
contrast — Contrasts and linear hypothesis tests after estimation

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
contrast tests linear hypotheses and forms contrasts involving factor variables and their interactions

from the most recently fit model. The tests include ANOVA-style tests of main effects, simple effects,

interactions, and nested effects. contrast can use named contrasts to decompose these effects into

comparisons against reference categories, comparisons of adjacent levels, comparisons against the grand

mean, orthogonal polynomials, and such. Custom contrasts may also be specified.

contrast can be used with svy estimation results; see [SVY] svy postestimation.

Contrasts can also be computed for margins of linear and nonlinear responses; see [R]margins, con-

trast.

Quick start
Contrasts for one-way models

Test the main effect of categorical variable a after regress y i.a or anova y a
contrast a

Reference category contrasts of cell means of y with the smallest value of a as the base category

contrast r.a

Same as above, but specify a = 3 as the base category for comparisons

contrast rb3.a

Report tests instead of confidence intervals for each contrast

contrast r.a, pveffects

Report tests and confidence intervals for each contrast

contrast r.a, effects

Contrasts of the cell mean of y for each level of a with the grand mean of y
contrast g.a

Same as above, but compute grand mean as a weighted average of cell means with weights based on the

number of observations for each level of a
contrast gw.a

User-defined contrast comparing the cell mean of y for a = 1 with the average of the cell means for

a = 3 and a = 4

contrast {a -1 0 .5 .5}

1

https://www.stata.com/manuals/svysvypostestimation.pdf#svysvypostestimation
https://www.stata.com/manuals/rmarginscontrast.pdf#rmargins,contrast
https://www.stata.com/manuals/rmarginscontrast.pdf#rmargins,contrast


contrast — Contrasts and linear hypothesis tests after estimation 2

Contrasts for two-way models

Test of the interaction effect after regress y a##b or anova y a##b
contrast a#b

Test of the main and interaction effects

contrast a b a#b

Same as above

contrast a##b

Individual reference category contrasts for the interaction of a and b
contrast r.a#r.b

Joint tests of the simple effects of a within each level of b
contrast a@b

Individual reference category contrasts for the simple effects of a within each level of b
contrast r.a@b

Orthogonal polynomial contrasts for a within each level of b
contrast p.a@b

Reference category contrasts of the marginal means of y for levels of a
contrast r.a

Same as above, but with marginal means for a computed as a weighted average of cell means, using the

marginal frequencies of b rather than equal weights for each level

contrast r.a, asobserved

Contrasts of the marginal mean of y for each level of a with the previous level—reverse-adjacent con-

trasts

contrast ar.a

Contrasts for models with continuous covariates

Test of the interaction effect after regress y a##c.x or anova y a##c.x
contrast a#c.x

Reference category effects of a on the slope of x
contrast r.a#c.x

Reference category effects of a on the intercept

contrast r.a
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Contrasts for nonlinear models

Orthogonal polynomial contrasts of log odds across levels of a after logit y i.a
contrast p.a

Test the main and interaction effects after logit y a##b
contrast a##b

Simple reference category effects for a within each level of b
contrast r.a@b

Contrasts for multiple-equation models

Test the main and interaction effects in the equation for y2 after mvreg y1 y2 y3 = a##b
contrast a##b, equation(y2)

Reference category contrasts of estimated marginal means of y3 for levels of a
contrast r.a, equation(y3)

Test for a difference in the overall estimated marginal means of y1, y2, and y3
contrast _eqns

Contrasts of estimated marginal means of y2 and y3 with y1
contrast r._eqns

Test whether interaction effects differ across equations

contrast a#b#_eqns

Menu
Statistics > Postestimation
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Syntax
contrast termlist [ , options ]

where termlist is a list of factor variables or interactions that appear in the current estimation results. The

variables may be typed with or without contrast operators, and you may use any factor-variable syntax:

See the operators (op.) table below for the list of contrast operators.

options Description

Main

overall add a joint hypothesis test for all specified contrasts

asobserved treat all factor variables as observed

lincom treat user-defined contrasts as linear combinations

Equations

equation(eqspec) perform contrasts in termlist for equation eqspec

atequations perform contrasts in termlist within each equation

Advanced

emptycells(empspec) treatment of empty cells for balanced factors

noestimcheck suppress estimability checks

Reporting

level(#) confidence level; default is level(95)
mcompare(method) adjust for multiple comparisons; default is mcompare(noadjust)
noeffects suppress table of individual contrasts

cieffects show effects table with confidence intervals

pveffects show effects table with 𝑝-values
effects show effects table with confidence intervals and 𝑝-values
nowald suppress table of Wald tests

noatlevels report only the overall Wald test for terms that use the within @
or nested | operator

nosvyadjust compute unadjusted Wald tests for survey results

sort sort the individual contrast values in each term

post post contrasts and their VCEs as estimation results

display options control column formats, row spacing, line width, and factor-variable labeling

eform option report exponentiated contrasts

df(#) use 𝑡 distribution with # degrees of freedom for computing 𝑝-values
and confidence intervals

collect is allowed; see [U] 11.1.10 Prefix commands.

df(#) does not appear in the dialog box.

https://www.stata.com/manuals/rcontrast.pdf#rcontrastSyntaxoperators
https://www.stata.com/manuals/rcontrast.pdf#rcontrastSyntaxoperators
https://www.stata.com/manuals/rcontrast.pdf#rcontrastOptionsempspec
https://www.stata.com/manuals/rcontrast.pdf#rcontrastSyntaxmethod
https://www.stata.com/manuals/rcontrast.pdf#rcontrastOptionsdisplay_options
https://www.stata.com/manuals/rcontrast.pdf#rcontrastOptionseform_option
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
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Term Description

Main effects

A joint test of the main effects of A
r.A individual contrasts that decompose A using r.

Interaction effects

A#B joint test of the two-way interaction effects of A and B
A#B#C joint test of the three-way interaction effects of A, B, and C
r.A#g.B individual contrasts for each interaction of A and B defined by r. and g.

