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Description
ir is used with incidence-rate (incidence-density or person-time) data. It calculates point estimates

and confidence intervals for the incidence-rate ratio (IRR) and incidence-rate difference (IRD), along with

attributable or prevented fractions for the exposed and total population. iri is the immediate form of

ir; see [U] 19 Immediate commands. Also see [R] poisson and [ST] stcox for related commands.

cs is used with cohort study data with equal follow-up time per subject and sometimes with cross-

sectional data. Risk is then the proportion of subjects who become cases. It calculates point estimates

and confidence intervals for the risk difference, risk ratio, and (optionally) the odds ratio, along with

attributable or prevented fractions for the exposed and total population. csi is the immediate form of

cs; see [U] 19 Immediate commands. Also see [R] logistic for related commands.

cc is used with case–control and cross-sectional data. It calculates point estimates and confidence

intervals for the odds ratio, along with attributable or prevented fractions for the exposed and total pop-

ulation. cci is the immediate form of cc; see [U] 19 Immediate commands. Also see [R] logistic for

related commands.

tabodds is used with case–control and cross-sectional data. It tabulates the odds of failure against

a categorical explanatory variable expvar. If expvar is specified, tabodds performs an approximate 𝜒2

test of homogeneity of odds and a test for linear trend of the log odds against the numerical code used

for the categories of expvar. Both tests are based on the score statistic and its variance; see Methods and

formulas. When expvar is absent, the overall odds are reported. The variable varcase is coded 0/1 for

individual and simple frequency records and equals the number of cases for binomial frequency records.

Optionally, tabodds tabulates adjusted or unadjusted odds ratios, using either the lowest levels of

expvar or a user-defined level as the reference group. If adjust(varlist) is specified, it produces odds

ratios adjusted for the variables in varlist along with a (score) test for trend.

mhodds is used with case–control and cross-sectional data. It estimates the ratio of the odds of failure

for two categories of expvar, controlled for specified confounding variables, varsadjust, and tests whether

this odds ratio is equal to one. When expvar has more than two categories but none are specified with

the compare() option, mhodds assumes that expvar is a quantitative variable and calculates a 1-degree-

of-freedom test for trend. It also calculates an approximate estimate of the log odds-ratio for a one-

unit increase in expvar. This is a one-step Newton–Raphson approximation to the maximum likelihood

estimate calculated as the ratio of the score statistic, 𝑈, to its variance, 𝑉 (Clayton and Hills 1993, 103).

mcc is used with matched case–control data. It calculates McNemar’s 𝜒2; point estimates and con-

fidence intervals for the difference, ratio, and relative difference of the proportion with the factor; and

the odds ratio and its confidence interval. mcci is the immediate form of mcc; see [U] 19 Immediate

commands. Also see [R] clogit and [R] symmetry for related commands.
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Quick start
Cohort studies

IRR and IRD for the number of cases stored in cases for exposure indicator exposed given time exposed

time
ir cases exposed time

Crude and Mantel–Haenszel combined IRRs with test of homogeneity for strata defined by svar
ir cases exposed time, by(svar)

Same as above, and standardize the IRR by weighting variable wvar1
ir cases exposed time, by(svar) standard(wvar1)

Same as above, but use person-time of the unexposed group as weights

ir cases exposed time, by(svar) estandard

IRR and IRD for 10 cases over 50 person-years in the exposed group and 15 cases over 100 person-years

in the unexposed group

iri 10 15 50 100

Risk difference and ratio with binary indicators case and exposed using cumulative incidence data

cs case exposed [fweight=wvar2]

Add odds ratios and calculate Fisher’s exact 𝑝
cs case exposed [fweight=wvar2], or exact

Internally standardized risk ratio for strata defined by svar
cs case exposed [fweight=wvar2], by(svar) istandard

Risk difference and ratio for 12 cases and 55 noncases among exposed subjects and 16 cases and 125

noncases among unexposed subjects

csi 12 16 55 125

Case–control studies

Odds ratios from summary data with binary indicators case and exposed and frequency weight wvar3
cc case exposed [fweight=wvar3]

Same as above, but stratify analysis by svar and perform Breslow–Day and Tarone’s homogeneity tests

cc case exposed [fweight=wvar3], by(svar) bd tarone

Odds ratios for 37 exposed cases, 148 unexposed cases, 7 exposed controls, and 137 unexposed controls

cci 37 148 7 137

Odds of binary event against catvar using summary data with frequency weight wvar4
tabodds event catvar [fweight=wvar4]
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Same as above, but report odds ratios with the fourth level of catvar as the reference

tabodds event catvar [fweight=wvar4], or base(4)

Same as above, but tabulate Mantel–Haenszel adjusted odds ratios adjusting for values of categorical

variable a
tabodds event catvar [fweight=wvar4], base(4) adjust(a)

Graph odds and confidence intervals against categories of catvar
tabodds event catvar [fweight=wvar4], ciplot

Odds ratios for the effect of catvar on event controlling for categorical variable a using summary data

with frequency weight wvar5
mhodds event catvar a [fweight=wvar5]

Same as above, but calculate odds ratios for each level of svar
mhodds event catvar a [fweight=wvar5], by(svar)

Maximum likelihood estimate of odds ratio for a equal to 4 compared with a equal to 1

mhodds event a [fweight=wvar5], compare(4,1)

Statistics on the difference in the proportion with the factor for exposed cases indicated in expcase and

exposed controls indicated in expcontrol using summary data with frequency weight wvar6
mcc expcase expcontrol [fweight=wvar6]

Same as above, but indicate that there are 4 pairs where both cases and controls were exposed, 9 pairs

where the case was exposed but the control was not, 3 pairs where the control was exposed but the

case was not, and 14 pairs where neither subject was exposed

mcci 4 9 3 14
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Menu
ir
Statistics > Epidemiology and related > Tables for epidemiologists > Incidence-rate ratio

iri
Statistics > Epidemiology and related > Tables for epidemiologists > Incidence-rate–ratio calculator

cs
Statistics > Epidemiology and related > Tables for epidemiologists > Cohort study risk-ratio etc.

csi
Statistics > Epidemiology and related > Tables for epidemiologists > Cohort study risk-ratio etc. calculator

cc
Statistics > Epidemiology and related > Tables for epidemiologists > Case–control odds ratio

cci
Statistics > Epidemiology and related > Tables for epidemiologists > Case–control odds-ratio calculator

tabodds
Statistics > Epidemiology and related > Tables for epidemiologists > Tabulate odds of failure by category

mhodds
Statistics > Epidemiology and related > Tables for epidemiologists > Ratio of odds of failure for two categories

mcc
Statistics > Epidemiology and related > Tables for epidemiologists > Matched case–control studies

mcci
Statistics > Epidemiology and related > Tables for epidemiologists > Matched case–control calculator
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Syntax
Cohort studies

ir varcase varexposed vartime [ if ] [ in ] [weight ] [ , ir options ]

iri #𝑎 #𝑏 #𝑁1
#𝑁2

[ , iri options ]

cs varcase varexposed [ if ] [ in ] [weight ] [ , cs options ]

csi #𝑎 #𝑏 #𝑐 #𝑑 [ , csi options ]

Case–control studies

cc varcase varexposed [ if ] [ in ] [weight ] [ , cc options ]

cci #𝑎 #𝑏 #𝑐 #𝑑 [ , cci options ]

tabodds varcase [ expvar ] [ if ] [ in ] [weight ] [ , tabodds options ]

mhodds varcase expvar [ varsadjust ] [ if ] [ in ] [weight ] [ , mhodds options ]

Matched case–control studies

mcc varexposed case varexposed control [ if ] [ in ] [weight ] [ , level(#) ]

mcci #𝑎 #𝑏 #𝑐 #𝑑 [ , level(#) ]

ir options Description

Options

by(varname[ , missing ]) stratify on varname

estandard combine external weights with within-stratum statistics

istandard combine internal weights with within-stratum statistics

standard(varname) combine user-specified weights with within-stratum statistics

pool display pooled estimate

nocrude do not display crude estimate

nohom do not display homogeneity test

ird calculate standardized IRD

midp display 𝑝-values calculated using mid-𝑝 adjustment (unstratified only);
the default

exact display exact 𝑝-values without mid-𝑝 adjustment (unstratified only)

level(#) set confidence level; default is level(95)

iri options Description

midp display 𝑝-values calculated using mid-𝑝 adjustment; the default

exact display exact 𝑝-values without mid-𝑝 adjustment

level(#) set confidence level; default is level(95)

https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/repitab.pdf#rEpitabSyntaxweight
https://www.stata.com/manuals/repitab.pdf#rEpitabSyntaxir_options
https://www.stata.com/manuals/repitab.pdf#rEpitabSyntaxiri_options
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/repitab.pdf#rEpitabSyntaxweight
https://www.stata.com/manuals/repitab.pdf#rEpitabSyntaxcs_options
https://www.stata.com/manuals/repitab.pdf#rEpitabSyntaxcsi_options
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/repitab.pdf#rEpitabSyntaxweight
https://www.stata.com/manuals/repitab.pdf#rEpitabSyntaxcc_options
https://www.stata.com/manuals/repitab.pdf#rEpitabSyntaxcci_options
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/repitab.pdf#rEpitabSyntaxweight
https://www.stata.com/manuals/repitab.pdf#rEpitabSyntaxtabodds_options
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/repitab.pdf#rEpitabSyntaxweight
https://www.stata.com/manuals/repitab.pdf#rEpitabSyntaxmhodds_options
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/repitab.pdf#rEpitabSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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cs options Description

Options

by(varlist[ , missing ]) stratify on varlist

estandard combine external weights with within-stratum statistics

istandard combine internal weights with within-stratum statistics

standard(varname) combine user-specified weights with within-stratum statistics

pool display pooled estimate

nocrude do not display crude estimate

nohom do not display homogeneity test

rd calculate standardized risk difference

binomial(varname) number of subjects variable

or report odds ratio

woolf use Woolf approximation to calculate SE and CI of the odds ratio

exact calculate Fisher’s exact 𝑝
level(#) set confidence level; default is level(95)

csi options Description

or report odds ratio

woolf use Woolf approximation to calculate SE and CI of the odds ratio

exact calculate Fisher’s exact 𝑝
level(#) set confidence level; default is level(95)

cc options Description

Options

by(varname[ , missing ]) stratify on varname

estandard combine external weights with within-stratum statistics

istandard combine internal weights with within-stratum statistics

standard(varname) combine user-specified weights with within-stratum statistics

pool display pooled estimate

nocrude do not display crude estimate

nohom do not display homogeneity test

bd perform Breslow–Day homogeneity test

tarone perform Tarone’s homogeneity test

binomial(varname) number of subjects variable

cornfield use Cornfield approximation to calculate CI of the odds ratio

woolf use Woolf approximation to calculate SE and CI of the odds ratio

exact calculate Fisher’s exact 𝑝
level(#) set confidence level; default is level(95)

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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cci options Description

cornfield use Cornfield approximation to calculate CI of the odds ratio

woolf use Woolf approximation to calculate SE and CI of the odds ratio

exact calculate Fisher’s exact 𝑝
level(#) set confidence level; default is level(95)

tabodds options Description

Main

binomial(varname) number of subjects variable

level(#) set confidence level; default is level(95)
or report odds ratio

adjust(varlist) report odds ratios adjusted for the variables in varlist

base(#) reference group of control variable for odds ratio

cornfield use Cornfield approximation to calculate CI of the odds ratio

woolf use Woolf approximation to calculate SE and CI of the odds ratio

graph graph odds against categories

ciplot same as graph option, except include confidence intervals

CI plot

ciopts(rcap options) affect rendition of the confidence bands

Plot

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

cline options affect rendition of the plotted points

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

mhodds options Description

Options

by(varlist[ , missing ]) stratify on varlist

binomial(varname) number of subjects variable

compare(𝑣1,𝑣2) override categories of the control variable

level(#) set confidence level; default is level(95)

collect is allowed with ir, iri, cs, csi, cc, cci, tabodds, mhodds, mcc, and mcci; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/g-3rcap_options.pdf#g-3rcap_options
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3marker_label_options.pdf#g-3marker_label_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3addplot_option.pdf#g-3addplot_option
https://www.stata.com/manuals/g-3twoway_options.pdf#g-3twoway_options
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
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Options
Options are listed in the order that they appear in the syntax tables above. The commands for which

the option is valid are indicated in parentheses immediately after the option name.

� � �
Options (ir, cs, cc, and mhodds) / Main (tabodds) �

by(varname[ , missing ]) (ir, cs, cc, and mhodds) specifies that the tables be stratified on varname.

Missing categories in varname are omitted from the stratified analysis, unless option missing is

specified within by(). Within-stratum statistics are shown and then combined with Mantel–Haen-

szel weights. If estandard, istandard, or standard() is also specified (see below), the weights

specified are used in place of Mantel–Haenszel weights.

estandard, istandard, and standard(varname) (ir, cs, and cc) request that within-stratum statistics

be combined with external, internal, or user-specified weights to produce a standardized estimate.

These options are mutually exclusive and can be used only when by() is also specified. (When by()
is specified without one of these options, Mantel–Haenszel weights are used.)

estandard external weights are the person-time for the unexposed (ir), the total number of unex-
posed (cs), or the number of unexposed controls (cc).

istandard internal weights are the person-time for the exposed (ir), the total number of exposed
(cs), or the number of exposed controls (cc). istandard can be used to produce, among other things,
standardized mortality ratios (SMRs).

standard(varname) allows user-specified weights. varnamemust contain a constant within stratum

and be nonnegative. The scale of varname is irrelevant.

pool (ir, cs, and cc) specifies that, in a stratified analysis, the directly pooled estimate also be displayed.
The pooled estimate is a weighted average of the stratum-specific estimates using inverse-variance

weights, which are the inverse of the variance of the stratum-specific estimate. pool is relevant only

if by() is also specified.

nocrude (ir, cs, and cc) specifies that in a stratified analysis the crude estimate—an estimate obtained

without regard to strata—not be displayed. nocrude is relevant only if by() is also specified.

nohom (ir, cs, and cc) specifies that a 𝜒2 test of homogeneity not be included in the output of a stratified

analysis. This tests whether the exposure effect is the same across strata and can be performed for

any pooled estimate—directly pooled or Mantel–Haenszel. nohom is relevant only if by() is also

specified.

ird (ir) may be used only with estandard, istandard, or standard(). It requests that ir calculate

the standardized IRD rather than the default IRR.

midp (ir without by() and iri), the default, displays mid-𝑝-adjusted 𝑝-values for one-sided and two-

sided tests of IRD. The tests of IRD are not available with ir for stratified analysis, so midp is not

allowed in combination with by(). Only one of exact or midp may be specified.

exact (irwithout by() and iri) displays exact 𝑝-values for one-sided and two-sided tests of IRD instead

of the default mid-𝑝-adjusted 𝑝-values. This option produces 𝑝-values that are more conservative than
the mid-𝑝-adjusted 𝑝-values. When counts of exposed and unexposed cases are both large, exact and

midp give similar results. The tests of IRD are not available with ir for stratified analysis, so exact
is not allowed in combination with by(). Only one of exact or midp may be specified.

rd (cs) may be used only with estandard, istandard, or standard(). It requests that cs calculate

the standardized risk difference rather than the default risk ratio.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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bd (cc) specifies that Breslow and Day’s 𝜒2 test of homogeneity be included in the output of a stratified

analysis. This tests whether the exposure effect is the same across strata. bd is relevant only if by()
is also specified.

tarone (cc) specifies that Tarone’s 𝜒2 test of homogeneity, which is a correction to the Breslow–Day

test, be included in the output of a stratified analysis. This tests whether the exposure effect is the

same across strata. tarone is relevant only if by() is also specified.

binomial(varname) (cs, cc, tabodds, and mhodds) supplies the number of subjects (cases plus con-
trols) for binomial frequency records. For individual and simple frequency records, this option is not

used.

or (cs, csi, and tabodds), for cs and csi, reports the calculation of the odds ratio in addition to the

risk ratio if by() is not specified. With by(), or specifies that a Mantel–Haenszel estimate of the

combined odds ratio be made rather than the Mantel–Haenszel estimate of the risk ratio. In either

case, this is the same calculation that would be made by cc and cci. Typically, cc, cci, or tabodds
is preferred for calculating odds ratios. For tabodds, or specifies that odds ratios be produced; see

base() for details about selecting a reference category. By default, tabodds will calculate odds.

adjust(varlist) (tabodds) specifies that odds ratios adjusted for the variables in varlist be calculated.

base(#) (tabodds) specifies that the #th category of expvar be used as the reference group for calcu-

lating odds ratios. If base() is not specified, the first category, corresponding to the minimum value

of expvar, is used as the reference group.

cornfield (cc, cci, and tabodds) requests that the Cornfield (1956) approximation be used to calculate
the confidence interval of the odds ratio. By default, cc and cci report an exact interval and tabodds
reports a standard-error–based interval, with the standard error coming from the square root of the

variance of the score statistic.

woolf (cs, csi, cc, cci, and tabodds) requests that the Woolf (1955) approximation, also known as

the Taylor expansion, be used for calculating the standard error and confidence interval for the odds

ratio. By default, cs and csi with the or option report the Cornfield (1956) interval; cc and cci
report an exact interval; and tabodds reports a standard-error–based interval, with the standard error

coming from the square root of the variance of the score statistic.

exact (cs, csi, cc, and cci) requests that Fisher’s exact 𝑝 be calculated rather than the 𝜒2 and its

significance level. We recommend specifying exact whenever samples are small. When the least-

frequent cell contains 1,000 cases or more, there will be no appreciable difference between the exact

significance level and the significance level based on the 𝜒2, but the exact significance level will

take considerably longer to calculate. exact does not affect whether exact confidence intervals are

calculated. Commands always calculate exact confidence intervals where they can, unless cornfield
or woolf is specified.

compare(𝑣1,𝑣2) (mhodds) indicates the categories of expvar to be compared; 𝑣1 defines the numerator

and 𝑣2, the denominator. When compare() is not specified and there are only two categories, the

second is compared with the first; when there are more than two categories, an approximate estimate

of the odds ratio for a unit increase in expvar, controlled for specified confounding variables, is given.

level(#) (ir, iri, cs, csi, cc, cci, tabodds, mhodds, mcc, and mcci) specifies the confidence level,
as a percentage, for confidence intervals. The default is level(95) or as set by set level; see
[R] level.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rlevel.pdf#rlevel
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The following options are for use only with tabodds.

