demandsys — Estimation of flexible demand systems

Description
demandsys fits demand systems, sets of equations derived from economic theory that describe consumers’ purchases of various goods or services. demandsys allows you to fit eight different demand systems, including the Cobb–Douglas system, the almost ideal demand system (AIDS) of Deaton and Muellbauer (1980b), the translog indirect utility demand system of Christensen, Jorgenson, and Lau (1975), and variants of the latter two. You can also include demographic variables that affect a consumer’s or household’s demands.

Quick start
Fit an AIDS demand system with four goods with expenditure shares w1, w2, w3, and w4; prices, p1, p2, p3, and p4; and total expenditure, totexp
demandsys aids w1 w2 w3 w4, prices(p1 p2 p3 p4) expenditure(totexp)

Same as above, reporting Marshallian (uncompensated) elasticities rather than coefficients
demandsys aids w1 w2 w3 w4, prices(p1 p2 p3 p4) expenditure(totexp) elasticities(uncompensated)

Same as above, labeling goods in output for easier interpretation
demandsys aids w1 w2 w3 w4, prices(p1 p2 p3 p4) expenditure(totexp) elasticities(uncompensated) ncoeftable

Fit a quadratic AIDS model with four goods, controlling for x1 and x2 using demographic translation
demandsys quaids w1 w2 w3 w4, prices(p1 p2 p3 p4) expenditure(totexp) demographics(x1 x2)

Same as above, but use demographic scaling rather than translating
demandsys quaids w1 w2 w3 w4, prices(p1 p2 p3 p4) expenditure(totexp) demographics(x1 x2, scaling)

Menu
Statistics > Linear models and related > Multiple-equation models > Demand system
Syntax

\[\text{demandsys } \text{model } \text{varlist} \]
\[\text{if} \]
\[\text{in} \]
\[\text{weight}, \text{prices(varlist}_p) \]
\[\text{expenditure(varname)} \]
\[\text{options} \]

<table>
<thead>
<tr>
<th>\text{model}</th>
<th>\text{Description}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{cdouglas}</td>
<td>Cobb–Douglas demand system</td>
</tr>
<tr>
<td>\text{les}</td>
<td>linear expenditure system</td>
</tr>
<tr>
<td>\text{translog}</td>
<td>basic translog demand system</td>
</tr>
<tr>
<td>\text{gtranslog}</td>
<td>generalized translog demand system</td>
</tr>
<tr>
<td>\text{aids}</td>
<td>almost ideal demand system (AIDS)</td>
</tr>
<tr>
<td>\text{gaids}</td>
<td>generalized AIDS</td>
</tr>
<tr>
<td>\text{quaids}</td>
<td>quadratic AIDS</td>
</tr>
<tr>
<td>\text{gquaids}</td>
<td>generalized quadratic AIDS</td>
</tr>
</tbody>
</table>

\text{varlist}_s \text{ indicates the list of G variables containing the expenditure shares of the G goods in the model.}

<table>
<thead>
<tr>
<th>\text{options}</th>
<th>\text{Description}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{Main}</td>
<td></td>
</tr>
<tr>
<td>*prices(varlist}_p)</td>
<td>specify the variables containing prices</td>
</tr>
<tr>
<td>*expenditure(varname)</td>
<td>specify the variable containing total expenditure</td>
</tr>
<tr>
<td>demographics(varlist_d[, scaling])</td>
<td>specify other variables affecting a consumer’s demand for the goods; use demographic scaling instead of translating</td>
</tr>
<tr>
<td>pconstant(#)</td>
<td>specify constant term in transcendental logarithmic price index</td>
</tr>
<tr>
<td>\text{SE/Robust}</td>
<td></td>
</tr>
<tr>
<td>vce(vcetype)</td>
<td>\text{vcetype may be gnr, robust, cluster clustvar, bootstrap, or jackknife}</td>
</tr>
<tr>
<td>\text{Reporting}</td>
<td></td>
</tr>
<tr>
<td>elasticities(e_type)</td>
<td>report elasticities; \text{e_type may be expenditure, compensated, or uncompensated}</td>
</tr>
<tr>
<td>labels(string)</td>
<td>specify labels for goods</td>
</tr>
<tr>
<td>level(#)</td>
<td>set confidence level; default is level(95)</td>
</tr>
<tr>
<td>noheader</td>
<td>suppress the summary header at the top of the output</td>
</tr>
<tr>
<td>nocoeftable</td>
<td>do not display the table of estimated coefficients</td>
</tr>
<tr>
<td>display_options</td>
<td>control columns and column formats and line width</td>
</tr>
<tr>
<td>\text{Optimization}</td>
<td></td>
</tr>
<tr>
<td>optimization_options</td>
<td>control the optimization process; seldom used</td>
</tr>
<tr>
<td>coeflegend</td>
<td>display legend instead of statistics</td>
</tr>
</tbody>
</table>
*prices() and expenditure() are required. collect is allowed; see [U] 11.1.10 Prefix commands.

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

Main

prices(varlist) specifies a list of \(G \) variables corresponding to the prices of the \(G \) goods faced by each consumer. The number of variables specified here must match the number specified in varlist, and the price variables must be specified in the same order as the share variables. All the price variables must be strictly positive for all the demand systems implemented. prices() is required.

expenditure(varname) specifies the variable corresponding to the total expenditure on all goods within the system by each consumer. This variable must be strictly positive. expenditure() is required.

demographics(varlist[, scaling]) specifies one or more demographic variables that affect each consumer's demand for the goods in the system. Suboption scaling, available only with models aids and quaids, requests that demographics be incorporated via demographic scaling rather than demographic translation, the default.

piconstant(#) specifies the value of the constant term in the transcendental logarithmic price index; by default, this is set to the logarithm of the minimum expenditure observed in the sample. This option is relevant only for models aids and quaids.

SE/Robust

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (gnr), that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

vce(gnr), the default, uses the conventionally derived variance estimator for nonlinear models fit using Gauss–Newton regression.

Reporting

elasticities(e_type) requests that elasticities be reported instead of, or in addition to, the parameter estimates. e_type may be expenditure, compensated, or uncompensated. expenditure computes demand elasticity to changes in expenditure. compensated computes demand elasticity to changes in prices, ignoring income effects. These elasticities are also known as Hicksian price elasticities. uncompensated computes demand elasticity to changes in prices. These elasticities are also known as Marshallian price elasticities. The elasticities are computed at the estimation sample means of the prices, expenditures, and any demographic variables specified. For more flexibility in obtaining elasticities, use the postestimation command estat elasticities.

labels(string) specifies a set of names with which the goods are to be labeled. By default, if you specify a four-good demand system, then the goods will be labeled generically: “Good 1”, “Good 2”, “Good 3”, and “Good 4”.
If you specify labels("shelter fuel food other"), then the four goods will be labeled “shelter”, “fuel”, “food”, and “other” in the output. If you specify a demand system with \(G \) goods, then you must supply \(G \) labels separated by spaces.

level(#); see \([R]\) Estimation options.

noheader requests that the header summarizing the model, estimation sample, and other statistics not be shown in the output.

cnoeftable requests that the table containing the parameter estimates, their standard errors, and so on not be displayed. Typically, you would use this option if you specify the elasticities() option.

display_options: noci, nopvalues, cformat(\(\%fmt \)), pformat(\(\%fmt \)), sformat(\(\%fmt \)), and nolstretch; see \([R]\) Estimation options.

Optimization

optimization_options: iterate(#), [no] log, trace, eps(#), ifgnlsiterate(#), ifgnlseps(#), and delta(#).

iterate(#) specifies the maximum number of iterations to use for nonlinear least squares at each round of feasible generalized nonlinear least-squares (FGNLS) estimation. The default is the number set using set maxiter, which is 300 by default.

log and nolog specify whether to display the iteration log. The iteration log is displayed by default unless you used set iterlog off to suppress it; see set iterlog in \([R]\) set iter.

trace specifies that the iteration log should include the current parameter vector.

eps(#) specifies the convergence criterion for successive parameter estimates and for the residual sum of squares. The default is \(\text{eps}(1e-5) \) (0.00001). \(\text{eps()} \) also specifies the convergence criterion for successive parameter estimates between rounds of iterative FGNLS.

ifgnlsiterate(#) specifies the maximum number of FGNLS iterations to perform. The default is the number set using set maxiter, which is 300 by default.

ifgnlseps(#) specifies the convergence criterion for successive estimates of the error covariance matrix during iterative FGNLS estimation. The default is \(\text{ifgnlseps}(1e-10) \).

delta(#) specifies the relative change in a parameter, \(\delta \), to be used in computing the numeric derivatives. The derivative for parameter \(\beta_i \) is computed as

\[
\left\{ f_i(x_i, \beta_1, \beta_2, \ldots, \beta_i + d, \beta_{i+1}, \ldots) - f_i(x_i, \beta_1, \beta_2, \ldots, \beta_i, \beta_{i+1}, \ldots) \right\} / d
\]

where \(d = \delta(|\beta_i| + \delta) \). The default is \(\text{delta}(4e-7) \).

The following option is available with demandsys but is not shown in the dialog box:

ccoeflegend; see \([R]\) Estimation options.
Remarks and examples

Remarks are presented under the following headings:

- Introduction
- Some notation
- Cobb–Douglas
- Linear expenditure system (LES)
- Translog
 - Basic translog
 - Generalized translog
- AIDS
- QUAIDS
- Controlling for demographic factors
- Demographic translation
- Demographic scaling
- Epilogue

Introduction

`demandsys` fits demand systems, sets of equations derived from economic theory that describe consumers’ purchases of various goods or services. Typically, you will have a large cross-sectional survey containing consumers’ data on their expenditures on various goods and services along with the prices paid for them. We often refer to the items as “goods” for brevity, but of course some of the items may be services. Whether they are physical goods or intangible services, in the context of utility-maximizing consumers, they are both goods in the sense that “more is better”. We also use the term “purchase” somewhat loosely; in some cases, what we are interested in is not the actual purchase of goods but rather their consumption over a fixed time period.

To fit a demand system, you must first decide on what is in the consumption basket or bundle and the set of goods whose demands you wish to model. Using the parameters from the model, you may then obtain the elasticities—the effects of changes in prices or changes in expenditure on demand of goods. You may also perform welfare analysis by contrasting changes in demand or utility that occur at different price or expenditure levels. We assume that you have decided which consumption bundle to model already or else that you have several alternative baskets to model and compare.

The left-hand-side variables you specify with `demandsys` are expenditure shares, the shares of total expenditure spent on goods or services. Given \(p_g \) (the price of good \(g \)), \(q_g \) (the quantity of good \(g \) purchased), and \(m \) (the consumer’s total expenditure on all goods within the demand system), the expenditure share for good \(g \) is defined as

\[
w_g = \frac{p_g q_g}{m}
\]

`demandsys` requires that you have the prices of all the goods and that you have the total expenditure across all the goods. `demandsys` does not need the quantities of the goods purchased, though you may need them to calculate the expenditure shares.

Consumer theory in microeconomics presents demand models in terms of quantities. In demand system analysis, we model expenditure shares, not quantities. By our definition of total expenditure, \(0 \leq w_g \leq 1 \) for all \(g \), and \(\sum_g w_g = 1 \). For all but the simplest utility or cost functions, the algebra to obtain expenditure shares is arguably easier than that to obtain quantities. `demandsys` checks your expenditure shares for all goods and will exit with an error message if an expenditure share is found outside that range or if the sum is not equal to one (allowing for small rounding errors).
You may also specify additional variables that may affect a consumer’s purchase decisions. These are often demographic variables, such as the number of children and adults in a household, or a set of indicator variables to denote the region of a country in which a consumer is located. If you have data that were collected over the course of different months or years, you may wish to include indicators to control for the time at which the consumer’s purchases were observed. We call all of these variables demographics, even if some of these variables are not really demographic characteristics.

Based on the theoretical considerations in Lewbel (2001), we strongly encourage you to include demographic variables in your model. He shows that econometrically estimated demand functions will not satisfy rationality conditions unless other variables that affect demand and are correlated with expenditures are included. Conversely, if we include all such variables in our model, then the estimated demands will satisfy rationality even if preferences vary among households. On the other hand, you should also bear in mind that including too many demographic variables can greatly increase the number of parameters in your model, especially if your demand system includes many goods.

demandsys offers just a small sampling of demand systems that have been proposed in the literature. As a practical matter, which one should you use? We have included the Cobb–Douglas model mainly for pedagogical purposes because most students are familiar with Cobb–Douglas utility, though soon thereafter they learn about its severe restrictions on consumer behavior. Stone’s (1954) linear expenditure system (LES) is historically important as an early demand system but also places somewhat strong restrictions on consumer behavior. Christensen, Jorgenson, and Lau’s (1975) translog model relaxes some of the LES’s restrictions. It is not as widely used as some of the newer models, though a very similar translog production function those authors proposed continues to see extensive use. Shortly after the translog model arrived, Deaton and Muellbauer (1980b) proposed their more flexible AIDS, which has been a workhorse model of demand system analysis ever since its arrival. Banks, Blundell, and Lewbel (1997) provided a quadratic extension to AIDS that is also popular.

Banks, Blundell, and Lewbel (1997) suggest using QUAIDS because of its flexibility. Moreover, QUAIDS satisfies certain theoretical properties developed in Gorman (1981); and it allows goods to be either luxuries or necessities depending on a consumer’s income, which Banks, Blundell, and Lewbel (1997) show to be important in the data they consider.

With the AIDS and QUAIDS models, you can include demographics via two different methods: demographic translation and demographic scaling; see Demographic translation and Demographic scaling. If you believe that subsistence or committed quantities are appropriate for the goods you are modeling, you can use what we call the generalized QUAIDS model. If you do that, you should check to see that the subsistence quantity interpretation holds; we do that in example 2 of [R] demandsys postestimation. You can also do a simple likelihood-ratio test to see whether the quadratic terms of these QUAIDS models increase their explanatory power over Deaton and Muellbauer’s AIDS and its generalized variant; see example 5 below.

Throughout the rest of the discussion, we assume that you are familiar with a few basic microeconomic concepts, including utility maximization, the expenditure function, and the indirect utility function. The presentations in standard texts like Varian (1992, chap. 7–10) and Mas-Colell, Whinston, and Green (1995, chap. 3) provide good introductions to these concepts. The classic monograph by Deaton and Muellbauer (1980a) and the book by Pollak and Wales (1992) describe demand system analysis in much greater detail than space permits us here. More recent survey papers include Holt and Goodwin (2009) and Barnett and Serletis (2008). Fisher, Fleissig, and Serletis (2001) compare many flexible functional forms for demand system analysis, including several that are implemented by demandsys.
Some notation

It will be useful to establish at the outset some standard notation we will use throughout this discussion. We use subscript $i = 1, \ldots, N$ to index observations, $g = 1, \ldots, G$ to index goods, and $d = 1, \ldots, D$ to index demographic variables. In formulas where we must use double summations across goods or else have used subscript g elsewhere, we also use $h = 1, \ldots, G$ and $j = 1, \ldots, G$ to index goods. When no confusion could arise, we omit the observation subscript to reduce the number of subscripts.

