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Description
fp <term>: est cmd fits models with the “best”-fitting fractional polynomial substituted for <term>

wherever it appears in est cmd. fp <weight>: regress mpg <weight> foreignwould fit a regression
model of mpg on a fractional polynomial in weight and (linear) foreign.

By specifying option fp(), you may set the exact powers to be used. Otherwise, a search through all
possible fractional polynomials up to the degree set by dimension() with the powers set by powers()
is performed.

fp without arguments redisplays the previous estimation results, just as typing est cmd would. You

can type either one. fp will include a fractional polynomial comparison table.

fp generate creates fractional polynomial power variables for a given set of powers. For instance, fp
<weight>: regress mpg <weight> foreign might produce the fractional polynomial weight(−2,−1)

and store weight−2 in weight 1 and weight−1 in weight 2. Typing fp generate weight^(-2 -1)
would allow you to create the same variables in another dataset.

See [R] mfp for multivariable fractional polynomial models.

Quick start
Fit models with fractional polynomials

Find optimal second-degree fractional polynomial of x1 in regression of y on x2 and x3
fp <x1>: regress y <x1> x2 x3

Same as above, but search only powers of −1, −0.5, 1, and 2.

fp <x1>, power(-1 -.5 1 2): regress y <x1> x2 x3

Same as above, but allow search to include third-degree fractional polynomials

fp <x1>, power(-1 -.5 1 2) dimension(3): regress y <x1> x2 x3

Fit model including x1−2 and x12 without performing search

fp <x1>, fp(-2 2): regress y <x1> x2 x3

Rescale x1 to nonextreme positive values when computing fractional polynomials

fp <x1>, scale: regress y <x1> x2 x3

Same as above, and center fractional polynomial of x1 at its scaled mean

fp <x1>, center scale: regress y <x1> x2 x3
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Set fractional polynomial to zero for nonpositive values of x1
fp <x1>, zero: regress y <x1> x2 x3

Same as above, and include an indicator variable in the model for nonpositive values of x1
fp <x1>, catzero: regress y <x1> x2 x3

Create variables corresponding to fractional polynomial powers

Generate x1 1 and x1 2 corresponding to x1−2 and x12

fp generate x1^(-2 2)

Same as above, but generate fractional polynomial variables with automatic scaling and centering

fp generate x1^(-2 2), center scale

Note: In the above examples, regress could be replaced with any estimation command allowing the fp
prefix.

Menu
fp
Statistics > Linear models and related > Fractional polynomials > Fractional polynomial regression

fp generate
Statistics > Linear models and related > Fractional polynomials > Create fractional polynomial variables

Syntax
Estimation

fp <term> [ , est options ] : est cmd

Specify that fractional powers of varname be calculated during estimation

fp <term>(varname) [ , est options ] : est cmd

Replay estimation results

fp [ , replay options ]

Create specified fractional polynomial power variables

fp generate [ type ] [ newvar = ] varname ̂(numlist) [ if ] [ in ] [ , gen options ]

est cmd may be almost any estimation command that stores the e(ll) result. To confirm whether fp
works with a specific est cmd, see the documentation for that est cmd. est cmd may not contain

other prefix commands; see [U] 11.1.10 Prefix commands.

https://www.stata.com/manuals/rfp.pdf#rfpSyntaxest_options
https://www.stata.com/manuals/rfp.pdf#rfpSyntaxest_cmd
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rfp.pdf#rfpSyntaxest_options
https://www.stata.com/manuals/rfp.pdf#rfpSyntaxest_cmd
https://www.stata.com/manuals/rfp.pdf#rfpSyntaxreplay_options
https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rfp.pdf#rfpSyntaxgen_options
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
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Instances of <term> (with the angle brackets) that occur within est cmd are replaced in est cmd by a

varlist containing the fractional powers of the variable term. These variables will be named term 1,
term 2, . . . .

fp performs est cmd with this substitution, fitting a fractional polynomial regression in term.

est options Description

Main

powers(# # ... #) powers to be searched; default is powers(-2 -1 -.5 0 .5 1 2 3)
dimension(#) maximum degree of fractional polynomial; default is dimension(2)
fp(# # ...#) use specified fractional polynomial

Options

classic perform automatic scaling and centering and omit comparison table

replace replace existing fractional polynomial power variables named
term 1, term 2, . . .

all generate term 1, term 2, . . . in all observations; default is in
observations if esample()

scale(# a # b) use (term+a)/b; default is to use variable term as is

scale specify a and b automatically

center(# c) report centered-on-c results; default is uncentered results

center specify c to be the mean of (scaled) term

zero set term 1, term 2, . . . to zero if scaled term ≤ 0; default is to issue
an error message

catzero same as zero and include term 0 = (term ≤ 0) among
fractional polynomial power variables

Reporting

replay options specify how results are displayed

replay options Description

Reporting

nocompare do not display model-comparison test results

reporting options any options allowed by est cmd for replaying estimation results

gen options Description

Main

replace replace existing fractional polynomial power variables named
term 1, term 2, . . .

scale(# a # b) use (term+a)/b; default is to use variable term as is

scale specify a and b automatically

center(# c) report centered-on-c results; default is uncentered results

center specify c to be the mean of (scaled) term

zero set term 1, term 2, . . . to zero if scaled term ≤ 0; default is to issue
an error message

catzero same as zero and include term 0 = (term ≤ 0) among
fractional polynomial power variables

collect is allowed with fp and fp generate; see [U] 11.1.10 Prefix commands.

https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
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Options
Options are presented under the following headings:

Options for fp
Options for fp generate

Options for fp

� � �
Main �

powers(# # ... #) specifies that a search be performed and details about the search provided.

powers() works with the dimension() option; see below. The default is powers(-2 -1 -.5 0 .5
1 2 3).

dimension(#) specifies the maximum degree of the fractional polynomial to be searched. The default

is dimension(2).

If the defaults for both powers() and dimension() are used, then the fractional polynomial could

be any of the following 44 possibilities:

term(−2)

term(−1)

⋮
term(3)

term(−2), term(−2)

term(−2), term(−1)

⋮
term(−2), term(3)

term(−1), term(−2)

⋮
term(3), term(3)

fp(# # ... #) specifies that no search be performed and that the fractional polynomial specified be used.
fp() is an alternative to powers() and dimension().

� � �
Options �

classic performs automatic scaling and centering and omits the comparison table. Specifying classic
is equivalent to specifying scale, center, and nocompare.

replace replaces existing fractional polynomial power variables named term 1, term 2, . . . .

all specifies that term 1, term 2, . . . be filled in for all observations in the dataset rather than just for
those in e(sample).

scale(# a # b) specifies that term be scaled in the way specified, namely, that (term+a)/b be calculated.