� � �
Main �

graph (tabodds) produces a graph of the odds against the numerical code used for the categories of

expvar. All graph options except connect() are allowed. This option is not allowed with the or
option or the adjust() option.

ciplot (tabodds) produces the same plot as the graph option, except that it also includes the confidence
intervals. This option may not be used with either the or option or the adjust() option.

� � �
CI plot �

ciopts(rcap options) (tabodds) is allowed only with the ciplot option. It affects the rendition of

the confidence bands; see [G-3] rcap options.

� � �
Plot �

marker options (tabodds) affect the rendition of markers drawn at the plotted points, including their

shape, size, color, and outline; see [G-3] marker options.

marker label options (tabodds) specify if and how the markers are to be labeled; see

[G-3] marker label options.

cline options (tabodds) affect whether lines connect the plotted points and the rendition of those lines;

see [G-3] cline options.

� � �
Add plots �

addplot(plot) (tabodds) provides a way to add other plots to the generated graph; see
[G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options (tabodds) are any of the options documented in [G-3] twoway options, excluding by().
These include options for titling the graph (see [G-3] title options) and options for saving the graph

to disk (see [G-3] saving option).

Remarks and examples
Remarks are presented under the following headings:

Incidence-rate data
Stratified incidence-rate data
Standardized estimates with stratified incidence-rate data
Cumulative incidence data
Stratified cumulative incidence data
Standardized estimates with stratified cumulative incidence data
Case–control data
Stratified case–control data
Case–control data with multiple levels of exposure
Case–control data with confounders and possibly multiple levels of exposure
Standardized estimates with stratified case–control data
Matched case–control data
Video examples
Glossary

https://www.stata.com/manuals/g-3rcap_options.pdf#g-3rcap_options
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3marker_label_options.pdf#g-3marker_label_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3addplot_option.pdf#g-3addplot_option
https://www.stata.com/manuals/g-3twoway_options.pdf#g-3twoway_options
https://www.stata.com/manuals/g-3title_options.pdf#g-3title_options
https://www.stata.com/manuals/g-3saving_option.pdf#g-3saving_option
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To calculate appropriate statistics and suppress inappropriate statistics, the ir, cs, cc, tabodds,
mhodds, and mcc commands, along with their immediate counterparts, are organized in the way epi-

demiologists conceptualize data. ir processes incidence-rate data from prospective studies; cs, cohort
study data with equal follow-up time (cumulative incidence); cc, tabodds, and mhodds, case–control
or cross-sectional (prevalence) data; and mcc, matched case–control data. With the exception of mcc,
these commands work with both simple and stratified tables.

Epidemiological data are often summarized in a contingency table from which various statistics are

calculated. The rows of the table reflect cases and noncases or cases and person-time, and the columns

reflect exposure to a risk factor. To an epidemiologist, cases and noncases refer to the outcomes of the

process being studied. For instance, a case might be a person with cancer and a noncase might be a

person without cancer.

A factor is something that might affect the chances of being ultimately designated a case or a noncase.

Thus, a case might be a cancer patient, and the factor might be smoking behavior. A person is said to

be exposed or unexposed to the factor. Exposure can be classified as a dichotomy, smokes or does not

smoke, or as multiple levels, such as number of cigarettes smoked per week.

For an introduction to epidemiological methods, see Walker (1991). For an intermediate treatment,

see Clayton and Hills (1993) and Schneider and Lilienfeld (2015). For other advanced discussions, see

Kleinbaum, Kupper, and Morgenstern (1982) and Lash et al. (2021). For an analysis of incidence rates,

see, for instance, Cummings (2019). For an anthology of writings on epidemiology since World War II,

see Greenland (1987). See Jewell (2004) for a text aimed at graduate students in the medical professions

that uses Stata for much of the analysis. See Dohoo, Martin, and Stryhn (2010) for a graduate-level

text on the principles and methods of veterinary epidemiologic research; Stata datasets and do-files are

available. Also see Dohoo, Martin, and Stryhn (2012) for a text that is a revision of their veterinary

epidemiology text, but examples from human epidemiology are used.

Incidence-rate data
In incidence-rate data from a prospective study, you observe the transformation of noncases into cases.

Starting with a group of noncase subjects, you monitor them to determine whether they become cases

(for example, stricken with cancer). You monitor two populations: those exposed and those unexposed

to the factor (for example, multiple X-rays). A summary of the data is

Exposed Unexposed Total

Cases 𝑎 𝑏 𝑎 + 𝑏
Person-time 𝑁1 𝑁0 𝑁1 + 𝑁0



Epitab — Tables for epidemiologists 12

Example 1: iri
It will be easiest to understand these commands if we start with the immediate forms. Remember,

in the immediate form, we specify the data on the command line rather than specifying names of vari-

ables containing the data; see [U] 19 Immediate commands. We have data (Boice and Monson [1977];

reported in Lash et al. [2021, 408]) on breast cancer cases and person-years of observation for women

with tuberculosis repeatedly exposed to multiple X-ray fluoroscopies, and those not so exposed:

X-ray fluoroscopy
Exposed Unexposed

Breast cancer cases 41 15
Person-years 28,010 19,017

Using iri, the immediate form of ir, we specify the values in the table following the command:

. iri 41 15 28010 19017
Incidence-rate comparison

Exposed Unexposed Total

Cases 41 15 56
Person-time 28010 19017 47027

Incidence rate .0014638 .0007888 .0011908

Point estimate [95% conf. interval]

Inc. rate diff. .000675 .0000749 .0012751
Inc. rate ratio 1.855759 1.005684 3.6093 (exact)
Attr. frac. ex. .4611368 .0056519 .722938 (exact)
Attr. frac. pop .337618

Mid-p-values for tests of incidence-rate difference:
Adj Pr(Exposed cases <= 41) = 0.9823 (lower one-sided)
Adj Pr(Exposed cases >= 41) = 0.0177 (upper one-sided)

Two-sided p-value = 0.0355

iri shows the table, reports the incidence rates for the exposed and unexposed populations, and then

shows the point estimates of the difference and ratio of the two incidence rates alongwith their confidence

intervals. The incidence rate is simply the frequency with which noncases are transformed into cases.

Next, iri reports the attributable fraction among the exposed (AFE), an estimate of the proportion of

exposed cases attributable to exposure. We estimate that 46.1% of the 41 breast cancer cases among the

exposed were due to exposure. (Had the IRR been less than 1, iri would have reported the prevented

fraction among the exposed (PFE), an estimate of the net proportion of all potential cases in the exposed

population that was prevented by exposure; see the following technical note.)

After that, the table shows the attributable fraction for the population (AFP), which is the net proportion

of all cases attributable to exposure. This number, of course, depends on the proportion of cases that are

exposed in the base population, which here is taken to be 41/56 and may not be relevant in all situations.
We estimate that 33.8% of the 56 cases were due to exposure. We estimate that 18.9 cases were caused

by exposure; that is, 0.338 × 56 = 0.461 × 41 = 18.9.

At the bottom of the table, iri reports one- and two-sided tests of the IRD. For the one-sided test of

the number of exposed cases being 41 or greater, the 𝑝-value is 0.0177. The two-sided test is twice the
smallest one-sided 𝑝-value and is 0.0355. These 𝑝-values are calculated using the mid-𝑝 adjustment to

exact 𝑝-values.

https://www.stata.com/manuals/u19.pdf#u19Immediatecommands
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Exact 𝑝-values can be seen by specifying the exact option.

. iri 41 15 28010 19017, exact
Incidence-rate comparison

Exposed Unexposed Total

Cases 41 15 56
Person-time 28010 19017 47027

Incidence rate .0014638 .0007888 .0011908

Point estimate [95% conf. interval]

Inc. rate diff. .000675 .0000749 .0012751
Inc. rate ratio 1.855759 1.005684 3.6093 (exact)
Attr. frac. ex. .4611368 .0056519 .722938 (exact)
Attr. frac. pop .337618

Exact p-values for tests of incidence-rate difference:
Pr(Exposed cases <= 41) = 0.9884 (lower one-sided)
Pr(Exposed cases >= 41) = 0.0238 (upper one-sided)

Two-sided p-value = 0.0477

The exact 𝑝-values are slightly larger than those calculated using the mid-𝑝 adjustment. This is always
the case. However, when counts of exposed and unexposed cases are both large, they will be nearly

identical. See Methods and formulas below.

Technical note
When the IRR is less than 1, iri (and ir, cs, csi, cc, and cci) substitutes the prevented fraction

for the attributable fraction. Let’s reverse the roles of exposure in the above data, treating as exposed a

person who did not receive the X-ray fluoroscopy. You can think of this as a new treatment for preventing

breast cancer—the suggested treatment being not to use fluoroscopy.

. iri 15 41 19017 28010
Incidence-rate comparison

Exposed Unexposed Total

Cases 15 41 56
Person-time 19017 28010 47027

Incidence rate .0007888 .0014638 .0011908

Point estimate [95% conf. interval]

Inc. rate diff. -.000675 -.0012751 -.0000749
Inc. rate ratio .5388632 .277062 .9943481 (exact)
Prev. frac. ex. .4611368 .0056519 .722938 (exact)
Prev. frac. pop .1864767

Mid-p-values for tests of incidence-rate difference:
Adj Pr(Exposed cases <= 15) = 0.0177 (lower one-sided)
Adj Pr(Exposed cases >= 15) = 0.9823 (upper one-sided)

Two-sided p-value = 0.0355

https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulas
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The PFE is the net proportion of all potential cases in the exposed population that were prevented by

exposure. We estimate that 46.1% of potential cases among the women receiving the new “treatment”

were prevented by the treatment. (Previously, we estimated that the same percentage of actual cases

among women receiving the X-rays was caused by the X-rays.)

The prevented fraction for the population (PFP), which is the net proportion of all potential cases in

the total population that was prevented by exposure, as with the attributable fraction, depends on the

proportion of cases that are exposed in the base population—here taken as 15/56—so it may not be

relevant in all situations. We estimate that 18.6% of the potential cases were prevented by exposure.

See Greenland and Robins (1988) for a discussion of how to interpret attributable and prevented

fractions.

Example 2: ir
ir works like iri, except that it obtains the entries in the tables by summing data. You specify three

variables: the first represents the number of cases represented by this observation, the second indicates

whether the observation is for subjects exposed to the factor, and the third records the total time the

subjects in this observation were observed. An observation may reflect one subject or a group of subjects.

For instance, here is a 2-observation dataset for the table in the previous example:

. use https://www.stata-press.com/data/r19/irxmpl

. list

cases exposed time

1. 41 0 28010
2. 15 1 19017

If we typed ir cases exposed time, we would obtain the same output that we obtained above. Another
way the data might be recorded is

. use https://www.stata-press.com/data/r19/irxmpl2

. list

cases exposed time

1. 20 0 14000
2. 21 0 14010
3. 15 1 19017

https://www.stata.com/manuals/repitab.pdf#rEpitabRemarksandexamplesex1
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Here the first 2 observations will be automatically summed by ir because both are exposed. Finally, the

data might be individual-level data:

. use https://www.stata-press.com/data/r19/irxmpl3

. list in 1/5

cases exposed time

1. 1 1 10
2. 0 1 8
3. 0 0 9
4. 1 0 2
5. 0 1 1

The first observation represents a woman who got cancer, was exposed, and was observed for 10 years.

The second is a woman who did not get cancer, was exposed, and was observed for 8 years, and so on.

Technical note
ir (and all the other commands) assumes that a subject was exposed if the exposed variable is nonzero

and not missing, assumes the subject was not exposed if the variable is zero, and ignores the observation

if the variable is missing. For ir, the case variable and the time variable are restricted to nonnegative

integers and are summed within the exposed and unexposed groups to obtain the entries in the table.

Stratified incidence-rate data

Example 3: ir with stratified data
ir can work with stratified tables, as well as with single tables. For instance, Rothman (1986, 185)

discusses data fromRothman andMonson (1973) onmortality by sex and age for patients with trigeminal

neuralgia:

Age through 64 Age 65+
Males Females Males Females

Deaths 14 10 76 121
Person-years 1516 1701 949 2245

Entering the data into Stata, we have the following dataset:

. use https://www.stata-press.com/data/r19/rm
(Rothman and Monson 1973 data)
. list

age male deaths pyears

1. <65 Male 14 1516
2. <65 Female 10 1701
3. 65+ Male 76 949
4. 65+ Female 121 2245
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The stratified analysis of the IRR is

. ir deaths male pyears, by(age)
Stratified incidence-rate analysis

Age category IRR [95% conf. interval] M--H weight

<65 1.570844 .6489373 3.952809 4.712465 (exact)
65+ 1.485862 1.100305 1.99584 35.95147 (exact)

Crude 1.099794 .831437 1.449306 (exact)
M--H combined 1.49571 1.141183 1.960377

Test of homogeneity (M--H): chi2(1) = 0.02 Pr>chi2 = 0.8992

The row labeled M--H combined reflects the combined Mantel–Haenszel estimates.

As with the previous example, it is not important that each entry in the table correspond to 1 obser-

vation in the data—ir sums the time (pyears) and case (deaths) variables within the exposure (male)
category.

The difference between the unadjusted crude estimate and the Mantel–Haenszel estimate suggests

confounding by age: women in the study are older, and older patients are more likely to die. But we

should not use the Mantel–Haenszel estimate without checking its homogeneity assumption. The 𝜒2 test

of homogeneity gives a 𝑝-value of 0.8992, so we have no evidence that the exposure effect (the effect of
being male) differs across age categories. We are justified in using the Mantel–Haenszel estimate.

Technical note
Stratification is one way to deal with confounding; that is, perhaps sex affects the incidence of trigem-

inal neuralgia and so does age, so the table was stratified by age in an attempt to uncover the sex effect.

(We are concerned that age may confound the true association between sex and the incidence of trigemi-

nal neuralgia because the age distributions are so different for males and females. If age affects incidence,

the difference in the age distributions would induce different incidences for males and females and thus

confound the true effect of sex.)

We do not, however, have to use tables to uncover effects; the estimation alternative when we have

aggregate data is Poisson regression, and we can use the same data on which we ran ir with poisson.
Poisson regression also works with individual-level data.

(Although age in the previous example appears to be a string, it is actually a numeric variable taking

on values 1 and 2. We attached a value label to produce the labels <65 and 65+ to make ir’s output look
better; see [U] 12.6.3 Value labels. Stata’s estimation commands will ignore this labeling.)

https://www.stata.com/manuals/repitab.pdf#rEpitabRemarksandexamplesex2
https://www.stata.com/manuals/repitab.pdf#rEpitabRemarksandexamplesex3
https://www.stata.com/manuals/u12.pdf#u12.6.3Valuelabels
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. poisson deaths male age, exposure(pyears) irr
Iteration 0: Log likelihood = -10.836732
Iteration 1: Log likelihood = -10.734087
Iteration 2: Log likelihood = -10.733944
Iteration 3: Log likelihood = -10.733944
Poisson regression Number of obs = 4

LR chi2(2) = 164.01
Prob > chi2 = 0.0000

Log likelihood = -10.733944 Pseudo R2 = 0.8843

deaths IRR Std. err. z P>|z| [95% conf. interval]

male 1.495096 .2060997 2.92 0.004 1.141118 1.95888
age 8.888775 1.934943 10.04 0.000 5.801616 13.61867

_cons .0006805 .0002908 -17.07 0.000 .0002945 .0015724
ln(pyears) 1 (exposure)

Note: _cons estimates baseline incidence rate.

Compare these results with the Mantel–Haenszel estimates produced by ir:

Source IRR 95% conf. interval

Mantel–Haenszel (ir) 1.50 1.14 1.96
poisson 1.50 1.14 1.96

The results from poisson agree with the Mantel–Haenszel estimates to two decimal places. But

poisson also estimates an IRR for age. Here the estimate is not of much interest, because the outcome

variable is total mortality and we already knew that older people have a higher mortality rate. In other

contexts, however, the estimate might be of greater interest.

See [R] poisson for an explanation of the poisson command.

https://www.stata.com/manuals/rpoisson.pdf#rpoisson


Epitab — Tables for epidemiologists 18

Technical note
Both the model fit above and the preceding table asserted that exposure effects are the same across

age categories and, if they are not, then both of the previous results are equally inappropriate. The table

presented a test of homogeneity, reassuring us that the exposure effects do indeed appear to be constant.

The Poisson-regression alternative can be used to reproduce that test by including interactions between

the age groups and exposure:

. poisson deaths male age male#c.age, exposure(pyears) irr
Iteration 0: Log likelihood = -10.898799
Iteration 1: Log likelihood = -10.726225
Iteration 2: Log likelihood = -10.725904
Iteration 3: Log likelihood = -10.725904
Poisson regression Number of obs = 4

LR chi2(3) = 164.03
Prob > chi2 = 0.0000

Log likelihood = -10.725904 Pseudo R2 = 0.8843

deaths IRR Std. err. z P>|z| [95% conf. interval]

male 1.660688 1.396496 0.60 0.546 .3195218 8.631283
age 9.167973 3.01659 6.73 0.000 4.810583 17.47226

male#c.age
Male .9459 .41539 -0.13 0.899 .3999832 2.236911

_cons .0006412 .0004097 -11.51 0.000 .0001833 .0022434
ln(pyears) 1 (exposure)

Note: _cons estimates baseline incidence rate.

The significance level of the male#c.age effect is 0.899, the same as previously reported by ir.

Here forming the male-times-age interaction was easy because there were only two age groups. Had

there been more groups, the test would have been slightly more difficult—see the following technical

note.

Technical note
Aword of caution is in order when applying poisson (or any estimation technique) to more than two

age categories. Say that in our data, we had three age categories, which we will call categories 0, 1, and

2, and that they are stored in the variable agecat. We might think of the categories as corresponding to

age less than 35, 35–64, and 65 and above.