Let w_g be the expenditure share for good g defined as $w_g \equiv (p_g q_g)/m$, where p_g is the price of good g, q_g is the quantity of good g consumed, and m denotes total expenditure on all the goods in the system being modeled. We use the notation p to refer to the G-length vector of all G prices.

When we refer to w_g, we are referring to the observed expenditure share for good g for consumer i. When we refer to, say, $w_g(p, m; \alpha, \beta)$, we are referring to an expenditure-share equation or function for good g that depends on the prices of all the goods and total expenditure as well as parameter vectors α and β. We include the parameter vectors and matrices in the arguments for expenditure shares as well as some other functions to emphasize that they are estimated and will appear in the output from demandsys and that statistics available via predict or estat elasticities after estimation depend on those parameters.

The observed w_g is assumed to be related to the expenditure-share function $w_g(p, m; \alpha, \beta)$ as

$$w_g = w_g(p, m; \alpha, \beta) + \epsilon_g$$

where ϵ_g is a zero-mean error term that we discuss in more detail in Methods and formulas.

Cobb–Douglas

Although widely used in many economic models, the Cobb–Douglas utility function is arguably too simple for serious demand system analysis because of its severe restrictions on the expenditure-share equations and elasticities. For instance, it restricts expenditure elasticities to be identically equal to 1 for all goods. Nevertheless, we include it because it serves as a good starting point for our discussion and allows us to present various aspects of demandsys. For three goods, consumers maximize their Cobb–Douglas utility function subject to the constraint that total expenditure does not exceed the allocated budget,

$$\max_{q_1, q_2, q_3} q_1^{\alpha_1} q_2^{\alpha_2} q_3^{(1-\alpha_1-\alpha_2)}$$

subject to $p_1 q_1 + p_2 q_2 + p_3 q_3 \leq m$

where, without loss of generality, we have made the sum of the exponents of the Cobb–Douglas utility function sum to 1. It is easy to show that the optimal quantities q_1^*, q_2^*, and q_3^* are

$$q_1^* = \frac{\alpha_1 m}{p_1} \quad q_2^* = \frac{\alpha_2 m}{p_2} \quad q_3^* = \left(1 - \alpha_1 - \alpha_2\right) \frac{m}{p_3}$$

To obtain the expenditure-share function of, say, good 1, we have

$$w_1(p, m; \alpha) = \frac{p_1 q_1}{m} = \alpha_1 \frac{m}{p_1} = \alpha_1 \frac{p_1}{m} = \alpha_1$$

and likewise for goods 2 and 3. Notice that the expenditure-share function for good g is simply its coefficient α_g in the Cobb–Douglas utility function, or, equivalently, the coefficients in the Cobb–Douglas utility function are simply the shares of total expenditure allocated to each good. Most importantly, the expenditure shares for the Cobb–Douglas model are not functions of prices, income, or any other variables.
We made the sum of the exponents in the Cobb–Douglas utility function sum to 1, and it is clear that \(w_1 + w_2 + w_3 = 1 \). Without the constraint on the sum, we would have to carry around the divisor \(\alpha_1 + \alpha_2 + \alpha_3 \) in our expenditure-share equations, but we would gain absolutely no additional insight. Moreover, with the constraint we need estimate only two parameters rather than three.

More generally, for a Cobb–Douglas utility function of the form

\[
u(q; \alpha) = \prod_{g=1}^{G} q_{g}^{\alpha_g}
\]

with \(\sum_{g=1}^{G} \alpha_g = 1 \)

the expenditure-share function for the \(g \)th good is simply \(w_g(p, m; \alpha) = \alpha_g \).

\section*{Example 1}

We first describe the dataset we will use in this example and all others in this manual entry:

\begin{verbatim}
. use https://www.stata-press.com/data/r18/food_consumption
 (Food consumption)
. describe
Contains data from https://www.stata-press.com/data/r18/food_consumption.dta
 Observations: 4,160 Food consumption
 Variables: 13
 17 Jul 2022 16:03
(_dta has notes)

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Storage type</th>
<th>Display format</th>
<th>Value label</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_dairy</td>
<td>float</td>
<td>%10.6f</td>
<td>Expenditure share on dairy</td>
</tr>
<tr>
<td>w_proteins</td>
<td>float</td>
<td>%10.6f</td>
<td>Expenditure share on meats and proteins</td>
</tr>
<tr>
<td>w_fruitveg</td>
<td>float</td>
<td>%10.6f</td>
<td>Expenditure share on fruits and vegetables</td>
</tr>
<tr>
<td>w_flours</td>
<td>float</td>
<td>%10.6f</td>
<td>Expenditure share on flours, breads, pasta, and cereals</td>
</tr>
<tr>
<td>w_misc</td>
<td>float</td>
<td>%10.6f</td>
<td>Expenditure share on misc. food items</td>
</tr>
<tr>
<td>p_dairy</td>
<td>float</td>
<td>%10.6f</td>
<td>Price of dairy</td>
</tr>
<tr>
<td>p_proteins</td>
<td>float</td>
<td>%10.6f</td>
<td>Price of meats and proteins</td>
</tr>
<tr>
<td>p_fruitveg</td>
<td>float</td>
<td>%10.6f</td>
<td>Price of fruits and vegetables</td>
</tr>
<tr>
<td>p_flours</td>
<td>float</td>
<td>%10.6f</td>
<td>Price of flours, breads, pasta, and cereals</td>
</tr>
<tr>
<td>p_misc</td>
<td>float</td>
<td>%10.6f</td>
<td>Price of misc. food items</td>
</tr>
<tr>
<td>expfd</td>
<td>float</td>
<td>%10.6f</td>
<td>Total expenditure on all food categories</td>
</tr>
<tr>
<td>n_adults</td>
<td>byte</td>
<td>%8.0g</td>
<td># adults in household</td>
</tr>
<tr>
<td>n_kids</td>
<td>byte</td>
<td>%8.0g</td>
<td># kids in household</td>
</tr>
</tbody>
</table>

Sorted by:
\end{verbatim}

The observation level of this dataset is the household, and we have data on 4,160 households. The data include five categories of food: dairy products; proteins, including meats and fish; fruits and vegetables; flour-based products, including breads, pastas, and cereals; and a catchall category. For each of the five categories, we have the expenditure shares and prices, and we have the household’s total expenditure on all five categories in the week that the household was surveyed. We also have demographic data for the household, including the numbers of children and adults.
Although we constructed the expenditure shares ourselves and know they sum to one, it is a good idea to verify that you have created your expenditure-share variables properly:

```
. egen wsum = rowtotal(w_dairy w_proteins w_fruitveg w_flours w_misc)
. summarize wsum
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>wsum</td>
<td>4,160</td>
<td>1</td>
<td>4.40e-08</td>
<td>.9999999</td>
<td>1</td>
</tr>
</tbody>
</table>

demandsys will check that for you and exit with an error message if it is not the case, but doing so during your data management tasks may make debugging easier. demandsys will also check that all your price variables and expenditure variable are strictly positive, though again you might want to check those facts earlier in your data pipeline.

With a dataset in hand, we are ready to fit our first Cobb–Douglas demand system.

```
. demandsys c douglas w_dairy w_proteins w_fruitveg w_flours w_misc, 
>     prices(p_dairy p_proteins p_fruitveg p_flours p_misc) expenditure(expfd)
```

Calculating NLS estimates:
Iteration 0: Residual SS = 180.2506
Iteration 1: Residual SS = 180.2506

Calculating FGNLS estimates:
FGNLS iteration 2:
Iteration 0: Scaled RSS = 16640
Iteration 0: Scaled RSS = 16640
Parameter change = 0.00e+00
Covariance matrix change = 0.00e+00

Cobb-Douglas model
Expenditure variable: expfd
Number of obs = 4,160
Uncentered R2 of model for
Good 1 = 0.7519
Good 2 = 0.8851
Good 3 = 0.8329
Good 4 = 0.7467
Good 5 = 0.6836

| alpha Good | Estimate | Std. err. | z | P>|z| | [95% conf. interval] |
|------------|----------|-----------|---|-----|---------------------|
| 1 | .1505844 | .0013411 | 112.29 | 0.000 | .147956 .1532129 |
| 2 | .3986526 | .0022265 | 179.05 | 0.000 | .3942887 .4030166 |
| 3 | .2406533 | .0016711 | 144.01 | 0.000 | .237378 .2439286 |
| 4 | .1031129 | .0009312 | 110.73 | 0.000 | .1012877 .104938 |

Note: alpha estimates are expenditure shares.

Normalized parameter

| alpha Good | Estimate | Std. err. | z | P>|z| | [95% conf. interval] |
|------------|----------|-----------|---|-----|---------------------|
| 5 | .1069968 | .0011286 | 94.80 | 0.000 | .1047847 .1092088 |

Note: alpha estimates sum to 1.

Shares: w_dairy w_proteins w_fruitveg w_flours w_misc
Prices: p_dairy p_proteins p_fruitveg p_flours p_misc
Expenditure: expfd
We specified the command name, demandsys, followed by the model we wish to fit, cdouglas. We then specified the five expenditure-share variables, \(w_{\text{dairy}} \) through \(w_{\text{misc}} \). The price variables, \(p_{\text{dairy}} \) through \(p_{\text{misc}} \), go into the `prices()` option, and the expenditure variable, \(\text{expfd} \), goes into the `expenditure()` option. demandsys uses a nonlinear multiple-equation estimator, so the top of the output includes an iteration log showing the model’s convergence. In fact, the Cobb–Douglas model is linear, but that is the only model fit by demandsys that is. Stata uses the same nonlinear estimator for cdouglas as we use for the other demand systems. The header of the output includes \(R^2 \) values to get some idea of how well the model fits the data.

The table of coefficients is a bit different from most other estimators in Stata, which report coefficients organized by equations. The Cobb–Douglas model is unique in that each equation has its own parameter. However, that is not the case for any other demand system that demandsys fits. For most demand systems, many of the parameters appear in multiple equations, and there is no way to link parameters and equations. Hence, we cannot provide a coefficient table organized by equations as other multiple-equation estimators such as sureg provide. Instead, demandsys organizes estimates by parameter type.

We mentioned having a five-good demand system, so why do we see only four estimated parameters in the main output table? Recall that we used the normalization that the sum of the parameters in the Cobb–Douglas utility function is one. The upshot is that we really have only four free parameters because the fifth parameter must equal one minus the sum of the other four parameters. We provide the estimate of the fifth parameter in a separate table. It is computed separately using the parameter estimates of our fitted demand system and their standard errors. Given how the fifth parameter was computed, it does not share a covariance matrix with the other parameters and cannot be used for testing. We provide it here for reference.

demandsys shows only unconstrained parameters in the main estimation output because, with many goods and more complicated models, the output becomes long. Moreover, the estimated parameters themselves are of less interest than elasticities and other statistics derived from the fitted model.

Technical note

In the header of the output in the previous example, we see that the equation-level \(R^2 \) values are labeled as uncentered. Recall that the standard \(R^2 \) in regression analysis measures the ability of the model to predict the regressand compared with a model that contains just a constant term. For the Cobb–Douglas demand system, the expenditure shares are simply constant terms to be estimated. Hence, the traditional \(R^2 \) is by definition zero. We therefore report the uncentered \(R^2 \), which is an alternative that measures the model’s explanatory power as a fraction of the sum of squares of an equation’s left-hand-side variable. A higher uncentered \(R^2 \) is presumably better than a lower uncentered \(R^2 \), but you cannot compare the uncentered \(R^2 \) of a Cobb–Douglas share equation with the centered \(R^2 \) of a share equation from a different demand system.

The command `estat elasticities`, which is available after demandsys, allows you to calculate expenditure and price elasticities after fitting your demand system, and `estat elasticities` provides options to specify how those elasticities are calculated and for which observations. The full syntax for that command is listed in [R] demandsys postestimation, but the basic command is easy to pick up as we work through examples below.
Here we use `estat elasticities` to obtain the expenditure elasticities for the estimation sample.

`. estat elasticities, expenditure`

Expenditure elasticities Number of obs = 4,160

<table>
<thead>
<tr>
<th>Expenditure</th>
<th>Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: No standard errors are displayed because all elasticities are identically equal to one.

The expenditure elasticities for all five goods are identically equal to one, and so the standard errors, test statistics, and confidence interval are not displayed because there is no sampling variance. The Cobb–Douglas function is an example of a utility function with “homothetic preferences”, meaning that the ratio of two goods demanded by a consumer with such preferences depends only on the goods’ relative prices and not on income. Homothetic preferences also imply that, regardless of changes in income, the shares consumed of each good remain the same; the expansion path of consumption is linear in income. The Cobb–Douglas case is a particularly extreme example, where the expenditure elasticities are one, the uncompensated own-price elasticities are minus one, and uncompensated cross-price elasticities are zero, which you can verify by typing

`. estat elasticities, uncompensated`

Particularly with more complex demand systems, the coefficients themselves can be more difficult to interpret. Therefore, `demandsys` allows you to request that expenditure, uncompensated price, or compensated price elasticities be displayed in addition to, or in place of, the table of estimated coefficients. The elasticities reported directly by `demandsys` are calculated at the estimation sample means of prices, expenditures, and any demographics that you specify. To obtain, say, the uncompensated price elasticities instead of the coefficient table from a Cobb–Douglas demand system, you would type

`. demandsys cdouglas ..., prices(...) expenditure(...) elasticities(uncompensated) nocoeftable`

`estat elasticities` gives you much more flexibility in terms of the sample used, and you can even specify particular prices or expenditures at which you want the elasticities to be calculated.
Linear expenditure system (LES)

Nobel laureate Sir Richard Stone’s estimation of the LES, developed based on theory by Nobel laureates Paul Samuelson and Lawrence Klein, together with Herman Rubin, represents the genesis of flexible demand system estimation (Stone 1954). LES provides for more flexible consumption patterns than the Cobb–Douglas model. The LES begins with the utility function

$$u(q; \beta, \mu) = \prod_{g} (q_g - \mu_g)^{\beta_g}$$

where μ_g is the gth element of $G \times 1$ vector μ, which is to be estimated. This utility function results from translating or shifting the origin of the Cobb–Douglas utility function; utility does not accrue from good g unless its consumption exceeds an amount μ_g. That parameter is known as a subsistence or committed quantity that a consumer must purchase for survival. β_g is the gth element of $G \times 1$ vector β. β_g measures the share of supernumerary expenditure, namely, the share of remaining expenditure once all subsistence quantities have been purchased, on good g. As in the Cobb–Douglas case, we normalize the $G \times 1$ parameter vector β so that $\sum_{g} \beta_g = 1$. Thus, the model has $2G - 1$ parameters we must estimate.

Solving

$$\max_{q} \prod_{g} (q_g - \mu_g)^{\beta_g} \quad \text{s. t.} \quad p'q \leq m$$

yields the expenditure-share functions

$$w_g(p, m; \beta, \mu) = \frac{p_g \mu_g}{m} + \beta_g \left(1 - \sum_{h} \frac{p_h \mu_h}{m}\right)$$

The term to the left of the plus sign is the fraction of expenditure that must be spent on good g to maintain subsistence. To the right, the term bound in parentheses is the fraction of expenditure left after the subsistence level for all other goods has been spent. Of this amount, a share β_g is spent on good g. The normalization that $\sum_{g} \beta_g = 1$ ensures that $\sum_{g} w_g(p, m) = 1$, as must be true of a demand system.

While we have interpreted the μ_g as minimum required amounts of each good, there is no requirement that $\mu_g > 0$ for all g, nor do we impose any such constraints during estimation. Moreover, for this interpretation to hold we must have that for each household i, $\sum_{g} p_{gi} \mu_{gi} \leq m_i$.
Example 2

Here we fit an LES to the same data as in example 1.