All values of the scaled term are required to be greater than zero unless you specify options zero or

catzero. Values should not be too large or too close to zero, because by default, cubic powers and
squared reciprocal powers will be considered. When scale(a b) is specified, values in the variable

term are not modified; fp merely remembers to scale the values whenever powers are calculated.
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You will probably not use scale(a b) for values of a and b that you create yourself, although you

could. It is usually easier just to generate a scaled variable. For instance, if term is age, and age in

your data is required to be greater than or equal to 20, you might generate an age5 variable, for use

as term:

. generate age5 = (age-19)/5

scale(a b) is useful when you previously fit a model using automatic scaling (option scale) in one
dataset and now want to create the fractional polynomials in another. In the first dataset, fp with

scale added notes to the dataset concerning the values of a and b. You can see them by typing

. notes

You can then use fp generate, scale(a b) in the second dataset.

The default is to use term as it is used in calculating fractional powers; thus, term’s values are required

to be greater than zero unless you specify options zero or catzero. Values should not be too large,
because by default, cubic powers will be considered.

scale specifies that term be scaled to be greater than zero and not too large in calculating fractional

powers. See Scaling for more details. When scale is specified, values in the variable term are not

modified; fp merely remembers to scale the values whenever powers are calculated.

center(# c) reports results for the fractional polynomial in (scaled) term, centered on c. The default is

to perform no centering.

term(𝑝1,𝑝2,...,𝑝𝑚)-c(𝑝1,𝑝2,...,𝑝𝑚) is reported. This makes the constant coefficient (intercept) easier to

interpret. See Centering for more details.

center performs center(c), where c is the mean of (scaled) term.

zero and catzero specify how nonpositive values of term are to be handled. By default, nonpositive

values of term are not allowed, becausewewill be calculating natural logarithms and fractional powers

of term. Thus, an error message is issued.

zero sets the fractional polynomial value to zero for nonpositive values of (scaled) term.

catzero sets the fractional polynomial value to zero for nonpositive values of (scaled) term and

includes a dummy variable indicating where nonpositive values of (scaled) term appear in the

model.

� � �
Reporting �

nocompare suppresses display of the comparison tests.

reporting options are any options allowed by est cmd for replaying estimation results.

https://www.stata.com/manuals/rfp.pdf#rfpRemarksandexamplesScaling
https://www.stata.com/manuals/rfp.pdf#rfpRemarksandexamplesCentering
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Options for fp generate

� � �
Main �

replace replaces existing fractional polynomial power variables named term 1, term 2, . . . .

scale(# a # b) specifies that term be scaled in the way specified, namely, that (term+a)/b be calculated.

All values of the scaled term are required to be greater than zero unless you specify options zero or

catzero. Values should not be too large or too close to zero, because by default, cubic powers and
squared reciprocal powers will be considered. When scale(a b) is specified, values in the variable

term are not modified; fp merely remembers to scale the values whenever powers are calculated.

You will probably not use scale(a b) for values of a and b that you create yourself, although you

could. It is usually easier just to generate a scaled variable. For instance, if term is age, and age in

your data is required to be greater than or equal to 20, you might generate an age5 variable, for use

as term:

. generate age5 = (age-19)/5

scale(a b) is useful when you previously fit a model using automatic scaling (option scale) in one
dataset and now want to create the fractional polynomials in another. In the first dataset, fp with

scale added notes to the dataset concerning the values of a and b. You can see them by typing

. notes

You can then use fp generate, scale(a b) in the second dataset.

The default is to use term as it is used in calculating fractional powers; thus, term’s values are required

to be greater than zero unless you specify options zero or catzero. Values should not be too large,
because by default, cubic powers will be considered.

scale specifies that term be scaled to be greater than zero and not too large in calculating fractional

powers. See Scaling for more details. When scale is specified, values in the variable term are not

modified; fp merely remembers to scale the values whenever powers are calculated.

center(# c) reports results for the fractional polynomial in (scaled) term, centered on c. The default is

to perform no centering.

term(𝑝1,𝑝2,...,𝑝𝑚)-c(𝑝1,𝑝2,...,𝑝𝑚) is reported. This makes the constant coefficient (intercept) easier to

interpret. See Centering for more details.

center performs center(c), where c is the mean of (scaled) term.

zero and catzero specify how nonpositive values of term are to be handled. By default, nonpositive

values of term are not allowed, becausewewill be calculating natural logarithms and fractional powers

of term. Thus, an error message is issued.

zero sets the fractional polynomial value to zero for nonpositive values of (scaled) term.

catzero sets the fractional polynomial value to zero for nonpositive values of (scaled) term and

includes a dummy variable indicating where nonpositive values of (scaled) term appear in the

model.

https://www.stata.com/manuals/rfp.pdf#rfpRemarksandexamplesScaling
https://www.stata.com/manuals/rfp.pdf#rfpRemarksandexamplesCentering
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Remarks and examples
Remarks are presented under the following headings:

Fractional polynomial regression
Scaling
Centering
Examples

Fractional polynomial regression
Regression models based on fractional polynomial functions of a continuous covariate are described

by Royston and Altman (1994).

Fractional polynomials increase the flexibility afforded by the family of conventional polynomial

models. Although polynomials are popular in data analysis, linear and quadratic functions are limited in

their range of curve shapes, whereas cubic and higher-order curves often produce undesirable artifacts

such as edge effects and waves.

Fractional polynomials differ from regular polynomials in that 1) they allow logarithms, 2) they allow

noninteger powers, and 3) they allow powers to be repeated.

We will write a fractional polynomial in 𝑥 as

𝑥(𝑝1,𝑝2,...,𝑝𝑚)′β

We will write 𝑥(𝑝) to mean a regular power except that 𝑥(0) is to be interpreted as meaning ln(𝑥)
rather than 𝑥(0) = 1.