With such data, we might type ir deaths male pyears, by(agecat), but we would not type

poisson deaths male agecat, exposure(pyears) to obtain the equivalent Poisson-regression es-

timated results. Such a model might be reasonable, but it is not equivalent because we would be con-

straining the age effect in category 2 to be (multiplicatively) twice the effect in category 1.

To poisson (and all of Stata’s estimation commands other than anova), agecat is simply one vari-

able, and only one estimated coefficient is associated with it. Thus, the model is

Poisson index = 𝑃 = 𝛽0 + 𝛽1male + 𝛽2agecat
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The expected number of deaths is then 𝑒𝑃, and the IRR associated with a variable is 𝑒𝛽; see [R] poisson.

Thus, the value of the Poisson index when male==0 and agecat==1 is 𝛽0 + 𝛽2, and the possibilities are

male==0 male==1
agecat==0 𝛽0 𝛽0 + 𝛽1
agecat==1 𝛽0 + 𝛽2 𝛽0 + 𝛽2 + 𝛽1
agecat==2 𝛽0 + 2𝛽2 𝛽0 + 2𝛽2 + 𝛽1

The age effect for agecat==2 is constrained to be twice the age effect for agecat==1—the only dif-

ference between lines 3 and 2 of the table is that 𝛽2 is replaced with 2𝛽2. Under certain circumstances,

such a constraint might be reasonable, but it does not correspond to the assumptions made in generating

the Mantel–Haenszel combined results.

To obtain results equivalent to the Mantel–Haenszel result, we must estimate a separate effect for

each age group, meaning that we must replace 2𝛽2, the constrained effect, with 𝛽3, a new coefficient that

is free to take on any value. We can achieve this by creating two new variables and using them in place

of agecat. agecat1 will take on the value 1 when agecat is 1 and 0 otherwise; agecat2 will take on

the value 1 when agecat is 2 and 0 otherwise:

. generate agecat1 = (agecat==1)

. generate agecat2 = (agecat==2)

. poisson deaths male agecat1 agecat2 [fweight=pop], exposure(pyears) irr

In Stata, we do not have to generate these variables for ourselves. We could use factor variables:

. poisson deaths male i.agecat [fweight=pop], exposure(pyears) irr

See [U] 11.4.3 Factor variables.

To reproduce the homogeneity test with multiple age categories, we could type

. poisson deaths agecat##male [fweight=pop], exp(pyears) irr

. testparm agecat#male

Poisson regression combined with factor variables generalizes to multiway tables. Suppose that there

are three exposure categories. Assume exposure variable burn takes on the values 1, 2, and 3 for first-,

second-, and third-degree burns. The table itself is estimated by typing

. poisson deaths i.burn i.agecat [fweight=pop], exp(pyears) irr

and the test of homogeneity is estimated by typing

. poisson deaths burn##agecat [fweight=pop], exp(pyears) irr

. testparm burn#agecat

https://www.stata.com/manuals/rpoisson.pdf#rpoisson
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
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Standardized estimates with stratified incidence-rate data
The by() option specifies that the data are stratified and, by default, will produce a Mantel–Haenszel

combined estimate of the IRR. With the estandard, istandard, or standard(varname) options, you

can specify your own weights and obtain standardized estimates of the IRR or IRD.

Example 4: ir with stratified data, using standardized estimates
Lash et al. (2021, 417) report results fromDoll and Hill (1966) on age-specific coronary disease deaths

among British male doctors from cigarette smoking:

Smokers Nonsmokers
Age Deaths Person-years Deaths Person-years

35–44 32 52,407 2 18,790
45–54 104 43,248 12 10,673
55–64 206 28,612 28 5,710
65–74 186 12,663 28 2,585
75–84 102 5,317 31 1,462

We have entered these data into Stata:

. use https://www.stata-press.com/data/r19/dollhill3
(Doll and Hill (1966))
. list

agecat smokes deaths pyears

1. 35--44 1 32 52,407
2. 45--54 1 104 43,248
3. 55--64 1 206 28,612
4. 65--74 1 186 12,663
5. 75--84 1 102 5,317

6. 35--44 0 2 18,790
7. 45--54 0 12 10,673
8. 55--64 0 28 5,710
9. 65--74 0 28 2,585

10. 75--84 0 31 1,462

We can obtain the Mantel–Haenszel combined estimate along with the crude estimate for ignoring strat-

ification of the IRR and 90% confidence intervals by typing

. ir deaths smokes pyears, by(age) level(90)
Stratified incidence-rate analysis

Age category IRR [90% conf. interval] M--H weight

35--44 5.736638 1.704271 33.61646 1.472169 (exact)
45--54 2.138812 1.274552 3.813282 9.624747 (exact)
55--64 1.46824 1.044915 2.110422 23.34176 (exact)
65--74 1.35606 .9626026 1.953505 23.25315 (exact)
75--84 .9047304 .6375194 1.305412 24.31435 (exact)

Crude 1.719823 1.437544 2.0688 (exact)
M--H combined 1.424682 1.194375 1.699399

Test of homogeneity (M--H): chi2(4) = 10.41 Pr>chi2 = 0.0340



Epitab — Tables for epidemiologists 21

Note the presence of heterogeneity revealed by the test; the effect of smoking is not the same across age

categories. Moreover, the listed stratum-specific estimates show an effect that appears to be declining

with age. (Even if the test of homogeneity is not significant, you should always examine estimates

carefully when stratum-specific effects occur on both sides of 1 for ratios and 0 for differences.)

Lash et al. (2021, 422) obtain the standardized IRR and 90% confidence intervals, weighting each

age category by the population of the exposed group, thus producing the standardized mortality ratio

(SMR). This calculation can be reproduced by specifying by(age) to indicate that the table is stratified

and istandard to specify that we want the internally standardized rate. We may also specify that we

would like to see the pooled estimate (weighted average where the weights are based on the variance of

the strata calculations):

. ir deaths smokes pyears, by(age) level(90) istandard pool
Stratified incidence-rate analysis

Age category IRR [90% conf. interval] Weight

35--44 5.736638 1.704271 33.61646 52407 (exact)
45--54 2.138812 1.274552 3.813282 43248 (exact)
55--64 1.46824 1.044915 2.110422 28612 (exact)
65--74 1.35606 .9626026 1.953505 12663 (exact)
75--84 .9047304 .6375194 1.305412 5317 (exact)

Crude 1.719823 1.437544 2.0688 (exact)
Pooled (direct) 1.355343 1.134356 1.619382
I. standardized 1.417609 1.186541 1.693676

Test of homogeneity (direct): chi2(4) = 10.20 Pr>chi2 = 0.0372

We obtained the simple pooled results because we specified the pool option. Note the significance of

the homogeneity test; it provides the motivation for standardizing the rate ratios.

If wewanted the externally standardized ratio (weights proportional to the population of the unexposed

group), we would substitute estandard for istandard in the above command.

We are not limited to IRRs; ir can also estimate IRDs. Differences may be standardized internally or

externally. We will obtain the internally weighted difference (Lash et al. 2021 , 418–419):

. ir deaths smokes pyears, by(age) level(90) istandard ird
Stratified incidence-rate analysis

Age category IRD [90% conf. interval] Weight

35--44 .0005042 .0002877 .0007206 52407
45--54 .0012804 .0006205 .0019403 43248
55--64 .0022961 .0005628 .0040294 28612
65--74 .0038567 .0000521 .0076614 12663
75--84 -.0020201 -.0090201 .00498 5317

Crude .0018537 .001342 .0023654
I. standardized .0013047 .000712 .0018974
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Example 5: ir with user-specified weights
In addition to calculating results by using internal or external weights, ir (and cs and cc) can calculate

results for arbitrary weights. If we wanted to obtain the IRR weighting each age category equally, we

would type

. generate conswgt=1

. ir deaths smokes pyears, by(age) standard(conswgt)
Stratified incidence-rate analysis

Age category IRR [95% conf. interval] Weight

35--44 5.736638 1.463557 49.40468 1 (exact)
45--54 2.138812 1.173714 4.272545 1 (exact)
55--64 1.46824 .9863624 2.264107 1 (exact)
65--74 1.35606 .9081925 2.096412 1 (exact)
75--84 .9047304 .6000757 1.399687 1 (exact)

Crude 1.719823 1.391992 2.14353 (exact)
Standardized 1.155026 .9006199 1.481295

Technical note
estandard and istandard are convenience features; they do nothing different from what you could

accomplish by creating the appropriate weights and using the standard() option. For instance, we

could duplicate the previously shown results of istandard (example before last) by typing

. sort age smokes

. by age: generate wgt=pyears[_N]

. list in 1/4

agecat smokes deaths pyears conswgt wgt

1. 35--44 0 2 18,790 1 52407
2. 35--44 1 32 52,407 1 52407
3. 45--54 0 12 10,673 1 43248
4. 45--54 1 104 43,248 1 43248

. ir deaths smokes pyears, by(age) level(90) standard(wgt) ird
(output omitted )

sort age smokes made the exposed group (smokes = 1) the last observation within each age category.

by age: gen wgt=pyears[ N] created wgt equal to the last observation in each age category.
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Cumulative incidence data
Cumulative incidence data are “follow-up data with denominators consisting of persons rather than

person-time” (Rothman 1986, 172). Agroup of noncases is monitored for some time, during which some

become cases. Each subject is also known to be exposed or unexposed. A summary of the data is

Exposed Unexposed Total

Cases 𝑎 𝑏 𝑎 + 𝑏
Noncases 𝑐 𝑑 𝑐 + 𝑑
Total 𝑎 + 𝑐 𝑏 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑

Data of this type are generally summarized using the risk ratio, {𝑎/(𝑎+𝑐)}/{𝑏/(𝑏 +𝑑)}. A ratio of 2

means that an exposed subject is twice as likely to become a case than is an unexposed subject, a ratio of

one-half means half as likely, and so on. The “null” value—the number corresponding to no effect—is

a ratio of 1. If cross-sectional data are analyzed in this format, the risk ratio becomes a prevalence ratio.

Example 6: csi
We have data on diarrhea during a 10-day follow-up period among 30 breast-fed infants colonized

with Vibrio cholerae 01 according to antilipopolysaccharide antibody titers in the mother’s breast milk

(Glass et al. [1983]; reported in Lash et al. [2021, 403]):

Antibody level
High Low

Diarrhea 7 12
No diarrhea 9 2

The csi command works much like the iri command. Our sample is small, so we will specify the

exact option.

. csi 7 12 9 2, exact
Exposed Unexposed Total

Cases 7 12 19
Noncases 9 2 11

Total 16 14 30

Risk .4375 .8571429 .6333333

Point estimate [95% conf. interval]

Risk difference -.4196429 -.7240828 -.1152029
Risk ratio .5104167 .2814332 .9257086

Prev. frac. ex. .4895833 .0742914 .7185668
Prev. frac. pop .2611111

1-sided Fisher’s exact P = 0.0212
2-sided Fisher’s exact P = 0.0259

We find that high antibody levels reduce the risk of diarrhea (the risk falls from 0.86 to 0.44). The

difference is just significant at the 2.59% two-sided level. (Had we not specified the exact option, a 𝜒2

value and its significance level would have been reported in place of Fisher’s exact 𝑝. The calculated 𝜒2

two-sided significance level would have been 0.0173, but this calculation is inferior for small samples.)
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Technical note
By default, cs and csi do not report the odds ratio, but they will if you specify the or option. If you

want odds ratios, however, use the cc or cci commands—the commands appropriate for case–control

data—because cs and csi calculate the attributable (prevented) fraction with the risk ratio, even if you

specify or:

. csi 7 12 9 2, or exact
Exposed Unexposed Total

Cases 7 12 19
Noncases 9 2 11

Total 16 14 30

Risk .4375 .8571429 .6333333

Point estimate [95% conf. interval]

Risk difference -.4196429 -.7240828 -.1152029
Risk ratio .5104167 .2814332 .9257086

Prev. frac. ex. .4895833 .0742914 .7185668
Prev. frac. pop .2611111

Odds ratio .1296296 .0246233 .7180882 (Cornfield)

1-sided Fisher’s exact P = 0.0212
2-sided Fisher’s exact P = 0.0259

Technical note
As with iri and ir, csi and cs report the AFE,AFP, PFE, or PFP; see the discussion under Incidence-

rate data above. In example 6, we estimated that 49% of potential cases in the exposed population were

prevented by exposure. We also estimated that exposure accounted for a 26% reduction in cases over the

entire population, but that is based on the exposure distribution of the (small) population (16/30) and
probably is of little interest.

Fleiss, Levin, and Paik (2003, 128) report infant mortality by birthweight for 72,730 live white births

in 1974 in New York City:

. csi 618 422 4597 67093
Exposed Unexposed Total

Cases 618 422 1040
Noncases 4597 67093 71690

Total 5215 67515 72730

Risk .1185043 .0062505 .0142995

Point estimate [95% conf. interval]

Risk difference .1122539 .1034617 .121046
Risk ratio 18.95929 16.80661 21.38769

Attr. frac. ex. .9472554 .9404996 .9532441
Attr. frac. pop .5628883

chi2(1) = 4327.92 Pr>chi2 = 0.0000

https://www.stata.com/manuals/repitab.pdf#rEpitabRemarksandexamplesIncidence-ratedata
https://www.stata.com/manuals/repitab.pdf#rEpitabRemarksandexamplesIncidence-ratedata
https://www.stata.com/manuals/repitab.pdf#rEpitabRemarksandexamplesex6
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In these data, exposed means a premature baby (birthweight ≤2,500 g), and a case is a baby who is dead

at the end of one year. We find that being premature accounts for 94.7% of deaths among the premature

population. We also estimate, paraphrasing from Fleiss, Levin, and Paik (2003, 128), that 56.3% of

all white infant deaths in New York City in 1974 could have been prevented if prematurity had been

eliminated. (Moreover, Fleiss, Levin, and Paik put a standard error on the AFP. The formula is given

in Methods and formulas but is appropriate only for the population on which the estimates are based

because other populations may have different probabilities of exposure.)

Example 7: cs
cs works like csi, except that it obtains its information from the data. The data equivalent to typing

csi 7 12 9 2 are

. use https://www.stata-press.com/data/r19/csxmpl, clear

. list

case exp pop

1. 1 1 7
2. 1 0 12
3. 0 1 9
4. 0 0 2

We could then type cs case exp [fweight=pop]. If we had individual-level data, so that each obser-
vation reflected a patient and we had 30 observations, we would type cs case exp.

Stratified cumulative incidence data

Example 8: cs with stratified data
Lash et al. (2021, 419) reprint the following age-specific information for deaths from all causes for

tolbutamide and placebo treatment groups (University Group Diabetes Program 1970):

Age through 54 Age 55 and above
Tolbutamide Placebo Tolbutamide Placebo

Dead 8 5 22 16
Surviving 98 115 76 69

https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulas
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The data corresponding to these results are

. use https://www.stata-press.com/data/r19/ugdp
(University Group Diabetes Program 1970)
. list

age case exposed pop

1. <55 Surviving Placebo 115
2. <55 Surviving Tolbutamide 98
3. <55 Dead Placebo 5
4. <55 Dead Tolbutamide 8
5. 55+ Surviving Placebo 69

6. 55+ Surviving Tolbutamide 76
7. 55+ Dead Placebo 16
8. 55+ Dead Tolbutamide 22

The order of the observations is unimportant. If we were now to type cs case exposed [fweight=pop],
we would obtain a summary for all the data, ignoring the stratification by age. To incorporate the strati-

fication, we type

. cs case exposed [fweight=pop], by(age)
Age category Risk ratio [95% conf. interval] M--H weight

<55 1.811321 .6112044 5.367898 2.345133
55+ 1.192602 .6712664 2.11883 8.568306

Crude 1.435574 .8510221 2.421645
M--H combined 1.325555 .797907 2.202132

Test of homogeneity (M--H) chi2(1) = 0.447 Pr>chi2 = 0.5037

Mantel–Haenszel weights are appropriate when the risks may differ according to the strata but the risk

ratio is believed to be the same (homogeneous across strata). Under these assumptions, Mantel–Haenszel

weights are designed to use the information efficiently. They are not intended to measure a composite

risk ratio when the within-stratum risk ratios differ. Then, we want a standardized ratio (see below).

The risk ratios above appear to differ markedly, but the confidence intervals are also broad because of

the small sample sizes. The test of homogeneity shows that the differences can be attributed to chance;

the use of the Mantel–Haenszel combined test is sensible.
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Technical note
Stratified cumulative incidence tables are not the only way to control for confounding. Another way

is logistic regression. However, logistic regression measures effects with odds ratios, not with risk ratios.

So before we fit a logistic model, let’s use cs to estimate the Mantel–Haenszel odds ratio:

. cs case exposed [fweight=pop], by(age) or
Age category Odds ratio [95% conf. interval] M--H weight

<55 1.877551 .6238165 5.637046 2.168142 (Cornfield)
55+ 1.248355 .6112772 2.547411 6.644809 (Cornfield)

Crude 1.510673 .8381198 2.722012
M--H combined 1.403149 .7625152 2.582015

Test of homogeneity (M--H) chi2(1) = 0.347 Pr>chi2 = 0.5556
Test that combined odds ratio = 1:

Mantel--Haenszel chi2(1) = 1.19
Pr>chi2 = 0.2750

The Mantel–Haenszel odds ratio is 1.40. It measures the association between death and treatment while

adjusting for age. A more general way to adjust for age is logistic regression; the outcome variable is

case, and it is explained by age and exposed. (As in the incidence-rate example, age may appear to be

a string variable in our data—we listed the data in the previous example—but it is actually a numeric

variable taking on values 0 and 1 with value labels disguising that fact; see [U] 12.6.3 Value labels.)