```
. use https://www.stata-press.com/data/r18/food_consumption, clear
(Food consumption)
. demandsys les w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> expenditure(expfd) nolog
Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
FGNLS iteration 5 ...
Linear expenditure system Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5
Centered R² of model for
   Good 1 = -0.0508
   Good 2 = 0.0494
   Good 3 = 0.0366
   Good 4 = 0.0829
   Good 5 = 0.0603

|          | Estimate | Std. err. | z     | P>|z|  | [95% conf. interval] |
|----------|----------|-----------|-------|------|---------------------|
| beta     |          |           |       |      |                     |
| Good 1   |          |           |       |      |                     |
| 1        | .1650894 | .0018783  | 87.89 | 0.000| .161408 .1687708    |
| 2        | .4108231 | .0033135  | 123.98| 0.000| .4043288 .4173175   |
| 3        | .2262407 | .0024899  | 90.86 | 0.000| .2213607 .2311208   |
| 4        | .0949082 | .0013152  | 72.16 | 0.000| .0923304 .097486    |
| mu       |          |           |       |      |                     |
| Good 1   |          |           |       |      |                     |
| 1        | .1794068 | .0383858  | 4.67  | 0.000| .1041721 .2546416   |
| 2        | .6975436 | .0800327  | 8.72  | 0.000| .5406824 .8544048   |
| 3        | 2.368491 | .1351367  | 17.53 | 0.000| 2.103828 2.633354   |
| 4        | .4215745 | .0202499  | 20.82 | 0.000| .3818854 .4612636   |
| 5        | .3742182 | .0243646  | 15.36 | 0.000| .3264644 .421972    |
```

Note: **beta** estimates measure how expenditure shares respond to increases in supernumerary income.

Note: **mu** estimates are subsistence levels of consumption for each good.

Normalized parameter

```
|          | Estimate | Std. err. | z     | P>|z|  | [95% conf. interval] |
|----------|----------|-----------|-------|------|---------------------|
| beta     |          |           |       |      |                     |
| Good 5   |          |           |       |      |                     |
| 5        | .1029385 | .0015833  | 65.02 | 0.000| .0998354 .1060416   |
```

Note: **beta** estimates sum to 1.

Shares: w_dairy w_proteins w_fruitveg w_flours w_misc
Prices: p_dairy p_proteins p_fruitveg p_flours p_misc
Expenditure: expfd

We specified the **nolog** option to suppress the detailed iteration log. We first noticed that the \(R^2 \) for the model for Good 1 is actually negative. Because the equations here are nonlinear, the value of \(R^2 \) is not constrained to be between 0 and 1; that is only true for linear regression. The footer of the table with normalized parameters reemphasizes the fact that we have made \(\sum \beta_g = 1 \).
All the μ parameters are greater than zero. The μ parameter for Good 3, fruits and vegetables, is largest, implying the physical quantity of them required is much higher than the other four goods. However, we should also look at the average prices of the goods:

\[
\text{. summarize } p_*
\]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_dairy</td>
<td>4,160</td>
<td>0.4387958</td>
<td>0.4238236</td>
<td>0.1041262</td>
<td>18</td>
</tr>
<tr>
<td>p_proteins</td>
<td>4,160</td>
<td>1.729284</td>
<td>0.69554</td>
<td>0.333333</td>
<td>9.258823</td>
</tr>
<tr>
<td>p_fruitveg</td>
<td>4,160</td>
<td>0.5472199</td>
<td>0.1945325</td>
<td>0.1073369</td>
<td>2.672269</td>
</tr>
<tr>
<td>p_flours</td>
<td>4,160</td>
<td>1.49421</td>
<td>0.6816424</td>
<td>0.0805687</td>
<td>7.202127</td>
</tr>
<tr>
<td>p_misc</td>
<td>4,160</td>
<td>1.47115</td>
<td>0.8588024</td>
<td>0.1428571</td>
<td>15.74629</td>
</tr>
</tbody>
</table>

Based on the average price of each good, the dollar amount of protein required for survival is only 9 cents less than the dollar amount of fruits and vegetables required ($2.368 \times 0.547 = 1.30 versus $0.698 \times 1.729 = 1.21).

As we mentioned in the introductory remarks, if you have demographic variables, you should incorporate them into your model. demandsys incorporates demographics into models by applying Pollak and Wales’s (1978) “demographic translation” to the expenditure-share equations. Just as the linear expenditure system is a translated version of the Cobb–Douglas system, Pollak and Wales incorporate demographics by translating the consumer’s available level of expenditures.

Suppose for each consumer we have a $D \times 1$ vector of demographic characteristics d. We have G expenditure-share equations, so associated with d is a $G \times D$ matrix of parameters N with typical row ν_g. Let $c = Nd$ with typical element c_g. In demographic translation, we write each translated demand function as

\[
\bar{x}_g(p, m, c) = c_g + x_g(p, m - \sum_h p_h c_h)
\]

For the LES, we have

\[
\bar{x}_g(p, m, d; \beta, \mu, N) = (\mu_g + c_g) + \frac{\beta_g}{p_g} \left(m - \sum_h p_h \mu_h - \sum_h p_h c_h \right)
\]

so that

\[
\bar{w}_g(p, m, d; \beta, \mu, N) = \frac{p_g (\mu_g + \nu_g d)}{m} + \beta_g \left\{ 1 - \frac{\sum_h p_h (\mu_h + \nu_h d)}{m} \right\}
\]

For the LES, the effect of the demographic variables is to adjust the μ parameters, though we must be cautious in interpreting the term $\mu_g + \nu_g d$ as a minimum required quantity because there is nothing preventing it from being negative.
Example 3

The dataset described in example 1 also includes two demographic characteristics, the numbers of children and adults in each household. Here we refit the LES to these data, controlling for these two demographics.

```
use https://www.stata-press.com/data/r18/food_consumption
(demandsys — Estimation of flexible demand systems 15
Food consumption)
demandsys les w_dairy w_proteins w_fruitveg w_flours w_misc,
>  prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
>  expenditure(expfd) demographics(n_kids n_adults) nolog
```

```
Calculating NLS estimates ...  
Calculating FGNLS estimates ...  
FGNLS iteration 2 ...  
FGNLS iteration 3 ...  
FGNLS iteration 4 ...  
FGNLS iteration 5 ...  
Linear expenditure system Number of obs = 4,160  
Expenditure variable: expfd Number of goods = 5  
Demographic method: Translating Number of demographics = 2  
Centered R2 of model for  
  Good 1 = -0.0444  
  Good 2 = 0.0665  
  Good 3 = 0.0584  
  Good 4 = 0.1576  
  Good 5 = 0.0922  

|                | Estimate | Std. err. | z     | P>|z|     | [95% conf. interval] |
|----------------|----------|-----------|-------|---------|----------------------|
| beta Good      |          |           |       |         |                      |
| 1               | 0.1656925| 0.0023639 | 70.09 | 0.000   | 0.1610594 0.1703256  |
| 2               | 0.4170346| 0.0042631 | 97.82 | 0.000   | 0.408679 0.4253901  |
| 3               | 0.2434237| 0.0032072 | 75.90 | 0.000   | 0.2371377 0.2497098 |
| 4               | 0.0800666| 0.0015889 | 50.39 | 0.000   | 0.0769525 0.0831808 |
| mu Good         |          |           |       |         |                      |
| 1               | -0.3932844| 0.164016  | -2.40 | 0.016   | -0.71475 -0.0718189 |
| 2               | -0.53048 | 0.1798223 | -2.95 | 0.003   | -0.8829251 -0.1780349 |
| 3               | 1.010915  | 0.3046076 | 3.32  | 0.001   | 0.4138951 1.607935  |
| 4               | -0.0269827| 0.0426005 | -0.63 | 0.526   | -0.1104782 0.0565128 |
| 5               | 0.0097685 | 0.0526521 | 0.19  | 0.853   | -0.0934277 0.1129647 |
| Nu Good# c.n_kids|          |           |       |         |                      |
| 1               | 0.4332196 | 0.160145  | 2.71  | 0.007   | 0.1193413 0.747098 |
| 2               | -0.0680289| 0.1197109 | -0.57 | 0.570   | -0.302688 0.1666002 |
| 3               | -0.7946562| 0.2003774 | -3.97 | 0.000   | -1.187298 -0.4018328 |
| 4               | 0.3923541 | 0.0273698 | 14.34 | 0.000   | 0.3387103 0.4459979 |
| 5               | 0.3563529 | 0.0368047 | 9.68  | 0.000   | 0.284217 0.4284888 |
| Nu Good# c.n_adults|       |           |       |         |                      |
| 1               | 0.4856673 | 0.1525998 | 3.18  | 0.001   | 0.1865771 0.7847574 |
| 2               | 0.8669319 | 0.1316001 | 6.59  | 0.000   | 0.6090005 1.124863  |
| 3               | 0.843552  | 0.227083  | 3.71  | 0.000   | 0.3984775 1.288626 |
| 4               | 0.3576213 | 0.0318802 | 11.22 | 0.000   | 0.2951373 0.4201054 |
| 5               | 0.2639693 | 0.0374888 | 7.04  | 0.000   | 0.1904925 0.3374461 |
Note: $\beta$ estimates measure how expenditure shares respond to increases in supernumerary income.
Note: $\mu$ estimates are subsistence levels of consumption for each good.
Note: $\nu$ estimates measure the effect of demographic variables on subsistence levels of consumption.

| Normalized parameter | Estimate | Std. err. | z    | P>|z| [95% conf. interval] |
|----------------------|----------|-----------|------|------------------------|
| $\beta$ Good 5       | 0.0937826| 0.0019264 | 48.68| 0.000 [0.090007 0.0975582] |

Note: $\beta$ estimates sum to 1.

Shares: w_dairy w_proteins w_fruitveg w_flours w_misc
Prices: p_dairy p_proteins p_fruitveg p_flours p_misc
Expenditure: expfd
Demographics: n_kids n_adults

The estimated parameter matrix $N$ is shown in the last block of the coefficient table, and demandsys labels the coefficients using factor-variable notation. Yet you should not think of the terms as you would of interactions in a regression. Here the notation means something different. The first five rows of the output for $N$ correspond to the demographic variable $\text{n\_kids}$ and how it affects the consumption of each good. The remaining five correspond to $\text{n\_adults}$. For instance, all the coefficients for $\text{n\_adults}$ are positive, as we would expect, meaning that having more adults in the family increases consumption of all goods. The coefficient for $\text{n\_kids}$ on the consumption of Good 3, fruits and vegetables, is negative, meaning consumption decreases as the number of children increases.

Directly interpreting the coefficients on demographic variables is not difficult for the LES, but for more complicated models, it can be. One easy way to see the practical effect of that negative coefficient is to use the margins command to see how our predicted quantity for Good 3 changes as the number of children changes.

```
. margins, predict(quantities equation(#3)) at(n_kids=1 n_kids=2 n_kids=3)
Predictive margins Number of obs = 4,160
Model VCE: GNR
Expression: Predicted quantity of good 3, predict(quantities equation(#3))
1._at: n_kids = 1
2._at: n_kids = 2
3._at: n_kids = 3
```

| Delta-method | Margin | std. err. | z    | P>|z| [95% conf. interval] |
|--------------|--------|-----------|------|------------------------|
| _at          |        |           |      |                        |
| 1            | 22.57831| .1734791  | 130.15| 0.000 [22.2383 22.91833] |
| 2            | 21.407  | .2254155  | 94.97 | 0.000 [20.96519 21.84881] |
| 3            | 20.23569| .323032   | 62.64 | 0.000 [19.60256 20.86882] |

We asked margins to produce predictions of quantities of Good 3, fruits and vegetables, by specifying the equation(#3) option, and we asked it to do so when the number of children is equal to one, again when the number of children is equal to two, and finally when the number of children is equal to three. margins first sets $\text{n\_kids}$ equal to one for all 4,160 observations in the estimation sample and obtains the predicted quantities; the mean of those predictions is 22.6. When $\text{n\_kids}$ is equal to two for all observations, the mean is 21.4, and when $\text{n\_kids}$ is equal to three, the mean is 20.2.

Kids do not always eat their fruits and vegetables, but finding that the quantity of fruits and vegetables actually declines as the household grows is rather surprising. Perhaps we have omitted
other relevant demographic variables from our model, biasing our estimates, or perhaps the model itself is simply too rigid.