Then if there are no repeated powers in (𝑝1, 𝑝2, . . . , 𝑝𝑚),

𝑥(𝑝1,𝑝2,...,𝑝𝑚)′β = 𝛽0 + 𝛽1𝑥(𝑝1) + 𝛽2𝑥(𝑝2) + · · · + 𝛽𝑚𝑥(𝑝𝑚)

Powers are allowed to repeat in fractional polynomials. Each time a power repeats, it is multiplied by

another ln(𝑥). As an extreme case, consider the fractional polynomial with all-repeated powers, say, 𝑚
of them,

𝑥(𝑝,𝑝,...,𝑝)′β = 𝛽0 + 𝛽1𝑥(𝑝) + 𝛽2𝑥(𝑝) ln(𝑥) + · · · + 𝛽𝑚𝑥(𝑝){ln(𝑥)}𝑚−1

Thus, the fractional polynomial 𝑥(0,0,2)′β would be

𝑥(0,0,2)′β = 𝛽0 + 𝛽1𝑥(0) + 𝛽2𝑥(0) ln(𝑥) + 𝛽3𝑥(2)

= 𝛽0 + 𝛽1 ln(𝑥) + 𝛽2{ln(𝑥)}2 + 𝛽3𝑥2

With this definition, we can obtain a much wider range of shapes than can be obtained with regular

polynomials. The following graphs appeared in Royston and Sauerbrei (2008, sec. 4.5). The first graph

shows the shapes of differing fractional polynomials.
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The second graph shows some of the curve shapes available with different βs for the degree-2 frac-
tional polynomial, 𝑥(−2,2).

Inmodeling a fractional polynomial, Royston and Sauerbrei (2008) recommend choosing powers from

among {−2, −1, −0.5, 0, 0.5, 1, 2, 3}. By default, fp chooses powers from this set, but other powers can

be explicitly specified in the powers() option.

fp <term>: est cmd fits models with the terms of the best-fitting fractional polynomial substituted

for <term> wherever it appears in est cmd. We will demonstrate with auto.dta, which contains repair
records and other information about a variety of vehicles in 1978.

We use fp to find the best fractional polynomial in automobile weight (lbs.) (weight) for the lin-
ear regression of miles per gallon (mpg) on weight and an indicator of whether the vehicle is foreign

(foreign).

By default, fp will fit degree-2 fractional polynomial (FP2) models and choose the fractional powers

from the set {−2, −1, −0.5, 0, 0.5, 1, 2, 3}. Because car weight is measured in pounds and will have a

cubic transformation applied to it, we shrink it to a smaller scale before estimation by dividing by 1,000.
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We modify the existing weight variable for conciseness and to facilitate the comparison of tables.

When applying a data transformation in practice, rather than modifying the existing variables, you should

create new variables that hold the transformed values.

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. replace weight = weight/1000
variable weight was int now float
(74 real changes made)
. fp <weight>: regress mpg <weight> foreign
(fitting 44 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)
Fractional polynomial comparisons:

Test Residual Deviance
weight df Deviance std. dev. diff. P Powers

omitted 4 456.347 5.356 75.216 0.000
linear 3 388.366 3.407 7.236 0.082 1
m = 1 2 381.806 3.259 0.675 0.733 -.5
m = 2 0 381.131 3.268 0.000 -- -2 -2

Note: Test df is degrees of freedom, and P = P > F is sig. level for tests
comparing models vs. model with m = 2 based on deviance difference,
F(df, 68).
Source SS df MS Number of obs = 74

F(3, 70) = 52.95
Model 1696.05949 3 565.353163 Prob > F = 0.0000

Residual 747.399969 70 10.6771424 R-squared = 0.6941
Adj R-squared = 0.6810

Total 2443.45946 73 33.4720474 Root MSE = 3.2676

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight_1 15.88527 20.60329 0.77 0.443 -25.20669 56.97724
weight_2 127.9349 47.53106 2.69 0.009 33.13723 222.7326
foreign -2.222515 1.053782 -2.11 0.039 -4.324218 -.1208131

_cons 3.705981 3.367949 1.10 0.275 -3.011182 10.42314

fp begins by showing the model-comparison table. This table shows the best fractional polynomial

model of weight for each examined degree, m, which is obtained by searching through all possible power
combinations. The row labeled omitted describes the null model, which entirely omits weight from

the model. A separate row is provided for the model with a linear function of weight because it is often

the default when including a predictor in the model.

The fractional powers of the models are shown in the Powers column. An estimate of the residual

standard error is given in the Residual std. dev. column. The model deviance, which we define

as twice the negative log likelihood, is given in the Deviance column. The Deviance diff. column

reports the difference in deviance compared with the model with the lowest deviance, which is always

the model with the highest-degree fractional polynomial.

The Test df column displays the degrees of freedom used when testing a model’s fit against the

fit of the model with the lowest deviance. For normal error models such as linear regression, a partial

𝐹 test is performed, and Test df is the numerator degrees of freedom of the 𝐹 test. In other settings,

a likelihood-ratio test is performed, and Test df is the degrees of freedom of the 𝜒2 statistic. In both

cases, the 𝑝-value for the test is reported in column P.
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Under robust variance estimation and some other cases (see [R] lrtest), the likelihood-ratio test cannot

be performed. When the likelihood-ratio test cannot be performed on the model specified in est cmd,

fp still reports the model-comparison table, but the comparison tests are not performed.

fp reports the “best” model as the model with the lowest deviance; however, users may choose a more
efficient model based on the comparison table. They may choose the lowest degree model that the partial

𝐹 test (or likelihood-ratio test) fails to reject in favor of the lowest deviance model.

After the comparison table, the results of the estimation command for the lowest deviance model

are shown. Here the best model has terms weight(−2,−2). However, based on the model-comparison

table, we can reject the model without weight and the linear model at the 0.1 significance level. We

fail to reject the m = 1 model at any reasonable level. We will choose the FP1 model, which includes

weight(−.5).

We use fp again to estimate the parameters for this model. We use the fp() option to specify what

powers we want to use; this option specifies that we do not want to perform a search for the best powers.

We also specify the replace option to overwrite the previously created fractional polynomial power

variables.

. fp <weight>, fp(-.5) replace: regress mpg <weight> foreign
-> regress mpg weight_1 foreign

Source SS df MS Number of obs = 74
F(2, 71) = 79.51

Model 1689.20865 2 844.604325 Prob > F = 0.0000
Residual 754.25081 71 10.6232508 R-squared = 0.6913

Adj R-squared = 0.6826
Total 2443.45946 73 33.4720474 Root MSE = 3.2593

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight_1 66.89665 6.021749 11.11 0.000 54.88963 78.90368
foreign -2.095622 1.043513 -2.01 0.048 -4.176329 -.0149157

_cons -17.58651 3.397992 -5.18 0.000 -24.36192 -10.81111

Alternatively, we can use fp generate to create the fractional polynomial variable corresponding to

weight(−.5) and then use regress. We store weight(−.5) in the new variable wgt nsqrt.