Partial interaction effects

r.A#B joint tests of interactions of A and B within each contrast defined by r.A
A#r.B joint tests of interactions of A and B within each contrast defined by r.B

Simple effects

A@B joint tests of the effects of A within each level of B
A@B#C joint tests of the effects of A within each combination of the levels of B and C
r.A@B individual contrasts of A that decompose A@B using r.
r.A@B#C individual contrasts of A that decompose A@B#C using r.

Other conditional effects

A#B@C joint tests of the interaction effects of A and B within each level of C
A#B@C#D joint tests of the interaction effects of A and B within each combination of

the levels of C and D
r.A#g.B@C individual contrasts for each interaction of A and B that decompose A#B@C

using r. and g.

Nested effects

A|B joint tests of the effects of A nested in each level of B
A|B#C joint tests of the effects of A nested in each combination of the levels of B and C
A#B|C joint tests of the interaction effects of A and B nested in each level of C
A#B|C#D joint tests of the interaction effects of A and B nested in each

combination of the levels of C and D
r.A|B individual contrasts of A that decompose A|B using r.
r.A|B#C individual contrasts of A that decompose A|B#C using r.
r.A#g.B|C individual contrasts for each interaction of A and B defined by r. and g.

nested in each level of C

Slope effects

A#c.x joint test of the effects of A on the slopes of x
A#c.x#c.y joint test of the effects of A on the slopes of the product (interaction) of x and y
A#B#c.x joint test of the interaction effects of A and B on the slopes of x
A#B#c.x#c.y joint test of the interaction effects of A and B on the slopes of the product

(interaction) of x and y
r.A#c.x individual contrasts of A’s effects on the slopes of x using r.

Denominators

... / term2 use term2 as the denominator in the 𝐹 tests of the preceding terms

... / use the residual as the denominator in the 𝐹 tests of the preceding terms

(the default if no other /s are specified)
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A, B, C, and D represent any factor variable in the current estimation results.

x and y represent any continuous variable in the current estimation results.

r. and g. represent any contrast operator. See the table below.

c. specifies that a variable be treated as continuous; see [U] 11.4.3 Factor variables.

Operators are allowed on any factor variable that does not appear to the right of @ or |. Operators

decompose the effects of the associated factor variable into one-degree-of-freedom effects (contrasts).

Higher-level interactions are allowed anywhere an interaction operator (#) appears in the table.

Time-series operators are allowed if they were used in the estimation.

eqns designates the equations in manova, mlogit, mprobit, and mvreg and can be specified anywhere
a factor variable appears.

/ is allowed only after anova, cnsreg, manova, mvreg, or regress.

operators (op.) Description

r. differences from the reference (base) level; the default

a. differences from the next level (adjacent contrasts)

ar. differences from the previous level (reverse adjacent contrasts)

As-balanced operators

g. differences from the balanced grand mean

h. differences from the balanced mean of subsequent levels (Helmert contrasts)

j. differences from the balanced mean of previous levels (reverse Helmert

contrasts)

p. orthogonal polynomial in the level values

q. orthogonal polynomial in the level sequence

As-observed operators

gw. differences from the observation-weighted grand mean

hw. differences from the observation-weighted mean of subsequent levels

jw. differences from the observation-weighted mean of previous levels

pw. observation-weighted orthogonal polynomial in the level values

qw. observation-weighted orthogonal polynomial in the level sequence

One or more individual contrasts may be selected by using the op#. or op(numlist). syntax. For exam-

ple, a3.A selects the adjacent contrast for level 3 of A, and p(1/2).B selects the linear and quadratic

effects of B. Also see Orthogonal polynomial contrasts and Beyond linear models.

Custom contrasts Description

{A numlist} user-defined contrast on the levels of factor A

{A#B numlist} user-defined contrast on the levels of interaction between A and B

Custom contrasts may be part of a term, such as {A numlist}#B, {A numlist}@B, {A numlist}|B, {A#B
numlist}, and {A numlist}#{B numlist}. The same is true of higher-order custom contrasts, such as

{A#B numlist}@C, {A#B numlist}#r.C, and {A#B numlist}#c.x.

Higher-order interactions with at most eight factor variables are allowed with custom contrasts.

https://www.stata.com/manuals/rcontrast.pdf#rcontrastSyntaxoperators
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/mvmanova.pdf#mvmanova
https://www.stata.com/manuals/rmlogit.pdf#rmlogit
https://www.stata.com/manuals/rmprobit.pdf#rmprobit
https://www.stata.com/manuals/mvmvreg.pdf#mvmvreg
https://www.stata.com/manuals/ranova.pdf#ranova
https://www.stata.com/manuals/rcnsreg.pdf#rcnsreg
https://www.stata.com/manuals/mvmanova.pdf#mvmanova
https://www.stata.com/manuals/mvmvreg.pdf#mvmvreg
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/rcontrast.pdf#rcontrastRemarksandexamplesOrthogonalpolynomialcontrasts
https://www.stata.com/manuals/rcontrast.pdf#rcontrastRemarksandexamplesBeyondlinearmodels
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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method Description

noadjust do not adjust for multiple comparisons; the default

bonferroni [ adjustall ] Bonferroni’s method; adjust across all terms

sidak [ adjustall ] Šidák’s method; adjust across all terms

scheffe Scheffé’s method

Options

� � �
Main �

overall specifies that a joint hypothesis test over all terms be performed.

asobserved specifies that factor covariates be evaluated using the cell frequencies observed in the es-

timation sample. The default is to treat all factor covariates as though there were an equal number of

observations in each level.

lincom specifies that user-defined contrasts be treated as linear combinations. The default is to require

that all user-defined contrasts sum to zero. (Summing to zero is part of the definition of a contrast.)

� � �
Equations �

equation(eqspec) specifies the equation from which contrasts are to be computed. The default is to

compute contrasts from the first equation.

atequations specifies that the contrasts be computed within each equation.

� � �
Advanced �

emptycells(empspec) specifies how empty cells are handled in interactions involving factor variables

that are being treated as balanced.

emptycells(strict) is the default; it specifies that contrasts involving empty cells be treated as

not estimable.

emptycells(reweight) specifies that the effects of the observed cells be increased to accommodate
any missing cells. This makes the contrast estimable but changes its interpretation.

noestimcheck specifies that contrast not check for estimability. By default, the requested contrasts

are checked and those found not estimable are reported as such. Nonestimability is usually caused

by empty cells. If noestimcheck is specified, estimates are computed in the usual way and reported

even though the resulting estimates are manipulable, which is to say they can differ across equivalent

models having different parameterizations.