Finally, we use `estat elasticities` to obtain uncompensated price elasticities. We will obtain two sets of results, one for households with fewer than three kids and one for households with three or more kids.

```
. estat elasticities if n_kids <= 2, uncompensated
```

Uncompensated (Marshallian) price elasticities

| Price   | Elasticity | Std. err. | z    | P>|z| | [95% conf. interval] |
|---------|------------|-----------|------|-----|----------------------------|
| Good 1  |            |           |      |     |                            |
| Good    |            |           |      |     |                            |
| 1       | -.9537446  | .0083361  | -114.41 | 0.000 | -.970083 to -.9374061 |
| 2       | -.00852    | .0015032  | -5.67  | 0.000 | -.0114662 to -.0055738   |
| 3       | -.0083598  | .0014808  | -5.65  | 0.000 | -.0112621 to -.0054574   |
| 4       | -.0062373  | .0011228  | -5.56  | 0.000 | -.0084379 to -.0040367   |
| 5       | -.0071346  | .0012983  | -5.50  | 0.000 | -.0096793 to -.0045994   |
| Good 2  |            |           |      |     |                            |
| Good    |            |           |      |     |                            |
| 1       | -.0621117  | .012096   | -5.13 | 0.000 | -.0858194 to -.038404    |
| 2       | -.9289446  | .0085912  | -108.13 | 0.000 | -.945783 to -.9121063    |
| 3       | -.0499231  | .0062304  | -8.01  | 0.000 | -.0621346 to -.0377117   |
| 4       | -.0390871  | .0048967  | -7.98  | 0.000 | -.0486844 to -.0294897   |
| 5       | -.0445883  | .0056323  | -7.92  | 0.000 | -.0556274 to -.0335492   |
| Good 3  |            |           |      |     |                            |
| Good    |            |           |      |     |                            |
| 1       | -.0503597  | .0118715  | -4.24 | 0.000 | -.0736274 to -.0270921   |
| 2       | -.0410463  | .0036302  | -11.31| 0.000 | -.0481614 to -.0339312   |
| 3       | -.866701   | .0100534  | -88.20| 0.000 | -.9064052 to -.8669968   |
| 4       | -.030438   | .0027264  | -11.16| 0.000 | -.0357816 to -.0250944   |
| 5       | -.0348829  | .0032109  | -10.86| 0.000 | -.0411761 to -.0285897   |
| Good 4  |            |           |      |     |                            |
| Good    |            |           |      |     |                            |
| 1       | -.0428307  | .0038014  | -11.27| 0.000 | -.0502814 to -.0353801   |
| 2       | -.0373442  | .0014421  | -25.90| 0.000 | -.0401707 to -.0345178   |
| 3       | -.0357288  | .0013809  | -25.87| 0.000 | -.0384354 to -.0330223   |
| 4       | -.7107582  | .0101357  | -70.12| 0.000 | -.7306238 to -.6908925   |
| 5       | -.0306015  | .0012718  | -24.06| 0.000 | -.0330941 to -.0281089   |
| Good 5  |            |           |      |     |                            |
| Good    |            |           |      |     |                            |
| 1       | -.0347514  | .0047892  | -7.26 | 0.000 | -.0441381 to -.0253647   |
| 2       | -.0296409  | .0016063  | -18.45| 0.000 | -.0327893 to -.0264926   |
| 3       | -.0285217  | .0015907  | -17.93| 0.000 | -.0316394 to -.025404    |
| 4       | -.0212131  | .0011859  | -17.89| 0.000 | -.0235375 to -.0188887   |
| 5       | -.7824229  | .0109448  | -71.49| 0.000 | -.8038744 to -.7609714   |
Uncompensated (Marshallian) price elasticities

| Price | Elasticity | Std. err. | z    | P>|z| | [95% conf. interval] |
|-------|------------|-----------|------|-----|---------------------|
| Good 1 |            |           |      |     |                     |
| Good  |           |           |      |     |                     |
| 1     | -0.9395485| 0.0146154 | -64.28| 0.000| -0.9681941 -0.9109029|
| 2     | -0.0126359| 0.0032625 | -3.87 | 0.000| -0.0190303 -0.0062416|
| 3     | -0.0146746| 0.004299  | -3.41 | 0.001| -0.0231005 -0.0062486|
| 4     | -0.0082076| 0.002108  | -3.89 | 0.000| -0.0123393 -0.0040759|
| 5     | -0.0093949| 0.0024408 | -3.85 | 0.000| -0.0141788 -0.0046109|
| Good 2 |            |           |      |     |                     |
| Good  |           |           |      |     |                     |
| 1     | 0.023357  | 0.0100783 | -2.32 | 0.020| -0.04311 -0.0036039 |
| 2     | -0.9674982| 0.0135281 | -71.52| 0.000| -0.9940128 -0.9409836|
| 3     | 0.028745  | 0.0152303 | -1.89 | 0.069| -0.0589595 0.011058 |
| 4     | -0.0152942| 0.0064352 | -2.38 | 0.017| -0.0279071 -0.0026813|
| 5     | 0.0178107 | 0.007578  | -2.35 | 0.019| -0.0326633 -0.0029581|
| Good 3 |            |           |      |     |                     |
| Good  |           |           |      |     |                     |
| 1     | -0.0000379| 0.0055043 | -0.01 | 0.995| -0.0108261 0.0107504|
| 2     | 0.0001398 | 0.0056976 | 0.02  | 0.980| -0.0110273 0.0113068|
| 3     | -1.000682 | 0.0201954 | -49.55| 0.000| -1.040264 -0.9610998|
| 4     | -0.0000842| 0.0035771 | -0.02 | 0.981| -0.0070951 0.0069268|
| 5     | -0.0000569| 0.0041395 | -0.01 | 0.989| -0.0081702 0.0080565|
| Good 4 |            |           |      |     |                     |
| Good  |           |           |      |     |                     |
| 1     | -0.0451601| 0.0025582 | -17.65| 0.000| -0.0501741 -0.0401461|
| 2     | -0.0463532| 0.0024489 | -18.93| 0.000| -0.051153 0.0415534 |
| 3     | -0.052944 | 0.0045994 | -11.51| 0.000| -0.0619587 -0.0439293|
| 4     | -0.6843304| 0.0131677 | -51.97| 0.000| -0.7101385 -0.6585222|
| 5     | 0.0334225 | 0.0018152 | -18.41| 0.000| -0.0369803 -0.298648 |
| Good 5 |            |           |      |     |                     |
| Good  |           |           |      |     |                     |
| 1     | -0.0356486| 0.002797 | -12.75| 0.000| -0.0411305 -0.0301666|
| 2     | -0.0365794| 0.0027339 | -13.38| 0.000| -0.0419377 -0.0312212|
| 3     | -0.0401475| 0.0035616 | -11.27| 0.000| -0.0471281 -0.033167 |
| 4     | -0.0234098| 0.0017471 | -13.40| 0.000| -0.0268341 -0.0199856|
| 5     | 0.07542306| 0.0156676 | -48.14| 0.000| -0.7849385 -0.7235226|

For example, in the table for households with 3 or more children, the price elasticity for Good 5 with respect to Good 1 is $-0.0356486$. Among these households, if the price of Good 5 (miscellaneous items) increases by 1%, then the quantity of Good 1 (dairy products) purchased will decrease by an average of 0.036%.

We summarize the own-price elasticities in table 1. We again focus on the demand for fruits and vegetables. Among households with two children or fewer, it is inelastic, while it is (barely) elastic for households with three or more children. Again, we have no explanation for why that would be the case, though we suspect the model is simply too rigid to accurately model the consumption patterns seen in our data.
Table 1: Own-price elasticities based on number of children

<table>
<thead>
<tr>
<th>Good</th>
<th># of Children</th>
<th>≤ 2</th>
<th>≥ 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy</td>
<td>-0.954</td>
<td>-0.940</td>
<td></td>
</tr>
<tr>
<td>Proteins</td>
<td>-0.939</td>
<td>-0.967</td>
<td></td>
</tr>
<tr>
<td>Fruits &amp; vegetables</td>
<td>-0.887</td>
<td>-1.001</td>
<td></td>
</tr>
<tr>
<td>Flours</td>
<td>-0.711</td>
<td>-0.684</td>
<td></td>
</tr>
<tr>
<td>Miscellany</td>
<td>-0.782</td>
<td>-0.754</td>
<td></td>
</tr>
</tbody>
</table>

Translog

Pollak and Wales (1992, sec. 3.1) discuss an entire class of demand systems that they describe as the transcendental logarithmic or “translog” family. We implement the version they call the “basic translog” function, which is probably the most well known, because it corresponds to the translog indirect utility function proposed by Christensen, Jorgenson, and Lau (1975). We also implement the version Pollak and Wales call the “generalized translog” function, which is a more flexible version of the basic translog that has been translated in a way analogous to how the LES is a shifted version of the Cobb–Douglas utility function.

Basic translog

Christensen, Jorgenson, and Lau (1975) proposed both direct and indirect utility functions with the “translog” functional form. For their direct utility function, they obtain expenditure shares that are a function of expenditure and quantities, which is not the focus of demandsys. We instead implement the demand system based on their translog indirect utility function. The starting point is the indirect utility function

$$
\ln v(p, m; \alpha, \Gamma) = -\sum_g \alpha_g \ln \frac{p_g}{m} - \frac{1}{2} \sum_g \sum_h \gamma_{gh} \ln \frac{p_g}{m} \ln \frac{p_h}{m}
$$

Equation (1) is twice differentiable in prices, and based on Young’s (1909) theorem, we must have \( \gamma_{gh} = \gamma_{hg} \) for all \( g \) and \( h \). (Young’s theorem states that cross-partial derivatives are equal.)

Roy (1943) introduced what would be known as Roy’s identity, which equates a consumer’s Marshallian demand function for a good with a function of their indirect utility function. Applying Roy’s identity, we have the expenditure-share functions

$$
w_g(p, m; \alpha, \Gamma) = \frac{\alpha_g + \sum_h \gamma_{gh} \ln \frac{p_h}{m}}{1 + \sum_j \sum_h \gamma_{jh} \ln \frac{p_h}{m}}
$$

where we have imposed the normalization \( \sum_g \alpha_g = 1 \). This ensures that the expenditure shares sum to 1, a property known as “additivity”.

As we remarked in the introduction, if one has relevant demographic variables, one should include them in the demand system, so we will not present an example of the translog model without demographic variables. Moreover, it is in fact easier to describe how we incorporate demographic variables into the translog system if we first describe the generalized translog model.
Generalized translog

Another way to perform translation and introduce subsistence or committed quantities into a demand system is to translate the indirect utility function, so that consumers’ effective expenditures are their expenditures after the subsistence quantities of all goods are purchased. Pollak and Wales (1992, 56) do this to Christensen, Jorgenson, and Lau’s (1975) indirect utility function to obtain

$$
\ln v(p, m; \alpha, \Gamma, \mu) = - \sum_g \alpha_g \ln \frac{p_g}{m} - \frac{1}{2} \sum_g \sum_h \gamma_{gh} \ln \frac{p_g}{m} \ln \frac{p_h}{m}
$$

$$
\bar{m} = m - \sum_h p_h \mu_h \quad \sum_h \alpha_h = 1 \quad \gamma_{gh} = \gamma_{hg}
$$

where again $\mu$ is a $G \times 1$ vector of subsistence quantities with typical element $\mu_g$. A tedious but straightforward application of Roy’s identity gives the expenditure-share functions as

$$
w_g(p, m; \alpha, \Gamma, \mu) = \frac{p_g \mu_g}{m} + \frac{\bar{m}}{m} \left( \frac{\alpha_g + \sum_h \gamma_{gh} \ln \frac{p_h}{m}}{1 + \sum_j \sum_h \gamma_{jh} \ln \frac{p_h}{m}} \right)
$$

$$
\bar{m} = m - \sum_h p_h \mu_h \quad \sum_h \alpha_h = 1 \quad \gamma_{jh} = \gamma_{jh}
$$

It is apparent that the sum of $w_g(p, m; \alpha, \Gamma, \mu)$ across all $g$ is equal to one, as must be true of a demand system. Again, suppose for each consumer that we have a $D \times 1$ vector of demographics $d$ and an associated $G \times D$ matrix $N$, and again, let $c_g$ denote the $g$th element of the vector $c = Nd$.

To apply both demographic characteristics and committed quantities, we can translate the translog indirect utility function, this time with the value $(\mu_g + c_g)$ replacing $\mu_g$ in the developments above. Thus, the generalized translog system with demographic variables has expenditure-share functions of the form

$$
w_g(p, m, d; \alpha, \Gamma, \mu, N) = \frac{p_g (\mu_g + \nu_g d)}{m} + \frac{\bar{m}}{m} \left( \frac{\alpha_g + \sum_h \gamma_{gh} \ln \frac{p_h}{m}}{1 + \sum_j \sum_h \gamma_{jh} \ln \frac{p_h}{m}} \right)
$$

$$
\bar{m} = m - \sum_h p_h (\mu_h + \nu_h d) \quad \sum_h \alpha_h = 1 \quad \gamma_{jh} = \gamma_{jh}
$$

The basic translog model results if we set $\mu = 0$ and $N = 0$, and the basic translog model with demographics results if we set just $\mu = 0$. The generalized translog model results if we set just $N = 0$. The generalized translog model is essentially a translog model with a constant term included among the demographic variables.
Example 4

We first fit a basic translog model to our food consumption data, controlling for the number of children and adults in each household. We will also store these estimation results so we can use them later.

```
. use https://www.stata-press.com/data/r18/food_consumption
 (Food consumption)
. demandsys translog w_dairy w_proteins w_fruitveg w_flours w_misc,
 > prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
 > demographics(n_kids n_adults)
 > labels("dairy proteins fruitveg flours misc")
 > expenditure(expfd) elasticities(expenditure) nolog nocoeftable
```

Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...

```
Basic translog model
Expenditure variable: expfd
Demographic method: Translating
Centered R2 of model for
dairy = 0.0448
proteins = 0.1593
fruitveg = 0.0976
flours = 0.1881
misc = 0.1678
```

Calculating expenditure elasticities ...

```
Expenditure elasticities

| Expenditure | Elasticity | Std. err. | z | P>|z| | [95% conf. interval] |
|-------------|------------|-----------|------|------|---------------------|
| dairy | 0.90727 | 0.0157948 | 57.44| 0.000| 0.8763129 - 0.9382272|
| proteins | 1.0912 | 0.0102476 | 106.48| 0.000| 1.071115 - 1.111285 |
| fruitveg | 0.9629558 | 0.0128444 | 74.97| 0.000| 0.9377813 - 0.9881303 |
| flours | 0.8728076 | 0.0152504 | 57.23| 0.000| 0.8429174 - 0.9026979 |
| misc | 1.000333 | 0.0177894 | 56.23| 0.000| 0.9654664 - 1.0352 |
```

Note: Elasticities are calculated at prices’, demographic variables’, and expenditure means.

```
. estimates store translog
```

We specified the nocoeftable option to suppress the coefficient table and the elasticities(expenditure) option to obtain expenditure elasticities. Finally, we used the labels() option to name our five goods. Had we not done that, then the output would simply have numbered the goods from one to five.

For comparison’s sake, we also fit the equivalent generalized translog model. We note that despite the long commands, the following one differs from the previous by just one character:
demandsys gtranslog w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults)
> labels("dairy proteins fruitveg flours misc")
> expenditure(expfd) elasticities(expenditure) nolog nocoeffetable
Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
Generalized translog model
Expenditure variable: expfd
Demographic method: Translating
Number of obs = 4,160
Number of goods = 5
Number of demographics = 2
Centered R2 of model for
dairy = 0.0478
proteins = 0.1615
fruitveg = 0.0988
flours = 0.1903
misc = 0.1732
Calculating expenditure elasticities ...
Expenditure elasticities

| Expenditure | Elasticity | Std. err. | z   | P>|z| | [95% conf. interval] |
|-------------|------------|-----------|-----|------|----------------------|
| dairy       | .906851    | .0174393  | 52.00 | 0.000 | .8726707 .9410313 |
| proteins    | 1.074059   | .01144    | 93.89 | 0.000 | 1.051637 1.096481 |
| fruitveg    | .9716098   | .0144251  | 67.36 | 0.000 | .943337  .9998826 |
| flours      | .892461    | .0170431  | 52.36 | 0.000 | .8590571 .9258649 |
| misc        | 1.023297   | .0194942  | 52.49 | 0.000 | .9850886 1.061504 |

Note: Elasticities are calculated at prices’, demographic variables’, and expenditure means.

. estimates store gtranslog

The $R^2$ statistics from the generalized translog model are trivially higher than for the basic translog model. Because demandsys is based on maximum likelihood estimation and because the translog model is nested within the generalized translog model, we can use a likelihood-ratio test to see whether the inclusion of committed quantities is warranted here.

