Description

`estat gof` reports the Pearson goodness-of-fit test or the Hosmer–Lemeshow goodness-of-fit test.

`estat gof` requires that the current estimation results be from `logistic`, `logit`, or `probit`; see [R] `logistic`, [R] `logit`, or [R] `probit`. For `estat gof` after `poisson`, see [R] `poisson postestimation`. For `estat gof` after `sem`, see [SEM] `estat gof`.

Quick start

Pearson goodness-of-fit test for current estimation results

```
estat gof
```

As above, but apply to all observations in dataset instead of just those in `e(sample)`

```
estat gof, all
```

Hosmer–Lemeshow goodness-of-fit test

```
estat gof, group(10)
```

As above, and display table of groups used for the test

```
estat gof, group(10) table
```
Syntax

```
estat gof [if] [in] [weight] [, options]
```

```

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Main</strong></td>
<td></td>
</tr>
<tr>
<td><code>group(#)</code></td>
<td>perform Hosmer–Lemeshow goodness-of-fit test using # quantiles</td>
</tr>
<tr>
<td><code>all</code></td>
<td>execute test for all observations in the data</td>
</tr>
<tr>
<td><code>outsample</code></td>
<td>adjust degrees of freedom for samples outside estimation sample</td>
</tr>
<tr>
<td><code>table</code></td>
<td>display table of groups used for test</td>
</tr>
<tr>
<td>fweights are allowed; see [U] 11.1.6 weight.</td>
<td></td>
</tr>
<tr>
<td>estat gof is not appropriate after the svy prefix.</td>
<td></td>
</tr>
</tbody>
</table>

Options

- **Main**

  - `group(#)` specifies the number of quantiles to be used to group the data for the Hosmer–Lemeshow goodness-of-fit test. `group(10)` is typically specified. If this option is not given, the Pearson goodness-of-fit test is computed using the covariate patterns in the data as groups.

  - `all` requests that the statistic be computed for all observations in the data, ignoring any `if` or `in` restrictions specified by the estimation command.

  - `outsample` adjusts the degrees of freedom for the Pearson and Hosmer–Lemeshow goodness-of-fit tests for samples outside the estimation sample. See `Samples other than the estimation sample` later in this entry.

  - `table` displays a table of the groups used for the Hosmer–Lemeshow or Pearson goodness-of-fit test with predicted probabilities, observed and expected counts for both outcomes, and totals for each group.

Remarks and examples

Remarks are presented under the following headings:

- Introduction
- `Samples other than the estimation sample`

Introduction

`estat gof` computes goodness-of-fit tests: either the Pearson $\chi^2$ test or the Hosmer–Lemeshow test.

By default, `estat gof` computes statistics for the estimation sample by using the last model fit by `logistic`, `logit`, or `probit`. However, samples other than the estimation sample can be specified; see `Samples other than the estimation sample` later in this entry.
Example 1

`estat gof`, typed without options, presents the Pearson $\chi^2$ goodness-of-fit test for the fitted model. The Pearson $\chi^2$ goodness-of-fit test is a test of the observed against expected number of responses using cells defined by the covariate patterns; see `predict with the number option` in [R] logistic postestimation for the definition of covariate patterns.

```
use https://www.stata-press.com/data/r16/lbw
(logistic & Lemeshow data)
.logistic low age lwt i.race smoke ptl ht ui
(output omitted)
estat gof
```

**Logistic model for low, goodness-of-fit test**

| number of observations = | 189 |
| number of covariate patterns = | 182 |
| Pearson chi2(173) = | 179.24 |
| Prob > chi2 = | 0.3567 |

Our model fits reasonably well. However, the number of covariate patterns is close to the number of observations, making the applicability of the Pearson $\chi^2$ test questionable but not necessarily inappropriate. Hosmer, Lemeshow, and Sturdivant (2013, 157–160) suggest regrouping the data by ordering on the predicted probabilities and then forming, say, 10 nearly equal-sized groups. `estat gof` with the `group()` option does this:

```
estat gof, group(10)
```

**Logistic model for low, goodness-of-fit test**

<table>
<thead>
<tr>
<th>Group</th>
<th>Prob</th>
<th>Obs_1</th>
<th>Exp_1</th>
<th>Obs_0</th>
<th>Exp_0</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0827</td>
<td>0</td>
<td>1.2</td>
<td>19</td>
<td>17.8</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>0.1276</td>
<td>2</td>
<td>2.0</td>
<td>17</td>
<td>17.0</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>0.2015</td>
<td>6</td>
<td>3.2</td>
<td>13</td>
<td>15.8</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>0.2432</td>
<td>1</td>
<td>4.3</td>
<td>18</td>
<td>14.7</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>0.2792</td>
<td>7</td>
<td>4.9</td>
<td>12</td>
<td>14.1</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>0.3138</td>
<td>7</td>
<td>5.6</td>
<td>12</td>
<td>13.4</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>0.3872</td>
<td>6</td>
<td>6.5</td>
<td>13</td>
<td>12.5</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>0.4828</td>
<td>7</td>
<td>8.2</td>
<td>12</td>
<td>10.8</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>0.5941</td>
<td>10</td>
<td>10.3</td>
<td>9</td>
<td>8.7</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>0.8391</td>
<td>13</td>
<td>12.8</td>
<td>5</td>
<td>5.2</td>
<td>18</td>
</tr>
</tbody>
</table>

Again we cannot reject our model. If we specify the `table` option, `estat gof` displays the groups along with the expected and observed number of positive responses (low-birthweight babies):

```
estat gof, group(10) table
```

**Logistic model for low, goodness-of-fit test**

<table>
<thead>
<tr>
<th>Group</th>
<th>Prob</th>
<th>Obs_1</th>
<th>Exp_1</th>
<th>Obs_0</th>
<th>Exp_0</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0827</td>
<td>0</td>
<td>1.2</td>
<td>19</td>
<td>17.8</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>0.1276</td>
<td>2</td>
<td>2.0</td>
<td>17</td>
<td>17.0</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>0.2015</td>
<td>6</td>
<td>3.2</td>
<td>13</td>
<td>15.8</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>0.2432</td>
<td>1</td>
<td>4.3</td>
<td>18</td>
<td>14.7</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>0.2792</td>
<td>7</td>
<td>4.9</td>
<td>12</td>
<td>14.1</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>0.3138</td>
<td>7</td>
<td>5.6</td>
<td>12</td>
<td>13.4</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>0.3872</td>
<td>6</td>
<td>6.5</td>
<td>13</td>
<td>12.5</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>0.4828</td>
<td>7</td>
<td>8.2</td>
<td>12</td>
<td>10.8</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>0.5941</td>
<td>10</td>
<td>10.3</td>
<td>9</td>
<td>8.7</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>0.8391</td>
<td>13</td>
<td>12.8</td>
<td>5</td>
<td>5.2</td>
<td>18</td>
</tr>
</tbody>
</table>

number of observations = 189
number of groups = 10
Hosmer-Lemeshow chi2(8) = 9.65
Prob > chi2 = 0.2904
Technical note

`estat gof` with the `group()` option puts all observations with the same predicted probabilities into the same group. If, as in the previous example, we request 10 groups, the groups that `estat gof` makes are $[p_0, p_{10}], (p_{10}, p_{20}], (p_{20}, p_{30}], \ldots, (p_{90}, p_{100}]$, where $p_k$ is the $k$th percentile of the predicted probabilities, with $p_0$ the minimum and $p_{100}$ the maximum.

If there are many ties at the quantile boundaries, as will often happen if all independent variables are categorical and there are only a few of them, the sizes of the groups will be uneven. If the totals in some of the groups are small, the $\chi^2$ statistic for the Hosmer–Lemeshow test may be unreliable. In this case, fewer groups should be specified, or the Pearson goodness-of-fit test may be a better choice.

Example 2

The `table` option can be used without the `group()` option. We would not want to specify this for our current model because there were 182 covariate patterns in the data, caused by including the two continuous variables, `age` and `lwt`, in the model. As an aside, we fit a simpler model and specify `table` with `estat gof`:

```
. logistic low i.race smoke ui
Logistic regression Number of obs = 189
 LR chi2(4) = 18.80
 Prob > chi2 = 0.0009
Log likelihood = -107.93404 Pseudo R2 = 0.0801

 low | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
----------|-------------|---------------|-------|--------|-----------------------------|
 race | | | | | |
 black | 3.052746 | 1.498087 | 2.27 | 0.023 | 1.166747 - 7.987382 |
 other | 2.922593 | 1.189229 | 2.64 | 0.008 | 1.316457 - 6.489285 |
 smoke | 2.945742 | 1.101838 | 2.89 | 0.004 | 1.415167 - 6.131715 |
 ui | 2.419131 | 1.047359 | 2.04 | 0.041 | 1.035459 - 5.651788 |
 _cons | 1.402209 | 0.512295 | -5.38 | 0.000 | 0.0685216 - 2.869447 |
```

Note: `_cons` estimates baseline odds.
Logistic model for low, goodness-of-fit test

<table>
<thead>
<tr>
<th>Group</th>
<th>Prob</th>
<th>Obs_1</th>
<th>Exp_1</th>
<th>Obs_0</th>
<th>Exp_0</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1230</td>
<td>3</td>
<td>4.9</td>
<td>37</td>
<td>35.1</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>0.2533</td>
<td>1</td>
<td>1.0</td>
<td>3</td>
<td>3.0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0.2907</td>
<td>16</td>
<td>13.7</td>
<td>31</td>
<td>33.3</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>0.2923</td>
<td>15</td>
<td>12.6</td>
<td>28</td>
<td>30.4</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>0.2997</td>
<td>3</td>
<td>3.9</td>
<td>10</td>
<td>9.1</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>0.4978</td>
<td>4</td>
<td>4.0</td>
<td>4</td>
<td>4.0</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>0.4998</td>
<td>4</td>
<td>4.5</td>
<td>5</td>
<td>4.5</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>0.5087</td>
<td>2</td>
<td>1.5</td>
<td>1</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>0.5469</td>
<td>2</td>
<td>4.4</td>
<td>6</td>
<td>3.6</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>0.5577</td>
<td>6</td>
<td>5.6</td>
<td>4</td>
<td>4.4</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>0.7449</td>
<td>3</td>
<td>3.0</td>
<td>1</td>
<td>1.0</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Prob</th>
<th>race</th>
<th>smoke</th>
<th>ui</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1230</td>
<td>white</td>
<td>nonsmoker</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.2533</td>
<td>white</td>
<td>nonsmoker</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0.2907</td>
<td>other</td>
<td>nonsmoker</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.2923</td>
<td>white</td>
<td>smoker</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.2997</td>
<td>black</td>
<td>nonsmoker</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0.4978</td>
<td>other</td>
<td>nonsmoker</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0.4998</td>
<td>white</td>
<td>smoker</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0.5087</td>
<td>black</td>
<td>nonsmoker</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0.5469</td>
<td>other</td>
<td>smoker</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0.5577</td>
<td>black</td>
<td>smoker</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0.7449</td>
<td>other</td>
<td>smoker</td>
<td>1</td>
</tr>
</tbody>
</table>

Technical note

logistic, logit, or probit and estat gof keep track of the estimation sample. If you type, for instance, logistic ... if x==1, then when you type estat gof, the statistics will be calculated on the x==1 subsample of the data automatically.

You should specify if or in with estat gof only when you wish to calculate statistics for a set of observations other than the estimation sample. See Samples other than the estimation sample later in this entry.

If the logistic model was fit with fweights, estat gof properly accounts for the weights in its calculations. (estat gof allows only fweights.) You do not have to specify the weights when you run estat gof. Weights should be specified with estat gof only when you wish to use a different set of weights.
Samples other than the estimation sample

`estat gof` can be used with samples other than the estimation sample. By default, `estat gof` remembers the estimation sample used with the last `logistic`, `logit`, or `probit` command. To override this, simply use an `if` or `in` restriction to select another set of observations, or specify the all option to force the command to use all the observations in the dataset.

If you use `estat gof` with a sample that is completely different from the estimation sample (that is, no overlap), you should also specify the `outsample` option so that the $\chi^2$ statistic properly adjusts the degrees of freedom upward. For an overlapping sample, the conservative thing to do is to leave the degrees of freedom the same as they are for the estimation sample.

Example 3

We want to develop a model for predicting low-birthweight babies. One approach would be to divide our data into two groups, a developmental sample and a validation sample. See Lemeshow and Gall (1994) and Tilford, Roberson, and Fiser (1995) for more information on developing prediction models and severity-scoring systems.

We will do this with the low-birthweight data that we considered previously. First, we randomly divide the data into two samples.