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

mcompare(method) specifies the method for computing 𝑝-values and confidence intervals that account
for multiple comparisons within a factor-variable term.

Most methods adjust the comparisonwise error rate, 𝛼𝑐, to achieve a prespecified experimentwise

error rate, 𝛼𝑒.

https://www.stata.com/manuals/u20.pdf#u20.8Specifyingthewidthofconfidenceintervals
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mcompare(noadjust) is the default; it specifies no adjustment.

𝛼𝑐 = 𝛼𝑒

mcompare(bonferroni) adjusts the comparisonwise error rate based on the upper limit of the Bon-

ferroni inequality

𝛼𝑒≤𝑚𝛼𝑐

where m is the number of comparisons within the term.

The adjusted comparisonwise error rate is

𝛼𝑐 = 𝛼𝑒/𝑚

mcompare(sidak) adjusts the comparisonwise error rate based on the upper limit of the probability

inequality

𝛼𝑒 ≤ 1 − (1 − 𝛼𝑐)𝑚

where m is the number of comparisons within the term.

The adjusted comparisonwise error rate is

𝛼𝑐 = 1 − (1 − 𝛼𝑒)1/𝑚

This adjustment is exact when the m comparisons are independent.

mcompare(scheffe) controls the experimentwise error rate using the 𝐹 or 𝜒2 distribution with de-

grees of freedom equal to the rank of the term.

mcompare(method adjustall) specifies that the multiple-comparison adjustments count all com-

parisons across all terms rather than performing multiple comparisons term by term. This leads to

more conservative adjustments when multiple variables or terms are specified in marginslist. This

option is compatible only with the bonferroni and sidak methods.

noeffects suppresses the table of individual contrasts with confidence intervals. This table is produced

by default when the mcompare() option is specified or when a term in termlist implies all individual

contrasts.

cieffects specifies that a table containing a confidence interval for each individual contrast be reported.

pveffects specifies that a table containing a 𝑝-value for each individual contrast be reported.
effects specifies that a single table containing a confidence interval and 𝑝-value for each individual

contrast be reported.

nowald suppresses the table of Wald tests.

noatlevels indicates that only the overall Wald test be reported for each term containing within or

nested (@ or |) operators.

nosvyadjust is for use with svy estimation commands. It specifies that the Wald test be carried out

without the default adjustment for the design degrees of freedom. That is to say the test is carried out

as 𝑊/𝑘 ∼ 𝐹(𝑘, 𝑑) rather than as (𝑑 − 𝑘 + 1)𝑊/(𝑘𝑑) ∼ 𝐹(𝑘, 𝑑 − 𝑘 + 1), where 𝑘 is the dimension

of the test and 𝑑 is the total number of sampled PSUs minus the total number of strata.

sort specifies that the table of individual contrasts be sorted by the contrast values within each term.
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post causes contrast to behave like a Stata estimation (e-class) command. contrast posts the vector

of estimated contrasts along with the estimated variance–covariance matrix to e(), so you can treat
the estimated contrasts just as you would results from any other estimation command. For example,

you could use test to perform simultaneous tests of hypotheses on the contrasts, or you could use

lincom to create linear combinations.

display options: vsquish, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt),
pformat(% fmt), sformat(% fmt), and nolstretch.

vsquish specifies that the blank space separating factor-variable terms or time-series–operated vari-

ables from other variables in the model be suppressed.

nofvlabel displays factor-variable level values rather than attached value labels. This option over-

rides the fvlabel setting; see [R] set showbaselevels.

fvwrap(#) specifies how many lines to allow when long value labels must be wrapped. Labels

requiring more than # lines are truncated. This option overrides the fvwrap setting; see [R] set

showbaselevels.

fvwrapon(style) specifies whether value labels that wrap will break at word boundaries or break

based on available space.

fvwrapon(word), the default, specifies that value labels break at word boundaries.

fvwrapon(width) specifies that value labels break based on available space.

This option overrides the fvwrapon setting; see [R] set showbaselevels.

cformat(% fmt) specifies how to format contrasts, standard errors, and confidence limits in the table

of estimated contrasts.

pformat(% fmt) specifies how to format 𝑝-values in the table of estimated contrasts.
sformat(% fmt) specifies how to format test statistics in the table of estimated contrasts.

nolstretch specifies that the width of the table of estimated contrasts not be automatically widened

to accommodate longer variable names. The default, lstretch, is to automatically widen the table
of estimated contrasts up to thewidth of the Results window. Specifying lstretch or nolstretch
overrides the setting given by set lstretch. If set lstretch has not been set, the default is

lstretch. nolstretch is not shown in the dialog box.

eform option specifies that the contrasts table be displayed in exponentiated form. 𝑒contrast is dis-

played rather than contrast. Standard errors and confidence intervals are also transformed. See

[R] eform option for the list of available options.

The following option is available with contrast but is not shown in the dialog box:

df(#) specifies that the 𝑡 distribution with # degrees of freedom be used for computing 𝑝-values and
confidence intervals. The default is to use e(df r) degrees of freedom or the standard normal dis-

tribution if e(df r) is missing.

https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/rsetshowbaselevels.pdf#rsetshowbaselevels
https://www.stata.com/manuals/rsetshowbaselevels.pdf#rsetshowbaselevels
https://www.stata.com/manuals/rsetshowbaselevels.pdf#rsetshowbaselevels
https://www.stata.com/manuals/rsetshowbaselevels.pdf#rsetshowbaselevels
https://www.stata.com/manuals/rset.pdf#rsetRemarksandexampleslstretch
https://www.stata.com/manuals/reform_option.pdf#reform_option
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Remarks and examples
Remarks are presented under the following headings:

Introduction
One-way models

Estimated cell means
Testing equality of cell means
Reference category contrasts
Reverse adjacent contrasts
Orthogonal polynomial contrasts

Two-way models
Estimated interaction cell means
Simple effects
Interaction effects
Main effects
Partial interaction effects

Three-way and higher-order models
Contrast operators

Differences from a reference level (r.)
Differences from the next level (a.)
Differences from the previous level (ar.)
Differences from the grand mean (g.)
Differences from the mean of subsequent levels (h.)
Differences from the mean of previous levels (j.)
Orthogonal polynomials (p. and q.)

