estat ic — Display information criteria

Description

estat ic displays Akaike’s and Schwarz’s Bayesian information criteria.

Quick start

Display Akaike’s and Schwarz’s Bayesian information criteria

 estat ic

Specify the \(N \) to be used in calculating BIC as 500

 estat ic, n(500)

Menu for estat

Statistics > Postestimation

Syntax

 estat ic [, n(#)]

collect is allowed; see [U] 11.1.10 Prefix commands.

Option

 n(#) specifies the \(N \) to be used in calculating BIC; see [R] BIC note.

Remarks and examples

estat ic calculates two information criteria used to compare models. Unlike likelihood-ratio, Wald, and similar testing procedures, the models need not be nested to compare the information criteria. Because they are based on the log-likelihood function, information criteria are available only after commands that report the log likelihood.

In general, “smaller is better”: given two models, the one with the smaller AIC fits the data better than the one with the larger AIC. As with the AIC, a smaller BIC indicates a better-fitting model. For AIC and BIC formulas, see Methods and formulas.
Example 1

In [R] mlogit, we fit a model explaining the type of insurance a person has on the basis of age, gender, race, and site of study. Here we refit the model with and without the site dummies and compare the models.

```
. use https://www.stata-press.com/data/r17/sysdsn1
   (Health insurance data)
. mlogit insure age male nonwhite
   (output omitted)
. estat ic
   Akaike’s information criterion and Bayesian information criterion

   Model  N    ll(null)     ll(model)   df   AIC     BIC
          615    -555.8545   -545.5833   8 1107.167  1142.54

Note: BIC uses N = number of observations. See [R] BIC note.

. mlogit insure age male nonwhite i.site
   (output omitted)
. estat ic
   Akaike’s information criterion and Bayesian information criterion

   Model  N    ll(null)     ll(model)   df   AIC     BIC
          615    -555.8545   -534.3616  12 1092.723  1145.783

Note: BIC uses N = number of observations. See [R] BIC note.
```

The AIC indicates that the model including the site dummies fits the data better, whereas the BIC indicates the opposite. As is often the case, different model-selection criteria have led to conflicting conclusions.

Technical note

glm and binreg, ml report a slightly different version of AIC and BIC; see [R] glm for the formulas used. That version is commonly used within the GLM literature; see, for example, Hardin and Hilbe (2018). The literature on information criteria is vast; see, among others, Akaike (1973), Sawa (1978), and Raftery (1995). Judge et al. (1985) contains a discussion of using information criteria in econometrics. Royston and Sauerbrei (2008, chap. 2) examine the use of information criteria as an alternative to stepwise procedures for selecting model variables.

Stored results

estat ic stores the following in r():

Matrices

r(S) 1 x 6 matrix of results:
1. sample size
2. log likelihood of null model
3. log likelihood of full model
4. degrees of freedom
5. AIC
6. BIC
Methods and formulas

Akaike’s (1974) information criterion is defined as

\[\text{AIC} = -2 \ln L + 2k \]

where \(\ln L \) is the maximized log-likelihood of the model and \(k \) is the number of parameters estimated. Some authors define the \(\text{AIC} \) as the expression above divided by the sample size.

Schwarz’s (1978) Bayesian information criterion is another measure of fit defined as

\[\text{BIC} = -2 \ln L + k \ln N \]

where \(N \) is the sample size. See [R] \textbf{BIC note} for additional information on calculating and interpreting BIC.

Hirotugu Akaike (1927–2009) was born in Fujinomiya City, Shizuoka Prefecture, Japan. He was the son of a silkworm farmer. He gained BA and DSc degrees from the University of Tokyo. Akaike’s career from 1952 at the Institute of Statistical Mathematics in Japan culminated in service as Director General; after 1994, he was Professor Emeritus. His best known work in a prolific career is on what is now known as the Akaike information criterion (AIC), which was formulated to help selection of the most appropriate model from a number of candidates.

Gideon E. Schwarz (1933–2007) was a professor of Statistics at the Hebrew University, Jerusalem. He was born in Salzburg, Austria, and obtained an MSc in 1956 from the Hebrew University and a PhD in 1961 from Columbia University. His interests included stochastic processes, sequential analysis, probability, and geometry. He is best known for the Bayesian information criterion (BIC).

References

Also see

[R] estat — Postestimation statistics
[R] estat summarize — Summarize estimation sample
[R] estat vce — Display covariance matrix estimates