. logistic case exposed age [fweight=pop]
Logistic regression Number of obs = 409

LR chi2(2) = 22.47
Prob > chi2 = 0.0000

Log likelihood = -142.6212 Pseudo R2 = 0.0730

case Odds ratio Std. err. z P>|z| [95% conf. interval]

exposed 1.404674 .4374454 1.09 0.275 .7629451 2.586175
age 4.216299 1.431519 4.24 0.000 2.167361 8.202223

_cons .0513818 .0170762 -8.93 0.000 .0267868 .0985593

Note: _cons estimates baseline odds.

Compare these results with the Mantel–Haenszel estimates obtained with cs:

Source Odds ratio 95% conf. interval

Mantel–Haenszel (cs) 1.40 0.76 2.58
logistic 1.40 0.76 2.59

They are virtually identical.

Logistic regression has advantages over the stratified-table approach. First, we obtained an estimate

of the age effect: being 55 years or over significantly increases the odds of death. In addition to the point

estimate, 4.22, we have a confidence interval for the effect: 2.17 to 8.20.

A discrete effect at age 55 is not a plausible model of aging. It would be more reasonable to assume

that a 54-year-old patient has a higher probability of death, due merely to age, than does a 53-year-old

patient; a 53-year-old, a higher probability than a 52-year-old patient; and so on. If we had the underlying

https://www.stata.com/manuals/repitab.pdf#rEpitabRemarksandexamplesex8
https://www.stata.com/manuals/u12.pdf#u12.6.3Valuelabels
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data, where each patient’s age is presumably known, we could include the actual age in the model and

so better control for the age effect. This would improve our estimate of the effect of being exposed to

tolbutamide.

See [R] logistic for an explanation of the logistic command. Also see the technical note in Strati-

fied incidence-rate data concerning categorical variables, which applies to logistic regression as well as

Poisson regression.

Standardized estimates with stratified cumulative incidence data
As with ir, cs can produce standardized estimates, and the method is basically the same, although

the options for which estimates are to be combined or standardized make it confusing. We showed above

that cs can produce Mantel–Haenszel weighted estimates of the risk ratio (the default) or the odds ratio

(obtained by specifying or). cs can also produce standardized estimates of the risk ratio (the default) or

the risk difference (obtained by specifying rd).

Example 9: cs with stratified data, using standardized estimates
To produce an estimate of the internally standardized risk ratio by using our age-specific data on

deaths from all causes for tolbutamide and placebo treatment groups (example above), we type

. cs case exposed [fweight=pop], by(age) istandard
Age category Risk ratio [95% conf. interval] Weight

<55 1.811321 .6112044 5.367898 106
55+ 1.192602 .6712664 2.11883 98

Crude 1.435574 .8510221 2.421645
I. Standardized 1.312122 .7889772 2.182147

We could obtain externally standardized estimates by substituting estandard for istandard.

To produce an estimate of the risk ratio weighting each age category equally, we could type

. generate wgt=1

. cs case exposed [fweight=pop], by(age) standard(wgt)
Age category Risk ratio [95% conf. interval] Weight

<55 1.811321 .6112044 5.367898 1
55+ 1.192602 .6712664 2.11883 1

Crude 1.435574 .8510221 2.421645
Standardized 1.304737 .7844994 2.169967

If we instead wanted the risk difference, we would type

. cs case exposed [fweight=pop], by(age) standard(wgt) rd
Age category Risk diff. [95% conf. interval] Weight

<55 .033805 -.0278954 .0955055 1
55+ .0362545 -.0809204 .1534294 1

Crude .0446198 -.0192936 .1085332
Standardized .0350298 -.0311837 .1012432

https://www.stata.com/manuals/rlogistic.pdf#rlogistic
https://www.stata.com/manuals/repitab.pdf#rEpitabRemarksandexamplestechnote2
https://www.stata.com/manuals/repitab.pdf#rEpitabRemarksandexamplesex8
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If we wanted to weight the less-than-55 age group five times as heavily as the 55-and-over group, we

would create wgt to contain 5 for the first age group and 1 for the second (or 10 for the first group and 2

for the second—the scale of the weights does not matter).

Case–control data
In case–control data, you select a sample on the basis of the outcome under study; that is, cases and

noncases are sampled at different rates. If you were examining the link between coffee consumption

and heart attacks, for instance, you could select a sample of subjects with and without the heart problem

and then examine their coffee-drinking behavior. A subject who has suffered a heart attack is called a

case just as with cohort study data. A subject who has never suffered a heart attack, however, is called a

control rather than merely a noncase, emphasizing that the sampling was performed with respect to the

outcome.

In case–control data, all hope of identifying the risk (that is, incidence) of the outcome (heart attacks)

associated with the factor (coffee drinking) vanishes, at least without information on the underlying

sampling fractions, but you can examine the proportion of coffee drinkers among the two populations

and reason that, if there is a difference, coffee drinking may be associated with the risk of heart attacks.

Remarkably, even without the underlying sampling fractions, you can also measure the ratio of the odds

of heart attacks if a subject drinks coffee to the odds if a subject does not—the so-called odds ratio.

What is lost is the ability to compare absolute rates, which is not always the same as comparing relative

rates; see Fleiss, Levin, and Paik (2003, 123).

Example 10: cci
cci calculates the odds ratio and the attributable risk associated with a 2 × 2 table. Rothman et al.

(1979; reprinted in Rothman [1986, 161], and Lash et al. [2021, 411]) present case–control data on

the history of chlordiazopoxide use in early pregnancy for mothers of children born with and without

congenital heart defects:
Chlordiazopoxide use

Yes No

Case mothers 4 386
Control mothers 4 1250

. cci 4 386 4 1250, level(90)
Proportion

Exposed Unexposed Total exposed

Cases 4 386 390 0.0103
Controls 4 1250 1254 0.0032

Total 8 1636 1644 0.0049

Point estimate [90% conf. interval]

Odds ratio 3.238342 .7698467 13.59664 (exact)
Attr. frac. ex. .6912 -.2989599 .9264524 (exact)
Attr. frac. pop .0070892

chi2(1) = 3.07 Pr>chi2 = 0.0799

We obtain a point estimate of the odds ratio as 3.24 and a 𝜒2 value, which is a test that the odds ratio is

1, significant at the 10% level.
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Technical note
The epitab commands can calculate three different confidence intervals for the odds ratio: the exact,

Woolf, and Cornfield intervals. The exact interval, illustrated in example 10, is the default. The interval

is “exact” because it uses an exact sampling distribution—a distribution with no unknown parameters

under the null hypothesis. An exact interval does not use a normal or 𝜒2 approximation. “Exact” does

not describe the coverage probability; the coverage probability of a 90% exact interval is not exactly

90%. The coverage probability is actually bounded below by 90% (Agresti 2013, 606), so a 90% exact

interval will always cover the odds ratio with probability at least 90% (if the model is correct).

The Woolf and Cornfield intervals, on the other hand, are approximate. They approximate the exact

sampling distribution with a normal model and are not guaranteed to maintain their nominal coverage:

the coverage probability of a 90% approximate interval fluctuates above and below 90%. The cover-

age approaches 90% only in the limit as the sample size increases. Exact intervals are conservative;

approximate intervals can be conservative or anticonservative (Agresti 2013, 607).

If you wish to maintain nominal coverage, then you should use the exact interval. But you will

pay a price for the coverage: the exact interval will usually be wider than the approximate intervals.

Example 10 is no exception:

Method 90% conf. interval Command

exact 0.77 13.60 cci
Woolf 1.01 10.40 cci, woolf
Cornfield 1.07 9.83 cci, cornfield

The exact interval is the widest of the three—so wide that it includes the null value of one—even

though the 𝜒2 test 𝑝-value of 0.0799 was significant at the 10% level. The exact interval and 𝜒2 test

come from different models, so we should not expect them to always agree on sharp conclusions such as

statistical significance.

The odds-ratio intervals are all frequentist methods, so we cannot compare them rigorously with one

example. See Brown (1981), Gart and Thomas (1982), and Agresti (1999) for more rigorous compar-

isons. Agresti (1999) found that the Woolf interval performed well, even for small samples.� �
Jerome Cornfield (1912–1979) was born in New York City. He majored in history at New York

University and took courses in statistics at the US Department of Agriculture Graduate School but

otherwise had little formal training. Cornfield held positions at the Bureau of Labor Statistics, the

National Cancer Institute, the National Institutes of Health, Johns Hopkins University, the Univer-

sity of Pittsburgh, and GeorgeWashington University. He worked on many problems in biomedical

statistics, including the analysis of clinical trials, epidemiology (especially case–control studies),

and Bayesian approaches.

Barnet Woolf (1902–1983) was born in London. His parents were immigrants from Lithuania.

Woolf was educated at Cambridge, where he studied physiology and biochemistry, and proposed

methods for linearizing plots in enzyme chemistry that were later rediscovered by others (see Hal-

dane [1957]). His later career in London, Birmingham, Rothamsted, and Edinburgh included lasting

contributions to nutrition, epidemiology, public health, genetics, and statistics. He was also active

in left-wing causes and penned humorous poems, songs, and revues.� �

https://www.stata.com/manuals/repitab.pdf#rEpitabRemarksandexamplesex10
https://www.stata.com/manuals/repitab.pdf#rEpitabRemarksandexamplesex10
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Technical note
By default, cc and cci report exact confidence intervals but an approximate significance test. You

can replace the approximate test with Fisher’s exact test by specifying the exact option. We recommend

specifying exact whenever any cell count is less than 1,000.

. cci 4 386 4 1250, exact level(90)
Proportion

Exposed Unexposed Total exposed

Cases 4 386 390 0.0103
Controls 4 1250 1254 0.0032

Total 8 1636 1644 0.0049

Point estimate [90% conf. interval]

Odds ratio 3.238342 .7698467 13.59664 (exact)
Attr. frac. ex. .6912 -.2989599 .9264524 (exact)
Attr. frac. pop .0070892

1-sided Fisher’s exact P = 0.0964
2-sided Fisher’s exact P = 0.0964

In this table, the one- and two-sided significance values are equal. This is not a mistake, but it does not

happen often. Exact significance values are calculated by summing the probabilities for tables that have

the same marginals (row and column sums) but that are less likely (given an odds ratio of 1) than the

observed table. When considering each possible table, we might ask if the table is in the same or opposite

tail as the observed table. If it is in the same tail, we would count the table under consideration in the

one-sided test and, either way, we would count it in the two-sided test. Here all the tables more extreme

than this table are in the same tail, so the one- and two-sided tests are the same.

The 𝑝-value of 0.0964 is significant at the 10% level, but the exact confidence interval is not (it

includes the null odds ratio of one). It was not surprising that the exact interval disagreed with the 𝜒2

test; after all, they come from different models. Now, the exact interval and Fisher’s exact test also

disagree, even though they come from the same model!

The test and interval disagree because the exact sampling distribution is asymmetric, and the test and

interval handle the asymmetry differently. The two-sided test, as we have seen, sums the probabilities

of all tables at least as unlikely as the observed table, and in example 10, all the unlikely tables fall in

the same tail of the distribution. The other tail does not contribute to the 𝑝-value. The exact interval, on
the other hand, must always use both tails of the distribution, because the interval inverts two one-sided

tests, not one two-sided test (Breslow and Day 1980, 128–129).

Technical note
The reported value of theAFE or PFE is calculated using the odds ratio as a proxy for the risk ratio. This

can be justified only if the outcome is rare in the population. The extrapolation to theAFP or PFP assumes

that the control group is a random sample of the corresponding group in the underlying population.
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Example 11: cc equivalent to cci
Equivalent to typing cci 4 386 4 1250 would be typing cc case exposed [fweight=pop] with the

following data:

. use https://www.stata-press.com/data/r19/ccxmpl, clear

. list

case exposed pop

1. 1 1 4
2. 1 0 386
3. 0 1 4
4. 0 0 1250

Stratified case–control data

Example 12: cc with stratified data
cc can work with stratified tables. Lash et al. (2021, 429) reprint and discuss data from a case–control

study on infants with congenital heart disease and Down syndrome and healthy controls, according to

maternal spermicide use before conception and maternal age at delivery (Rothman 1982):

Maternal age to 34 Maternal age 35+
Spermicide used not used Spermicide used not used

Down syndrome 3 9 1 3
Controls 104 1059 5 86

The data corresponding to these tables are

. use https://www.stata-press.com/data/r19/downs
(Congenital heart disease and Down syndrome)
. list

case exposed pop age

1. 1 1 3 <35
2. 1 0 9 <35
3. 0 1 104 <35
4. 0 0 1059 <35
5. 1 1 1 35+

6. 1 0 3 35+
7. 0 1 5 35+
8. 0 0 86 35+
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The stratified results for the odds ratio are

. cc case exposed [fweight=pop], by(age) woolf
Maternal age Odds ratio [95% conf. interval] M--H weight

<35 3.394231 .9048403 12.73242 .7965957 (Woolf)
35+ 5.733333 .5016418 65.52706 .1578947 (Woolf)

Crude 3.501529 1.110362 11.04208 (Woolf)
M--H combined 3.781172 1.18734 12.04142

Test of homogeneity (M--H) chi2(1) = 0.14 Pr>chi2 = 0.7105
Test that combined odds ratio = 1:

Mantel--Haenszel chi2(1) = 5.81
Pr>chi2 = 0.0159

For no particular reason, we also specified the woolf option to obtainWoolf approximations to thewithin-

stratum confidence intervals rather than the default. Had we wanted Tarone’s test of homogeneity, we

would have used

. cc case exposed [fweight=pop], by(age) tarone
Maternal age Odds ratio [95% conf. interval] M--H weight

<35 3.394231 .5812415 13.87412 .7965957 (exact)
35+ 5.733333 .0911619 85.89602 .1578947 (exact)

Crude 3.501529 .8080857 11.78958 (exact)
M--H combined 3.781172 1.18734 12.04142

Test of homogeneity (M--H) chi2(1) = 0.14 Pr>chi2 = 0.7105
Test of homogeneity (Tarone) chi2(1) = 0.14 Pr>chi2 = 0.7092

Test that combined odds ratio = 1:
Mantel--Haenszel chi2(1) = 5.81

Pr>chi2 = 0.0159

Whatever method you choose for calculating confidence intervals, Stata will report a test of homo-

geneity, which here is 𝜒2(1) = 0.14 and not significant. That is, the odds of Down syndrome might vary

with maternal age, but we cannot reject the hypothesis that the association between Down syndrome and

spermicide is the same in the two maternal age strata. This is thus a test to reject the appropriateness of

the single, Mantel–Haenszel combined odds ratio—a rejection not justified by these data.

Technical note
The cc command includes four tests of homogeneity: Mantel–Haenszel (the default); directly pooled,

also known as the Woolf test (available with the pool option); Tarone (available with the tarone op-

tion); and Breslow–Day (available with the bd option). The preferred test is Tarone’s (Tarone 1985, 94),

which corrected an error in the Breslow–Day test; see Breslow (1996, 17–18) for details of the error and

Tarone’s correction.

The other two homogeneity tests, the Mantel–Haenszel and directly pooled, are less useful: they use

the logs of the stratum-specific odds ratios, so they are undefined when any stratum has a zero cell. The

epitab commands deal with the problem differently: cs omits the offending strata, while cc substitutes

the Tarone test. The Tarone test does not use the stratum-specific odds ratios, so it can still be calculated

when there are zero cells.
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None of the tests is appropriate for finely stratified (many strata with only a few observations each)

studies (Lash et al. 2021 , 429). If you have fine stratification, one alternative is multilevel logistic

regression; see [ME] melogit.

Technical note
Aswith cohort study data, an alternative to stratified tables for uncovering effects is logistic regression.

From the logistic point of view, case–control data are no different from cohort study data—you must

merely ignore the estimated intercept. The intercept is meaningless in case–control data because it

reflects the baseline prevalence of the outcome, which you controlled by sampling.

The data we used with cc can be used directly by logistic. (The age variable, which appears to be

a string, is really numeric with an associated value label; see [U] 12.6.3 Value labels. age takes on the

value 0 for the age-less-than-35 group and 1 for the 35+ group.)

. logistic case exposed age [fweight=pop]
Logistic regression Number of obs = 1,270

LR chi2(2) = 8.74
Prob > chi2 = 0.0127

Log likelihood = -81.517532 Pseudo R2 = 0.0509

case Odds ratio Std. err. z P>|z| [95% conf. interval]

exposed 3.787779 2.241922 2.25 0.024 1.187334 12.0836
age 4.582857 2.717352 2.57 0.010 1.433594 14.65029

_cons .0082631 .0027325 -14.50 0.000 .0043218 .0157988

Note: _cons estimates baseline odds.

We compare the results with those presented by cc in the previous example:

Source Odds ratio 95% CI

Mantel–Haenszel (cc) 3.78 1.19 12.04
logistic 3.79 1.19 12.08

As with the cohort study data in example 8, results are virtually identical, and all the same comments we

made previously apply once again.

https://www.stata.com/manuals/memelogit.pdf#memelogit
https://www.stata.com/manuals/u12.pdf#u12.6.3Valuelabels
https://www.stata.com/manuals/repitab.pdf#rEpitabRemarksandexamplesex12
https://www.stata.com/manuals/repitab.pdf#rEpitabRemarksandexamplesex8
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To demonstrate an advantage of logistic regression, let’s now ask a question that would be difficult to

answer on the basis of a stratified table analysis. We now know that spermicide use appears to increase

the risk of having a baby with Down syndrome, and we know that the mother’s age also increases the

risk. Is the effect of spermicide use statistically different for mothers in the two age groups?

. logistic case exposed age c.age#exposed [fweight=pop]
Logistic regression Number of obs = 1,270

LR chi2(3) = 8.87
Prob > chi2 = 0.0311

Log likelihood = -81.451332 Pseudo R2 = 0.0516

case Odds ratio Std. err. z P>|z| [95% conf. interval]

exposed 3.394231 2.289544 1.81 0.070 .9048403 12.73242
age 4.104651 2.774868 2.09 0.037 1.091034 15.44237

exposed#
c.age

1 1.689141 2.388785 0.37 0.711 .1056563 27.0045

_cons .0084986 .0028449 -14.24 0.000 .0044097 .0163789

Note: _cons estimates baseline odds.