User-defined contrasts
Empty cells
Empty cells, ANOVA style
Nested effects
Multiple comparisons
Unbalanced data

Using observed cell frequencies
Weighted contrast operators

Testing factor effects on slopes
Chow tests
Beyond linear models
Multiple equations
Video example

Introduction
contrast performsANOVA-style tests of main effects, interactions, simple effects, and nested effects.

It can easily decompose these tests into constituent contrasts using either named contrasts (codings) or

user-specified contrasts. Comparing levels of factor variables—whether as main effects, interactions,

or simple effects—is as easy as adding a contrast operator to the variable. The operators can compare

each level with the previous level, each level with a reference level, each level with the mean of previous

levels, and more.

contrast tests and estimates contrasts. A contrast of the parameters 𝜇1, 𝜇2, . . . , 𝜇𝑝 is a linear com-

bination ∑𝑖 𝑐𝑖𝜇𝑖 whose 𝑐𝑖 sum to zero. A difference of population means such as 𝜇1 − 𝜇2 is a contrast,

as are most other comparisons of population or model quantities (Coster 2005). Some contrasts may

be estimated with lincom, but contrast is much more powerful. contrast can handle multiple con-

trasts simultaneously, and the command’s contrast operators make it easy to specify complicated linear

combinations.
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Both the contrast operation and the creation of the margins for comparison can be performed as though

the data were balanced (typical for experimental designs) or using the observed frequencies in the esti-

mation sample (typical for observational studies). contrast can perform these analyses on the results

of almost all of Stata’s estimators, not just the linear-models estimators.

Most of contrast’s computations can be considered comparisons of estimated cell means from a

model fit. Tests of interactions are tests of whether the cell means for the interaction are all equal. Tests

of main effects are tests of whether the marginal cell means for the factor are all equal. More focused

comparisons of cell means (for example, is level 2 equal to level 1) are specified using contrast operators.

More formally, all of contrast’s computations are comparisons of conditional expectations; cell means
are one type of conditional expectation.

All contrasts can also easily be graphed; see [R] marginsplot.

For a discussion of contrasts and testing for linear models, see Searle and Gruber (2017) and Searle

(1997). For discussions specifically related to experimental design, see Winer, Brown, and Michels

(1991) and Milliken and Johnson (2009). Rosenthal, Rosnow, and Rubin (2000) focus on contrasts with

applications in behavioral sciences. Mitchell (2021, 2015) and Baldwin (2019) focus on contrasts in

Stata.

contrast is a flexible tool for understanding the effects of categorical covariates. If your model

contains categorical covariates, and especially if it contains interactions, you will want to use contrast.

One-way models
Suppose we have collected data on cholesterol levels for individuals from five age groups. To study

the effect of age group on cholesterol, we can begin by fitting a one-way model using regress:

. use https://www.stata-press.com/data/r19/cholesterol
(Artificial cholesterol data)
. label list ages
ages:

1 10--19
2 20--29
3 30--39
4 40--59
5 60--79

. regress chol i.agegrp
Source SS df MS Number of obs = 75

F(4, 70) = 35.02
Model 14943.3997 4 3735.84993 Prob > F = 0.0000

Residual 7468.21971 70 106.688853 R-squared = 0.6668
Adj R-squared = 0.6477

Total 22411.6194 74 302.859722 Root MSE = 10.329

chol Coefficient Std. err. t P>|t| [95% conf. interval]

agegrp
20--29 8.203575 3.771628 2.18 0.033 .6812991 15.72585
30--39 21.54105 3.771628 5.71 0.000 14.01878 29.06333
40--59 30.15067 3.771628 7.99 0.000 22.6284 37.67295
60--79 38.76221 3.771628 10.28 0.000 31.23993 46.28448

_cons 180.5198 2.666944 67.69 0.000 175.2007 185.8388

https://www.stata.com/manuals/rmarginsplot.pdf#rmarginsplot
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Estimated cell means

margins will show us the estimated cell means for each age group based on our fitted model:

. margins agegrp
Adjusted predictions Number of obs = 75
Model VCE: OLS
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

agegrp
10--19 180.5198 2.666944 67.69 0.000 175.2007 185.8388
20--29 188.7233 2.666944 70.76 0.000 183.4043 194.0424
30--39 202.0608 2.666944 75.76 0.000 196.7418 207.3799
40--59 210.6704 2.666944 78.99 0.000 205.3514 215.9895
60--79 219.282 2.666944 82.22 0.000 213.9629 224.601

We can graph those means with marginsplot:

. marginsplot
Variables that uniquely identify margins: agegrp
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Adjusted predictions of agegrp with 95% CIs

Testing equality of cell means

Are all the means equal? That is to say is there an effect of age group on cholesterol level? We can

answer that by asking contrast to test whether the means of the age groups are identical.

. contrast agegrp
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp 4 35.02 0.0000

Denominator 70
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The means are clearly different. We could have obtained this same test directly had we fit our model

using anova rather than regress.

. anova chol agegrp
Number of obs = 75 R-squared = 0.6668
Root MSE = 10.329 Adj R-squared = 0.6477

Source Partial SS df MS F Prob>F

Model 14943.4 4 3735.8499 35.02 0.0000

agegrp 14943.4 4 3735.8499 35.02 0.0000

Residual 7468.2197 70 106.68885

Total 22411.619 74 302.85972

Achieving a more direct test result is why we recommend using anova instead of regress for models
where our focus is on the categorical covariates. The models fit by anova and regress are identical;

they merely parameterize the effects differently. The results of contrast will be identical regardless

of which command is used to fit the model. If, however, we were fitting models whose responses are

nonlinear functions of the covariates, such as logistic regression, then there would be no analogue to

anova, and we would appreciate contrast’s ability to quickly test main effects and interactions.