. lrtest gtranslog translog
Likelihood-ratio test
Assumption: translog nested within gtranslog

LR chi2(5) = 59.00
Prob > chi2 = 0.0000

The generalized translog model adds additional $G$ parameters over the basic translog model, so the $\chi^2$ statistic has five degrees of freedom in this example. The result indicates that the use of the generalized version of the translog model is warranted. Of course, if you do this test for your own models, you must use the same demographic specification in both.
As we cautioned with the LES, interpreting the \( \mu \) parameters of the generalized translog model as subsistence quantities requires care. We do not force the estimates to be positive, nor does \texttt{demandsys} check that \( \sum_g p_{gi} (\mu_g + \nu'_i d_i) \leq m_i \) for each observation \( i \) in the dataset or that \( \mu_g + \nu'_i d_i \geq 0 \) for each observation and each good, both of which must be true if the subsistence argument is to be credible. We have noted that the generalized translog model can produce negative estimates of \( \mu \)'s quite frequently and changing the demographic specification is often enough to produce negative estimates.

For example, if we refit the previous example controlling for just the number of children but not the number of adults, we obtain negative estimates for some of the \( \mu \) parameters:

\[
\begin{align*}
\text{. demandsys gtranslog w_dairy w_proteins w_fruitveg w_flours w_misc,} \\
&\text{> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)} \\
&\text{> demographics(n_kids) expenditure(expfd) nolog} \\
\end{align*}
\]

Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...

|                | Alpha | Good | Estimate | Std. err. | z       | P>|z| | [95% conf. interval] |
|----------------|-------|------|----------|-----------|---------|-------|---------------------|
| Good           |       |      |          |           |         |       |                     |
| 1              |       |      | .1745891 | .0097353  | 17.93   | 0.000 | .1555082 .1936699   |
| 2              |       |      | .3416641 | .0188744  | 18.10   | 0.000 | .304671 .3786572    |
| 3              |       |      | .3634044 | .0192262  | 18.90   | 0.000 | .3257218 .401087    |
| 4              |       |      | .0598082 | .0066154  | 9.04    | 0.000 | .0468423 .0727741   |

|                | Gamma | Good_g# | Estimate | Std. err. | z       | P>|z| | [95% conf. interval] |
|----------------|-------|---------|----------|-----------|---------|-------|---------------------|
| Good_h         |       |         |          |           |         |       |                     |
| 1#1            |       |         | .0232919 | .002496   | 9.33    | 0.000 | .0183998 .0281841   |
| 1#2            |       |         | -.0146955| .0032932  | -4.46   | 0.000 | -.02115 -.0082411   |
| 1#3            |       |         | .0005704 | .0018905  | 0.30    | 0.763 | -.0031349 .0042758  |
| 1#4            |       |         | .001351  | .0009723  | 1.39    | 0.165 | -.0005546 .0032566  |
| 1#5            |       |         | .0026193 | .0010776  | 2.43    | 0.015 | .0005073 .0047312   |
| 2#2            |       |         | .120652  | .0085591  | 14.10   | 0.000 | .1038764 .1374275   |
| 2#3            |       |         | -.0301533| .0056644  | -5.42   | 0.000 | -.0410593 -.0192474 |
| 2#4            |       |         | -.0184411| .0027052  | -6.82   | 0.000 | -.0237432 -.013139  |
| 2#5            |       |         | -.0228452| .0032034  | -7.13   | 0.000 | -.0291238 -.0165667 |
| 3#3            |       |         | .0698867 | .0067428  | 10.36   | 0.000 | .056671 .0831023    |
| 3#4            |       |         | .0006331 | .0013394  | 0.47    | 0.636 | -.0019921 .0032583  |
| 3#5            |       |         | -.0065477| .0017672  | -3.71   | 0.000 | -.0100113 -.003084  |
| 4#4            |       |         | .0233853 | .0023855  | 9.80    | 0.000 | .0187097 .0280608   |
| 4#5            |       |         | -.0074747| .0011361  | -6.58   | 0.000 | -.0097014 -.005248  |
| 5#5            |       |         | .0323539 | .0030878  | 10.48   | 0.000 | .0263019 .0384059   |
Here, again, we see factor-variable notation for the parameter matrix \( \Gamma \) but also for \( \alpha \). As we mentioned before, you should not interpret the factor-variable notation as you would in a regression output. We see the estimate labeled 1#2 under Good\_g\#Good\_h. This is the estimate of \( \gamma_{12} \), the coefficient associated with \( \ln p_2/m \) in the equation for Good 1.

### AIDS

One of the most commonly used demand systems is the celebrated AIDS model of Deaton and Muellbauer (1980b). Among other benefits, the AIDS model can be viewed as a first-order approximation to any demand system. Historically, the AIDS model was also favored because it is “almost linear” in the sense that replacing the price index with an approximation results in share equations that are linear. Given the speed with which computers can fit nonlinear systems of equations, we do not implement that approximation.

An additional nice property of the AIDS model is that the functional form for its budget shares is a member of the “price-independent generalized log-linear” and the broader “price-independent generalized linear” families. An advantage to price-independent generalized linear expenditure shares is that they satisfy certain conditions required for the existence of a representative consumer and the related theory of aggregation. In short, expenditure shares of this form can be fit to data aggregated across consumers. The implied market demand curves are consistent with a single utility-maximizing
demandsys — Estimation of flexible demand systems 25

representative agent and satisfy the same conditions like Slutsky symmetry that hold for demand curves implied by a single consumer’s utility-maximizing behavior. For more on price-independent generalized linear demands, see, for example, Muellbauer (1975), Lewbel (1989), and Pollak and Wales (1992, chap. 2).

The starting point for the AIDS model is the expenditure function

$$\ln(e(p, u; \alpha_0, \alpha, \beta, \Gamma)) = (1 - \ln u) \ln a(p) + \ln \{\ln a(p) + b(p)\}$$

where \(u\) is utility, the price index \(\ln a(p)\) is defined as

$$\ln a(p) \equiv \alpha_0 + \sum_g \alpha_g \ln p_g + \frac{1}{2} \sum_g \sum_h \gamma_{gh} \ln p_g \ln p_h$$

where \(p_g\) is the price of good \(g\), and the price aggregator \(b(p)\) is defined as

$$b(p) \equiv \beta_0 \prod_g p_g^{\beta_g}$$

Parameter \(\beta_0\) cannot be distinguished from \(u\), so we take \(\beta_0 = 1\) in the following. In their original formulation, Deaton and Muellbauer (1980b) wrote their expenditure function slightly differently, with \(u\) in place of \(\ln u\) in (2). We have chosen to use \(\ln u\) to draw some comparisons with the QUAIDS model later, and because utility is an ordinal concept, it will not affect the expenditure-share equations.

Suppose that all prices are equal to one. Then (2) with \(\beta_0 = 1\) implies that \(\ln e(p, u) = \alpha_0\). Thus, \(\exp(\alpha_0)\) can be interpreted as the level of expenditure needed for minimal subsistence when all prices are equal to one. In practice, estimating \(\alpha_0\) is difficult, particularly when prices are correlated, as they often are. Therefore, by default, we set \(\alpha_0\) equal to the natural logarithm of the minimum level of expenditure in the estimation sample. You can override the default by specifying the \texttt{piconstant()} option. Of course, prices are generally not all equal to one, so you will want to try various values for \(\alpha_0\) to see how sensitive elasticities and other calculations you may perform are to its value.

Expenditure functions consistent with rational consumer choice must be homogeneous of degree one in prices and expenditure, which imply that we must have \(\sum_g \alpha_g = 1\), \(\sum_g \beta_g = 0\), and \(\sum_g \gamma_{gh} = \sum_h \gamma_{gh} = 0\). Slutsky symmetry further requires that \(\gamma_{gh} = \gamma_{hg}\) for all \(g\) and \(h\). Note that demandsys imposes these restrictions on the model being fit. An alternative is to fit the model with and without one or more of those restrictions and then test whether they hold. However, such unrestricted models can often fail to converge because of the increased number of parameters or because the models are “too flexible” and contain unidentifiable parameters.

Shephard’s (1970) lemma equates the Hicksian demand functions with the partial derivatives of the expenditure function with respect to the price of the goods. Using Shephard’s lemma, we can write the expenditure-share functions as

$$w_g(p, m; \alpha_0, \alpha, \beta, \Gamma) = \alpha_g + \sum_h \gamma_{gh} \ln p_h + \beta_g \ln \left\{\frac{m}{a(p)}\right\}$$

Notice the simplicity of these share equations. Good \(g\)’s expenditure share depends linearly on the log prices of all the goods as well as the log of an expenditure term. The expenditure term \(m/a(p)\) essentially adjusts each household’s expenditure to control the cost of living faced by that household. This term is sometimes referred to as deflated expenditure. Equation (3) also makes clear that luxury goods have \(\beta_g > 1\) while necessities have \(\beta_g < 1\); inferior goods have \(\beta_g < 0\).
Setting \( e(p, u) = m \) and manipulating (2) yields the indirect utility function
\[
\ln v(p, m; \alpha_0, \alpha, \beta, \Gamma) = \frac{\ln m - \ln a(p)}{b(p)}
\]
(4)

We will come back to this equation below. We show how the indirect utility function plays a role in computing welfare measures in [R] demandsys postestimation.

**QUAIDS**

The Engel curves for the AIDS model have the so-called “Working–Leser” form after Working (1943) and Leser (1963),
\[ w_g = \omega_g + \psi_g \ln m \]
so that the share of expenditures spent on good \( g \) is a linear function of the logarithm of total expenditures. Banks, Blundell, and Lewbel (1997) provided evidence that in fact linear Engel curves provide a poor fit for many goods. They therefore consider Engel curves with an additional expenditure term,
\[ w_g = A_g(p) + B_g(p) \ln \left\{ \frac{m}{a(p)} \right\} + C_g(p) f \left\{ \frac{m}{a(p)} \right\} \]
(5)
where \( A_g(p) \), \( B_g(p) \), and \( C_g(p) \) are differentiable functions of prices and \( f \left\{ m/a(p) \right\} \) is a differentiable function of real expenditures. \( a(p) \) is the same translog price index as in the AIDS model.

Lewbel (1991), building on the work of Gorman (1981), showed that any exactly aggregable demand system must have the form of (5) and that additional terms containing functions of \( m/a(p) \) are not theoretically possible if exact aggregability is to hold. Lewbel (1991) termed demand systems of the form (5) as having rank three because there are three linearly independent terms; Gorman (1981) showed that the maximum rank of demand systems is three if exact aggregability is to hold. In contrast, the AIDS model has rank two.

Banks, Blundell, and Lewbel (1997) further showed that the only indirect utility functions consistent with rank-three expenditure-share equations like (5) have the form
\[
\ln v(p, m) = \left[ \left\{ \frac{\ln m - \ln a(p)}{b(p)} \right\}^{-1} + \lambda(p) \right]^{-1}
\]
where in their application they use the same definitions for \( a(p) \) and \( b(p) \) as in the AIDS model and they take \( \lambda(p) = \sum_g \lambda_g \ln p_g \) with \( \sum_g \lambda_g = 0 \). As with the restrictions implied by economic theory for the AIDS model, demandsys imposes the restriction that the \( \lambda \)'s sum to zero. Also notice that if we restrict \( \lambda_g = 0 \) for all \( g \), we are left with the indirect utility function for the AIDS model shown in (4).

Solving for \( \ln m \) yields the cost function
\[
\ln e(p, u) = \frac{b(p)}{\ln v - \lambda(p)} + \ln a(p)
\]

Applying Shephard’s lemma, we have the expenditure-share functions
\[
w_g(p, m; \alpha, \Gamma, \Lambda) = \alpha_g + \sum_h \gamma_{gh} \ln p_h + \beta_g \ln \left\{ \frac{m}{a(p)} \right\} + \frac{\lambda_g}{b(p)} \left[ \ln \left\{ \frac{m}{a(p)} \right\} \right]^2
\]
This equation also makes clear our earlier claim that if \( \lambda_g = 0 \) for all \( g \) then the QUAIDS model reduces to the AIDS model; see (3).
Controlling for demographic factors

demandsys allows you to choose between two different methods of incorporating demographic characteristics into AIDS and QUAIDS. The first method is the same as we have used with demand systems we have already covered: Pollak and Wales’s (1978) demographic translation. An added benefit of translation is that it allows us to introduce constant terms that might be interpreted as subsistence or committed quantities. A possible downside to demographic translation is that the intuition behind how demographic variables affect expenditure shares may not strike all users as entirely lucid. Essentially, demographic variables alter the level of subsistence for each household or observation. However, as we cautioned above in our discussion of the generalized translog model, there are no restrictions to force $\sum_g p_{gi} (\mu_g + \nu'_g d_i) \leq m_i$, nor are there any restrictions to force $(\mu_g + \nu'_g d_i) \geq 0$.

The second method of incorporating demographics that demandsys implements is based on Ray (1983) and Poi (2002) and is known as demographic scaling. This method explicitly allows for demographic variables to have “scale” and “composition” effects on expenditures as we explain below. There are two possible downsides to demographic scaling. First, it does not allow one to incorporate subsistence quantities into the demand system. While one may be tempted to include a constant term in the list of demographic variables because that is essentially what demographic translation does to incorporate subsistence quantities, the resulting parameter estimates do not have such a clearcut interpretation. Second, in our experience, models that incorporate demographic scaling sometimes take many iterations to converge. Specifying fewer demographic characteristics may help achieve convergence. We think this method is more intuitive than demographic translation, but either method should prove adequate for most applications.

Demographic translation

We have already discussed demographic translation in the context of the LES and the translog and generalized translog demand systems, so we will not show the details here. In Methods and formulas, we show the formula for the expenditure shares for the generalized QUAIDS model, and we discuss the parameter restrictions that give rise to the generalized AIDS model and their nongeneralized variants.

demandsys provides for four models in the AIDS family that can incorporate demographic variables via demographic translation: aids, quaids, gaids, and gquaids. The first two models do not allow for committed quantities, while the latter two represent generalized variants that do. The arguments in Pollak and Wales (1992, 75) suggest that the generalized variants are to be preferred because doing so ensures that a constant term is included in each demand equation (compare with share equation). Whether the constants allow for a subsistence interpretation is another matter, and in [R] demandsys postestimation, we provide an example of how to see whether that interpretation holds.

Demographic scaling

demandsys also implements the demographic scaling method used by Ray (1983) for the AIDS model and extended by Poi (2002) to the QUAIDS model. For each consumer, we again have a $D$-length vector of demographic characteristics $d$. Suppose $d$ is the number of children in a household and we are modeling expenditures on household goods, rent, utilities, and food. Then the household’s expenditures will presumably increase by virtue of there being more members in the household; call this the scale effect. Second, the consumption pattern of the household may shift as more money is spent on items consumed by children versus adults; think of that as a composition effect. Ray (1983) does this by writing the expenditure function as

$$e(p, d, u) = e^R(p, u) \bar{m}_0(d) \phi(p, d, u)$$
Here \( e^R(p, u) \) is the expenditure function for a reference household, where \( d = 0 \). \( \bar{m}_0(d) \) increases total expenditure of the household and accounts for the scale effect. \( \phi(p, d, u) \) controls for composition effects. For AIDS, Ray (1983) controlled for both of these effects by taking

\[
\bar{m}_0(d) = 1 + \rho' d
\]

for \( G \times 1 \) parameter vector \( \rho \) and

\[
\phi(p, d, u) = \exp \left\{ u \prod_i p_i^{\beta_g} \left( \prod_g \eta_g d - 1 \right) \right\}
\]

where \( \eta_g \) is the \( g \)th row of \( G \times D \) parameter matrix \( H \). In Methods and formulas, we show that the expenditure-share functions for the AIDS model with demographic scaling are

\[
w_g(p, m, d; \alpha_0, \alpha, \beta, \Gamma, \lambda, \rho, H) = \alpha_g + \sum_h \gamma_{gh} \ln p_h + (\beta_g + \eta_g d) \ln \left( \frac{m}{\bar{m}_0(d; \rho) a(p)} \right)
\]

Basically, the function \( \bar{m}_0(d; \rho) \) acts to reduce the effective amount of money available for spending. If \( d \) represents a set of indicator variables for regions of a country, then \( \bar{m}_0(d; \rho) \) is controlling for the cost of living in different regions of the country. The function \( \phi(p, d, u) \) is to make each good’s expenditure expansion path a function of the household’s demographics. Rather than all households increasing their expenditure share of good \( g \) by the same \( \beta_g \) in response to a change in \( m \), now their responses can vary by household composition.