The answer is no. The odds ratio and confidence interval reported for exposed now measure the sper-

micide effect for an age==0 (age < 35) mother. The odds ratio and confidence interval reported for

c.age#exposed are the (multiplicative) difference in the spermicide odds ratio for an age==1 (age 35+)

mother relative to a young mother. The point estimate is that the effect is larger for older mothers, sug-

gesting grounds for future research, but the difference is not significant.

See [R] logistic for an explanation of the logistic command. Also see the technical note under

Incidence-rate data above concerning Poisson regression, which applies equally to logistic regression.

Case–control data with multiple levels of exposure
In a case–control study, subjects with the disease of interest (cases) are compared with disease-free

individuals (controls) to assess the relationship between exposure to one or more risk factors and dis-

ease incidence. Often exposure is measured qualitatively at several discrete levels or measured on a

continuous scale and then grouped into three or more levels. The data can be summarized as

Exposure level

1 2 . . . 𝑘 Total

Cases 𝑎1 𝑎2 . . . 𝑎𝑘 𝑀1
Controls 𝑐1 𝑐2 . . . 𝑐𝑘 𝑀0

Total 𝑁1 𝑁2 . . . 𝑁𝑘 𝑇

An advantage afforded by having multiple levels of exposure is the ability to examine dose–response

relationships. If the association between a risk factor and a disease or outcome is real, we expect the

strength of that association to increase with the level and duration of exposure. A dose–response rela-

tionship provides strong support for a direct or even causal relationship between the risk factor and the

outcome. On the other hand, the lack of a dose–response is usually seen as an argument against causality.

https://www.stata.com/manuals/rlogistic.pdf#rlogistic
https://www.stata.com/manuals/repitab.pdf#rEpitabRemarksandexamplestechnote
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We can use the tabodds command to tabulate the odds of failure or odds ratios against a categorical

exposure variable. The test for trend calculated by tabodds can serve as a test for dose–response if the

exposure variable is at least ordinal. If the exposure variable has no natural ordering, the trend test is

meaningless and should be ignored. See the technical note at the end of this section for more information

regarding the test for trend.

Before looking at an example, consider three possible data arrangements for case–control and preva-

lence studies. The most common data arrangement is individual records, where each subject in the study

has his or her own record. Closely related are frequency records where identical individual records are

included only once, but with a variable giving the frequency with which the record occurs. The fweight
weight option is used for these data to specify the frequency variable. Data can also be arranged as bino-

mial frequency records where each record contains a variable, D, the number of cases; another variable,
N, the number of total subjects (cases plus controls); and other variables. An advantage of binomial

frequency records is that large datasets can be entered succinctly into a Stata database.

Example 13: tabodds
Consider the following data from the Ille-et-Vilaine study of esophageal cancer, discussed in Breslow

and Day (1980, chap. 4 and app. I), corresponding to subjects age 55–64 who use from 0 to 9 g of tobacco

per day:
Alcohol consumption (g/day)

0–39 40–79 80–119 120+ Total

Cases 2 9 9 5 25

Controls 47 31 9 5 92

Total 49 40 18 10 117

The study included 24 such tables, each representing one of four levels of tobacco use and one of six age

categories. We can create a binomial frequency-record dataset by typing

. input alcohol D N agegrp tobacco
alcohol D N agegrp tobacco

1. 1 2 49 4 1
2. 2 9 40 4 1
3. 3 9 18 4 1
4. 4 5 10 4 1
5. end

where D is the number of esophageal cancer cases and N is the number of total subjects (cases plus

controls) for each combination of six age groups (agegrp), four levels of alcohol consumption in g/day
(alcohol), and four levels of tobacco use in g/day (tobacco).

Both the tabodds and mhodds commands can correctly handle all three data arrangements. Binomial

frequency records require that the number of total subjects (cases plus controls) represented by each

record N be specified with the binomial() option.
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We could also enter the data as frequency-weighted data:

. input alcohol case freq agegrp tobacco
alcohol case freq agegrp tobacco

1. 1 1 2 4 1
2. 1 0 47 4 1
3. 2 1 9 4 1
4. 2 0 31 4 1
5. 3 1 9 4 1
6. 3 0 9 4 1
7. 4 1 5 4 1
8. 4 0 5 4 1
9. end

If you are planning on using any of the other estimation commands, such as poisson or logistic,
we recommend that you enter your data either as individual records or as frequency-weighted records

and not as binomial frequency records, because the estimation commands currently do not recognize the

binomial() option.

We have entered all the esophageal cancer data into Stata as a frequency-weighted record dataset as

previously described. In our data, case indicates the esophageal cancer cases and controls, and freq is

the number of subjects represented by each record (the weight).

We added value labels to the agegrp, alcohol, and tobacco variables in our dataset to ease inter-

pretation in outputs, but these variables are numeric.

We are interested in the association between alcohol consumption and esophageal cancer. We first

use tabodds to tabulate the odds of esophageal cancer against alcohol consumption:

. use https://www.stata-press.com/data/r19/bdesop, clear
(Ille-et-Vilaine study of esophageal cancer)
. tabodds case alcohol [fweight=freq]

alcohol Cases Controls Odds [95% conf. interval]

0--39 29 386 0.07513 0.05151 0.10957
40--79 75 280 0.26786 0.20760 0.34560

80--119 51 87 0.58621 0.41489 0.82826
120+ 45 22 2.04545 1.22843 3.40587

Test of homogeneity (equal odds): chi2(3) = 158.79
Pr>chi2 = 0.0000

Score test for trend of odds: chi2(1) = 152.97
Pr>chi2 = 0.0000

The test of homogeneity clearly indicates that the odds of esophageal cancer differ by level of alcohol

consumption, and the test for trend indicates a significant increase in odds with increasing alcohol use.

This suggests a strong dose–response relation. The graph option can be used to study the shape of the

relationship of the odds with alcohol consumption. Most of the heterogeneity in these data can be “ex-

plained” by the linear increase in risk of esophageal cancer with increased dosage (alcohol consumption).

We also could have requested that the odds ratios at each level of alcohol consumption be calcu-

lated by specifying the or option. For example, tabodds case alcohol [fweight=freq], or would

produce odds ratios using the minimum value of alcohol—that is, alcohol = 1 (0–39)—as the ref-

erence group, and the command tabodds case alcohol [fweight=freq], or base(2) would use

alcohol = 2 (40–79) as the reference group.
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Although our results appear to provide strong evidence supporting an association between alco-

hol consumption and esophageal cancer, we need to be concerned with the possible existence of con-

founders, specifically age and tobacco use, in our data. We can again use tabodds to tabulate the odds

of esophageal cancer against age and against tobacco use, independently:

. tabodds case agegrp [fweight=freq]

agegrp Cases Controls Odds [95% conf. interval]

25--34 1 115 0.00870 0.00121 0.06226
35--44 9 190 0.04737 0.02427 0.09244
45--54 46 167 0.27545 0.19875 0.38175
55--64 76 166 0.45783 0.34899 0.60061
65--74 55 106 0.51887 0.37463 0.71864

75+ 13 31 0.41935 0.21944 0.80138

Test of homogeneity (equal odds): chi2(5) = 96.94
Pr>chi2 = 0.0000

Score test for trend of odds: chi2(1) = 83.37
Pr>chi2 = 0.0000

. tabodds case tobacco [fweight=freq]

tobacco Cases Controls Odds [95% conf. interval]

0--9 78 447 0.17450 0.13719 0.22194
10--19 58 178 0.32584 0.24228 0.43823
20--29 33 99 0.33333 0.22479 0.49428

30+ 31 51 0.60784 0.38899 0.94983

Test of homogeneity (equal odds): chi2(3) = 29.33
Pr>chi2 = 0.0000

Score test for trend of odds: chi2(1) = 26.93
Pr>chi2 = 0.0000

We can see that there is evidence to support our concern that both age and tobacco use are potentially

important confounders. Clearly, before we can make any statements regarding the association between

esophageal cancer and alcohol use, we must examine and, if necessary, adjust for the effect of any con-

founder. We will return to this example in the following section.

Technical note
The score test for trend performs a test for linear trend of the log odds against the numerical code

used for the exposure variable. The test depends not only on the relationship between dose level and the

outcome but also on the numeric values assigned to each level or, to be more accurate, to the distance

between the numeric values assigned. For example, the trend test on a dataset with four exposure levels

coded 1, 2, 3, and 4 gives the same results as coding the levels 10, 20, 30, and 40 because the distance

between the levels in each case is constant. In the first case, the distance is 1 unit, and in the second

case, it is 10 units. However, if we code the exposure levels as 1, 10, 100, and 1,000, we would obtain

different results because the distance between exposure levels is not constant. Thus, be careful when

assigning values to exposure levels. You must determine whether equally spaced numbers make sense

for your data or if other more meaningful values should be used.
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Remember that we are testing whether a log-linear relationship exists between the odds and the ex-

posure variable. For your particular problem, this relationship may not be correct or even make sense,

so you must be careful in interpreting the output of this trend test.

Case–control data with confounders and possibly multiple levels of exposure
In the esophageal cancer data example introduced earlier, we determined that the apparent association

between alcohol consumption and esophageal cancer could be confounded by age and tobacco use. You

can adjust for the effect of possible confounding factors by stratifying on these factors. This is the

method used by both tabodds and mhodds to adjust for other variables in the dataset. We will compare

and contrast these two commands in the following example.

Example 14: tabodds, adjusting for confounding factors
We begin by using tabodds to tabulate unadjusted odds ratios.

. tabodds case alcohol [fweight=freq], or

alcohol Odds ratio chi2 P>chi2 [95% conf. interval]

0--39 1.000000 . . . .
40--79 3.565271 32.70 0.0000 2.237981 5.679744

80--119 7.802616 75.03 0.0000 4.497054 13.537932
120+ 27.225705 160.41 0.0000 12.507808 59.262107

Test of homogeneity (equal odds): chi2(3) = 158.79
Pr>chi2 = 0.0000

Score test for trend of odds: chi2(1) = 152.97
Pr>chi2 = 0.0000

The alcohol = 1 group (0–39) was used by tabodds as the reference category for calculating the

odds ratios. We could have selected a different group by specifying the base() option; however, because
the lowest dosage level is most often the appropriate reference group, as it is in these data, the base()
option is seldom used.

We use tabodds with the adjust() option to tabulate Mantel–Haenszel age-adjusted odds ratios:

. tabodds case alcohol [fweight=freq], adjust(age)
Mantel--Haenszel odds ratios adjusted for agegrp

alcohol Odds ratio chi2 P>chi2 [95% conf. interval]

0--39 1.000000 . . . .
40--79 4.268155 37.36 0.0000 2.570025 7.088314

80--119 8.018305 59.30 0.0000 4.266893 15.067922
120+ 28.570426 139.70 0.0000 12.146409 67.202514

Score test for trend of odds: chi2(1) = 135.09
Pr>chi2 = 0.0000

Weobserve that the age-adjusted odds ratios are just slightly higher than the unadjusted ones, so it appears

that age is not as strong a confounder as it first appeared. Even after adjusting for age, the dose–response

relationship, as measured by the trend test, remains strong.
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We now perform the same analysis but this time adjust for tobacco use instead of age.

. tabodds case alcohol [fweight=freq], adjust(tobacco)
Mantel--Haenszel odds ratios adjusted for tobacco

alcohol Odds ratio chi2 P>chi2 [95% conf. interval]

0--39 1.000000 . . . .
40--79 3.261178 28.53 0.0000 2.059764 5.163349

80--119 6.771638 62.54 0.0000 3.908113 11.733306
120+ 19.919526 123.93 0.0000 9.443830 42.015528

Score test for trend of odds: chi2(1) = 135.04
Pr>chi2 = 0.0000

Again we observe a significant dose–response relationship and not much difference between the ad-

justed and unadjusted odds ratios. We could also adjust for the joint effect of both age and tobacco use

by specifying adjust(tobacco age), but we will not bother here.

A different approach to analyzing these data is to use the mhodds command. This command estimates

the ratio of the odds of failure for two categories of an exposure variable, controlling for any specified

confounding variables, and it tests whether this odds ratio is equal to one. For multiple exposures, if two

exposure levels are not specified with compare(), then mhodds assumes that exposure is quantitative

and calculates a 1-degree-of-freedom test for trend. This test for trend is the same one that tabodds
reports.

Example 15: mhodds, controlling for confounding factors
We first use mhodds to estimate the effect of alcohol controlled for age:

. mhodds case alcohol agegrp [fweight=freq]
Score test for trend of odds with alcohol

controlling for agegrp

Odds ratio chi2(1) P>chi2 [95% conf. interval]

2.845895 135.09 0.0000 2.385749 3.394792

Note: The Odds ratio estimate is an approximation to the odds ratio
for a one-unit increase in alcohol.

Because alcohol has more than two levels, mhodds estimates and reports an approximate age-

adjusted odds ratio for a one-unit increase in alcohol consumption. The 𝜒2 value reported is identical to

that reported by tabodds for the score test for trend on the previous page.
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We now use mhodds to estimate the effect of alcohol controlled for age, and while we are at it, we do

this by levels of tobacco consumption:

. mhodds case alcohol agegrp [fweight=freq], by(tobacco)
Score test for trend of odds with alcohol

controlling for agegrp

by tobacco

tobacco Odds ratio chi2(1) P>chi2 [95% conf. interval]

0--9 3.579667 75.95 0.0000 2.68710 4.76871
10--19 2.303580 25.77 0.0000 1.66913 3.17920
20--29 2.364135 13.27 0.0003 1.48810 3.75589

30+ 2.217946 8.84 0.0029 1.31184 3.74992

Notes: Only 19 of the 24 strata formed in this analysis contribute information
about the effect of the explanatory variable.
The Odds ratio estimate is an approximation to the odds ratio for a
one-unit increase in alcohol.

Mantel--Haenszel estimate controlling for agegrp and tobacco

Odds ratio chi2(1) P>chi2 [95% conf. interval]

2.751236 118.37 0.0000 2.292705 3.301471

Approximate test of homogeneity of odds ratios: chi2(3) = 5.46
Pr>chi2 = 0.1409

The first table reports estimates of the effect of alcohol for each level of tobacco use, controlling for age.

From the second table, we find that the effect of alcohol is about ×2.8 when we control for both age

and tobacco use. Again, because alcohol has more than two levels, mhodds estimates and reports an

approximate Mantel–Haenszel age and tobacco-use adjusted odds ratio for a one-unit increase in alcohol

consumption.

The 𝜒2 test for trend reported with the Mantel–Haenszel estimate is again the same one that tabodds
produces if adjust(agegrp tobacco) is specified.

To instead estimate the effect of tobacco use for each level of alcohol consumption, controlling for

age, we type

. mhodds case tobacco agegrp [fweight=freq], by(alcohol)
Score test for trend of odds with tobacco

controlling for agegrp

by alcohol

alcohol Odds ratio chi2(1) P>chi2 [95% conf. interval]

0--39 2.420650 15.61 0.0001 1.56121 3.75320
40--79 1.427713 5.75 0.0165 1.06717 1.91007

80--119 1.472218 3.38 0.0659 0.97483 2.22339
120+ 1.214815 0.59 0.4432 0.73876 1.99763

Notes: Only 18 of the 24 strata formed in this analysis contribute information
about the effect of the explanatory variable.
The Odds ratio estimate is an approximation to the odds ratio for a
one-unit increase in tobacco.
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Mantel--Haenszel estimate controlling for agegrp and alcohol

Odds ratio chi2(1) P>chi2 [95% conf. interval]

1.553437 20.07 0.0000 1.281160 1.883580

Approximate test of homogeneity of odds ratios: chi2(3) = 5.26
Pr>chi2 = 0.1540

From the second table, we find that the effect of tobacco, controlled for both age and alcohol consumption,

is about ×1.6.

Comparisons between particular levels of alcohol and tobacco consumption can bemade by generating

a new variable with levels corresponding to all combinations of alcohol and tobacco, as in

. egen alctob = group(alcohol tobacco)

. mhodds case alctob [fweight=freq], compare(16,1)
Maximum likelihood estimate of the odds ratio comparing alctob==16

vs. alctob==1

Odds ratio chi2(1) P>chi2 [95% conf. interval]

93.333333 103.21 0.0000 14.766136 589.938431

which yields an odds ratio of 93 between subjects with the highest levels of alcohol and tobacco and

those with the lowest levels. Similar results can be obtained simultaneously for all levels of alctob
using alctob = 1 as the comparison group by specifying tabodds D alctob, binomial(N) or.

Standardized estimates with stratified case–control data

Example 16: cc with stratified data, using standardized estimates
You obtain standardized estimates (here for the odds ratio) by using cc just as you obtain standardized

estimates by using ir or cs. Along with the by() option, you specify one of estandard, istandard,
or standard(varname).

Case–control studies can provide standardized rate-ratio estimates when density sampling is used,

or when the disease is rare (Lash et al. 2021 , 422). Lash et al. (2021, 429) report the SMR for the

case–control study on infants with congenital heart disease and Down syndrome. We can reproduce

their estimates along with the pooled estimates by typing

. use https://www.stata-press.com/data/r19/downs, clear
(Congenital heart disease and Down syndrome)
. cc case exposed [fweight=pop], by(age) istandard pool

Maternal age Odds ratio [95% conf. interval] Weight

<35 3.394231 .5812415 13.87412 104 (exact)
35+ 5.733333 .0911619 85.89602 5 (exact)

Crude 3.501529 .8080857 11.78958 (exact)
Pooled (direct) 3.824166 1.196437 12.22316
I. Standardized 3.779749 1.180566 12.10141

Test of homogeneity (direct) chi2(1) = 0.14 Pr>chi2 = 0.7109
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Using the distribution of the nonexposed subjects in the source population as the standard, we can

obtain an estimate of the standardized rate ratio (SRR):

. cc case exposed [fweight=pop], by(age) estandard
Maternal age Odds ratio [95% conf. interval] Weight

<35 3.394231 .5812415 13.87412 1059 (exact)
35+ 5.733333 .0911619 85.89602 86 (exact)

Crude 3.501529 .8080857 11.78958 (exact)
E. Standardized 3.979006 1.176096 13.46191

Finally, if we wanted to weight the two age groups equally, we could type

. generate wgt=1

. cc case exposed [fweight=pop], by(age) standard(wgt)
Maternal age Odds ratio [95% conf. interval] Weight

<35 3.394231 .5812415 13.87412 1 (exact)
35+ 5.733333 .0911619 85.89602 1 (exact)

Crude 3.501529 .8080857 11.78958 (exact)
Standardized 5.275104 .6233794 44.6385

Matched case–control data
Matched case–control studies are performed to gain sample-size efficiency and to control for impor-

tant confounding factors. In a matched case–control design, each case is matched with a control on the

basis of demographic characteristics, clinical characteristics, etc. Thus, their difference with respect to

the outcome must be due to something other than the matching variables. If the only difference between

them was exposure to the factor, we could attribute any difference in outcome to the factor.