Reference category contrasts

Now that we know that the overall effect of age group is statistically significant, we can explore the

effects of each age group. One way to do that is to use the reference category operator, r.:
. contrast r.agegrp
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(20--29 vs 10--19) 1 4.73 0.0330
(30--39 vs 10--19) 1 32.62 0.0000
(40--59 vs 10--19) 1 63.91 0.0000
(60--79 vs 10--19) 1 105.62 0.0000

Joint 4 35.02 0.0000

Denominator 70

Contrast Std. err. [95% conf. interval]

agegrp
(20--29 vs 10--19) 8.203575 3.771628 .6812991 15.72585
(30--39 vs 10--19) 21.54105 3.771628 14.01878 29.06333
(40--59 vs 10--19) 30.15067 3.771628 22.6284 37.67295
(60--79 vs 10--19) 38.76221 3.771628 31.23993 46.28448
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The cell mean of each age group is compared against the base age group (ages 10–19). The first table

shows that each difference is significant. The second table gives an estimate and confidence interval

for each contrast. These are the comparisons that linear regression gives with a factor covariate and no

interactions. The contrasts are identical to the coefficients from our linear regression.

Reverse adjacent contrasts

We have far more flexibility with contrast. Age group is ordinal, so it is interesting to compare

each age group with the preceding age group (rather than against one reference group). We specify that

analysis by using the reverse adjacent operator, ar.:
. contrast ar.agegrp
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(20--29 vs 10--19) 1 4.73 0.0330
(30--39 vs 20--29) 1 12.51 0.0007
(40--59 vs 30--39) 1 5.21 0.0255
(60--79 vs 40--59) 1 5.21 0.0255

Joint 4 35.02 0.0000

Denominator 70

Contrast Std. err. [95% conf. interval]

agegrp
(20--29 vs 10--19) 8.203575 3.771628 .6812991 15.72585
(30--39 vs 20--29) 13.33748 3.771628 5.815204 20.85976
(40--59 vs 30--39) 8.60962 3.771628 1.087345 16.1319
(60--79 vs 40--59) 8.611533 3.771628 1.089257 16.13381

The 20–29 age group’s cholesterol level is 8.2 points higher than the 10–19 age group’s cholesterol

level; the 30–39 age group’s level is 13.3 points higher than the 20–29 age group’s level; and so on. Each

age group is statistically different from the preceding age group at the 5% level.
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Orthogonal polynomial contrasts

The relationship between age group and cholesterol level looked almost linear in our graph. We can

examine that relationship further by using the orthogonal polynomial operator, p.:
. contrast p.agegrp, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(linear) 1 139.11 0.0000

(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448

(quartic) 1 0.43 0.5153
Joint 4 35.02 0.0000

Denominator 70

Only the linear effect is statistically significant.

We can even perform the joint test that all effects beyond linear are zero. We do that by selecting all

polynomial contrasts above linear—that is, polynomial contrasts 2, 3, and 4.

. contrast p(2 3 4).agegrp, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(quadratic) 1 0.15 0.6962

(cubic) 1 0.37 0.5448
(quartic) 1 0.43 0.5153

Joint 3 0.32 0.8129

Denominator 70

The joint test has three degrees of freedom and is clearly insignificant. A linear effect of age group

seems adequate for this model.
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Two-way models
Suppose we are investigating the effects of different dosages of a blood pressure medication and

believe that the effects may be different for men and women. We can fit the following ANOVAmodel for

bpchange, the change in diastolic blood pressure. Change is defined as the after measurement minus the
before measurement, so that negative values of bpchange correspond to decreases in blood pressure.

. use https://www.stata-press.com/data/r19/bpchange
(Artificial blood pressure data)
. label list gender
gender:

1 Male
2 Female

. anova bpchange dose##gender
Number of obs = 30 R-squared = 0.9647
Root MSE = 1.4677 Adj R-squared = 0.9573

Source Partial SS df MS F Prob>F

Model 1411.9087 5 282.38174 131.09 0.0000

dose 963.48179 2 481.7409 223.64 0.0000
gender 355.11882 1 355.11882 164.85 0.0000

dose#gender 93.308093 2 46.654046 21.66 0.0000

Residual 51.699253 24 2.1541355

Total 1463.608 29 50.46924

Estimated interaction cell means

Everything is significant, including the interaction. So increasing dosage is effective and differs by

gender. Let’s explore the effects. First, let’s look at the estimated cell mean of blood pressure change for

each combination of gender and dosage.

. margins dose#gender
Adjusted predictions Number of obs = 30
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

dose#gender
250#Male -7.35384 .6563742 -11.20 0.000 -8.708529 -5.99915

250#Female 3.706567 .6563742 5.65 0.000 2.351877 5.061257
500#Male -13.73386 .6563742 -20.92 0.000 -15.08855 -12.37917

500#Female -6.584167 .6563742 -10.03 0.000 -7.938857 -5.229477
750#Male -16.82108 .6563742 -25.63 0.000 -18.17576 -15.46639

750#Female -14.38795 .6563742 -21.92 0.000 -15.74264 -13.03326

Our data are balanced, so these results will not be affected by the many different ways that margins
can compute cell means. Moreover, because our model consists of only dose and gender, these are also
the point estimates for each combination.
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We can graph the results:

. marginsplot
Variables that uniquely identify margins: dose gender
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The lines are not parallel, which we expected because the interaction term is significant. Males ex-

perience a greater decline in blood pressure at every dosage level, but the effect of increasing dosage is

greater for females. In fact, it is not clear if we can tell the difference between male and female response

at the maximum dosage.

Simple effects

We can contrast the male and female responses within dosage to see the simple effects of gender.
Because there are only two levels in gender, the choice of contrast operator is largely irrelevant. Aside
from orthogonal polynomials, all operators produce the same estimates, although the effects can change

signs.

. contrast r.gender@dose
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

gender@dose
(Female vs Male) 250 1 141.97 0.0000
(Female vs Male) 500 1 59.33 0.0000
(Female vs Male) 750 1 6.87 0.0150

Joint 3 69.39 0.0000

Denominator 24

Contrast Std. err. [95% conf. interval]

gender@dose
(Female vs Male) 250 11.06041 .9282533 9.144586 12.97623
(Female vs Male) 500 7.149691 .9282533 5.23387 9.065512
(Female vs Male) 750 2.433124 .9282533 .5173031 4.348944
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The effect for females is about 11 points higher than for males at a dosage of 250, and that shrinks to

2.4 points higher at the maximum dosage of 750.