For the QUAIDS model, we show in Methods and formulas that an appropriate choice for \( \phi(p, d, u) \) leads to expenditure share equations

\[
w_g(p, m, d; \alpha_0, \alpha, \beta, \Gamma, \lambda, \rho, H) = \alpha_g + \sum_h \gamma_{gh} \ln p_h + (\beta_g + \eta_g d) \ln \left( \frac{m}{\bar{m}_0(d; \rho) a(p)} \right) + \frac{\lambda_g}{b(p) c(p, d)} \left[ \ln \left( \frac{m}{\bar{m}_0(d; \rho) a(p)} \right) \right]^2
\]

The models aids and quaids allow for demographic scaling. To request demographic scaling, rather than demographic translation, we specify the scaling suboption of the demographics() option, as the next example shows.
Example 5

Here we fit a QUAIDS model to our food consumption data, controlling for the numbers of children and adults in each household. We request that demographic scaling be used rather than the default demographic translation.

```
. use https://www.stata-press.com/data/r18/food_consumption
(Food consumption)
. demandsys quaids w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults, scaling)
> labels("dairy proteins fruitveg flours misc")
> expenditure(expfd) elasticities(expenditure) nolog nocoefftable
```

Calculating NLS estimates ...  
Calculating FGNLS estimates ...  
FGNLS iteration 2 ...  
FGNLS iteration 3 ...  
FGNLS iteration 4 ...  

```
Quadratic AIDS model
Expenditure variable: expfd
Number of obs = 4,160
Number of goods = 5
Price index constant = 1.615

Demographic method: Scaling
Number of demographics = 2

Centered R2 of model for
dairy = 0.0453
proteins = 0.1530
fruitveg = 0.0949
flours = 0.1813
misc = 0.1726

Calculating expenditure elasticities ...
```

| Expenditure | Elasticity | Std. err. | z    | P>|z| | [95% conf. interval] |
|-------------|-----------|-----------|------|-----|----------------------|
| dairy       | .8918188  | .0176252  | 50.60| 0.000 | .857274 .9263636    |
| proteins    | 1.077283  | .0117431  | 91.74| 0.000 | 1.054267 1.100299   |
| fruitveg    | 1.043209  | .014428   | 72.30| 0.000 | 1.01493 1.071487    |
| flours      | .8409016  | .0162384  | 51.78| 0.000 | .809074 .8727284    |
| misc        | .9460643  | .0189172  | 50.01| 0.000 | .9089873 .9831414   |

Note: Elasticities are calculated at prices’, demographic variables’, and expenditure means.

```
. estimates store quaids_s
```

Because the QUAIDS model with demographic scaling for a 5-good system with 2 demographic variables has 32 estimated parameters, we instructed demandsys to report expenditure elasticities rather than the estimated parameters. We draw your attention to this part of the command:

```
demographics(n_kids n_adults, scaling)
```

Notice that we specified the suboption scaling. Had we not included this suboption, then demandsys would have used demographic translation instead. Finally, we asked Stata to store these estimation results as quaids_s.

The header of the output shows that demandsys fit a QUAIDS model as requested and that our demographic variables were incorporated using demographic scaling. Take note of the line that reads

```
Price index constant = 1.615
```

In our discussion of the basic AIDS model, we discussed the price index $a(p)$ that includes a constant term $\alpha_0$. We discussed that when all prices are equal to one, then $\exp(\alpha_0)$ can be interpreted as the
level of expenditure needed for minimal subsistence. \texttt{demandsys} looked at our expenditure variable \texttt{expfd} and found that the minimum value within the estimation sample is $5.03. It therefore set $a_0 = \ln 5.03 = 1.615$. You can specify your own value for $a_0$ by using the \texttt{piconstant()} option, which stands for price index constant.

The QUAIDS model nests the AIDS model, so we can easily use a likelihood-ratio test to see whether the quadratic terms in the expenditure-share equations contribute to the explanatory power of the model. We include \texttt{quietly} to fit the corresponding \texttt{aids} model without displaying the results and store the estimation results:

\begin{verbatim}
. quietly demandsys aids w_dairy w_proteins w_fruitveg w_flours w_misc,
>   >   > prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
>   >   > demographics(n_kids n_adults, scaling)
>   >   > labels("dairy proteins fruitveg flours misc") expenditure(expfd)
> . estimates store aids_s
\end{verbatim}

Because we specified \texttt{quietly}, we did not request expenditure elasticities. Doing so would have required Stata to do more computations that we would not have seen.

We now perform the likelihood-ratio test:

\begin{verbatim}
. lrtest quaids_s aids_s
Likelihood-ratio test
Assumption: aids_s nested within quaids_s
LR chi2(4) = 36.58
Prob > chi2 = 0.0000
\end{verbatim}

In this example, we reject the null hypothesis that the four free $\lambda$ parameters are jointly equal to zero. Hence, the use of the QUAIDS model instead of the linear AIDS model is justified here. (Recall that to satisfy the adding-up constraint, we impose $\sum g \lambda_g = 0$ so that in our example the fifth parameter is determined by the first four and is not estimated.)

When one conducts tests of one model versus another using the likelihood-ratio principle, the more restrictive model must be nested within the more general model. For example, each of the AIDS models implemented here is nested within the corresponding QUAIDS models, and the AIDS model with demographic translation is nested within the generalized AIDS model. But it would make no sense to fit a generalized AIDS model and compare it with a generalized translog model because one is not a restricted variant of the other. In \textit{Methods and formulas}, we describe the most flexible variant within each class of demand system, and we describe the parameter restrictions that give rise to less flexible variants; using \texttt{lrtest} to choose among members within the same class is valid.

Also, for a likelihood-ratio test to be valid, the model specifications—apart from the component we are testing—must be identical. That is, the two models must include the same estimation sample, the same goods, and the same demographic specification, including the method by which demographic variables are introduced for AIDS and QUAIDS models. Moreover, for AIDS and QUAIDS models, you must use the same value for the price index constant $a_0$. If you do not specify the \texttt{piconstant()} option, \texttt{demandsys} will use the same value, assuming you use the same estimation sample.

\section*{Example 6}

In this example, we will fit a generalized QUAIDS model, again controlling for the number of children and adults. Because we are fitting a generalized model, the demographics will be incorporated via demographic translation. To demonstrate the use of the \texttt{piconstant()} option, we will specify $a_0 = 3$. 

. use https://www.stata-press.com/data/r18/food_consumption
(Food consumption)
. demandsys gquais g w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults) piconstant(3) expenditure(expfd) nolog
Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
Generalized quadratic AIDS model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5
Price index constant = 3
Demographic method: Translating Number of demographics = 2
Centered R2 of model for
Good 1 = 0.0486
Good 2 = 0.1596
Good 3 = 0.0986
Good 4 = 0.1893
Good 5 = 0.1715

| alpha | Estimate | Std. err. | z | P>|z| | [95% conf. interval] |
|-------|----------|-----------|---|-----|------------------------|
| Good 1 | 0.1911178 | 0.0084914 | 22.51 | 0.000 | 0.1744748 - 0.2077607 |
| Good 2 | 0.2916653 | 0.0180615 | 16.15 | 0.000 | 0.2562655 - 0.3270651 |
| Good 3 | 0.3606389 | 0.0168958 | 21.34 | 0.000 | 0.3275236 - 0.3937541 |
| Good 4 | 0.0716379 | 0.0045291 | 15.82 | 0.000 | 0.062761 - 0.0805149 |

| beta | Good | Estimate | Std. err. | z | P>|z| | [95% conf. interval] |
|-------|------|----------|-----------|---|-----|------------------------|
| Good 1 | -0.123296 | 0.0075589 | -1.63 | 0.103 | -0.271448 - 0.024857 |
| Good 2 | 0.0007155 | 0.0191227 | 0.04 | 0.970 | -0.0367642 - 0.0381952 |
| Good 3 | -0.0083997 | 0.0137386 | -0.61 | 0.541 | -0.0353268 - 0.0185274 |
| Good 4 | 0.0118892 | 0.0045299 | 2.62 | 0.009 | 0.0030106 - 0.0207677 |

| Gamma | Good_g# | Good_h | Estimate | Std. err. | z | P>|z| | [95% conf. interval] |
|-------|--------|--------|----------|-----------|---|-----|------------------------|
| Good 1 | 1#1 | 0.0381355 | 0.0030825 | 12.37 | 0.000 | 0.032094 - 0.044177 |
| Good 2 | 1#2 | -0.0326578 | 0.0029964 | -10.90 | 0.000 | -0.0385305 - 0.026785 |
| Good 3 | 1#3 | -0.0106876 | 0.0026841 | -3.98 | 0.000 | -0.0159483 - 0.0054269 |
| Good 4 | 1#4 | 0.0021791 | 0.0012889 | 1.69 | 0.091 | -0.000347 - 0.0047052 |
| Good 2 | 2#2 | 0.1579944 | 0.0060979 | 25.91 | 0.000 | 0.1460428 - 0.169946 |
| Good 3 | 2#3 | -0.0694334 | 0.0044839 | -15.49 | 0.000 | -0.0782216 - 0.0606452 |
| Good 4 | 2#4 | -0.0240681 | 0.0020371 | -11.82 | 0.000 | -0.0280606 - 0.0200755 |
| Good 3 | 3#3 | 0.0923088 | 0.005649 | 16.34 | 0.000 | 0.0812371 - 0.1033806 |
| Good 4 | 3#4 | -0.0001376 | 0.0017618 | -0.08 | 0.938 | -0.0035908 - 0.0033156 |
| Good 4 | 4#4 | 0.0313475 | 0.0023698 | 13.23 | 0.000 | 0.0267027 - 0.0359922 |

| lambda | Good | Estimate | Std. err. | z | P>|z| | [95% conf. interval] |
|--------|------|----------|-----------|---|-----|------------------------|
| Good 1 | 0.0043566 | 0.0028362 | 1.54 | 0.125 | -0.0012022 - 0.0099154 |
| Good 2 | 0.0005707 | 0.0059707 | 0.10 | 0.924 | -0.0111316 - 0.0122729 |
| Good 3 | -0.006845 | 0.004352 | -1.57 | 0.116 | -0.0153747 - 0.0016848 |
| Good 4 | -0.0001594 | 0.0017033 | -0.09 | 0.925 | -0.0034979 - 0.003179 |
| mu | Good | Estimate | Std. err. | z  | P>|z| | [95% conf. interval] |
|----|------|----------|-----------|----|-------|-----------------------------|
|    | 1    | 1.06405  | .2097966  | 5.07 | 0.000 | .6628563 - 1.475244 |
|    | 2    | .6058134 | .452923   | 1.34 | 0.181 | -.2818993 - 1.493526 |
|    | 3    | 2.146931 | .6221706  | 3.24 | 0.001 | .8491008 - 3.444762 |
|    | 4    | .3204353 | .0685528  | 4.67 | 0.000 | .1860742 - 0.547964 |
|    | 5    | .3588502 | .0854053  | 4.20 | 0.000 | .1914589 - 0.526214 |

| Nu | Good | c.n_kids | Estimate | Std. err. | z   | P>|z| | [95% conf. interval] |
|----|------|----------|----------|-----------|-----|-------|-----------------------------|
|    | 1    | .2399127 | .1953618 | -1.23     | 0.219 | -.6228148 - 0.142983 |
|    | 2    | -1.17665 | .1938486 | -6.07     | 0.000 | -1.556589 - 0.7967166 |
|    | 3    | -2.60498 | .3121795 | -8.34     | 0.000 | -3.216844 - 1.993123 |
|    | 4    | .1120979 | .0416122 | 2.69      | 0.007 | .0305396 - 0.1936563 |
|    | 5    | -.0296108| .0541832 | -0.55     | 0.585 | -.1358079 - 0.0765863 |

| Nu | Good | c.n_adults | Estimate | Std. err. | z   | P>|z| | [95% conf. interval] |
|----|------|------------|----------|-----------|-----|-------|-----------------------------|
|    | 1    | -1.271932  | .2071674 | -6.14     | 0.000 | -1.677972 - 0.8658909 |
|    | 2    | -1.278973  | .2249348 | -5.69     | 0.000 | -1.719837 - 0.8381089 |
|    | 3    | -2.698807  | .3809636 | -7.08     | 0.000 | -3.445482 - 1.952132 |
|    | 4    | -.056265   | .0483113 | -1.16     | 0.244 | -.1509535 - 0.0384234 |
|    | 5    | -.269388   | .0569314 | -4.73     | 0.000 | -.3809716 - 0.1576845 |

Note: **alpha** estimates are constant terms in expenditure-share equations and also appear in the price index.

Note: **beta** estimates measure sensitivity of expenditure shares to changes in deflated expenditure and also appear in the price aggregator function.

Note: **Gamma** estimates measure the effect of price on expenditures shares across goods.

Note: **Lambda** estimates measure the sensitivity of expenditure shares to changes in deflated expenditure.

Note: **Nu** estimates measure the effect of demographic variables on expenditure shares of each good.

Normalized parameters

|        | Estimate | Std. err. | z  | P>|z| | [95% conf. interval] |
|--------|----------|-----------|----|-------|-----------------------------|
| alpha  | Good     |           |    |        |                             |
|        | 5        | .0849402  | .0049286 | 17.23 | 0.000 | .0752803 - 0.0946001 |

| beta   | Good     |           |    |        |                             |
|        | 5        | .0081246  | .0050562 | 1.61  | 0.108 | -.0017854 - 0.0180345 |

| Gamma  | Good_g# | Good_h    |           |    |        |                             | |
|        | 1#5     |           | .0030308  | .0014661 | 2.07  | 0.039 | .0001572 - 0.0059044 |
|        | 2#5     |           | -.0318352 | .0023155 | -13.75 | 0.000 | -.0363734 - -.0272969 |
|        | 3#5     |           | -.0120502 | .0019986 | -6.03  | 0.000 | -.0159674 - -.008133 |
|        | 4#5     |           | -.0093209 | .0011512 | -8.10  | 0.000 | -.0115772 - -.0076046 |

| lambda | Good     |           |    |        |                             |
|        | 5        | .0020771  | .0019631 | 1.06  | 0.290 | -.0017705 - 0.0059247 |
Note: \texttt{alpha} estimates sum to 1.
Note: \texttt{beta} estimates sum to 0.
Note: \texttt{Gamma} estimates sum to 0 over goods.
Note: \texttt{lambda} estimates sum to 0 over goods.