A summary of the data is

Controls

Cases Exposed Unexposed Total

Exposed 𝑎 𝑏 𝑀1
Unexposed 𝑐 𝑑 𝑀0

Total 𝑁1 𝑁0 𝑇 = 𝑎 + 𝑏 + 𝑐 + 𝑑

Each entry in the table represents the number of case–control pairs. For instance, in 𝑎 of the pairs, both

members were exposed; in 𝑏 of the pairs, the case was exposed but the control was not; and so on. In

total, 𝑇 pairs were observed.
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Example 17: mcci
Rothman (1986, 257) discusses data from Jick et al. (1973) on a matched case–control study of

myocardial infarction and drinking six or more cups of coffee per day (persons drinking from one to five

cups per day were excluded):
Controls

Cases 6+ cups 0 cups

6+ cups 8 8
0 cups 3 8

mcci analyzes matched case–control data:

. mcci 8 8 3 8
Controls

Cases Exposed Unexposed Total

Exposed 8 8 16
Unexposed 3 8 11

Total 11 16 27
McNemar’s chi2(1) = 2.27 Prob > chi2 = 0.1317
Exact McNemar significance probability = 0.2266
Proportion with factor

Cases .5925926
Controls .4074074 [95% conf. interval]

difference .1851852 -.0822542 .4526246
ratio 1.454545 .891101 2.374257
rel. diff. .3125 -.0243688 .6493688
odds ratio 2.666667 .6400364 15.6064 (exact)

The point estimate states that the odds of drinking 6 or more cups of coffee per day is 2.67 times greater

among the myocardial infarction patients. The confidence interval is wide, however, and the 𝑝-value of
0.1317 from McNemar’s test is not statistically significant.

mcc works like the other nonimmediate commands but does not handle stratified data. If you have

stratified matched case–control data, you can use conditional logistic regression to estimate odds ratios;

see [R] clogit.

Matched case–control studies can also be analyzed using mhodds by controlling on the variable used

to identify the matched sets. For example, if the variable set is used to identify the matched set for each

subject,

. mhodds fail xvar set

will do the job. Any attempt to control for further variables will restrict the analysis to the comparison of

cases and matched controls that share the same values of these variables. In general, this would lead to

the omission of many records from the analysis. Similar considerations usually apply when investigating

effect modification by using the by() option. An important exception to this rule is that a variable used

in matching cases to controls may appear in the by() option without loss of data.

https://www.stata.com/manuals/rclogit.pdf#rclogit
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Example 18: mhodds with matched case–control data
Let’s use mhodds to analyze matched case–control studies using the study of endometrial cancer and

exposure to estrogen described in Breslow and Day (1980, chap. 5). In this study, there are four controls

matched to each case. Cases and controls are matched on age, marital status, and time living in the

community. The data collected include information on the daily dose of conjugated estrogen therapy.

Breslow and Day created four levels of the dose variable and began by analyzing the 1:1 study formed

by using the first control in each set. We examine the effect of exposure to estrogen:

. use https://www.stata-press.com/data/r19/bdendo11, clear
(Endometrial cancer and estrogen exposure)
. describe
Contains data from https://www.stata-press.com/data/r19/bdendo11.dta
Observations: 126 Endometrial cancer and estrogen

exposure
Variables: 13 3 Mar 2024 23:29

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

set byte %8.0g Set number
fail byte %8.0g fail Case or control
gall byte %8.0g Gallbladder dis
hyp byte %8.0g Hypertension
ob byte %8.0g Obesity
est byte %8.0g Estrogen
dos byte %8.0g Ordinal dose
dur byte %8.0g Ordinal duration
non byte %8.0g Nonestrogen drug
duration byte %8.0g Months
age byte %8.0g Years
cest byte %8.0g Conjugated est dose
agegrp byte %9.0g Age group of set

Sorted by: set
. mhodds fail est set
Mantel--Haenszel estimate of the odds ratio comparing est==1 vs.

est==0
controlling for set

Odds ratio chi2(1) P>chi2 [95% conf. interval]

9.666667 21.12 0.0000 2.944702 31.733072

Note: Only 32 of the 63 strata formed in this analysis contribute
information about the effect of the explanatory variable.

For the 1:1 matched study, the Mantel–Haenszel methods are equivalent to conditional likelihood

methods. The maximum conditional likelihood estimate of the odds ratio is given by the ratio of the off-

diagonal frequencies in the two-way (case–control) table below. The data must be in the 1-observation-

per-group format; that is, the matched case and control must appear in 1 observation (the same format as

required by the mcc command; see also [R] clogit).

https://www.stata.com/manuals/rclogit.pdf#rclogit
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. keep fail est set

. reshape wide est, i(set) j(fail)
(j = 0 1)
Data Long -> Wide

Number of observations 126 -> 63
Number of variables 3 -> 3
j variable (2 values) fail -> (dropped)
xij variables:

est -> est0 est1

. rename est1 case

. rename est0 control

. label variable case case

. label variable control control

. tabulate case control
control

case 0 1 Total

0 4 3 7
1 29 27 56

Total 33 30 63

The odds ratio is 29/3 = 9.67, which agrees with the value obtained from mhodds. In the more gen-

eral 1:𝑚 matched study, however, the Mantel–Haenszel methods are no longer equivalent to maximum

conditional likelihood, although they are usually close.

To illustrate the use of the by() option in matched case–control studies, we look at the effect of

exposure to estrogen, stratified by age3, which codes the sets into three age groups (55–64, 65–74, and
75+) as follows:

. use https://www.stata-press.com/data/r19/bdendo11, clear
(Endometrial cancer and estrogen exposure)
. generate age3 = agegrp
. recode age3 1/2=1 3/4=2 5/6=3
(124 changes made to age3)
. mhodds fail est set, by(age3)
Mantel--Haenszel estimate of the odds ratio comparing est==1 vs. est==0

controlling for set

by age3

age3 Odds ratio chi2(1) P>chi2 [95% conf. interval]

1 6.000000 3.57 0.0588 0.72235 49.83724
2 15.000000 12.25 0.0005 1.98141 113.55557
3 8.000000 5.44 0.0196 1.00059 63.96252

Note: Only 32 of the 63 strata formed in this analysis contribute information
about the effect of the explanatory variable.
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Mantel--Haenszel estimate controlling for set and age3

Odds ratio chi2(1) P>chi2 [95% conf. interval]

9.666667 21.12 0.0000 2.944702 31.733072

Approximate test of homogeneity of odds ratios: chi2(2) = 0.41
Pr>chi2 = 0.8128

There is no further loss of information when we stratify by age3 because age was one of the matching

variables.

The full set of matched controls can be used in the same way. For example, the effect of exposure to

estrogen is obtained (using the full dataset) with

. use https://www.stata-press.com/data/r19/bdendo, clear
(Endometrial cancer and estrogen exposure)
. mhodds fail est set
Mantel--Haenszel estimate of the odds ratio comparing est==1 vs.

est==0
controlling for set

Odds ratio chi2(1) P>chi2 [95% conf. interval]

8.461538 31.16 0.0000 3.437773 20.826746

Note: Only 58 of the 63 strata formed in this analysis contribute
information about the effect of the explanatory variable.

The effect of exposure to estrogen, stratified by age3, is obtained with

. generate age3 =agegrp

. recode age3 1/2=1 3/4=2 5/6=3
(310 changes made to age3)
. mhodds fail est set, by(age3)
Mantel--Haenszel estimate of the odds ratio comparing est==1 vs. est==0

controlling for set

by age3

age3 Odds ratio chi2(1) P>chi2 [95% conf. interval]

1 3.800000 3.38 0.0660 0.82165 17.57438
2 10.666667 18.69 0.0000 2.78773 40.81376
3 13.500000 9.77 0.0018 1.59832 114.02620

Note: Only 58 of the 63 strata formed in this analysis contribute information
about the effect of the explanatory variable.

Mantel--Haenszel estimate controlling for set and age3

Odds ratio chi2(1) P>chi2 [95% conf. interval]

8.461538 31.16 0.0000 3.437773 20.826746

Approximate test of homogeneity of odds ratios: chi2(2) = 1.41
Pr>chi2 = 0.4943
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Video examples
Incidence-rate ratios calculator

Risk ratios calculator

Odds ratios for case–control data

Stratified analysis of case–control data

Odds ratios calculator

Glossary
attributable fraction. An attributable fraction is the reduction in the risk of a disease or other condition

of interest when a particular risk factor is removed.

case–control studies. In case–control studies, cases meeting a fixed criterion are matched to noncases

ex post to study differences in possible covariates. Relative sample sizes are usually fixed at 1:1 or

1:2 but sometimes vary once the survey is complete. In any case, sample sizes do not reflect the

distribution in the underlying population.

cohort studies. In cohort studies, a group that is well defined ismonitored over time to track the transition

of noncases to cases. Cohort studies differ from incidence studies in that they can be retrospective as

well as prospective.

confounding. In the analysis of contingency tables, factor or interaction effects are said to be confounded

when the effect of one factor is combined with that of another. For example, the effect of alcohol

consumption on esophageal cancer may be confounded with the effects of age, smoking, or both. In

the presence of confounding, it is often useful to stratify on the confounded factors that are not of

primary interest, in the above example, age and smoking.

cross-sectional or prevalence studies. Cross-sectional studies sample distributions of healthy and dis-

eased subjects in the population at one point in time.

crude estimate. A crude estimate has not been adjusted for the effects of other variables. Disregarding

a stratification variable, for example, yields a crude estimate.

incidence and incidence rate. Incidence is the number of new failures (for example, number of new

cases of a disease) that occur during a specified period in a population at risk (for example, of the

disease).

Incidence rate is incidence divided by the sum of the length of time each individual was exposed to

the risk.

Do not confuse incidence with prevalence. Prevalence is the fraction of a population that has the

disease. Incidence refers to the rate at which people contract a disease, whereas prevalence is the total

number actually sick at a given time.

incidence studies, longitudinal studies, and follow-up studies. Whichever word is used, these studies

monitor a population for a time to track the transition of noncases into cases. Incidence studies are

prospective. Also see cohort studies.

matched case–control study. Also known as a retrospective study, a matched case–control study is

a study in which persons with positive outcomes are each matched with one or more persons with

negative outcomes but with similar characteristics.

https://www.youtube.com/watch?v=6JANRVFxqAw
https://www.youtube.com/watch?v=ZYaYUpgahv4
https://www.youtube.com/watch?v=RKWYNI7AORw
https://www.youtube.com/watch?v=CHTfzJLSbWM
https://www.youtube.com/watch?v=A1c4ElvFHIE
https://www.stata.com/manuals/repitab.pdf#rEpitabRemarksandexamplescohort_studies
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odds and odds ratio. The odds in favor of an event are 𝑜 = 𝑝/(1 − 𝑝), where 𝑝 is the probability of the

event. Thus if 𝑝 = 0.2, the odds are 0.25, and if 𝑝 = 0.8, the odds are 4.

The log of the odds is ln(𝑜) = logit(𝑝) = ln{𝑝/(1−𝑝)}, and logistic-regression models, for instance,
fit ln(𝑜) as a linear function of the covariates.
The odds ratio is a ratio of two odds: 𝑜1/𝑜0. The individual odds that appear in the ratio are usually

for an experimental group and a control group, or two different demographic groups.

prevented fraction. A prevented fraction is the reduction in the risk of a disease or other condition of

interest caused by including a protective risk factor or public-health intervention.

prospective study. Also known as a prospective longitudinal study, a prospective study is a study based

on observations over the same subjects for a given period.

risk factor. This is a variable associated with an increased or decreased risk of failure.

risk ratio. In a log-linear model, this is the ratio of probability of survival associated with a one-unit

increase in a risk factor relative to that calculated without such an increase, that is, 𝑅(𝑥 + 1)/𝑅(𝑥).
Given the exponential form of the model,𝑅(𝑥+1)/𝑅(𝑥) is constant and is given by the exponentiated
coefficient.

SMR. See standardized mortality (morbidity) ratio.

standardized mortality (morbidity) ratio. Standardized mortality (morbidity) ratio (SMR) is the ob-

served number of deaths divided by the expected number of deaths. It is calculated using indirect

standardization: you take the population of the group of interest—say, by age, sex, and other fac-

tors—and calculate the expected number of deaths in each cell (expected being defined as the num-

ber of deaths that would have been observed if those in the cell had the same mortality as some other

population). You then take the ratio to compare the observed with the expected number of deaths. For

instance,

(1) (2) (1)×(2) (4)

Population Deaths per 100,000 Expected # Observed

Age of group in general pop. of deaths deaths

25–34 95,965 105.2 100.9 92

34–44 78,280 203.6 159.4 180

44–54 52,393 428.9 224.7 242

55–64 28,914 964.6 278.9 312

Total 763.9 826

SMR = 826/763.9 = 1.08

stratified test. A stratified test is performed separately for each stratum. The stratum-specific results are

then combined into an overall test statistic.

Stored results
ir (without by()) and iri store the following in r():

Scalars

r(ird) IRD

r(lb ird) lower CI bound for IRD

r(ub ird) upper CI bound for IRD

r(irr) IRR

https://www.stata.com/manuals/repitab.pdf#rEpitabRemarksandexamplesSMR
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r(lb irr) lower CI bound for IRR

r(ub irr) upper CI bound for IRR

r(afe) AFE

r(lb afe) lower CI bound for AFE

r(ub afe) upper CI bound for AFE

r(afp) AFP

r(p lower midp) lower one-sided 𝑝-value with mid-𝑝 adjustment

r(p upper midp) upper one-sided 𝑝-value with mid-𝑝 adjustment

r(p twosided midp) two-sided 𝑝-value with mid-𝑝 adjustment

r(p lower exact) lower one-sided exact 𝑝-value
r(p upper exact) upper one-sided exact 𝑝-value
r(p twosided exact) two-sided exact 𝑝-value

ir, by() stores the following in r():

Scalars

r(irr) Mantel–Haenszel IRR, if option ird is not specified

r(lb irr) lower CI bound for Mantel–Haenszel IRR

r(ub irr) upper CI bound for Mantel–Haenszel IRR

r(ird) Mantel–Haenszel IRD, if option ird is specified

r(lb ird) lower CI bound for Mantel–Haenszel IRD

r(ub ird) upper CI bound for Mantel–Haenszel IRD

r(crude) crude IRR or, if option ird is specified, crude IRD

r(lb crude) lower CI bound for the crude IRR or IRD

r(ub crude) upper CI bound for the crude IRR or IRD

r(pooled) pooled IRR or, if option ird is specified, pooled IRD

r(lb pooled) lower CI bound for pooled IRR or IRD

r(ub pooled) upper CI bound for pooled IRR or IRD

r(df) degrees of freedom for homogeneity 𝜒2 test

r(chi2 mh) Mantel–Haenszel homogeneity 𝜒2

r(chi2 p) pooled homogeneity 𝜒2, if option pool is specified

cs and csi store the following in r():

Scalars

r(p) two-sided 𝑝-value
r(rd) risk difference

r(lb rd) lower CI bound for risk difference

r(ub rd) upper CI bound for risk difference

r(rr) risk ratio

r(lb rr) lower CI bound for risk ratio

r(ub rr) upper CI bound for risk ratio

r(or) odds ratio

r(lb or) lower CI bound for odds ratio

r(ub or) upper CI bound for odds ratio

r(afe) AFE

r(lb afe) lower CI bound for AFE

r(ub afe) upper CI bound for AFE

r(afp) AFP

r(crude) crude estimate (cs only)

r(lb crude) lower CI bound for crude estimate

r(ub crude) upper CI bound for crude estimate

r(pooled) pooled estimate (cs only)

r(lb pooled) lower CI bound for pooled estimate

r(ub pooled) upper CI bound for pooled estimate

r(chi2 mh) Mantel–Haenszel heterogeneity 𝜒2 (cs only)

r(chi2 p) pooled heterogeneity 𝜒2

r(df) degrees of freedom (cs only)
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r(chi2) 𝜒2

r(p exact) 2-sided Fisher’s exact 𝑝 (exact only)

r(p1 exact) 1-sided Fisher’s exact 𝑝 (exact only)

cc and cci store the following in r():

Scalars

r(p) two-sided 𝑝-value
r(p1 exact) one-sided 𝑝-value for Fisher’s exact test
r(p exact) two-sided 𝑝-value for Fisher’s exact test
r(or) odds ratio

r(lb or) lower CI bound for odds ratio

r(ub or) upper CI bound for odds ratio

r(afe) AFE

r(lb afe) lower CI bound for AFE

r(ub afe) upper CI bound for AFE

r(afp) AFP

r(crude) crude estimate (cc only)

r(lb crude) lower CI bound for crude estimate

r(ub crude) upper CI bound for crude estimate

r(pooled) pooled estimate (cc only)

r(lb pooled) lower CI bound for pooled estimate

r(ub pooled) upper CI bound for pooled estimate

r(chi2 p) pooled heterogeneity 𝜒2

r(chi2 bd) Breslow–Day 𝜒2

r(df bd) degrees of freedom for Breslow–Day 𝜒2 test

r(chi2 t) Tarone 𝜒2

r(df t) degrees of freedom for Tarone 𝜒2 test

r(df) degrees of freedom

r(chi2) 𝜒2

tabodds stores the following in r():

Scalars

r(odds) odds

r(lb odds) lower CI bound for odds

r(ub odds) upper CI bound for odds

r(chi2 hom) 𝜒2 for test of homogeneity

r(p hom) 𝑝-value for test of homogeneity
r(df hom) degrees of freedom for test of homogeneity

r(chi2 tr) 𝜒2 for score test for trend

r(p trend) 𝑝-value for score test for trend

mhodds stores the following in r():

Scalars

r(p) two-sided 𝑝-value
r(or) odds ratio

r(lb or) lower CI bound for odds ratio

r(ub or) upper CI bound for odds ratio

r(chi2 hom) 𝜒2 for test of homogeneity

r(df hom) degrees of freedom for test of homogeneity

r(chi2) 𝜒2

Matrices

r(strata table) odds ratios for strata, if by() specified
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mcc and mcci store the following in r():
Scalars

r(p exact) two-sided 𝑝-value for McNemar’s test

r(or) odds ratio

r(lb or) lower CI bound for odds ratio

r(ub or) upper CI bound for odds ratio

r(D f) difference in proportion with factor

r(lb D f) lower CI bound for difference in proportion

r(ub D f) upper CI bound for difference in proportion

r(R f) ratio of proportion with factor

r(lb R f) lower CI bound for ratio of proportion

r(ub R f) upper CI bound for ratio of proportion

r(RD f) relative difference in proportion with factor

r(lb RD f) lower CI bound for relative difference in proportion

r(ub RD f) upper CI bound for relative difference in proportion

r(chi2) 𝜒2

Methods and formulas
The notation for incidence-rate data is

Exposed Unexposed Total

Cases 𝑎 𝑏 𝑀1
Person-time 𝑁1 𝑁0 𝑇

The notation for 2 × 2 tables is

Exposed Unexposed Total

Cases 𝑎 𝑏 𝑀1
Controls 𝑐 𝑑 𝑀0

Total 𝑁1 𝑁0 𝑇

The notation for 2 × 𝑘 tables is

Exposure level

1 2 . . . k Total

Cases 𝑎1 𝑎2 . . . 𝑎𝑘 𝑀1
Controls 𝑐1 𝑐2 . . . 𝑐𝑘 𝑀0

Total 𝑁1 𝑁2 . . . 𝑁𝑘 𝑇

If the tables are stratified, all quantities are indexed by 𝑖, the stratum number.