We can form the simple effects the other way by contrasting the effect of dose at each level of gender:

. contrast ar.dose@gender
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

dose@gender
(500 vs 250) Male 1 47.24 0.0000

(500 vs 250) Female 1 122.90 0.0000
(750 vs 500) Male 1 11.06 0.0028

(750 vs 500) Female 1 70.68 0.0000
Joint 4 122.65 0.0000

Denominator 24

Contrast Std. err. [95% conf. interval]

dose@gender
(500 vs 250) Male -6.380018 .9282533 -8.295839 -4.464198

(500 vs 250) Female -10.29073 .9282533 -12.20655 -8.374914
(750 vs 500) Male -3.087217 .9282533 -5.003038 -1.171396

(750 vs 500) Female -7.803784 .9282533 -9.719605 -5.887963

Here we use the ar. reverse adjacent contrast operator so that first we are comparing a dosage of 500

with a dosage of 250, and then we are comparing 750 with 500. We see that increasing the dosage has a

larger effect on females—10.3 points when going from 250 to 500 compared with 6.4 points for males,

and 7.8 points when going from 500 to 750 versus 3.1 points for males.



contrast — Contrasts and linear hypothesis tests after estimation 19

Interaction effects

By specifying contrast operators on both factors, we can decompose the interaction effect into separate

interaction contrasts.

. contrast ar.dose#r.gender
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

dose#gender
(500 vs 250) (Female vs Male) 1 8.87 0.0065
(750 vs 500) (Female vs Male) 1 12.91 0.0015

Joint 2 21.66 0.0000

Denominator 24

Contrast Std. err. [95% conf. interval]

dose#gender
(500 vs 250)

(Female vs Male) -3.910716 1.312748 -6.620095 -1.201336
(750 vs 500)

(Female vs Male) -4.716567 1.312748 -7.425947 -2.007187

Look for departures from zero to indicate an interaction effect between dose and gender. Both

contrasts are significantly different from zero. Of course, we already knew the overall interaction was

significant from our ANOVA results. The effect of increasing dose from 250 to 500 is 3.9 points greater in

females than in males, and the effect of increasing dose from 500 to 750 is 4.7 points greater in females

than in males. The confidence intervals for both estimates easily exclude zero, meaning that there is an

interaction effect.

The joint test of these two interaction effects reproduces the test of interaction effects in the anova
output. We can see that the 𝐹 statistic of 21.66 matches the statistic from our original ANOVA results.

Main effects

We can perform tests of the main effects by listing each variable individually in contrast.
. contrast dose gender
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

dose 2 223.64 0.0000

gender 1 164.85 0.0000

Denominator 24

https://www.stata.com/manuals/rcontrast.pdf#rcontrastRemarksandexamplesTwo-waymodels
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The 𝐹 tests are equivalent to the tests of main effects in the anova output. This is true only for linear

models. contrast provides an easy way to obtain main effects and other ANOVA-style tests for models

whose responses are not linear in the parameters—logistic, probit, glm, etc.

If we include contrast operators on the variables, we can also decompose the main effects into indi-

vidual contrasts:

. contrast ar.dose r.gender
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

dose
(500 vs 250) 1 161.27 0.0000
(750 vs 500) 1 68.83 0.0000

Joint 2 223.64 0.0000

gender 1 164.85 0.0000

Denominator 24

Contrast Std. err. [95% conf. interval]

dose
(500 vs 250) -8.335376 .6563742 -9.690066 -6.980687
(750 vs 500) -5.4455 .6563742 -6.80019 -4.090811

gender
(Female vs Male) 6.881074 .5359273 5.774974 7.987173

By specifying the ar. operator on dose, we decompose the main effect for dose into two one-degree-

of-freedom contrasts, comparing the marginal mean of blood pressure change for each dosage level with

that of the previous level. Because gender has only two levels, we cannot decompose this main effect

any further. However, specifying a contrast operator on gender allowed us to calculate the difference in

the marginal means for women and men.

Partial interaction effects

At this point, we have looked at the total interaction effects and at the main effects of each variable.

The partial interaction effects are a midpoint between these two types of effects where we collect the

individual interaction effects along the levels of one of the variables and perform a joint test of those

interactions. If we think of the interaction effects as forming a table, with the levels of one factor variable

forming the rows and the levels of the other forming the columns, partial interaction effects are joint tests

of the interactions in a row or a column. To perform these tests, we specify a contrast operator on only one

of the variables in our interaction. For this particular model, these are not very interesting because our

variables have only two and three levels. Therefore, the tests of the partial interaction effects reproduce

the tests that we obtained for the total interaction effects. We specify a contrast operator only on dose to

decompose the overall test for interaction effects into joint tests for each ar.dose contrast:
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. contrast ar.dose#gender
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

dose#gender
(500 vs 250) (joint) 1 8.87 0.0065
(750 vs 500) (joint) 1 12.91 0.0015

Joint 2 21.66 0.0000

Denominator 24

The first row is a joint test of all the interaction effects involving the (500 vs 250) comparison of

dosages. The second row is a joint test of all the interaction effects involving the (750 vs 500) compar-

ison. If we look back at our output in Interaction effects, we can see that there was only one of each of

these interaction effects. Therefore, each test labeled (joint) has only one degree-of-freedom.

We could have instead included a contrast operator on gender to compute the partial interaction

effects along the other dimension:

. contrast dose#r.gender
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

dose#gender 2 21.66 0.0000

Denominator 24

Here we obtain a joint test of all the interaction effects involving the (Female vs Male) comparison

for gender. Because gender has only two levels, the (Female vs Male) contrast is the only reference

category contrast possible. Therefore, we obtain a single joint test of all the interaction effects.

