
esize — Effect size based on mean comparison

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
esize calculates effect sizes for comparing the difference between the means of a continuous variable

for two groups. In the first form, esize calculates effect sizes for the difference between the mean of

varname for two groups defined by groupvar. In the second form, esize calculates effect sizes for the

difference between varname1 and varname2, assuming unpaired data.

esizei is the immediate form of esize; see [U] 19 Immediate commands. In the first form, esizei
calculates the effect size for comparing the difference between the means of two groups. In the second

form, esizei calculates the effect size for an 𝐹 test after an ANOVA.

Quick start
Cohen’s 𝑑 and Hedges’s 𝑔 comparing the difference in means of v for two independent groups in catvar

esize twosample v, by(catvar)

Same as above, but with group data stored in v1 and v2
esize unpaired v1==v2

Same as above, but use 90% confidence level

esize unpaired v1==v2, level(90)

Cohen’s 𝑑 and Hedges’s 𝑔 for means of v for groups in catvar1 calculated over each level of catvar2
by catvar2: esize twosample v, by(catvar1)

Menu
esize
Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Effect size based on mean comparison

esizei
Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Effect-size calculator

1

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u19.pdf#u19Immediatecommands
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Syntax
Effect sizes for two independent samples using groups

esize twosample varname [ if ] [ in ], by(groupvar) [ options ]

Effect sizes for two independent samples using variables

esize unpaired varname1 == varname2 [ if ] [ in ], [ options ]

Immediate form of effect sizes for two independent samples

esizei #obs1 #mean1 #sd1 #obs2 #mean2 #sd2 [ , options ]

Immediate form of effect sizes for F tests after an ANOVA

esizei #df1 #df2 #𝐹 [ , level(#) ]

options Description

Main

cohensd report Cohen’s 𝑑 (1988)

hedgesg report Hedges’s 𝑔 (1981)

glassdelta report Glass’s Δ (Smith and Glass 1977) using each group’s standard deviation

pbcorr report the point-biserial correlation coefficient (Pearson 1909)

all report all estimates of effect size

unequal use unequal variances

welch use Welch’s (1947) approximation

level(#) set confidence level; default is level(95)

by is allowed with esize, and collect is allowed with esize and esizei; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

by(groupvar) specifies the groupvar that defines the two groups that esize will use to estimate the

effect sizes. Do not confuse the by() option with the by prefix; you can specify both.

cohensd specifies that Cohen’s 𝑑 (1988) be reported.

hedgesg specifies that Hedges’s 𝑔 (1981) be reported.

glassdelta specifies that Glass’s Δ (Smith and Glass 1977) be reported.

pbcorr specifies that the point-biserial correlation coefficient (Pearson 1909) be reported.

all specifies that all estimates of effect size be reported. The default is Cohen’s 𝑑 and Hedges’s 𝑔.
unequal specifies that the data not be assumed to have equal variances.

welch specifies that the approximate degrees of freedom for the test be obtained from Welch’s formula

(1947) rather than from Satterthwaite’s approximation formula (1946), which is the default when

unequal is specified. Specifying welch implies unequal.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Estimating effect sizes
Immediate form
Video example

Introduction
Whereas 𝑝-values are used to assess the statistical significance of a result, measures of effect size are

used to assess the practical significance of a result. Effect sizes can be broadly categorized as “mea-

sures of group differences” (the d family) and “measures of association” (the 𝑟 family); see Ellis (2010,
table 1.1). The 𝑑 family includes estimators such as Cohen’s 𝑑, Hedges’s 𝑔, and Glass’s Δ. The 𝑟 fam-
ily includes estimators such as the point-biserial correlation coefficient, 𝜂2, 𝜀2, and 𝜔2 (also see estat
esize in [R] regress postestimation). For an introduction to the concepts and calculation of effect sizes,

see Kline (2013) and Thompson (2006). For a more detailed discussion, see Kirk (1996), Ellis (2010),

Cumming (2012), Grissom and Kim (2012), and Kelley and Preacher (2012).