Shares: \texttt{w\_dairy w\_proteins w\_fruitveg w\_flours w\_misc}
Prices: \texttt{p\_dairy p\_proteins p\_fruitveg p\_flours p\_misc}
Expenditure: \texttt{expfd}
Demographics: \texttt{n\_kids n\_adults}

We see in the header of the output that \texttt{demandsys} did set the price index constant $\alpha_0 = 3$ as per our request.

The $\mu$ parameter estimates are all greater than zero, but it is difficult to interpret them in isolation. Because we control for the number of children and the number of adults in each household, the $\mu$ parameters themselves would represent subsistence expenditure shares for a hypothetical household with neither any children nor any adults! In a somewhat technical example in \texttt{[R demandsys postestimation]}, we continue this example and show how to recover the estimated $\mu$ and $N$ parameters and then use those estimates to calculate the actual subsistence shares for each household. We then compare the calculated subsistence expenditures with actual expenditures to see whether the subsistence interpretation even holds.

\section*{Epilogue}
\texttt{demandsys} provides easy access to some of the most commonly used demand systems and their extensions. You can control for demographic characteristics. Options and postestimation commands make obtaining elasticities trivial.

Despite what may appear to be a thorough implementation, we have only scratched the surface. \texttt{demandsys} is designed for large cross-sectional datasets. The Rotterdam model of Theil (1965) and Barten (1966) and its extensions are widely used in the analysis of time-series data.

A frequent concern is that datasets often have expenditure shares that are zero for some households. Deaton and Irish (1984) is an early contribution to the literature on how to deal with zero shares. Heien and Wessells (1990) proposed a two-step Heckman estimation procedure, but it has been shown to lead to inconsistent estimates (Vermeulen 2001). Tauchmann (2010) provides an alternative Heckman-type estimator that is consistent. Shonkwiler and Yen (1999) proposed an alternative estimator for zero shares. See also Yen and Lin (2006) for yet another approach and Meyerhoefer, Ranney, and Sahn (2005), who develop an estimator that controls for censoring with panel data. More recently, Caro et al. (2021) have developed the community-contributed Stata command \texttt{quaidsce}, which provides an implementation of Schonkwiler and Yen’s estimator.

All our estimators treat price as an exogenous variable. There are multiple reasons why one may want to allow for endogenous prices. In the classical supply and demand setting, which may occur for example in small villages, there are a small number of buyers and sellers, so the decisions that buyers make will influence prices, causing them to be endogenous in expenditure-share equations. A more pertinent concern is that prices may be measured with error. Consumption is often collected by survey data, and consumers are often not able to recall the exact price paid for an item. Unobserved quality differences also cause prices to be measured with error, especially when the goods being modeled are aggregates of individual items. For example, you may purchase filet mignon every week, while I purchase economy-grade ground beef. Both items are lumped together as “meat” even though, arguably, the two products are not even close substitutes; Nelson (1991) considers this type of problem. Spatial patterns may also make prices endogenous; see Case (1991) as an example.
Lecocq and Robin (2015) provide a community-contributed command called `aidsills` that allows one to fit an AIDS model with endogenous variables. Their command, however, provides the AIDS and QUAIDS models with only one method of including demographic variables that is similar to the demographic translation approach used here.

We have presented the QUAIDS model as somewhat of an endpoint because it has rank 3, which Gorman (1981) and Lewbel (1991) showed is the maximum rank of an exactly aggregable demand system. Lewbel and Pendakur (2009) develop what they call a theory of “implicit Marshallian demands” that are not within the class of demand equations considered by Gorman and Lewbel and hence can have any rank. Lewbel and Pendakur propose a demand system they call the exact affine Stone index that allows for interactions between prices and expenditures and allows for much more flexible Engel curves. Their empirical application shows that observed demands often deviate from those implied by demands that are linear or quadratic in income. Moreover, their model can be fit using the generalized method of moments, so the possibility of controlling for price endogeneity exists.

### Stored results

`demandsys` stores the following in `e()`:

Scalars

- `e(N)` number of observations
- `e(k)` number of parameters
- `e(k_eq)` number of equations in `e(b)`
- `e(n_demos)` number of demographic factors
- `e(n_goods)` number of goods
- `e(mss_#)` model sum of squares for the `#`th equation
- `e(rss_#)` residual sum of squares for the `#`th equation
- `e(tss_#)` total sum of squares for the `#`th equation
- `e(r2_#)` $R^2$ for the `#`th equation
- `e(ll)` Gaussian log likelihood
- `e(N_clust)` number of clusters
- `e(piconstant)` number of constant term
- `e(rank)` rank of `e(V)`
- `e(ic)` number of iterations
- `e(converged)` 1 if converged, 0 otherwise

Macros

- `e(cmd)` `demandsys`
- `e(cmdline)` command as typed
- `e(wtype)` weight type
- `e(wexp)` weight expression
- `e(model)` demand model
- `e(model_eval)` demand evaluator
- `e(title)` title in estimation output
- `e(clustvar)` name of cluster variable
- `e(vce)` `vcetype` specified in `vce()`
- `e(vcetype)` title used to label Std. err.
- `e(demo_type)` demographic variable specification
- `e(demos)` demographic variables
- `e(has_demos)` 1 if demographic variables are used, 0 otherwise
- `e(expenditures)` expenditures variable
- `e(prices)` price variables
- `e(shares)` expenditure-share variables
- `e(r2_type)` $R^2$ type computed
- `e(p_index)` whether model has price index
- `e(properties)` `b V`
- `e(estat_cmd)` program used to implement `estat`
- `e(predict)` program used to implement `predict`
- `e(marginsok)` predictions allowed by `margins`
In addition to the above, the following is stored in \( r() \):

<table>
<thead>
<tr>
<th>Matrices</th>
</tr>
</thead>
<tbody>
<tr>
<td>( e(b) )</td>
</tr>
<tr>
<td>( e(Sigma) )</td>
</tr>
<tr>
<td>( e(V) )</td>
</tr>
<tr>
<td>( e(b_normalized) )</td>
</tr>
<tr>
<td>( e(V_normalized) )</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>( e(sample) )</td>
</tr>
</tbody>
</table>

Note that results stored in \( r() \) are updated when the command is replayed and will be replaced when any \( r \)-class command is run after the estimation command.

## Methods and formulas

Methods and formulas are presented under the following headings:

- **Introduction**
- LES
- Generalized translog
- QUAI\$DS with demographic translation
- QUAI\$DS with demographic scaling
- Estimation

### Introduction

As in the text in *Remarks and examples*, we continue to use subscript \( i = 1, \ldots, N \) to index observations, \( g = 1, \ldots, G \) to index goods, and \( d = 1, \ldots, D \) to index demographic variables. In formulas where we must use double summations across goods, we use \( h = 1, \ldots, G \) and \( j = 1, \ldots, G \) to index goods. We omit the observation subscript for most of this discussion; all variables and expressions without \( i \) subscripts implicitly refer to the \( i \)th observation. Only when we sum across observations do we make the \( i \) subscript explicit.

Let \( w_g \) be the expenditure share for good \( g \) defined as \( w_g \equiv p_g q_g / m \), where \( p_g \) is the price of good \( g \), \( q_g \) is the quantity of good \( g \) consumed, and \( m \) denotes total expenditure on all the goods in the system being modeled. We use \( \mathbf{w}, \mathbf{p}, \) and \( \mathbf{q} \) to represent the \( G \times 1 \) vectors of expenditure shares, prices, and quantities for observation \( i \). Let \( \mathbf{d} \) represent the \( D \times 1 \) vector of demographic characteristics.

We use the notation \( w_g \) to denote the observed expenditure share for good \( g \) for observation \( i \). We use the notation \( w_g(p, m; \theta) \) to represent an expenditure-share function where we will replace generic parameter vector \( \theta \) with each model’s parameter vectors and matrices. We adorn direct and indirect utility functions and expenditure functions analogously.

We use the notation \( E^g_h \) to denote the uncompensated (Marshallian) elasticity of the quantity of good \( g \) with respect to the price of good \( h \). We use the notation \( E^g \) to note the expenditure elasticity of good \( g \). Then, given the definition of \( w_g \), one can easily verify the following facts that are useful in obtaining the formulas for the elasticities:
The Slutsky equation can be written in elasticity form to obtain the compensated (Hicksian) elasticity of the quantity of good \( g \) with respect to the price of good \( h \): 
\[ \hat{E}_{gh}^g = E^g_w w_h + E^g_h, \]
where \( \hat{w}_h \) is the predicted expenditure share for good \( h \). We discuss elasticities in more detail, including why we use \( \hat{w}_h \) rather than \( w_h \), in \([R]\) demandsys postestimation.

For each demand system, we provide the equations for the \( g \)th expenditure share, the direct utility function (if available), the indirect utility function, the expenditure function (if available), and the elasticities of the quantity of good \( g \) with respect to expenditure and the price of good \( h \). Predicted values of the first four items are available via \texttt{predict}; the elasticities are available via \texttt{estat elasticities}. When one demand system is nested within a more general demand system, we provide the equations for only the more general demand system and note what parameter restrictions would result in the less general demand system. Moreover, we include demographic variables in our exposition; versions of models without demographic variables result when the corresponding parameter vectors and matrices are set to zero. We also note what parameter restrictions are imposed at estimation to ensure adding up, homogeneity, and Slutsky symmetry.

**LES**

Let \( c_g = \mu_g + \nu_g d \), where \( \nu_g \) is the \( g \)th row of \( G \times D \) parameter matrix \( N \). The LES begins with the utility function
\[ u(q,d;\beta,\mu,N) = \prod_g (q_g - c_g)^{\beta_g} \]
Utility maximization yields the expenditure-share equations
\[ w_g(p,m,d;\beta,\mu,N) = \frac{p_g c_g}{m} + \beta_g \left( 1 - \sum_h p_h c_h \right) \]
To enforce adding up, we impose the constraint \( \sum_g \beta_g = 1 \). Slutsky symmetry and homogeneity are implied by the functional form of the LES model. Straightforward algebra shows the indirect utility function is
\[ v(p,m,d;\beta,\mu,N) = \prod_g \frac{p_g^{\beta_g}}{\beta_g} \left( m - \sum_g p_g c_g \right) \]
and inverting provides the expenditure function
\[ e(p,u,d;\beta,\mu,N) = u \prod_g \frac{p_g^{\beta_g}}{\beta_g} + \sum_g p_g c_g \]
The expenditure and uncompensated price elasticities are given by

\[
E^g = \frac{\beta_g m}{p_g c_g + \beta_g (m - \sum_h p_h c_h)}
\]

\[
E^g_h = \begin{cases} 
  \frac{p_g c_g (1 - \beta_g)}{p_g c_g + \beta_g (m - \sum_h p_h c_h)} - 1 & g = h \\
  \frac{-\beta_g p_h c_h}{p_g c_g + \beta_g (m - \sum_h p_h c_h)} & g \neq h 
\end{cases}
\]

The Cobb–Douglas demand system results if we set \( \mu = 0 \). Models without demographics result if we set \( N = 0 \).

**Generalized translog**

Continuing to use \( c_g = \mu_g + \nu_g d \), we can obtain the generalized translog expenditure-share equations with demographics by first obtaining the regular translog expenditure-share equations and then applying translation with both a constant term and demographic characteristics to those expenditure-share equations to obtain

\[
w_g(p, m, d; \alpha, \Gamma, \mu, N) = \frac{p_g c_g}{m} + \frac{\alpha_g + \sum_h \gamma_{gh} \ln \left( \frac{p_h}{\overline{m}} \right)}{m} + \frac{1}{m} + \sum_h \sum_j \gamma_{hj} \ln \left( \frac{p_j}{\overline{m}} \right)
\]

\[
\overline{m} = m - \sum_j p_j c_j
\]

The normalization \( \sum_g \alpha_g = 1 \) ensures the expenditure shares sum to 1, and Slutsky symmetry requires that \( \gamma_{jh} = \gamma_{hj} \). Homogeneity is implied by the functional form of the expenditure-share equation.

Noting that the translated indirect utility function has the same form as the untranslated version except with \( \overline{m} \) replacing \( m \), we have the indirect utility function

\[
\ln v(p, m, d; \alpha, \Gamma, \mu, N) = -\sum_g \alpha_g \ln \left( \frac{p_g}{\overline{m}} \right) - \frac{1}{2} \sum_g \sum_h \gamma_{gh} \ln \left( \frac{p_g}{\overline{m}} \right) \ln \left( \frac{p_h}{\overline{m}} \right)
\]

A limitation of the generalized translog model is that we cannot solve the indirect utility function for a closed-form expression for the cost function, nor does a closed-form expression for the direct utility function exist. (The direct utility function described in Christensen, Jorgenson, and Lau [1975] is not the utility function that is implied by their indirect utility function.)

Demand systems with translated demographics and committed quantities tend to produce elasticity formulas that are rather long. Omitting function arguments for clarity, we begin by writing the expenditure-share equation for good \( g \) as

\[
w_g = A_g + B_g \times \frac{N_g}{D_g}
\]
where

\[ A_g = \frac{p_g c_g}{m} \]
\[ B_g = \frac{\bar{m}}{m} = 1 - \frac{\sum_h p_h c_h}{m} \]
\[ N_g = \alpha_g + \sum_h \gamma_{gh} \ln p_h - \ln(m - \sum_h p_h c_h) \sum_h \gamma_{gh} \]
\[ D_g = 1 + \sum_j \sum_h \gamma_{jh} \ln p_h - \ln(m - \sum_h p_h c_h) \sum_j \sum_h \gamma_{jh} \]

Applying the chain and quotient rules of elementary calculus, we have

\[
\frac{\partial w_g}{\partial m} = \frac{\partial A_g}{\partial m} + B_g \left( \frac{D_g \frac{\partial N_g}{\partial m} - N_g \frac{\partial D_g}{\partial m}}{D_g^2} \right) + \frac{N_g \frac{\partial B_g}{\partial m}}{D_g} \frac{\partial D_g}{\partial m}
\]

where

\[
\frac{\partial A_g}{\partial m} = -\frac{p_g c_g}{m^2}
\]
\[
\frac{\partial B_g}{\partial m} = \frac{\sum_h p_h c_h}{m^2}
\]
\[
\frac{\partial N_g}{\partial m} = -\frac{1}{m - \sum_h p_h c_h} \sum_h \gamma_{gh}
\]
\[
\frac{\partial D_g}{\partial m} = -\frac{1}{m - \sum_h p_h c_h} \sum_j \sum_h \gamma_{jh}
\]

Given \( \frac{\partial w_g}{\partial m} \), the expenditure elasticity of good \( g \) is calculated as \( E^g = (m/\hat{w}_g)(\partial w_g/\partial m) + 1 \). We also have

\[
\frac{\partial w_g}{\partial p_h} = \frac{\partial A_g}{\partial p_h} + B_g \left( \frac{D_g \frac{\partial N_g}{\partial p_h} - N_g \frac{\partial D_g}{\partial p_h}}{D_g^2} \right) + \frac{N_g \frac{\partial B_g}{\partial p_h}}{D_g} \frac{\partial D_g}{\partial p_h}
\]

where

\[
\frac{\partial A_g}{\partial p_h} = \begin{cases} c_g/m & h = g \\ 0 & h \neq g \end{cases}
\]
\[
\frac{\partial B_g}{\partial p_h} = -\frac{c_g}{m}
\]
\[
\frac{\partial N_g}{\partial p_h} = \frac{\gamma_{gh}}{c_h} + \frac{c_h}{m - \sum_j p_j c_j} \sum_j \gamma_{gh}
\]
\[
\frac{\partial D_g}{\partial p_h} = \frac{1}{p_h} \sum_j \gamma_{jh} + \frac{c_h}{m - \sum_j p_j c_j} \sum_{jk} \gamma_{jk}
\]

Given \( \frac{\partial w_g}{\partial p_h} \), the uncompensated price elasticity of good \( g \) with respect to price \( h \) is calculated as \( E^g_h = (p_h/w_g)(\partial w_g/\partial p_h) + \mathbb{I}_{h=g} \), where \( \mathbb{I}_x \) is the indicator function that takes on the value one if \( x \) is true and zero otherwise.