Clearly, the partial interaction effects are not interesting for this particular model. However, if our

factors had more levels, the partial interaction effects would produce tests that are not available in the

total interaction effects. For example, if our model included factors for four dosage levels and three

races, then typing

. contrast ar.dose#race

would produce three joint tests, one for each of the reverse adjacent contrasts for dosage. Each of these

tests would be a two-degree-of-freedom test because race has three levels.

https://www.stata.com/manuals/rcontrast.pdf#rcontrastRemarksandexamplesInteractioneffects
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Three-way and higher-order models
All the contrasts and tests that we reviewed above for two-way models can be used with models

that have more terms. For instance, we could fit a three-way full factorial model by using the anova
command:

. use https://www.stata-press.com/data/r19/cont3way

. anova y race##sex##group

We could then test the simple effects of race within each level of the interaction between sex and

group:

. contrast race@sex#group

To see the reference category contrasts that decompose these simple effects, type

. contrast r.race@sex#group

We could test the three-way interaction effects by typing

. contrast race#sex#group

or the interaction effects for the interaction of race and sex by typing

. contrast race#sex

To see the individual reference category contrasts that decompose this interaction effect, type

. contrast r.race#r.sex

We could even obtain joint tests for the interaction of race and sex within each level of group by

typing

. contrast race#sex@group

For tests of the main effects of each factor, we can type

. contrast race sex group

We can calculate the individual reference category contrasts that decompose these main effects:

. contrast r.race r.sex r.group

For the partial interaction effects, we could type

. contrast r.race#group

to obtain a joint test of the two-way interaction effects of race and group for each of the individual

r.race contrasts.

We could type

. contrast r.race#sex#group

to obtain a joint test of all the three-way interaction terms for each of the individual r.race contrasts.



contrast — Contrasts and linear hypothesis tests after estimation 23

Contrast operators
contrast recognizes a set of contrast operators that are used to specify commonly used contrasts.

When these operators are used, contrast will report a test for each individual contrast in addition to the

joint test for the term. We have already seen a few of these, like r. and ar., in the previous examples.
Here we will take a closer look at each of the unweighted operators.

Here we use the cholesterol dataset and the one-way ANOVA model from the example in One-way

models:

. use https://www.stata-press.com/data/r19/cholesterol
(Artificial cholesterol data)
. anova chol agegrp
(output omitted )

The margins command reports the estimated cell means, ̂𝜇1, . . . , ̂𝜇5, for each of the five age groups.

. margins agegrp
Adjusted predictions Number of obs = 75
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

agegrp
10--19 180.5198 2.666944 67.69 0.000 175.2007 185.8388
20--29 188.7233 2.666944 70.76 0.000 183.4043 194.0424
30--39 202.0608 2.666944 75.76 0.000 196.7418 207.3799
40--59 210.6704 2.666944 78.99 0.000 205.3514 215.9895
60--79 219.282 2.666944 82.22 0.000 213.9629 224.601

Contrast operators provide an easy way to make certain types of comparisons of these cell means.

We use the ordinal factor agegrp to demonstrate these operators because some types of contrasts are

meaningful only when the levels of the factor have a natural ordering. We demonstrate these contrast

operators using a one-way model; however, they are equally applicable to main effects, simple effects,

and interactions for more complicated models.

Differences from a reference level (r.)

The r. operator specifies that each level of the attached factor variable be compared with a reference

level. These are referred to as reference-level or reference-category contrasts (or effects), and r. is the

reference-level operator.

https://www.stata.com/manuals/rcontrast.pdf#rcontrastRemarksandexamplesOne-waymodels
https://www.stata.com/manuals/rcontrast.pdf#rcontrastRemarksandexamplesOne-waymodels
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In the following, we use the r. operator to test the effect of each category of age group when that

category is compared with a reference category.

. contrast r.agegrp
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(20--29 vs 10--19) 1 4.73 0.0330
(30--39 vs 10--19) 1 32.62 0.0000
(40--59 vs 10--19) 1 63.91 0.0000
(60--79 vs 10--19) 1 105.62 0.0000

Joint 4 35.02 0.0000

Denominator 70

Contrast Std. err. [95% conf. interval]

agegrp
(20--29 vs 10--19) 8.203575 3.771628 .6812991 15.72585
(30--39 vs 10--19) 21.54105 3.771628 14.01878 29.06333
(40--59 vs 10--19) 30.15067 3.771628 22.6284 37.67295
(60--79 vs 10--19) 38.76221 3.771628 31.23993 46.28448

In the first table, the row labeled (20–29 vs 10–19) is a test of 𝜇2 = 𝜇1, a test that the mean cholesterol

levels for the 10–19 age group and the 20–29 age group are equal. The tests in the next three rows are

defined similarly. The row labeled Joint provides the joint test for these four hypotheses, which is just

the test of the main effects of age group.

The second table provides the contrasts of each category with the reference category along with con-

fidence intervals. The contrast in the row labeled (20–29 vs 10–19) is the difference in the cell means

of the second age group and the first age group, ̂𝜇2 − ̂𝜇1.

The first level of a factor is the default reference level, but we can specify a different reference level

by using the b. operator; see [U] 11.4.3.2 Base levels. Here we use the last age group, (60–79), instead
of the first as the reference category. We also include the nowald option so that only the table of contrasts
and their confidence intervals is produced.

. contrast rb5.agegrp, nowald
Contrasts of marginal linear predictions
Margins: asbalanced

Contrast Std. err. [95% conf. interval]

agegrp
(10--19 vs 60--79) -38.76221 3.771628 -46.28448 -31.23993
(20--29 vs 60--79) -30.55863 3.771628 -38.08091 -23.03636
(30--39 vs 60--79) -17.22115 3.771628 -24.74343 -9.698877
(40--59 vs 60--79) -8.611533 3.771628 -16.13381 -1.089257

Now, the first row is labeled (10–19 vs 60–79) and is the difference in the cell means of the first and

fifth age groups.

https://www.stata.com/manuals/u11.pdf#u11.4.3.2Baselevels
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Differences from the next level (a.)

The a. operator specifies that each level of the attached factor variable be compared with the next

level. These are referred to as adjacent contrasts (or effects), and a. is the adjacent operator. This operator
is meaningful only with factor variables that have a natural ordering in the levels.

We can use the a. operator to perform tests that each level of age group differs from the next adjacent

level.