. fp generate wgt_nsqrt=weight^(-.5)

. regress mpg wgt_nsqrt foreign
Source SS df MS Number of obs = 74

F(2, 71) = 79.51
Model 1689.20874 2 844.604371 Prob > F = 0.0000

Residual 754.250718 71 10.6232495 R-squared = 0.6913
Adj R-squared = 0.6826

Total 2443.45946 73 33.4720474 Root MSE = 3.2593

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

wgt_nsqrt_1 66.89665 6.021748 11.11 0.000 54.88963 78.90368
foreign -2.095622 1.043513 -2.01 0.048 -4.176328 -.0149155

_cons -17.58651 3.397991 -5.18 0.000 -24.36191 -10.81111

https://www.stata.com/manuals/rlrtest.pdf#rlrtest
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Scaling
Fractional polynomials are defined only for positive term variables. By default, fp will assume that

the variable x is positive and attempt to compute fractional powers of x. If the positive value assumption

is incorrect, an error will be reported and estimation will not be performed.

If the values of the variable are too large or too small, the reported results of fp may be difficult to

interpret. By default, cubic powers and squared reciprocal powers will be considered in the search for

the best fractional polynomial in term.

We can scale the variable x to 1) make it positive and 2) ensure its magnitude is not too large or too

small.

Suppose you have data on hospital patients with age as a fractional polynomial variable of interest.

age is required to be greater than or equal to 20, so you might generate an age5 variable by typing

. generate age5 = (age-19)/5

Aunit change in age5 is equivalent to a five-year change in age, and the minimum value of age5 is 1/5
instead of 20.

In the automobile example of Fractional polynomial regression, our term variable was automobile

weight (lbs.). Cars weigh in the thousands of pounds, so cubing their weight figures results in large

numbers. We prevented this from being a problem by shrinking the weight by 1,000; that is, we typed

. replace weight = weight/1000

Calendar year is another type of variable that can have a problematically large magnitude. We can

shrink this by dividing by 10, making a unit change correspond to a decade.

. generate decade = calendar_year/10

Youmay also have a variable that measures deviation from zero. Perhaps x has already been demeaned
and is symmetrically about zero. The fractional polynomial in x will be undefined for half of its domain.

We can shift the location of x, making it positive by subtracting its minimum and adding a small number

to it. Suppose x ranges from −4 to 4; we could use

. generate newx = x+5

Rescaling ourselves provides easily communicated results. We can tell exactly how the scaling was

performed and how it should be performed in similar applications.

Alternatively, fp can scale the fractional polynomial variable so that its values are positive and the

magnitude of the values are not too large. This can be done automatically or by directly specifying the

scaling values.

Scaling can be automatically performed with fp by specifying the scale option. If term has non-

positive values, the minimum value of term is subtracted from each observation of term. In this case,

the counting interval, the minimum distance between the sorted values of term, is also added to each

observation of term.

After adjusting the location of term so that its minimum value is positive, creating term∗, automatic

scaling will divide each observation of term by a power of ten. The exponent of this scaling factor is

given by

𝑝 = log10 {max(term∗) − min(term∗)}

𝑝∗ = sign(𝑝)floor (|𝑝|)

https://www.stata.com/manuals/rfp.pdf#rfpRemarksandexamplesFractionalpolynomialregression
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Rather than letting fp automatically choose the scaling of term, you may specify adjustment and

scale factors a and b by using the scale(a b) option. Fractional powers are then calculated using the

(term+a)/b values.

When scale or scale(a b) is specified, values in the variable term are not modified; fp merely

remembers to scale the values whenever powers are calculated.

In addition to fp, both scale and scale(a b) may be used with fp generate.

You will probably not use scale(a b) with fp for values of a and b that you create yourself, although

you could. As we demonstrated earlier, it is usually easier just to generate a scaled variable.

scale(a b) is useful when you previously fit a model using scale in one dataset and now want

to create the fractional polynomials in another. In the first dataset, fp with scale added notes to the

dataset concerning the values of a and b. You can see them by typing

. notes

You can then use fp generate, scale(a b) in the second dataset.

When you apply the scaling rules of a previously fit model to new data with the scale(a b) option, it

is possible that the scaled term may have nonpositive values. fp will be unable to calculate the fractional

powers of the term in this case and will issue an error.

The options zero and catzero cause fp and fp generate to output zero values for each fractional

polynomial variable when the input (scaled) fractional polynomial variable is nonpositive. Specifying

catzero causes a dummy variable indicating nonpositive values of the (scaled) fractional polynomial

variable to be included in the model. A detailed example of the use of catzero and zero is shown in

example 3 below.

Using the scaling options, we can fit our previous model again using the auto.dta. We specify

scale(0 1000) so that fp will shrink the magnitude of weight in estimating the regression. This is

done for demonstration purposes because our scaling rule is simple. As mentioned before, in practice,

you would probably only use scale(a b) when applying the scaling rules from a previous analysis.

Allowing fp to scale does have the advantage of not altering the original variable, weight.

. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. fp <weight>, fp(-.5) scale(0 1000): regress mpg <weight> foreign
-> regress mpg weight_1 foreign

Source SS df MS Number of obs = 74
F(2, 71) = 79.51

Model 1689.20861 2 844.604307 Prob > F = 0.0000
Residual 754.250846 71 10.6232514 R-squared = 0.6913

Adj R-squared = 0.6826
Total 2443.45946 73 33.4720474 Root MSE = 3.2593

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight_1 66.89665 6.021749 11.11 0.000 54.88963 78.90368
foreign -2.095622 1.043513 -2.01 0.048 -4.176329 -.0149159

_cons -17.58651 3.397992 -5.18 0.000 -24.36192 -10.81111

https://www.stata.com/manuals/rfp.pdf#rfpRemarksandexamplesex3_fp
https://www.stata.com/manuals/rfp.pdf#rfpRemarksandexamplesex_weight
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The scaling is clearly indicated in the variable notes for the generated variable weight 1.

. notes weight_1
weight_1:

1. fp term 1 of x^(-.5), where x is weight scaled.
2. Scaling was user specified: x = (weight+a)/b where a=0 and b=1000
3. Fractional polynomial variables created by fp <weight>, fp(-.5)

scale(0 1000): regress mpg <weight> foreign
4. To re-create the fractional polynomial variables, for instance, in

another dataset, type fp gen double weight^(-.5), scale(0 1000)

Centering
The fractional polynomial of term, centered on c is

(term(𝑝1,...,𝑝𝑚) − 𝑐(𝑝1,...,𝑝𝑚)) ′β

The intercept of a centered fractional polynomial can be interpreted as the effect at zero for all the

covariates. When we center the fractional polynomial terms using c, the intercept is now interpreted as

the effect at term = c and zero values for the other covariates.