Note that there is much variation in the definitions of measures of effect size (Kline 2013). As Ellis

(2010, 27) cautions, “However, beware the inconsistent terminology. What is labeled here as 𝑔 was

labeled by Hedges and Olkin as 𝑑 and vice versa. For these authors writing in the early 1980s, 𝑔 was the
mainstream effect-size index developed by Cohen and refined by Glass (hence 𝑔 for Glass). However,

since then 𝑔 has become synonymous with Hedges’s equation (not Glass’s) and the reason it is called

Hedges’s 𝑔 and not Hedges’s ℎ is because it was originally named after Glass—even though it was

developed by Larry Hedges. Confused?”

To avoid confusion, esize and esizei closely follow the notation of Hedges (1981), Smithson

(2001), Kline (2013), and Ellis (2010).

https://www.stata.com/manuals/u20.pdf#u20.8Specifyingthewidthofconfidenceintervals
https://www.stata.com/manuals/rregresspostestimation.pdf#rregresspostestimationMeasuresofeffectsize
https://www.stata.com/manuals/rregresspostestimation.pdf#rregresspostestimationMeasuresofeffectsize
https://www.stata.com/manuals/rregresspostestimation.pdf#rregresspostestimation
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Estimating effect sizes

Example 1: Effect size for two independent samples using by()
Suppose we are interested in question 1 from the fictitious depression.dta: “My statistical software

makes me feel sad”. Wemight have conducted a 𝑡 test to test the null hypothesis that there is no difference
in response by sex. We could then compute various measures of effect size to describe the magnitude of

the effect of sex.

. use https://www.stata-press.com/data/r19/depression
(Fictitious depression inventory data based on the Beck Depression Inventory)
. esize twosample qu1, by(sex) all
Effect size based on mean comparison

Obs per group:
Female = 712

Male = 288

Effect size Estimate [95% conf. interval]

Cohen’s d -.0512417 -.1881184 .0856607
Hedges’s g -.0512032 -.187977 .0855963

Glass’s Delta 1 -.0517793 -.1886587 .0851364
Glass’s Delta 2 -.0499786 -.1868673 .086997

Point-biserial r -.0232208 -.0849629 .0387995

Cohen’s 𝑑, Hedges’s 𝑔, and both estimates of Glass’sΔ indicate that the score for females is 0.05 standard

deviations lower than the score for males. The point-biserial correlation coefficient indicates that there

is a small, negative correlation between the scores for females and males.

Technical note
Glass’s Δ has traditionally been estimated for experimental studies using the control group standard

deviation rather than the pooled standard deviation. Kline (2013) notes that the choice of group becomes

arbitrary for data arising from observational studies and recommends the reporting of Glass’s Δ using

each group standard deviation.
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Example 2: Effect size for two independent samples by a third variable
If we are interested in the same effect sizes from example 1 stratified by race, we could use the by

prefix with the sort option to accomplish this task.

. by race, sort: esize twosample qu1, by(sex)

-> race = Hispanic
Effect size based on mean comparison

Obs per group:
Female = 88

Male = 45

Effect size Estimate [95% conf. interval]

Cohen’s d -.1042883 -.463503 .2553235
Hedges’s g -.1036899 -.4608434 .2538584

-> race = Black
Effect size based on mean comparison

Obs per group:
Female = 259

Male = 95

Effect size Estimate [95% conf. interval]

Cohen’s d -.1720681 -.4073814 .063489
Hedges’s g -.1717011 -.4065127 .0633536

-> race = White
Effect size based on mean comparison

Obs per group:
Female = 365

Male = 148

Effect size Estimate [95% conf. interval]

Cohen’s d .0479511 -.1430932 .2389486
Hedges’s g .0478807 -.1428831 .2385977

https://www.stata.com/manuals/resize.pdf#resizeRemarksandexamplesex1


esize — Effect size based on mean comparison 6

Example 3: Bootstrap confidence intervals for effect sizes
Simulation studies have shown that bootstrap confidence intervals may be preferable to confidence

intervals based on the noncentral 𝑡 distribution when the variable of interest does not have a normal

distribution (Kelley 2005; Algina, Keselman, and Penfield 2006). Bootstrap confidence intervals can be

easily estimated for effect sizes using the bootstrap prefix.