We will refer to Fleiss, Levin, and Paik (2003); Kleinbaum, Kupper, and Morgenstern (1982); and

Rothman (1986) so often that we will adopt the notation F-23 to mean Fleiss, Levin, and Paik (2003)

page 23; KKM-52 to mean Kleinbaum, Kupper, and Morgenstern (1982) page 52; and R-164 to mean

Rothman (1986) page 164.

We usually avoid making the continuity corrections to 𝜒2 statistics, following the advice of KKM-

292: “. . . the use of a continuity correction has been the subject of considerable debate in the statistical
literature . . . . On the basis of our evaluation of this debate and other evidence, we do not recommend the

use of the continuity correction.” Breslow and Day (1980, 133), on the other hand, argue for inclusion of

the correction, but not strongly. Their summary is that for small datasets, one should use exact statistics.

In practice, we believe that the adjustment makes little difference for reasonably sized datasets.
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Methods and formulas are presented under the following headings:

Unstratified incidence-rate data (ir and iri)
Unstratified cumulative incidence data (cs and csi)
Unstratified case–control data (cc and cci)
Unstratified matched case–control data (mcc and mcci)
Stratified incidence-rate data (ir with the by() option)
Stratified cumulative incidence data (cs with the by() option)
Stratified case–control data (cc with by() option, mhodds, tabodds)

Unstratified incidence-rate data (ir and iri)
The IRD is defined as 𝐼𝑑 = 𝑎/𝑁1 − 𝑏/𝑁0 (R-164). The standard error of the difference is 𝑠𝐼𝑑

≈
√𝑎/𝑁2

1 + 𝑏/𝑁2
0 (R-170), from which confidence intervals are calculated.

The IRR is defined as 𝐼𝑟 = (𝑎/𝑁1)/(𝑏/𝑁0) (R-164). Let 𝑝𝑙 and 𝑝𝑢 be the exact confidence interval

of the binomial probability for observing 𝑎 successes in 𝑀1 trials (obtained from cii proportions;
see [R] ci). The exact confidence interval for the incidence ratio is then (𝑝𝑙𝑁0)/{(1 − 𝑝𝑙)𝑁1} to

(𝑝𝑢𝑁0)/{(1 − 𝑝𝑢)𝑁1} (R-166).

The AFE is defined as AFE = (𝐼𝑟 − 1)/𝐼𝑟 for 𝐼𝑟 ≥ 1 (KKM-164; R-38); the confidence interval is

obtained by similarly transforming the interval values of 𝐼𝑟. The AFP is AFP = AFE ⋅ 𝑎/𝑀1 (KKM-

161); no confidence interval is reported. For 𝐼𝑟 < 1, the PFE is defined as PFE = 1 − 𝐼𝑟 (KKM-166;

R-39); the confidence interval is obtained by similarly transforming the interval values of 𝐼𝑟. The PFP is

PFP = PFE ⋅ 𝑁1/𝑇 (KKM-165); no confidence interval is reported.

Exact one-sided 𝑝-values are calculated as the binomial probabilities (with 𝑛 = 𝑀1 and 𝑝 = 𝑁1/𝑇)
Pr(𝑘 ≤ 𝑎) and Pr(𝑘 ≥ 𝑎). Exact 𝑝-values tend to be overly conservative, so the mid-𝑝 adjustment

(R-155) reduces the exact 𝑝-values by subtracting half the probability of the observed result from each

one-sided 𝑝-value. That is, one-sided 𝑝-values with the mid-𝑝 adjustment are the binomial probabilities

Pr(𝑘 ≤ 𝑎) − Pr(𝑘 = 𝑎)/2 and Pr(𝑘 ≥ 𝑎) − Pr(𝑘 = 𝑎)/2. The two-sided 𝑝-value is twice the smallest
one-sided 𝑝-value for both the exact and mid-𝑝-adjustment calculations. Rather than using twice the

smallest one-sided 𝑝-value for the two-sided 𝑝-value, there is an another formula for the two-sided 𝑝-value
that is sometimes used. The command bitest uses this alternative; see [R] bitest for details.

Unstratified cumulative incidence data (cs and csi)
The risk difference is defined as 𝑅𝑑 = 𝑎/𝑁1 − 𝑏/𝑁0 (R-164). Its standard error is

𝑠𝑅𝑑
≈ { 𝑎𝑐

𝑁3
1

+ 𝑏𝑑
𝑁3

0
}

1/2

(R-172), from which confidence intervals are calculated.

The risk ratio is defined as 𝑅𝑟 = (𝑎/𝑁1)/(𝑏/𝑁0) (R-165). The standard error of ln𝑅𝑟 is

𝑠 ln𝑅𝑟
≈ ( 𝑐

𝑎𝑁1
+ 𝑑

𝑏𝑁0
)

1/2

(R-173), from which confidence intervals are calculated.

https://www.stata.com/manuals/rci.pdf#rci
https://www.stata.com/manuals/rbitest.pdf#rbitest
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For 𝑅𝑟 ≥ 1, the AFE is calculated as AFE = (𝑅𝑟 − 1)/𝑅𝑟 (KKM-164; R-38); the confidence interval is

obtained by similarly transforming the interval values for 𝑅𝑟. TheAFP is calculated as AFP = AFE ⋅𝑎/𝑀1
(KKM-161); no confidence interval is reported, but F-128 provides

{𝑐 + (𝑎 + 𝑑)AFP
𝑏𝑇

}
1/2

as the approximate standard error of ln(1 − AFP).
For 𝑅𝑟 < 1, the PFE is calculated as PFE = 1 − 𝑅𝑟 (KKM-166; R-39); the confidence interval is

obtained by similarly transforming the interval values for 𝑅𝑟. The PFP is calculated as PFP = PFE ⋅𝑁1/𝑇;
no confidence interval is reported.

The odds ratio, available with the or option, is defined as 𝜓 = (𝑎𝑑)/(𝑏𝑐) (R-165). Several confidence
intervals are available. The default interval for cs and csi is the Cornfield (1956) approximate interval.

If we let 𝑧𝛼 be the index from a normal distribution for an 𝛼 significance level, the Cornfield interval

(𝜓𝑙, 𝜓𝑢) is calculated from

𝜓𝑙 = 𝑎𝑙(𝑀0 − 𝑁1 + 𝑎𝑙)/{(𝑁1 − 𝑎𝑙)(𝑀1 − 𝑎𝑙)}

𝜓𝑢 = 𝑎𝑢(𝑀0 − 𝑁1 + 𝑎𝑢)/{(𝑁1 − 𝑎𝑢)(𝑀1 − 𝑎𝑢)}

where 𝑎𝑢 and 𝑎𝑙 are determined iteratively from

𝑎𝑖+1 = 𝑎 ± 𝑧𝛼 ( 1
𝑎𝑖

+ 1
𝑁1 − 𝑎𝑖

+ 1
𝑀1 − 𝑎𝑖

+ 1
𝑀0 − 𝑁1 + 𝑎𝑖

)
−1/2

(Newman 2001, sec. 4.4). 𝑎𝑖+1 converges to 𝑎𝑢 using the plus sign and 𝑎𝑙 using the minus sign. 𝑎0 is

taken as 𝑎. With small numbers, the iterative technique may fail. It is then restarted by decrementing (𝑎𝑙)

or incrementing (𝑎𝑢) 𝑎0. If that fails, 𝑎0 is again decremented or incremented and iterations restarted, and

so on, until a terminal condition is met (𝑎0 < 0 or 𝑎0 > 𝑀1), at which point the value is not calculated.

The Woolf odds-ratio confidence intervals are available with cs and csi. The Woolf method (Woolf

1955; R-173; Schlesselman 1982, 176), available with the woolf option, estimates the standard error of

ln𝜓 by

𝑠 ln𝜓 = ( 1
𝑎

+ 1
𝑏

+ 1
𝑐

+ 1
𝑑

)
1/2

from which confidence intervals are calculated. The Woolf interval cannot be calculated when there

exists a zero cell. Sometimes the Woolf interval is called the “logit interval” (Breslow and Day 1980,

134).

The 𝜒2 statistic, reported by default, can be calculated as

𝜒2 = (𝑎𝑑 − 𝑏𝑐)2𝑇
𝑀1𝑀0𝑁1𝑁0

(Schlesselman 1982, 179).

Fisher’s exact test, available with the exact option, is calculated as described in [R] tabulate twoway.

https://www.stata.com/manuals/rtabulatetwoway.pdf#rtabulatetwoway
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Unstratified case–control data (cc and cci)
cc and cci report by default the same odds ratio, 𝜓, that is available with the or option in cs and csi.

But cc and cci calculate the confidence interval differently: they default to the exact odds-ratio interval,

not the Cornfield interval, but you can request the Cornfield interval with the cornfield option. The

1 − 𝛼 exact interval (𝑅, 𝑅) is calculated from

𝛼/2 =
∑min(𝑁1,𝑀1)

𝑘=𝑎 (𝑁1
𝑘 )( 𝑁0

𝑀1−𝑘)𝑅𝑘

∑min(𝑁1,𝑀1)
𝑘=max(0,𝑀1−𝑁0) (𝑁1

𝑘 )( 𝑁0
𝑀1−𝑘)𝑅𝑘

and

1 − 𝛼/2 =
∑min(𝑁1,𝑀1)

𝑘=𝑎+1 (𝑁1
𝑘 )( 𝑁0

𝑀1−𝑘)𝑅𝑘

∑min(𝑁1,𝑀1)
𝑘=max(0,𝑀1−𝑁0) (𝑁1

𝑘 )( 𝑁0
𝑀1−𝑘)𝑅𝑘

(R-169). The equations invert two one-sided Fisher exact tests.

cc and cci also report the same tests of significance as cs and csi: the 𝜒2 statistic is the default,

and Fisher’s exact test is obtained with the exact option. The odds ratio, 𝜓, is used as an estimate

of the risk ratio in calculating attributable or prevented fractions. For 𝜓 ≥ 1, the AFE is calculated as

AFE = (𝜓 − 1)/𝜓 (KKM-164); the confidence interval is obtained by similarly transforming the interval

values for 𝜓. TheAFP is calculated as AFP = AFE ⋅ 𝑎/𝑀1 (KKM-161). No confidence interval is reported;

however, F-152 provides

( 𝑎
𝑀1𝑏

+ 𝑐
𝑀0𝑑

)
1/2

as the standard error of ln(1 − AFP).
For𝜓 < 1, the PFE is calculated as PFE = 1−𝜓 (KKM-166); the confidence interval is obtained by simi-

larly transforming the interval values for𝜓. The PFP is calculated as PFP = {(𝑎/𝑀1)PFE}/{(𝑎/𝑀1)PFE+
𝜓} (KKM-165); no confidence interval is reported.

Unstratified matched case–control data (mcc and mcci)
Referring to the table at the beginning of Matched case–control data under Remarks and examples

above, the columns of the table indicate controls; the rows are cases. Each entry in the table reflects a

pair of a matched case and control.

McNemar’s (1947) 𝜒2 is defined as

𝜒2 = (𝑏 − 𝑐)2

𝑏 + 𝑐
(KKM-389).

The proportion of controls with the factor is 𝑝1 = 𝑁1/𝑇, and the proportion of cases with the factor
is 𝑝2 = 𝑀1/𝑇.

The difference in the proportions is 𝑃𝑑 = 𝑝2 − 𝑝1. An estimate of its standard error when the two

underlying proportions are not hypothesized to be equal is

𝑠𝑃𝑑
≈ {(𝑎 + 𝑑)(𝑏 + 𝑐) + 4𝑏𝑐}1/2

𝑇 3/2

(F-378), from which confidence intervals are calculated. The confidence interval uses a continuity cor-

rection (F-378, eq. 13.15).

https://www.stata.com/manuals/repitab.pdf#rEpitabRemarksandexamplesmcc_summarydata
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The ratio of the proportions is 𝑃𝑟 = 𝑝2/𝑝1 (R-276, R-278). The standard error of ln𝑃𝑟 is

𝑠 ln𝑃𝑟
≈ ( 𝑏 + 𝑐

𝑀1𝑁1
)

1/2

(R-276), from which confidence intervals are calculated.

The relative difference in the proportions is 𝑃𝑒 = (𝑏 − 𝑐)/(𝑏 + 𝑑) (F-379). Its standard error is

𝑠𝑃𝑒
≈ (𝑏 + 𝑑)−2 {(𝑏 + 𝑐 + 𝑑)(𝑏𝑐 + 𝑏𝑑 + 𝑐𝑑) − 𝑏𝑐𝑑}1/2

(F-379), from which confidence intervals are calculated.

The odds ratio is 𝜓 = 𝑏/𝑐 (F-376), and the exact Fisher confidence interval is obtained by transforming
into odds ratios the exact binomial confidence interval for the binomial parameter from observing 𝑏
successes in 𝑏 + 𝑐 trials (R-264). Binomial confidence limits are obtained from cii proportions (see

[R] ci) and are transformed by 𝑝/(1 − 𝑝).
The exact McNemar significance probability is a two-tailed exact test of 𝐻0 ∶ 𝜓 = 1. The 𝑝-value,

calculated from the binomial distribution, is

min{1, 2
min(𝑏,𝑐)

∑
𝑘=0

(𝑏 + 𝑐
𝑘

) (1
2

)
𝑏+𝑐

}

(Agresti 2013, 416).� �
Quinn McNemar (1900–1986) was born in West Virginia and attended college there and in Penn-

sylvania. After a brief spell of high school teaching, he began graduate study of psychology at

Stanford and then joined the faculty. McNemar’s text Psychological Statistics, first published in

1949, was widely influential, and he made many substantive and methodological contributions to

the application of statistics in psychology.� �
Stratified incidence-rate data (ir with the by() option)

Statistics presented for each stratum are calculated independently according to the formulas in Un-

stratified incidence-rate data (ir and iri) above. Within strata, the Mantel–Haenszel style weight is

𝑊𝑖 = 𝑏𝑖𝑁1𝑖/𝑇𝑖, and the Mantel–Haenszel combined incidence-rate ratio (Rothman and Boice 1982)

is

𝐼mh =
∑𝑖 𝑎𝑖𝑁0𝑖/𝑇𝑖

∑𝑖 𝑊𝑖

(R-196). The standard error for the log of the incidence-rate ratio was derived by Greenland and Robins

(1985, 63) and appears in R-213:

𝑠 ln𝐼mh
≈ {

∑𝑖 𝑀1𝑖𝑁1𝑖𝑁0𝑖/𝑇 2
𝑖

(∑𝑖 𝑎𝑖𝑁0𝑖/𝑇𝑖)(∑𝑖 𝑏𝑖𝑁1𝑖/𝑇𝑖)
}

1/2

The confidence interval is calculated first on the log scale and then is transformed.

https://www.stata.com/manuals/rci.pdf#rci
https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulasUnstratifiedincidence-ratedata(irandiri)
https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulasUnstratifiedincidence-ratedata(irandiri)
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For standardized rates, let 𝑤𝑖 be the user-specified weight within stratum 𝑖. The standardized rate

difference (the ird option) and rate ratio are defined as

SRD =
∑𝑖 𝑤𝑖(𝑅1𝑖 − 𝑅0𝑖)

∑𝑖 𝑤𝑖

SRR =
∑𝑖 𝑤𝑖𝑅1𝑖

∑𝑖 𝑤𝑖𝑅0𝑖

(R-229). The standard error of SRD is

𝑠SRD ≈ { 1
(∑𝑖 𝑤𝑖)2 ∑

𝑖
𝑤2

𝑖 ( 𝑎𝑖
𝑁2

1𝑖
+ 𝑏𝑖

𝑁2
0𝑖

)}
1/2

(R-231), from which confidence intervals are calculated. The standard error of ln(SRR) is

𝑠 ln(SRR) ≈ {
∑𝑖 𝑤2

𝑖 𝑎𝑖/𝑁2
1𝑖

(∑𝑖 𝑤𝑖𝑅1𝑖)2 +
∑𝑖 𝑤2

𝑖 𝑏𝑖/𝑁2
0𝑖

(∑𝑖 𝑤𝑖𝑅0𝑖)2 }
1/2

(R-231), from which confidence intervals are calculated.