Suppose we wanted to center the fractional polynomial of 𝑥 with powers (0, 0, 2) at 𝑥 = 𝑐.
(𝑥(0,0,2) − 𝑐(0,0,2)) ′β

= 𝛽0 + 𝛽1 (𝑥(0) − 𝑐(0)) + 𝛽2 {𝑥(0) ln(𝑥) − 𝑐(0) ln(𝑐)} + 𝛽3 (𝑥(2) − 𝑐(2))
= 𝛽0 + 𝛽1{ln(𝑥) − ln(𝑐)} + 𝛽2 [{ln(𝑥)}2 − {ln(𝑐)}2] + 𝛽3 (𝑥2 − 𝑐2)

When center is specified, fp centers based on the sample mean of (scaled) term. Apreviously chosen

value for centering, c, may also be specified in center(c). This would be done when applying the results
of a previous model fitting to a new dataset.

The center and center(c) options may be used in fp or fp generate.

Returning to the model of mileage per gallon based on automobile weight and foreign origin, we refit

the model with the fractional polynomial of weight centered at its scaled mean.

. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. fp <weight>, fp(-.5) scale(0 1000) center: regress mpg <weight> foreign
-> regress mpg weight_1 foreign

Source SS df MS Number of obs = 74
F(2, 71) = 79.51

Model 1689.20861 2 844.604307 Prob > F = 0.0000
Residual 754.250846 71 10.6232514 R-squared = 0.6913

Adj R-squared = 0.6826
Total 2443.45946 73 33.4720474 Root MSE = 3.2593

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight_1 66.89665 6.021749 11.11 0.000 54.88963 78.90368
foreign -2.095622 1.043513 -2.01 0.048 -4.176329 -.0149159

_cons 20.91163 .4624143 45.22 0.000 19.9896 21.83366

Note that the coefficients for weight 1 and foreign do not change. Only the intercept cons
changes. It can be interpreted as the estimated average miles per gallon of an American-made car of

average weight.
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Examples

Example 1: Linear regression
Consider the serum immunoglobulin G (IgG) dataset from Isaacs et al. (1983), which consists of 298

independent observations in young children. The dependent variable sqrtigg is the square root of the

IgG concentration, and the independent variable age is the age of each child. (Preliminary Box–Cox

analysis shows that a square root transformation removes the skewness in IgG.)

The aim is to find a model that accurately predicts the mean of sqrtigg given age. We use fp to find

the best FP2 model (the default option). We specify center for automatic centering. The age of each

child is small in magnitude and positive, so we do not use the scaling options of fp or scale ourselves.

. use https://www.stata-press.com/data/r19/igg, clear
(Immunoglobulin in children)
. fp <age>, scale center: regress sqrtigg <age>
(fitting 44 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)
Fractional polynomial comparisons:

Test Residual Deviance
age df Deviance std. dev. diff. P Powers

omitted 4 427.539 0.497 108.090 0.000
linear 3 337.561 0.428 18.113 0.000 1
m = 1 2 327.436 0.421 7.987 0.020 0
m = 2 0 319.448 0.416 0.000 -- -2 2

Note: Test df is degrees of freedom, and P = P > F is sig. level for tests
comparing models vs. model with m = 2 based on deviance difference,
F(df, 293).
Source SS df MS Number of obs = 298

F(2, 295) = 64.49
Model 22.2846976 2 11.1423488 Prob > F = 0.0000

Residual 50.9676492 295 .172771692 R-squared = 0.3042
Adj R-squared = 0.2995

Total 73.2523469 297 .246640898 Root MSE = .41566

sqrtigg Coefficient Std. err. t P>|t| [95% conf. interval]

age_1 -.1562156 .027416 -5.70 0.000 -.2101713 -.10226
age_2 .0148405 .0027767 5.34 0.000 .0093757 .0203052
_cons 2.283145 .0305739 74.68 0.000 2.222974 2.343315

The new variables created by fp contain the best-fitting fractional polynomial powers of age, as
centered by fp. For example, age 1 is centered by subtracting the mean of age raised to the power −2.

The variables created by fp and fp generate are centered or scaled as specified by the user, which is

reflected in the estimated regression coefficients and intercept. Centering does have its advantages (see

Centering earlier in this entry). By default, fp will not perform scaling or centering. For a more detailed

discussion, see Royston and Sauerbrei (2008, sec. 4.11).

https://www.stata.com/manuals/rfp.pdf#rfpRemarksandexamplesCentering
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The fitted curve has an asymmetric S shape. The best model has powers (−2, 2) and deviance 319.448.
We reject lesser degree models: the null, linear, and natural log power models at the 0.05 level. As many

as 44 models have been fit in the search for the best powers. Now let’s look at models of degree ≤ 4. The

highest allowed degree is specified in dimension(). We overwrite the previously generated fractional

polynomial power variables by including replace.

. fp <age>, dimension(4) center replace: regress sqrtigg <age>
(fitting 494 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)
Fractional polynomial comparisons:

Test Residual Deviance
age df Deviance std. dev. diff. P Powers

omitted 8 427.539 0.497 109.795 0.000
linear 7 337.561 0.428 19.818 0.007 1
m = 1 6 327.436 0.421 9.692 0.149 0
m = 2 4 319.448 0.416 1.705 0.798 -2 2
m = 3 2 319.275 0.416 1.532 0.476 -2 1 1
m = 4 0 317.744 0.416 0.000 -- 0 3 3 3

Note: Test df is degrees of freedom, and P = P > F is sig. level for tests
comparing models vs. model with m = 4 based on deviance difference,
F(df, 289).
Source SS df MS Number of obs = 298

F(4, 293) = 32.63
Model 22.5754541 4 5.64386353 Prob > F = 0.0000

Residual 50.6768927 293 .172958678 R-squared = 0.3082
Adj R-squared = 0.2987

Total 73.2523469 297 .246640898 Root MSE = .41588

sqrtigg Coefficient Std. err. t P>|t| [95% conf. interval]

age_1 .8761824 .1898721 4.61 0.000 .5024962 1.249869
age_2 -.1922029 .0684934 -2.81 0.005 -.3270044 -.0574015
age_3 .2043794 .074947 2.73 0.007 .0568767 .3518821
age_4 -.0560067 .0212969 -2.63 0.009 -.097921 -.0140924
_cons 2.238735 .0482705 46.38 0.000 2.143734 2.333736

It appears that the FP4 model is not significantly different from the other fractional polynomial models

(at the 0.05 level).
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Let’s compare the curve shape from the 𝑚 = 2 model with that from a conventional quartic polyno-

mial whose fit turns out to be significantly better than a cubic (not shown). We use the ability of fp both

to generate the required powers of age, namely, (1, 2, 3, 4) for the quartic and (−2, 2) for the second-
degree fractional polynomial, and to fit the model. The fp() option is used to specify the powers. We

use predict to obtain the fitted values of each regression. We fit both models with fp and graph the

resulting curves with twoway scatter.