. use https://www.stata-press.com/data/r19/depression
(Fictitious depression inventory data based on the Beck Depression Inventory)
. set seed 12345
. bootstrap r(d) r(g), reps(1000) nodots nowarn: esize twosample qu1, by(sex)
Bootstrap results Number of obs = 1,000

Replications = 1,000
Command: esize twosample qu1, by(sex)

_bs_1: r(d)
_bs_2: r(g)

Observed Bootstrap Normal-based
coefficient std. err. z P>|z| [95% conf. interval]

_bs_1 -.0512417 .0742692 -0.69 0.490 -.1968066 .0943233
_bs_2 -.0512032 .0742134 -0.69 0.490 -.1966587 .0942523

Example 4: Effect sizes for two independent samples using variables
Sometimes, the data of interest are stored in two separate variables. We can calculate effect sizes for

the two groups by using the unpaired version of esize.

. use https://www.stata-press.com/data/r19/fuel

. esize unpaired mpg1==mpg2
Effect size based on mean comparison

Number of obs = 24

Effect size Estimate [95% conf. interval]

Cohen’s d -.5829654 -1.394934 .2416105
Hedges’s g -.5628243 -1.34674 .2332631
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Immediate form

Example 5: Immediate form for effect sizes for two means
Often we do not have access to raw data, but we are given summary statistics in a report or manuscript.

To calculate the effect sizes from summary statistics, we can use the immediate command esizei. For
example, Kline (2013) in table 4.2 shows summary statistics for a hypothetical sample where mean1 =
13, sd1 = 2.74, mean2 = 11, and sd2 = 2.24; there are 30 people in each group. We can estimate the

effect sizes from these summary data using esizei:
. esizei 30 13 2.74 30 11 2.24
Effect size based on mean comparison

Obs per group:
Group 1 = 30
Group 2 = 30

Effect size Estimate [95% conf. interval]

Cohen’s d .7991948 .2695509 1.322465
Hedges’s g .7888081 .2660477 1.305277

Example 6: Immediate form for effect sizes for F tests after an ANOVA
esizei can also be used to compute 𝜂2, 𝜀2, and 𝜔2 for 𝐹 tests after anANOVA. The following example

from Smithson (2001, 623) illustrates the use of esizei for dfnum = 4, dfden = 50, and 𝐹 = 4.2317:

. esizei 4 50 4.2317, level(90)
Effect sizes for linear models

Effect size Estimate [90% conf. interval]

Eta-squared .2529151 .0521585 .3603621
Epsilon-squared .1931483

Omega-squared .1903049

Video example
Tour of effect sizes

https://www.youtube.com/watch?v=h95_wu-OFY8
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Stored results
esize and esizei for comparing two means store the following in r():

Scalars

r(d) Cohen’s 𝑑
r(lb d) lower confidence bound for Cohen’s 𝑑
r(ub d) upper confidence bound for Cohen’s 𝑑
r(g) Hedges’s 𝑔
r(lb g) lower confidence bound for Hedges’s 𝑔
r(ub g) upper confidence bound for Hedges’s 𝑔
r(delta1) Glass’s Δ for group 1

r(lb delta1) lower confidence bound for Glass’s Δ for group 1

r(ub delta1) upper confidence bound for Glass’s Δ for group 1

r(delta2) Glass’s Δ for group 2

r(lb delta2) lower confidence bound for Glass’s Δ for group 2

r(ub delta2) upper confidence bound for Glass’s Δ for group 2

r(r pb) point-biserial correlation coefficient

r(lb r pb) lower confidence bound for the point-biserial correlation coefficient

r(ub r pb) upper confidence bound for the point-biserial correlation coefficient

r(N 1) sample size 𝑛1
r(N 2) sample size 𝑛2
r(df t) degrees of freedom

r(level) confidence level

esizei for 𝐹 tests after ANOVA stores the following in r():