Internally and externally standardized measures are calculated using 𝑤𝑖 = 𝑁1𝑖 and 𝑤𝑖 = 𝑁0𝑖, re-

spectively, and are obtained with the istandard and estandard options, respectively.

Directly pooled estimates are available with the pool option. The directly pooled estimate is a

weighted average of stratum-specific estimates; each weight, 𝑤𝑖, is inversely proportional to the variance

of the estimate for stratum 𝑖. The variances for rate differences come from the formulas in Unstratified

incidence-rate data (ir and iri), while the variances of log rate-ratios are estimated by (1/𝑎𝑖 + 1/𝑏𝑖) (R-
184). Ratios are averaged in the log scale before being exponentiated. The standard error of the directly

pooled estimate is calculated as 1/√∑ 𝑤𝑖, from which confidence intervals are calculated (R-183–185);

the calculation for ratios again uses the log scale.

For rate differences, the 𝜒2 test of homogeneity is calculated as ∑(𝑅𝑑𝑖 − �̂�𝑑)2/var(𝑅𝑑𝑖), where 𝑅𝑑𝑖
are the stratum-specific rate differences and �̂�𝑑 is the directly pooled estimate. The number of degrees

of freedom is one less than the number of strata (R-222).

For rate ratios, the same calculation is made, except that it is made on a logarithmic scale using

ln(𝑅𝑟𝑖) (R-222), and ln(�̂�𝑑) may be the log of either the directly pooled estimate or the Mantel–Haenszel

estimate.

Stratified cumulative incidence data (cs with the by() option)
Statistics presented for each stratum are calculated independently according to the formulas in Unstrat-

ified cumulative incidence data (cs and csi) above. The Mantel–Haenszel 𝜒2 test (Mantel and Haenszel

1959) is

𝜒2
mh =

{∑𝑖(𝑎𝑖 − 𝑁1𝑖𝑀1𝑖/𝑇𝑖)}
2

∑𝑖(𝑁1𝑖𝑁0𝑖𝑀1𝑖𝑀0𝑖)/{𝑇 2
𝑖 (𝑇𝑖 − 1)}

(R-206).

https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulasUnstratifiedincidence-ratedata(irandiri)
https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulasUnstratifiedincidence-ratedata(irandiri)
https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulasUnstratifiedcumulativeincidencedata(csandcsi)
https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulasUnstratifiedcumulativeincidencedata(csandcsi)
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For the odds ratio (available with the or option), the Mantel–Haenszel weight is 𝑊𝑖 = 𝑏𝑖𝑐𝑖/𝑇𝑖, and

the combined odds ratio (Mantel and Haenszel 1959) is

𝜓mh =
∑𝑖 𝑎𝑖𝑑𝑖/𝑇𝑖

∑𝑖 𝑊𝑖

(R-195). The standard error (Robins, Breslow, and Greenland 1986) is

𝑠 ln𝜓mh
≈ {

∑𝑖 𝑃𝑖𝑅𝑖

2(∑𝑖 𝑅𝑖)
2 +

∑𝑖 𝑃𝑖𝑆𝑖 + 𝑄𝑖𝑅𝑖

2 ∑𝑖 𝑅𝑖 ∑𝑖 𝑆𝑖
+

∑𝑖 𝑄𝑖𝑆𝑖

2(∑𝑖 𝑆𝑖)
2 }

1/2

where

𝑃𝑖 = (𝑎𝑖 + 𝑑𝑖)/𝑇𝑖

𝑄𝑖 = (𝑏𝑖 + 𝑐𝑖)/𝑇𝑖

𝑅𝑖 = 𝑎𝑖𝑑𝑖/𝑇𝑖

𝑆𝑖 = 𝑏𝑖𝑐𝑖/𝑇𝑖

(R-220).

For the risk ratio (the default), the Mantel–Haenszel-style weight is 𝑊𝑖 = 𝑏𝑖𝑁1𝑖/𝑇𝑖, and the com-

bined risk ratio (Rothman and Boice 1982) is

𝑅mh =
∑𝑖 𝑎𝑖𝑁0𝑖/𝑇𝑖

∑𝑖 𝑊𝑖

(R-196). The standard error (Greenland and Robins 1985) is

𝑠 ln𝑅mh
≈ {

∑𝑖(𝑀1𝑖𝑁1𝑖𝑁0𝑖 − 𝑎𝑖𝑏𝑖𝑇𝑖)/𝑇 2
𝑖

(∑𝑖 𝑎𝑖𝑁0𝑖/𝑇𝑖)(∑𝑖 𝑏𝑖𝑁1𝑖/𝑇𝑖)
}

1/2

(R-216), from which confidence intervals are calculated.

For standardized rates, let 𝑤𝑖 be the user-specified weight within stratum 𝑖. The standardized rate

difference (SRD, the rd option) and rate ratios (SRR, the default) are defined as in Stratified incidence-

rate data (ir with the by() option), where the individual risks are defined𝑅1𝑖 = 𝑎𝑖/𝑁1𝑖 and𝑅0𝑖 = 𝑏𝑖/𝑁0𝑖.

The standard error of SRD is

𝑠SRD ≈ [ 1
(∑𝑖 𝑤𝑖)2 ∑

𝑖
𝑤2

𝑖 {𝑎𝑖(𝑁1𝑖 − 𝑎𝑖)
𝑁3

1𝑖
+ 𝑏𝑖(𝑁0𝑖 − 𝑏𝑖)

𝑁3
0𝑖

}]
1/2

(R-231), from which confidence intervals are calculated. The standard error of ln(SRR) is

𝑠 ln(SRR) ≈ {
∑𝑖 𝑤2

𝑖 𝑎𝑖(𝑁1𝑖 − 𝑎𝑖)/𝑁3
1𝑖

(∑𝑖 𝑤𝑖𝑅1𝑖)2 +
∑𝑖 𝑤2

𝑖 𝑏𝑖(𝑁0𝑖 − 𝑏𝑖)/𝑁3
0𝑖

(∑𝑖 𝑤𝑖𝑅0𝑖)2 }
1/2

(R-231), from which confidence intervals are calculated.

Internally and externally standardized measures are calculated using 𝑤𝑖 = 𝑁1𝑖 and 𝑤𝑖 = 𝑁0𝑖, re-

spectively, and are obtained with the istandard and estandard options, respectively.

https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulasStratifiedincidence-ratedata(irwiththeby()option)
https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulasStratifiedincidence-ratedata(irwiththeby()option)
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Directly pooled estimates of the odds ratio are available when you specify both the pool and or
options. The directly pooled estimate is a weighted average of stratum-specific log odds-ratios; each

weight, 𝑤𝑖, is inversely proportional to the variance of the log odds-ratio for stratum 𝑖. The variances of
the log odds-ratios are estimated by Woolf’s method, described under Unstratified cumulative incidence

data (cs and csi). The standard error of the directly pooled log odds-ratio is calculated as 1/√∑ 𝑤𝑖, from

which confidence intervals are calculated and then exponentiated (Kahn and Sempos 1989, 113–115).

Direct pooling is also available for risk ratios and risk differences; the variance formulas may be found

in Unstratified cumulative incidence data (cs and csi). The directly pooled risk ratio is provided when

the pool option is specified. The directly pooled risk difference is provided only when you specify the

pool and rd options, and one of the estandard, istandard, and standard() options.

For risk differences, the 𝜒2 test of homogeneity is calculated as ∑(𝑅𝑑𝑖 − �̂�𝑑)2/var(𝑅𝑑𝑖), where 𝑅𝑑𝑖
are the stratum-specific risk differences and �̂�𝑑 is the directly pooled estimate. The number of degrees

of freedom is one less than the number of strata (R-222).

For risk and odds ratios, the same calculation is made, except that it is made in the log scale us-

ing ln(𝑅𝑟𝑖) or ln(𝜓𝑖) (R-222), and ln(�̂�𝑑) may be the log of either the directly pooled estimate or the

Mantel–Haenszel estimate.

Stratified case–control data (cc with by() option, mhodds, tabodds)
Statistics presented for each stratum are calculated independently according to the formulas in Un-

stratified cumulative incidence data (cs and csi) above. The combined odds ratio, 𝜓mh, and the test that

𝜓mh = 1 (𝜒2
mh) are calculated as described in Stratified cumulative incidence data (cs with the by()

option) above.

For standardized weights, let 𝑤𝑖 be the user-specified weight within stratum 𝑖. The standardized odds
ratio (the standard() option) is calculated as

SOR =
∑𝑖 𝑤𝑖𝑎𝑖/𝑐𝑖

∑𝑖 𝑤𝑖𝑏𝑖/𝑑𝑖

(Greenland 1986, 473). The standard error of ln(SOR) is

𝑠 ln(SOR) = {
∑𝑖(𝑤𝑖𝑎𝑖/𝑐𝑖)2( 1

𝑎𝑖
+ 1

𝑏𝑖
+ 1

𝑐𝑖
+ 1

𝑑𝑖
)

(∑𝑖 𝑤𝑖𝑎𝑖/𝑐𝑖)
2 }

1/2

from which confidence intervals are calculated. The internally and externally standardized odds ratios

are calculated using 𝑤𝑖 = 𝑐𝑖 and 𝑤𝑖 = 𝑑𝑖, respectively.

The directly pooled estimate of the odds ratio (the pool option) is calculated as described in Stratified

cumulative incidence data (cs with the by() option) above.

The directly pooled and Mantel–Haenszel 𝜒2 tests of homogeneity are calculated as ∑ {ln(𝑅𝑟𝑖) −
ln(�̂�𝑟)}2/var{ln(𝑅𝑟𝑖)}, where 𝑅𝑟𝑖 are the stratum-specific odds ratios and �̂�𝑟 is the pooled estimate

(Mantel–Haenszel or directly pooled). The number of degrees of freedom is one less than the number

of strata (R-222).

The Breslow–Day 𝜒2 test of homogeneity is available with the bd option. Let 𝜓 be the Man-

tel–Haenszel estimate of the common odds ratio, and let 𝐴𝑖(𝜓) be the fitted count for cell 𝑎; 𝐴𝑖(𝜓)
is found by solving the quadratic equation

𝐴(𝑀0 − 𝑁1 + 𝐴) = (𝜓)(𝑀1 − 𝐴)(𝑁1 − 𝐴)

https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulasUnstratifiedcumulativeincidencedata(csandcsi)
https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulasUnstratifiedcumulativeincidencedata(csandcsi)
https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulasUnstratifiedcumulativeincidencedata(csandcsi)
https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulasUnstratifiedcumulativeincidencedata(csandcsi)
https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulasUnstratifiedcumulativeincidencedata(csandcsi)
https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulasStratifiedcumulativeincidencedata(cswiththeby()option)
https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulasStratifiedcumulativeincidencedata(cswiththeby()option)
https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulasStratifiedcumulativeincidencedata(cswiththeby()option)
https://www.stata.com/manuals/repitab.pdf#rEpitabMethodsandformulasStratifiedcumulativeincidencedata(cswiththeby()option)
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and choosing the root that makes all cells in stratum 𝑖 positive. Let Var(𝑎𝑖; 𝜓) be the estimated variance
of 𝑎𝑖 conditioned on the margins and on an odds ratio of 𝜓:

Var(𝑎𝑖; 𝜓) = { 1
𝐴𝑖(𝜓)

+ 1
𝑀1𝑖 − 𝐴𝑖(𝜓)

+ 1
𝑁1𝑖 − 𝐴𝑖(𝜓)

+ 1
𝑀0𝑖 − 𝑁1𝑖 + 𝐴𝑖(𝜓)

}
−1

The Breslow–Day 𝜒2 statistic is then

∑
𝑖

{𝑎𝑖 − 𝐴𝑖(𝜓)}2

Var(𝑎𝑖; 𝜓)

The Tarone 𝜒2 test of homogeneity (the tarone option) is calculated as

∑
𝑖

{𝑎𝑖 − 𝐴𝑖(𝜓)}2

Var(𝑎𝑖; 𝜓)
−

{∑𝑖 𝑎𝑖 − ∑𝑖 𝐴𝑖(𝜓)}2

∑𝑖 Var(𝑎𝑖; 𝜓)

Tarone (1985) provides this correction to the Breslow–Day statistic to ensure that its distribution is

asymptotically 𝜒2. Without the correction, the Breslow–Day statistic does not necessarily follow a 𝜒2

distribution because it is based on the Mantel–Haenszel estimate, 𝜓, which is an inefficient estimator of
the common odds ratio.

When the exposure variable has multiple levels, mhodds calculates an approximate estimate of the

log odds-ratio for a one-unit increase in exposure as the ratio of the score statistic, 𝑈, to its variance, 𝑉
(Clayton and Hills 1993, 103), which are defined below. This is a one-step Newton-Raphson approxima-

tion to the maximum likelihood estimate. Within-stratum estimates are combined with Mantel–Haenszel

weights.

By default, both tabodds and mhodds produce test statistics and confidence intervals based on score

statistics (Clayton and Hills 1993). tabodds reports confidence intervals for the odds of the 𝑖th exposure
level, unless the adjust() or or option is specified. The confidence interval for odds𝑖, 𝑖 = 1, . . . , 𝑘, is
given by

odds𝑖 ⋅ exp(±𝑧√1/𝑎𝑖 + 1/𝑐𝑖)

The score 𝜒2 test of homogeneity of odds is calculated as

𝜒2
𝑘−1 = 𝑇 (𝑇 − 1)

𝑀1𝑀0

𝑘
∑
𝑖=1

(𝑎𝑖 − 𝐸𝑖)2

𝑁𝑖

where 𝐸𝑖 = (𝑀1𝑁𝑖)/𝑇.
Let 𝑙𝑖 denote the value of the exposure at the 𝑖th level. The score 𝜒2 test for trend of odds is calculated

as

𝜒2
1 = 𝑈2

𝑉
where

𝑈 = 𝑀1𝑀0
𝑇

(
𝑘

∑
𝑖=1

𝑎𝑖𝑙𝑖
𝑀1

−
𝑘

∑
𝑖=1

𝑐𝑖𝑙𝑖
𝑀0

)
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and

𝑉 = 𝑀1𝑀0
𝑇

{
∑𝑘

𝑖=1 𝑁𝑖𝑙2𝑖 − (∑𝑘
𝑖=1 𝑁𝑖𝑙𝑖)2/𝑇

𝑇 − 1
}

Acknowledgments
We thank Hal Morgenstern, professor emeritus of the Department of Epidemiology at the University

of Michigan, Ardythe Morrow of Cincinnati Children’s Hospital, and the late Stewart West of Baylor

College of Medicine for their assistance in designing these commands.

We thank Jonathan Freeman (1939–2000) of the Department of Epidemiology at Harvard School of

Public Health for encouraging us to extend these commands to include tests for homogeneity, for helpful

comments on the default behavior of the commands, and for his comments on an early draft of this

section.

We thank David Clayton (retired) of the Cambridge Institute for Medical Research and Michael Hills

(1934–2021) of the London School of Hygiene and Tropical Medicine, who wrote the original versions

of mhodds and tabodds.

Finally, we thank William Dupont and Dale Plummer, both at the Department of Biostatistics, Van-

derbilt University, for their contribution to the implementation of exact confidence intervals for the odds

ratios for cc and cci.� �
Michael Hills (1934–2021) was born in Hertford, UK, north of London, and studied at Oxford. He

worked at the London School for Hygiene and Tropical Medicine in two spells from 1962 to 1971

and from 1985 to 1996. In the interim, he worked at the Natural History Museum and the Open

University.

He was a prolific teacher. His lectures at the European Education Programme in Epidemiology

(known as the “Florence Summer School”) led to a textbook with David Clayton, Statistical Models

in Epidemiology. The book became a classic reference for epidemiologists, providing an accessible

link between statistical modeling and epidemiological research.

Beyond teaching, Hills made contributions to study design, the analysis of binary and discrete data,

and applied work in anthropometry, medicine, and epidemiology.

Hills was a longtime teacher with Stata and member of the Stata community. He wrote several

commands, often with David Clayton, some of which formed the basis for official Stata commands

of the same name. His influence is most directly seen in tabodds and mhodds for epidemiological

tables; stmc, strate, and streg for survival-time analysis; and contributions to egen for data

management.� �
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� �
Janet Elizabeth Lane-Claypon (1877–1967) was a pioneer in the use of cohort and case–control

studies. She was born in Lincolnshire county, England, and began her studies at the London School

of Medicine for Women in 1898. From 1907 to 1912, she was at the Lister Institute of Preventive

Medicine, where she was a colleague of Major Greenwood. By the end of her studies, she had

obtained a doctorate in both physiology and medicine.

In 1912, Lane-Claypon published one of the first retrospective cohort studies, examining the weight

gain of babies fed cow’s milk versus babies fed breast milk. Using statistical techniques, she de-

termined that babies fed breast milk gained weight faster; she later employed that knowledge to

become a public health advocate for breast feeding.

She also conducted one of the first case–control studies, examining risk factors associated with

breast cancer. Her study included 500 women without breast cancer and 500 women with breast

cancer. To obtain what was at the time a remarkably large sample, she coordinated data collection

from nine different hospitals. Carefully controlling for variables including occupation and infant

mortality, she determined that factors like age at first pregnancy, age at menopause, and number of

children all influence the incidence of breast cancer; these factors are still considered to be among

the prime determinants.

In conjunction with the Ministry of Health, in 1926 Lane-Claypon published one of the first studies

to contain long-term follow-up results. In that study, she followed patients who had undergone

surgery for breast cancer for up to 10 years after the operation. As is still the case today, her study

showed that the sooner the cancer was treated, the better the woman’s chance for long-term survival.

Notably, her study was also among the first to consider survivorship bias.� �
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