The basic translog results if we set \( \mu = 0 \), and models without demographics have \( N = 0 \).
QUAIDS with demographic translation

Translating Banks, Blundell, and Lewbel’s (1997) indirect utility function, we have

\[
\ln V(p, m, \alpha, \beta, \Gamma, \lambda, \mu, N) = \left( \frac{\ln m - \ln a(p)}{b(p)} \right)^{-1} + \lambda(p) \right)^{-1}
\]

\[
\ln a(p) = \alpha_0 + \sum g \alpha_g \ln p_g + \frac{1}{2} \sum g \sum h \gamma_{gh} \ln p_g \ln p_h
\]

\[
b(p) = \prod_g p_{\beta_g}^g
\]

\[
\lambda(p) = \sum g \lambda_g \ln p_g
\]

where \(\alpha_0\) is the value specified in the `piconstant()` option. Solving for \(m\) and recalling that \(m = \bar{m} + \sum_g p_g c_g\) for \(c_g = \mu_g + \nu_g d\), we have the expenditure function

\[
e(p, u, d; \alpha_0, \alpha, \beta, \Gamma, \lambda, \mu, N) = \exp \left\{ \frac{b(p) \ln u}{1 - \lambda(p) \ln u} + \ln a(p) \right\} + \sum g p_g c_g
\]

(6)

Applying Shepherd’s lemma yields the expenditure-share equations

\[
w_g(p, m, d; \alpha_0, \alpha, \beta, \Gamma, \lambda, \mu, N) = \]

\[
= \frac{p_g c_g}{m} + \frac{\bar{m}}{m} \left( \alpha_g + \sum h \gamma_{gh} \ln p_h + \beta_g \ln \left\{ \frac{\bar{m}}{a(p)} \right\} + \frac{\lambda_g}{b(p)} \left[ \ln \left\{ \frac{\bar{m}}{a(p)} \right\} \right]^2 \right)
\]

(7)

To obtain the expenditure elasticities, we first write (7) as

\[
w_g = R_g + S_g \times T_g
\]

(8)

where

\[
R_g = \frac{p_g c_g}{m} \quad S_g = \frac{\bar{m}}{m}
\]

\[
T_g = \alpha_g + \sum h \gamma_{gh} \ln p_h + \beta_g \ln \left\{ \frac{\bar{m}}{a(p)} \right\} + \frac{\lambda_g}{b(p)} \left[ \ln \left\{ \frac{\bar{m}}{a(p)} \right\} \right]^2
\]

Taking the derivative with respect to \(\ln m\), we have

\[
\frac{\partial w_g}{\partial \ln m} = \frac{\partial R_g}{\partial \ln m} + S_g \frac{\partial T_g}{\partial \ln m} + T_g \frac{\partial S_g}{\partial \ln m}
\]

where

\[
\frac{\partial R_g}{\partial \ln m} = - \frac{p_g c_g}{m} \quad \frac{\partial S_g}{\partial \ln m} = 1 - S_g
\]

\[
\frac{\partial T_g}{\partial \ln m} = \frac{1}{S_g} \left[ \beta_g + 2 \frac{\lambda_g}{b(p)} \ln \left\{ \frac{\bar{m}}{a(p)} \right\} \right]
\]

Then the expenditure elasticity for good \(g\) is given by \(E^g = (1/w_g)(\partial w_g/\partial \ln m) + 1\).
To obtain the uncompensated price elasticity of good $g$ with respect to price $h$, we again use (8).

Taking the partial derivative with respect to $\ln p_h$, we have

$$\frac{\partial w_g}{\partial \ln p_h} = \frac{\partial R_g}{\partial \ln p_h} + S_g \frac{\partial T_g}{\partial \ln p_h} + T_g \frac{\partial S_g}{\partial \ln p_h}$$

The required partials are

$$\frac{\partial R_g}{\partial \ln p_h} = \left\{ \begin{array}{ll} \frac{p_h c_h}{m} & h = g \\ 0 & h \neq g \end{array} \right.$$  
$$\frac{\partial S_g}{\partial \ln p_h} = -\frac{p_h c_h}{m}$$  
$$\frac{\partial T_g}{\partial \ln p_h} = \gamma_{gh} + \beta_g \frac{\partial}{\partial \ln p_h} \left[ \ln \left\{ \frac{m}{a(p)} \right\} \right] + \frac{\partial}{\partial \ln p_h} \left( \frac{\lambda_g}{b(p)} \left[ \ln \left\{ \frac{m}{a(p)} \right\} \right]^2 \right)$$

where

$$\frac{\partial}{\partial \ln p_h} \left[ \ln \left\{ \frac{m}{a(p)} \right\} \right] = -\left( \frac{p_h c_h}{m - \sum_j p_j c_j} + \alpha_h + \sum_j \gamma_{hj} \ln p_j \right)$$

$$\frac{\partial}{\partial \ln p_h} \left( \frac{\lambda_g}{b(p)} \left[ \ln \left\{ \frac{m}{a(p)} \right\} \right]^2 \right) = 2 \frac{\lambda_g}{b(p)} \ln \left\{ \frac{m}{a(p)} \right\} \frac{\partial}{\partial \ln p_h} \left[ \ln \left\{ \frac{m}{a(p)} \right\} \right]$$

The uncompensated price elasticity of good $g$ with respect to price $h$ is $E_{gh} = \left( \frac{p_h}{w_g} \right) \frac{\partial w_g}{\partial p_h} + \mathbb{I}_{h=g}$.

The AIDS model results if $\lambda = 0$. The nongeneralized variants result if $\mu = 0$. The variants without demographics result if $N = 0$.

**QUAIDS with demographic scaling**

As can be gleaned from (6), the expenditure function for a QUAIDS model without any form of translation or scaling is

$$e(p, u; \alpha_0, \alpha, \beta, \Gamma, \lambda) = \exp \left\{ \frac{b(p) \ln u}{1 - \lambda(p) \ln u} + \ln a(p) \right\} = \exp \left\{ \frac{b(p)}{1 \ln u - \lambda(p)} + \ln a(p) \right\}$$

$$a(p) = \alpha_0 + \sum_j \alpha_j \ln p_j + \frac{1}{2} \sum_j \sum_k \gamma_{jk} \ln p_j \ln p_k$$

$$b(p) = \prod_j p_j^\beta_j$$

$$\lambda(p) = \sum_j \lambda_j \ln p_j$$

The AIDS case results when $\lambda = 0$, and we obtain the expenditure function given by (2).
To implement Ray’s (1983) demographic scaling as extended to the QUAIDS case in Poi (2002), we require a function that can be split into two parts, one part that depends on prices and utility and one part that does not:

\[ m_0(p, u, d) = \bar{m}_0(d) \phi(p, d, u) \]

For \( \bar{m}_0(d) \), we use the same function as in Ray,

\[ \bar{m}_0(d; \rho) = 1 + \rho' d \]

where \( \rho \) is a \( D \times 1 \) parameter vector. For \( \phi(p, \delta, u) \), we follow Poi (2002) and use

\[ \phi(p, d, u; \beta, \lambda, H) = \exp \left\{ \frac{b(p) \left( \prod_j \eta_j d^j - 1 \right)}{\ln u - \lambda(p)} \right\} \]

where \( \eta_j \) is the \( j \)th row of \( G \times D \) parameter matrix \( H \). For AIDS when \( \lambda = 0 \), we are left with the function used by Ray (1983). The expenditure function for the QUAIDS model with demographic scaling is then

\[ e(p, u, d; \alpha_0, \alpha, \beta, \Gamma, \lambda, \rho, H) = e(p, u; \alpha_0, \alpha, \beta, \Gamma, \lambda) \times \bar{m}_0(d; \rho) \times \phi(p, d, u; \beta, H) \]

Applying Shepherd’s lemma, we have the share equations

\[ w_g(p, m, d; \alpha_0, \alpha, \beta, \Gamma, \lambda, \rho, H) = \]

\[ \alpha_g + \sum_h \gamma_{gh} \ln p_h + (\beta_g + \eta_g d) \ln \left[ \frac{m}{\bar{m}_0(d; \rho) a(p)} \right] + \frac{\lambda_g}{b(p) c(p, d)} \ln \left\{ \frac{m}{\bar{m}_0(d; \rho) a(p)} \right\}^2 \]

where the demographic-adjusted price aggregator is defined as \( c(p, d) \equiv \prod_j \eta_j d^j \). The indirect utility function is

\[ \ln V(p, m, d; \alpha_0, \alpha, \beta, \Gamma, \lambda, \rho, H) = \left[ \frac{b(p) c(p, d)}{\ln \{m - \bar{m}_0(d; \rho) - a(p)\} + \lambda(p)} \right]^{-1} \]

Because we are not dealing with demographic translation here, the partial derivatives required for elasticities are not as involved as they are for the QUAIDS model with demographic translation or the generalized translog model. We have

\[ \frac{\partial w_g}{\partial \ln m} = \beta_g + \eta_g d + \frac{2\lambda_g}{b(p) c(p, d)} \ln \left\{ \frac{m}{(1 + \rho' d) a(p)} \right\} \]

and

\[ \frac{\partial w_g}{\partial \ln p_h} = \gamma_{gh} - \left[ \beta_g + \eta_g d + \frac{2\lambda_g}{b(p) c(p, d)} \ln \left\{ \frac{m}{(1 + \rho' d) a(p)} \right\} \right] \times \left( \alpha_h + \sum_k \gamma_{hk} \ln p_k \right) \]

\[ + \left( \beta_h + \eta_h d \right) \lambda_g \left[ \ln \left\{ \frac{m}{(1 + \rho' d) a(p)} \right\} \right]^2 \]

The AIDS model with demographic scaling results if \( \lambda = 0 \), and models without demographic scaling result if \( \rho = 0 \) and \( H = 0 \).
Estimation

The expenditure shares of a demand system represent a set of nonlinear seemingly unrelated regression (SUR) equations. Hence, estimation is performed using \texttt{nlsur} with just one complication. Our system of equations for observation \(i\) and generic parameter vector \(\theta\) can be written as

\[
\begin{align*}
  w_{1i} &= w_1(p_i, m_i, d_i; \theta) + \epsilon_{1i} \\
  w_{2i} &= w_2(p_i, m_i, d_i; \theta) + \epsilon_{2i} \\
  & \quad \vdots \\
  w_{Gi} &= w_G(p_i, m_i, d_i; \theta) + \epsilon_{Gi}
\end{align*}
\]

where \(\epsilon_i = (\epsilon_{1i}, \epsilon_{2i}, \ldots, \epsilon_{Gi})\) is a vector of zero-mean disturbances. Because \(\sum_g w_{gi} = 1\) and by the construction of our demand systems we also have \(\sum_g w_g(p_i, m_i, d_i; \theta) = 1\), it must be the case that \(\sum_g \epsilon_{gi} = 0\). Therefore, \(\det(\Sigma) = \det \{E(\epsilon\epsilon')\} = 0\), and neither the (quasi)maximum likelihood estimator nor the feasible generalized nonlinear SUR estimator is defined.

Barten (1969) showed that to obtain a well-defined likelihood function, we can drop any one of the expenditure-share equations and fit the system containing the remaining \(G-1\) equations. Parameter restrictions that force the demand system’s equations to sum to 1 can then be used to recover the parameters of the dropped equation. \texttt{demandsys} drops the final equation from the demand system, but which equation is dropped should not concern you: Barten (1969) showed that you obtain the same likelihood function regardless of which one is dropped.

Moreover, the nonlinear SUR model satisfies the so-called Oberhofer–Kmenta (1974) conditions that allow us to cycle between estimating the parameters \(\theta\) and the error covariance matrix \(\Sigma\) as \texttt{nlsur} does when we specify option \texttt{ifgnls}. The upshot is that we fit our expenditure-share equations by calling \texttt{nlsur} with option \texttt{ifgnls}. The resulting parameter estimate \(\hat{\theta}\) is the (quasi)maximum likelihood estimator of the parameters of our demand system. The \((G-1) \times (G-1)\) estimated error covariance matrix is returned in matrix \texttt{e(Sigma)}.

Estimation weights, variance–covariance matrix options, and options to control the optimization process available with \texttt{demandsys} are simply passed to \texttt{nlsur}. See \textit{Methods and formulas} in R \texttt{nlsur}.

When you type \texttt{predict \ldots, shares eq(#)}, you obtain the predicted shares for the \#th equation, based on the expenditure-share equation for the demand system estimated. By construction, the sum of predicted shares for each observation is equal to one.

When you type \texttt{predict \ldots, residuals eq(#)}, you obtain the residuals for the \#th equation defined as \(r_{#i} = w_{#i} - \hat{w}_{#i}\), where \(\hat{w}_{#i}\) is the predicted share for equation \# for observation \(i\).

When you type \texttt{predict \ldots, quantities eq(#)}, \texttt{predict} first computes the predicted shares \(\hat{w}_{#i}\) and then computes \(\hat{q}_{#i} = m_i \hat{w}_{#i} / p_{#i}\).

When you type \texttt{predict \ldots, iuf}, \texttt{predict} evaluates the indirect utility function based on the formulas given above.

When you type \texttt{predict \ldots, ef utilities(u)}, \texttt{predict} evaluates the expenditure function based on the formulas given above at the levels of utility specified in variable \(u\).

Acknowledgment

We thank Brian Poi of Poi Consulting LLC, East Fallowfield, PA, for writing the popular community-contributed \texttt{quaids} command, which motivated us to implement \texttt{demandsys}. We also thank Dr. Poi for his advice on and review of the \texttt{demandsys} command.
References


demandsys — Estimation of flexible demand systems


Also see

[R] demandsys postestimation — Postestimation tools for demandsys

[R] nlsur — Estimation of nonlinear systems of equations

[U] 20 Estimation and postestimation commands