. fp <age>, center fp(1 2 3 4) replace: regress sqrtigg <age>
-> regress sqrtigg age_1 age_2 age_3 age_4

Source SS df MS Number of obs = 298
F(4, 293) = 32.65

Model 22.5835458 4 5.64588646 Prob > F = 0.0000
Residual 50.668801 293 .172931061 R-squared = 0.3083

Adj R-squared = 0.2989
Total 73.2523469 297 .246640898 Root MSE = .41585

sqrtigg Coefficient Std. err. t P>|t| [95% conf. interval]

age_1 2.047831 .4595962 4.46 0.000 1.143302 2.952359
age_2 -1.058902 .2822803 -3.75 0.000 -1.614456 -.5033479
age_3 .2284917 .0667591 3.42 0.001 .0971037 .3598798
age_4 -.0168534 .0053321 -3.16 0.002 -.0273475 -.0063594
_cons 2.240012 .0480157 46.65 0.000 2.145512 2.334511

. predict fit1
(option xb assumed; fitted values)
. label variable fit1 ”Quartic”
. fp <age>, center fp(-2 2) replace: regress sqrtigg <age>
-> regress sqrtigg age_1 age_2

Source SS df MS Number of obs = 298
F(2, 295) = 64.49

Model 22.2846976 2 11.1423488 Prob > F = 0.0000
Residual 50.9676492 295 .172771692 R-squared = 0.3042

Adj R-squared = 0.2995
Total 73.2523469 297 .246640898 Root MSE = .41566

sqrtigg Coefficient Std. err. t P>|t| [95% conf. interval]

age_1 -.1562156 .027416 -5.70 0.000 -.2101713 -.10226
age_2 .0148405 .0027767 5.34 0.000 .0093757 .0203052
_cons 2.283145 .0305739 74.68 0.000 2.222974 2.343315

. predict fit2
(option xb assumed; fitted values)
. label variable fit2 ”FP 2”



fp — Fractional polynomial regression 17

. scatter sqrtigg fit1 fit2 age, c(. l l) m(o i i) msize(small)
> lpattern(. -_.) ytitle(”Square root of IgG”) xtitle(”Age (years)”)
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The quartic curve has an unsatisfactory wavy appearance that is implausible for the known behavior of

IgG, the serum level of which increases throughout early life. The fractional polynomial curve (FP2)

increases monotonically and is therefore biologically the more plausible curve. The two models have

approximately the same deviance.

Example 2: Cox regression
Data from Smith et al. (1992) contain times to complete healing of leg ulcers in a randomized, con-

trolled clinical trial of two treatments in 192 elderly patients. Several covariates were available, of which

an important one is mthson, the number of months since the recorded onset of the ulcer. This time is

recorded in whole months, not fractions of a month; therefore, some zero values are recorded.

Because the response variable is time to an event of interest and some (in fact, about one-half) of the

times are censored, using Cox regression to analyze the data is appropriate. We consider fractional poly-

nomials in mthson, adjusting for four other covariates: age; ulcarea, the area of tissue initially affected
by the ulcer; deepppg, a binary variable indicating the presence or absence of deep vein involvement;

and treat, a binary variable indicating treatment type.

We fit fractional polynomials of degrees 1 and 2 with fp. We specify scale to perform automatic

scaling on mthson. This makes it positive and ensures that its magnitude is not too large. (See Scaling
for more details.) The display option nohr is specified before the colon so that the coefficients and not

the hazard ratios are displayed.

The center option is specified to obtain automatic centering. age and ulcarea are also demeaned

by using summarize and then subtracting the returned result r(mean).

In Cox regression, there is no constant term, so we cannot see the effects of centering in the table of

regression estimates. The effects would be present if we were to graph the baseline hazard or survival

function because these functions are defined with all predictors set equal to 0.

In these graphs, we will see the estimated baseline hazard or survival function under no deep vein

involvement or treatment and under mean age, ulcer area, and number of months since the recorded

onset of the ulcer.

https://www.stata.com/manuals/rfp.pdf#rfpRemarksandexamplesScaling
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. use https://www.stata-press.com/data/r19/legulcer2, clear
(Leg ulcer clinical trial)
. stset ttevent, fail(healed)
Survival-time data settings

Failure event: healed!=0 & healed<.
Observed time interval: (0, ttevent]

Exit on or before: failure

192 total observations
0 exclusions

192 observations remaining, representing
92 failures in single-record/single-failure data

13,825 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 206

. quietly sum age

. replace age = age - r(mean)
variable age was byte now float
(192 real changes made)
. quietly sum ulcarea
. replace ulcarea = ulcarea - r(mean)
variable ulcarea was int now float
(192 real changes made)
. fp <mthson>, center scale nohr: stcox <mthson> age ulcarea deepppg treat
(fitting 44 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)
Fractional polynomial comparisons:

Test Deviance
mthson df Deviance diff. P Powers

omitted 4 754.345 17.636 0.001
linear 3 751.680 14.971 0.002 1
m = 1 2 738.969 2.260 0.323 -.5
m = 2 0 736.709 0.000 -- .5 .5

Note: Test df is degrees of freedom, and P = P > chi2 is sig. level
for tests comparing models vs. model with m = 2 based on
deviance difference, chi2.

Cox regression with Breslow method for ties
No. of subjects = 192 Number of obs = 192
No. of failures = 92
Time at risk = 13,825

LR chi2(6) = 108.59
Log likelihood = -368.35446 Prob > chi2 = 0.0000

_t Coefficient Std. err. z P>|z| [95% conf. interval]

mthson_1 -2.81425 .6996385 -4.02 0.000 -4.185516 -1.442984
mthson_2 1.541451 .4703143 3.28 0.001 .6196521 2.46325

age -.0261111 .0087983 -2.97 0.003 -.0433556 -.0088667
ulcarea -.0017491 .000359 -4.87 0.000 -.0024527 -.0010455
deepppg -.5850499 .2163173 -2.70 0.007 -1.009024 -.1610758

treat -.1624663 .2171048 -0.75 0.454 -.5879838 .2630513
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The best-fitting fractional polynomial of degree 2 has powers (0.5, 0.5) and deviance 736.709. However,
this model does not fit significantly better than the fractional polynomial of degree 1 (at the 0.05 level),

which has power −0.5 and deviance 738.969. We prefer the model with 𝑚 = 1.