Scalars

r(eta2) 𝜂2

r(lb eta2) lower confidence bound for 𝜂2

r(ub eta2) upper confidence bound for 𝜂2

r(epsilon2) 𝜀2

r(omega2) 𝜔2

r(level) confidence level

Methods and formulas
For the 𝑑 family, the effect-size parameter of interest is the scaled difference between the means given

by

𝛿 = (𝜇1 − 𝜇2)
𝜎

One of the most popular estimators of effect size is Cohen’s 𝑑, given by

Cohen’s 𝑑 = (𝑥1 − 𝑥2)
𝑠∗

where

𝑠∗ = √(𝑛1 − 1)𝑠2
1 + (𝑛2 − 1)𝑠2

2
𝑛1 + 𝑛2 − 2
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Hedges (1981) showed that Cohen’s 𝑑 is biased and proposed the unbiased estimator

Hedges’s 𝑔 = Cohen’s 𝑑 × 𝑐(𝑚)

where 𝑚 = 𝑛1 + 𝑛2 − 2 and

𝑐(𝑚) =
Γ( 𝑚

2 )
√ 𝑚

2 Γ( 𝑚−1
2 )

Glass (Smith and Glass 1977) proposed an estimator for 𝛿 in the context of designed experiments,

Glass’s Δ = (𝑥treated − 𝑥control)
𝑠control

where 𝑠control is the standard deviation for the control group.
As noted above, esize and esizei report two estimates of Glass’s Δ: one using the standard devi-

ation for group 1 and the other using the standard deviation for group 2:

Glass’s Δ1 = (𝑥1 − 𝑥2)
𝑠1

and

Glass’s Δ2 = (𝑥1 − 𝑥2)
𝑠2

For the 𝑟 family, the effect-size parameter of interest is the ratio of the variance attributable to an

effect and the total variance:

𝜂2 = 𝜎2
effect

𝜎2
total

A popular estimator of 𝜂 when there are two groups is the point-biserial correlation coefficient,

𝑟PB = 𝑡√
𝑡2 + df

where 𝑡 is the 𝑡 statistic for the difference between the means of the two groups, and 𝑑𝑓 is the correspond-
ing degrees of freedom. Satterthwaite’s or Welch’s adjustment (see [R] ttest for details) to the degrees

of freedom can be used to calculate 𝑟PB by specifying the unequal or welch option, respectively.

When more than two means are being compared, as in the case of anANOVAwith 𝑝 groups, a popular

estimator of effect size is the correlation ratio denoted 𝜂2 (Fisher 1925; Kerlinger and Lee 2000). 𝜂2

can be computed directly as the ratio of the SSeffect and the SStotal or as a function of the 𝐹 statistic with

numerator degrees of freedom equal to dfnum and denominator degrees of freedom equal to dfden.

̂𝜂2 = 𝐹
𝐹 + dfden/dfnum

https://www.stata.com/manuals/rttest.pdf#rttest
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Like its equivalent estimator 𝑅2, 𝜂2 has an upward bias. Less biased estimators of effect size are 𝜀2

and 𝜔2 (Grissom and Kim 2012).

̂𝜀2 = 𝐹 − 1
𝐹 + dfden/dfnum

= ̂𝜂2 − dfnum
dfden

(1 − ̂𝜂2)

�̂�2 = 𝐹 − 1
𝐹 + (dfden + 1)/dfnum

To calculate ̂𝜂2, ̂𝜀2, and �̂�2 directly after anova or regress, see estat esize in [R] regress postes-

timation.

