𝑗) − ̂𝜇𝑗 − ln{Γ(𝑦𝑗 + 1)}]

For the gamma family, ln𝐿𝑗 = −𝑦𝑗/ ̂𝜇𝑗 + ln(1/ ̂𝜇𝑗).
For the inverse Gaussian,

ln𝐿𝑗 = −1
2

{
(𝑦𝑗 − ̂𝜇𝑗)2

𝑦𝑗 ̂𝜇2
𝑗

+ 3 ln(𝑦𝑗) + ln(2𝜋)}

For the negative binomial (let 𝑚 = 1/𝑘),

ln𝐿𝑗 =𝜙 [ ln{Γ(𝑚 + 𝑦𝑗)} − ln{Γ(𝑦𝑗 + 1)} − ln{Γ(𝑚)}
−𝑚 ln(1 + ̂𝜇𝑗/𝑚) + 𝑦𝑗 ln{ ̂𝜇𝑗/( ̂𝜇𝑗 + 𝑚)}]

The overall deviance reported by glm is 𝐷2 = ∑𝑗 𝑤𝑗𝑑2
𝑗 . The dispersion of the deviance is 𝐷2

divided by the residual degrees of freedom.

The Akaike information criterion (AIC) and Bayesian information criterion (BIC) are given by

AIC = −2 ln𝐿 + 2𝑘
𝑁

BIC = 𝐷2 − (𝑁 − 𝑘) ln(𝑁)

where ln𝐿 = ∑𝑗 𝑤𝑗 ln𝐿𝑗 is the overall log likelihood.

The Pearson deviance reported by glm is ∑𝑗 𝑤𝑗𝑟2
𝑗 . The corresponding Pearson dispersion is the

Pearson deviance divided by the residual degrees of freedom. glm also calculates the scaled versions of

all of these quantities by dividing by the estimated scale parameter.
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