. fp <mthson>, replace center scale nohr fp(-.5): stcox <mthson> age ulcarea
> deepppg treat
-> stcox mthson_1 age ulcarea deepppg treat

Cox regression with Breslow method for ties
No. of subjects = 192 Number of obs = 192
No. of failures = 92
Time at risk = 13,825

LR chi2(5) = 106.33
Log likelihood = -369.48426 Prob > chi2 = 0.0000

_t Coefficient Std. err. z P>|z| [95% conf. interval]

mthson_1 .1985592 .0493922 4.02 0.000 .1017523 .2953662
age -.02691 .0087875 -3.06 0.002 -.0441331 -.0096868

ulcarea -.0017416 .0003482 -5.00 0.000 -.0024241 -.0010591
deepppg -.5740759 .2185134 -2.63 0.009 -1.002354 -.1457975

treat -.1798575 .2175726 -0.83 0.408 -.6062921 .246577

The hazard for healing is much higher for patients whose ulcer is of recent onset than for those who have

had an ulcer for many months.

A more appropriate analysis of this dataset, if one wanted to model all the predictors, possibly with

fractional polynomial functions, would be to use mfp; see [R] mfp.

Example 3: Logistic regression
The zero option permits fitting a fractional polynomial model to the positive values of a covariate,

taking nonpositive values as zero. An application is the assessment of the effect of cigarette smoking as

a risk factor. Whitehall 1 is an epidemiological study, which was examined in Royston and Sauerbrei

(2008), of 18,403 male British Civil Servants employed in London. We examine the data collected in

Whitehall 1 and use logistic regression to model the odds of death based on a fractional polynomial in

the number of cigarettes smoked.

Nonsmokers may be qualitatively different from smokers, so the effect of smoking (regarded as a

continuous variable) may not be continuous between zero cigarettes and one cigarette. To allow for this

possibility, we model the risk as a constant for the nonsmokers and as a fractional polynomial function

of the number of cigarettes for the smokers, adjusted for age.

The dependent variable all10 is an indicator of whether the individual passed away in the 10 years

under study. cigs is the number of cigarettes consumed per day. After loading the data, we demean age
and create a dummy variable, nonsmoker. We then use fp to fit the model.

. use https://www.stata-press.com/data/r19/smoking, clear
(Smoking and mortality data)
. quietly sum age
. replace age = age - r(mean)
variable age was byte now float
(17,260 real changes made)
. generate byte nonsmoker = cond(cigs==0, 1, 0) if cigs < .

https://www.stata.com/manuals/rmfp.pdf#rmfp
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. fp <cigs>, zero: logit all10 <cigs> nonsmoker age
(fitting 44 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)
Fractional polynomial comparisons:

Test Deviance
cigs df Deviance diff. P Powers

omitted 4 9990.804 46.096 0.000
linear 3 9958.801 14.093 0.003 1
m = 1 2 9946.603 1.895 0.388 0
m = 2 0 9944.708 0.000 -- -1 -1

Note: Test df is degrees of freedom, and P = P > chi2 is sig. level
for tests comparing models vs. model with m = 2 based on
deviance difference, chi2.

Logistic regression Number of obs = 17,260
LR chi2(4) = 1029.03
Prob > chi2 = 0.0000

Log likelihood = -4972.3539 Pseudo R2 = 0.0938

all10 Coefficient Std. err. z P>|z| [95% conf. interval]

cigs_1 -1.285867 .3358483 -3.83 0.000 -1.944117 -.6276162
cigs_2 -1.982424 .572109 -3.47 0.001 -3.103736 -.8611106

nonsmoker -1.223749 .1119583 -10.93 0.000 -1.443183 -1.004315
age .1194541 .0045818 26.07 0.000 .1104739 .1284343

_cons -1.591489 .1052078 -15.13 0.000 -1.797693 -1.385286

Omission of the zero option would cause fp to halt with an error message because nonpositive co-

variate values (for example, values of cigs) are invalid unless the scale option is specified.

A closely related approach involves the catzero option. Here we no longer need to have nonsmoker
in the model, because fp creates its own dummy variable cigs 0 to indicate whether the individual does

not smoke on that day.
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. fp <cigs>, catzero replace: logit all10 <cigs> age
(fitting 44 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)
Fractional polynomial comparisons:

Test Deviance
cigs df Deviance diff. P Powers

omitted 5 10175.75 231.047 0.000
linear 3 9958.80 14.093 0.003 1
m = 1 2 9946.60 1.895 0.388 0
m = 2 0 9944.71 0.000 -- -1 -1

Note: Test df is degrees of freedom, and P = P > chi2 is sig. level
for tests comparing models vs. model with m = 2 based on
deviance difference, chi2.

Logistic regression Number of obs = 17,260
LR chi2(4) = 1029.03
Prob > chi2 = 0.0000

Log likelihood = -4972.3539 Pseudo R2 = 0.0938

all10 Coefficient Std. err. z P>|z| [95% conf. interval]

cigs_0 -1.223749 .1119583 -10.93 0.000 -1.443183 -1.004315
cigs_1 -1.285867 .3358483 -3.83 0.000 -1.944117 -.6276162
cigs_2 -1.982424 .572109 -3.47 0.001 -3.103736 -.8611106

age .1194541 .0045818 26.07 0.000 .1104739 .1284343
_cons -1.591489 .1052078 -15.13 0.000 -1.797693 -1.385286

Under both approaches, the comparison table suggests that we can accept the FP1 model instead of

the FP2 model. We estimate the parameters of the accepted model—that is, the one that uses the natural

logarithm of cigs—with fp.