Cohen’s 𝑑, Hedges’s 𝑔, and Glass’s Δ have been shown to have a noncentral 𝑡 distribution (Hedges
1981) with noncentrality parameter equal to

𝜆 = 𝛿√
𝑛1𝑛2

𝑛1 + 𝑛2

Confidence intervals are calculated by finding the noncentrality parameters 𝜆lower and 𝜆upper that cor-

respond to

Pr(df, 𝛿, 𝜆lower) = 1 − 𝛼
2

and

Pr(df, 𝛿, 𝜆upper) = 𝛼
2

using the function npnt(𝑑𝑓,𝑡,𝑝). The noncentrality parameters are then transformed back to the effect-
size scale:

𝛿lower = 𝜆lower√
𝑛1 + 𝑛2

𝑛1𝑛2

and

𝛿upper = 𝜆upper√
𝑛1 + 𝑛2

𝑛1𝑛2

(see Venables [1975]; Steiger and Fouladi [1997]; Cumming and Finch [2001]; Smithson [2001]).

Confidence intervals for the point-biserial correlation coefficient are calculated similarly and trans-

formed back to the effect-size scale as

𝑟lower = 𝜆lower

√𝜆2
lower + df

and

𝑟upper =
𝜆upper

√𝜆2
upper + df

https://www.stata.com/manuals/rregresspostestimation.pdf#rregresspostestimationMeasuresofeffectsize
https://www.stata.com/manuals/rregresspostestimation.pdf#rregresspostestimation
https://www.stata.com/manuals/rregresspostestimation.pdf#rregresspostestimation
https://www.stata.com/manuals/fnstatisticalfunctions.pdf#fnStatisticalfunctionsFunctionsnpnt()
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Following Smithson’s (2001) notation, the 𝐹 statistic is written as

𝐹dfnum,dfden
= 𝑓2(dfnum/dfden)

This equation has a noncentral 𝐹 distribution with noncentrality parameter:

𝜆 = 𝑓2(dfnum + dfden + 1)

where 𝑓2 = 𝜂2/(1 − 𝜂2).
Confidence intervals for ̂𝜂2 are calculated by finding the noncentrality parameters 𝜆lower and 𝜆upper

for a noncentral 𝐹 distribution that correspond to

Pr(dfnum, dfden, 𝐹 , 𝜆lower) = 1 − 𝛼
2

and

Pr(dfnum, dfden, 𝐹 , 𝜆upper) = 𝛼
2

using the function npnF(𝑑𝑓1,𝑑𝑓2,𝑓,𝑝). The noncentrality parameters are transformed back to the ̂𝜂2

scale as

̂𝜂2
lower = 𝜆lower

𝜆lower + dfnum + dfden + 1
and

̂𝜂2
upper =

𝜆upper

𝜆upper + dfnum + dfden + 1

While confidence intervals for ̂𝜀2 can be constructed using the same transformation that links it with ̂𝜂2,

there are several arguments for not using them in practice. See Smithson (2003, 54) for further details.� �
Fred Nichols Kerlinger (1910–1991) was born in New York City. He studied music at New York

University and graduated magna cum laude with a degree in education and philosophy. After gradu-

ation, he joined the USArmy and served as a counterintelligence officer in Japan in 1946. Kerlinger

earned an MA and a PhD in educational psychology from the University of Michigan and held fac-

ulty appointments at several universities, including New York University. He was president of the

American Educational ResearchAssociation and is best known for his popular and influential book

Foundations of Behavioral Research (1964), which introduced Fisher’s (1925) 𝜂2 statistic to behav-

ioral researchers.

William Lee Hays (1926–1995) was born in Clarksville, Texas. He studied mathematics and psy-

chology at Paris Junior College in Paris, Texas, and at East Texas State College. He earned BS and

MS degrees from North Texas State University. Upon completion of his PhD in psychology at the

University of Michigan, he joined the faculty, where he eventually became associate vice president

for academic affairs. In 1977, Hays accepted an appointment as vice president for academic affairs

at the University of Texas at Austin, where he remained until his death in 1995. Hays is best known

for his book Statistics for Psychologists (1963), which introduced the 𝜔2 statistic (and is actually

denoted here by 𝜀2).� �

https://www.stata.com/manuals/fnstatisticalfunctions.pdf#fnStatisticalfunctionsFunctionsnpnF()
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