```
. use https://www.stata-press.com/data/r16/lbw, clear
(Hosmer & Lemeshow data)
. set seed 101
. generate r = runiform()
. sort r
. generate group = 1 if _n <= _N/2
 (95 missing values generated)
. replace group = 2 if group==.
 (95 real changes made)
```

Then, we fit a model using the first sample (`group==1`), which is our developmental sample.

```
. logistic low age lwt i.race smoke ptl ht ui if group==1
Logistic regression
 Number of obs = 94
 LR chi2(8) = 28.03
 Prob > chi2 = 0.0005
 Log likelihood = -42.351112 Pseudo R2 = 0.2487

 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
 low age .922865 .0555349 -1.33 0.182 .8201924 1.03839
 lwt .9825782 .0114438 -1.51 0.131 .9604029 1.005265
 race
 black 5.975476 4.936135 2.16 0.030 1.183652 30.16621
 other 3.364479 2.760784 1.48 0.139 .6736724 16.803
 smoke
 smokes 3.442716 2.53779 1.68 0.094 .8117831 14.60032
 ptl 3.467274 2.337648 1.84 0.065 .9249222 12.99784
 ht 5.928512 5.047106 1.74 0.081 .8030021 43.76982
 ui 4.045883 2.947396 1.92 0.055 .9703295 16.8697
 _cons 3.120871 5.977489 0.59 0.552 .0731049 133.231
```

Note: _cons estimates baseline odds.

To test calibration in the developmental sample, we calculate the Hosmer–Lemeshow goodness-of-fit test by using `estat gof`.
. estat gof, group(10)

**Logistic model for low, goodness-of-fit test**

(Table collapsed on quantiles of estimated probabilities)

<table>
<thead>
<tr>
<th>Group</th>
<th>Prob</th>
<th>Obs_1</th>
<th>Exp_1</th>
<th>Obs_0</th>
<th>Exp_0</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0276</td>
<td>0</td>
<td>0.2</td>
<td>10</td>
<td>9.8</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0.0496</td>
<td>2</td>
<td>0.4</td>
<td>7</td>
<td>8.6</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>0.0875</td>
<td>1</td>
<td>0.7</td>
<td>9</td>
<td>9.3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>0.1536</td>
<td>4</td>
<td>1.1</td>
<td>5</td>
<td>7.9</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>0.2283</td>
<td>4</td>
<td>2.0</td>
<td>6</td>
<td>8.0</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>0.2842</td>
<td>4</td>
<td>2.2</td>
<td>5</td>
<td>6.8</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>0.4190</td>
<td>3</td>
<td>3.6</td>
<td>7</td>
<td>6.4</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>0.5248</td>
<td>5</td>
<td>4.3</td>
<td>4</td>
<td>4.7</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>0.6413</td>
<td>5</td>
<td>5.8</td>
<td>5</td>
<td>4.2</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>0.9787</td>
<td>4</td>
<td>7.3</td>
<td>5</td>
<td>1.7</td>
<td>9</td>
</tr>
</tbody>
</table>

number of observations = 95
number of groups = 10
Hosmer-Lemeshow chi2(10) = 29.30
Prob > chi2 = 0.0011

We did not specify an *if* statement with `estat gof` because we wanted to use the estimation sample. Because the test is not significant, we are satisfied with the fit of our model.

Running `lroc` (see [R] `lroc`) gives a measure of the discrimination:

```
. lroc, nograph
Logistic model for low
number of observations = 95
area under ROC curve = 0.8145
```

Now, we test the calibration of our model by performing a goodness-of-fit test on the validation sample. We specify the `outsample` option so that the number of degrees of freedom is 10 rather than 8.

. estat gof if group==2, group(10) table outsample

**Logistic model for low, goodness-of-fit test**

(Table collapsed on quantiles of estimated probabilities)

<table>
<thead>
<tr>
<th>Group</th>
<th>Prob</th>
<th>Obs_1</th>
<th>Exp_1</th>
<th>Obs_0</th>
<th>Exp_0</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0276</td>
<td>0</td>
<td>0.2</td>
<td>10</td>
<td>9.8</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0.0496</td>
<td>2</td>
<td>0.4</td>
<td>7</td>
<td>8.6</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>0.0875</td>
<td>1</td>
<td>0.7</td>
<td>9</td>
<td>9.3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>0.1536</td>
<td>4</td>
<td>1.1</td>
<td>5</td>
<td>7.9</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>0.2283</td>
<td>4</td>
<td>2.0</td>
<td>6</td>
<td>8.0</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>0.2842</td>
<td>4</td>
<td>2.2</td>
<td>5</td>
<td>6.8</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>0.4190</td>
<td>3</td>
<td>3.6</td>
<td>7</td>
<td>6.4</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>0.5248</td>
<td>5</td>
<td>4.3</td>
<td>4</td>
<td>4.7</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>0.6413</td>
<td>5</td>
<td>5.8</td>
<td>5</td>
<td>4.2</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>0.9787</td>
<td>4</td>
<td>7.3</td>
<td>5</td>
<td>1.7</td>
<td>9</td>
</tr>
</tbody>
</table>

number of observations = 95
number of groups = 10
Hosmer-Lemeshow chi2(10) = 29.30
Prob > chi2 = 0.0011

We must acknowledge that our model does not fit well on the validation sample. The model's discrimination in the validation sample is appreciably lower, as well.

. lroc if group==2, nograph
Logistic model for low
number of observations = 95
area under ROC curve = 0.6835
** Stored results **

`estat gof` stores the following in `r()`:

Scalars
- `r(N)` number of observations
- `r(m)` number of covariate patterns or groups
- `r(df)` degrees of freedom
- `r(chi2)` $\chi^2$
- `r(p)` $p$-value for $\chi^2$ test

** Methods and formulas **

Let $M$ be the total number of covariate patterns among the $N$ observations. View the data as collapsed on covariate patterns $j = 1, 2, \ldots, M$, and define $m_j$ as the total number of observations having covariate pattern $j$ and $y_j$ as the total number of positive responses among observations with covariate pattern $j$. Define $p_j$ as the predicted probability of a positive outcome in covariate pattern $j$.

The Pearson $\chi^2$ goodness-of-fit statistic is

$$
\chi^2 = \sum_{j=1}^{M} \frac{(y_j - m_j p_j)^2}{m_j p_j (1 - p_j)}
$$

This $\chi^2$ statistic has approximately $M - k$ degrees of freedom for the estimation sample, where $k$ is the number of independent variables, including the constant. For a sample outside the estimation sample, the statistic has $M$ degrees of freedom.

The Hosmer–Lemeshow goodness-of-fit $\chi^2$ (Hosmer and Lemeshow 1980; Lemeshow and Hosmer 1982; Hosmer, Lemeshow, and Klar 1988) is calculated similarly, except that rather than using the $M$ covariate patterns as the group definition, the quantiles of the predicted probabilities are used to form groups. Let $G = \#$ be the number of quantiles requested with `group(#)`. The smallest index $1 \leq q(i) \leq M$, such that

$$
W_{q(i)} = \sum_{j=1}^{q(i)} m_j \geq \frac{N}{G}
$$

gives $p_{q(i)}$ as the upper boundary of the $i$th quantile for $i = 1, 2, \ldots, G$. Let $q(0) = 1$ denote the first index.

The groups are then

$$
[p_{q(0)}; p_{q(1)}], (p_{q(1)}; p_{q(2)}], \ldots, (p_{q(G-1)}; p_{q(G)}]
$$

If the `table` option is given, the upper boundaries $p_{q(1)}, \ldots, p_{q(G)}$ of the groups appear next to the group number on the output.

The resulting $\chi^2$ statistic has approximately $G - 2$ degrees of freedom for the estimation sample. For a sample outside the estimation sample, the statistic has $G$ degrees of freedom.
References


Also see

[R] logistic — Logistic regression, reporting odds ratios
[R] logit — Logistic regression, reporting coefficients
[R] probit — Probit regression
[R] estat classification — Classification statistics and table
[R] lroc — Compute area under ROC curve and graph the curve
[R] lsens — Graph sensitivity and specificity versus probability cutoff
[U] 20 Estimation and postestimation commands