. fp <cigs>, catzero replace fp(0): logit all10 <cigs> age
-> logit all10 cigs_0 cigs_1 age

Logistic regression Number of obs = 17,260
LR chi2(3) = 1027.13
Prob > chi2 = 0.0000

Log likelihood = -4973.3016 Pseudo R2 = 0.0936

all10 Coefficient Std. err. z P>|z| [95% conf. interval]

cigs_0 .1883732 .1553093 1.21 0.225 -.1160274 .4927738
cigs_1 .3469842 .0543552 6.38 0.000 .2404499 .4535185

age .1194976 .0045818 26.08 0.000 .1105174 .1284778
_cons -3.003767 .1514909 -19.83 0.000 -3.300683 -2.70685

The high 𝑝-value for cigs 0 in the output indicates that we cannot reject that there is no extra effect

at zero for nonsmokers.
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Stored results
In addition to the results that est cmd stores, fp stores the following in e():
Scalars

e(fp dimension) degree of fractional polynomial

e(fp center mean) value used for centering or .
e(fp scale a) value used for scaling or .
e(fp scale b) value used for scaling or .
e(fp compare df2) denominator degree of freedom in 𝐹 test

Macros

e(fp cmd) fp, search(): or fp, powers():
e(fp cmdline) full fp command as typed

e(fp variable) fractional polynomial variable

e(fp terms) generated fp variables

e(fp gen cmdline) fp generate command to re-create e(fp terms) variables

e(fp catzero) catzero, if specified
e(fp zero) zero, if specified
e(fp compare type) F or chi2

Matrices

e(fp fp) powers used in fractional polynomial

e(fp compare) results of model comparisons

e(fp compare stat) 𝐹 test statistics

e(fp compare df1) chi2 degrees of freedom or numerator degrees of freedom of 𝐹 test

e(fp compare fp) powers of comparison models

e(fp compare length) encoded string for display of row titles

e(fp powers) powers that are searched

fp generate stores the following in r():
Scalars

r(fp center mean) value used for centering or .
r(fp scale a) value used for scaling or .
r(fp scale b) value used for scaling or .

Macros

r(fp cmdline) full fp generate command as typed

r(fp variable) fractional polynomial variable

r(fp terms) generated fp variables

r(fp catzero) catzero, if specified
r(fp zero) zero, if specified

Matrices

r(fp fp) powers used in fractional polynomial

Methods and formulas
The general definition of a fractional polynomial, accommodating possible repeated powers, may be

written for functions 𝐻1(𝑥), . . . , 𝐻𝑚(𝑥) of 𝑥 > 0 as

𝛽0 +
𝑚

∑
𝑗=1

𝛽𝑗𝐻𝑗(𝑥)

where 𝐻1(𝑥) = 𝑥(𝑝1) and for 𝑗 = 2, . . . , 𝑚,

𝐻𝑗(𝑥) = {𝑥(𝑝𝑗) if 𝑝𝑗 ≠ 𝑝𝑗−1
𝐻𝑗−1(𝑥) ln(𝑥) if 𝑝𝑗 = 𝑝𝑗−1
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For example, a fractional polynomial of degree 3 with powers (1, 3, 3) has 𝐻1(𝑥) = 𝑥, 𝐻2(𝑥) = 𝑥3,

and 𝐻3(𝑥) = 𝑥3 ln(𝑥) and equals 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥3 + 𝛽3𝑥3 ln(𝑥).
We can express a fractional polynomial in vector notation by using H(𝑥) = [𝐻1(𝑥), . . . , 𝐻𝑑(𝑥)]′.

We define 𝑥(𝑝1,𝑝2,...,𝑝𝑚) = [H(𝑥)′, 1]′. Under this notation, we can write

𝑥(1,3,3)′β = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥3 + 𝛽3𝑥3 ln(𝑥)

The fractional polynomial may be centered so that the intercept can be more easily interpreted.

When centering the fractional polynomial of 𝑥 at 𝑐, we subtract 𝑐(𝑝1,𝑝2,...,𝑝𝑚) from 𝑥(𝑝1,𝑝2,...,𝑝𝑚), where

𝑐(𝑝1,𝑝2,...,𝑝𝑑) = [H(𝑥)′, 0]′. The centered fractional polynomial is

(𝑥(𝑝1,...,𝑝𝑑) − 𝑐(𝑝1,...,𝑝𝑑)) ′β

The definition may be extended to allow 𝑥 ≤ 0 values. For these values, the fractional polynomial is

equal to the intercept 𝛽0 or equal to a zero-offset term 𝛼0 plus the intercept 𝛽0.

The deviance 𝐷 of a model is defined as −2 times its maximized log likelihood. For normal error

models, we use the formula

𝐷 = 𝑛(1 − 𝑙 + ln
2𝜋RSS

𝑛
)

where 𝑛 is the sample size, 𝑙 is the mean of the lognormalized weights (𝑙 = 0 if the weights are all equal),

and RSS is the residual sum of squares as fit by regress.

When fp is used to search for the best combination of powers, it reports a table comparing fractional

polynomial models of degree 𝑘 < 𝑚 with the degree 𝑚 fractional polynomial model, which will have

the lowest deviance. The comparison table also includes the linear model, in which <term> is not raised

to a power, and the null model, in which <term> is omitted.

The Test df column of the model comparison table does not correspond to the model degrees of

freedom for the individual models but rather to the degrees of freedom of a test comparing that model

with the model with the lowest deviance. For normal error models, this is the numerator degrees of

freedom of a partial 𝐹 test; for other models, it is the degrees of freedom of the likelihood-ratio 𝜒2 test.

When calculating the test degrees of freedom, the command accounts for the two types of parameters that

are being estimated by fp: coefficients (𝛽𝑗) and powers. Because the powers in a fractional polynomial

are chosen from a finite set rather than from the entire real line, the degrees of freedom defined in this

way are approximate and generally yield somewhat conservative tests (Royston and Altman 1994).

The 𝑝-values reported by fp are calculated differently for normal error models than for other models.

Let 𝐷𝑘 and 𝐷𝑚 be the deviances of the models with degrees 𝑘 and 𝑚, respectively. For normal error

models, a variance ratio 𝐹 is calculated as

𝐹 = 𝑑2
𝑑1

{ exp(𝐷𝑘 − 𝐷𝑚
𝑛

) − 1}

where 𝑑1 is the numerator df, the number of additional parameters estimated by the degree 𝑚 model

over the degree 𝑘 model. 𝑑2 is the denominator degrees of freedom and equals the residual degrees of

freedom of the degree 𝑚 model minus the number of powers estimated, 𝑚. The 𝑝-value is obtained by
referring 𝐹 to an 𝐹 distribution on (𝑑1, 𝑑2) df.

For nonnormal models, the 𝑝-value is obtained by referring 𝐷𝑘 − 𝐷𝑚 to a 𝜒2 distribution on 𝑑1
degrees of freedom, with 𝑑1 defined as above.
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