. contrast a.agegrp
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(10--19 vs 20--29) 1 4.73 0.0330
(20--29 vs 30--39) 1 12.51 0.0007
(30--39 vs 40--59) 1 5.21 0.0255
(40--59 vs 60--79) 1 5.21 0.0255

Joint 4 35.02 0.0000

Denominator 70

Contrast Std. err. [95% conf. interval]

agegrp
(10--19 vs 20--29) -8.203575 3.771628 -15.72585 -.6812991
(20--29 vs 30--39) -13.33748 3.771628 -20.85976 -5.815204
(30--39 vs 40--59) -8.60962 3.771628 -16.1319 -1.087345
(40--59 vs 60--79) -8.611533 3.771628 -16.13381 -1.089257

In the first table, the row labeled (10–19 vs 20–29) tests the effect of belonging to the 10–19 age group

instead of the 20–29 age group. Likewise, the rows labeled (20–29 vs 30–39), (30–39 vs 40–59),
and (40–59 vs 60–79) are tests for the effects of being in the younger of the two age groups instead of

the older one.

In the second table, the contrast in the row labeled (10–19 vs 20–29) is the difference in the cell

means of the first and second age groups, ̂𝜇1 − ̂𝜇2. The contrasts in the other rows are defined similarly.
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Differences from the previous level (ar.)

The ar. operator specifies that each level of the attached factor variable be comparedwith the previous
level. These are referred to as reverse adjacent contrasts (or effects), and ar. is the reverse adjacent

operator. As with the a. operator, this operator is meaningful only with factor variables that have a

natural ordering in the levels.

In the following, we use the ar. operator to report tests for the individual reverse adjacent effects of

agegrp.
. contrast ar.agegrp
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(20--29 vs 10--19) 1 4.73 0.0330
(30--39 vs 20--29) 1 12.51 0.0007
(40--59 vs 30--39) 1 5.21 0.0255
(60--79 vs 40--59) 1 5.21 0.0255

Joint 4 35.02 0.0000

Denominator 70

Contrast Std. err. [95% conf. interval]

agegrp
(20--29 vs 10--19) 8.203575 3.771628 .6812991 15.72585
(30--39 vs 20--29) 13.33748 3.771628 5.815204 20.85976
(40--59 vs 30--39) 8.60962 3.771628 1.087345 16.1319
(60--79 vs 40--59) 8.611533 3.771628 1.089257 16.13381

Here the Wald tests in the first table for the individual reverse adjacent effects are equivalent to the tests

for the adjacent effects in the previous example. However, if we compare values of the contrasts in the

bottom tables, we see the difference between the r. and the ar. operators. This time, the contrast in the

first row is labeled (20–29 vs 10–19) and is the difference in the cell means of the second and first age

groups, ̂𝜇2 − ̂𝜇1. This is the estimated effect of belonging to the 20–29 age group instead of the 10–19

age group. The remaining rows make similar comparisons with the previous level.

https://www.stata.com/manuals/rcontrast.pdf#rcontrastRemarksandexamplesDifferencesfromthenextlevel(a.)
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Differences from the grand mean (g.)

The g. operator specifies that each level of a factor variable be compared with the grand mean of all

levels. For this operator, the grand mean is computed using a simple average of the cell means.

Here are the grand mean effects of agegrp:
. contrast g.agegrp
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(10--19 vs mean) 1 68.42 0.0000
(20--29 vs mean) 1 23.36 0.0000
(30--39 vs mean) 1 0.58 0.4506
(40--59 vs mean) 1 19.08 0.0000
(60--79 vs mean) 1 63.65 0.0000

Joint 4 35.02 0.0000

Denominator 70

Contrast Std. err. [95% conf. interval]

agegrp
(10--19 vs mean) -19.7315 2.385387 -24.48901 -14.974
(20--29 vs mean) -11.52793 2.385387 -16.28543 -6.770423
(30--39 vs mean) 1.809552 2.385387 -2.947953 6.567057
(40--59 vs mean) 10.41917 2.385387 5.661668 15.17668
(60--79 vs mean) 19.0307 2.385387 14.2732 23.78821

There are five age groups in our estimation sample. Thus, the row labeled (10–19 vs mean) tests 𝜇1 =
(𝜇1 +𝜇2 +𝜇3 +𝜇4 +𝜇5)/5. The row labeled (20–29 vs mean) tests 𝜇2 = (𝜇1 +𝜇2 +𝜇3 +𝜇4 +𝜇5)/5.
The remaining rows perform similar tests for the third, fourth, and fifth age groups. In our example, the

means for all age groups except the 30–39 age group are statistically different from the grand mean.
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Differences from the mean of subsequent levels (h.)

The h. operator specifies that each level of the attached factor variable be compared with the mean of

subsequent levels. These are referred to as Helmert contrasts (or effects), and h. is the Helmert operator.

For this operator, the mean is computed using a simple average of the cell means. This operator is

meaningful only with factor variables that have a natural ordering in the levels.

Here are the Helmert contrasts for agegrp:
. contrast h.agegrp
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(10--19 vs >10--19) 1 68.42 0.0000
(20--29 vs >20--29) 1 50.79 0.0000
(30--39 vs >30--39) 1 15.63 0.0002
(40--59 vs 60--79) 1 5.21 0.0255

Joint 4 35.02 0.0000

Denominator 70

Contrast Std. err. [95% conf. interval]

agegrp
(10--19 vs >10--19) -24.66438 2.981734 -30.61126 -18.7175
(20--29 vs >20--29) -21.94774 3.079522 -28.08965 -15.80583
(30--39 vs >30--39) -12.91539 3.266326 -19.42987 -6.400905
(40--59 vs 60--79) -8.611533 3.771628 -16.13381 -1.089257

The row labeled (10–19 vs >10–19) tests 𝜇1 = (𝜇2 + 𝜇3 + 𝜇4 + 𝜇5)/4, that is, that the cell mean for
the youngest age group is equal to the average of the cell means for the older age groups. The row labeled

(20–29 vs >20–29) tests 𝜇2 = (𝜇3 + 𝜇4 + 𝜇5)/3. The tests in the other rows are defined similarly.

Differences from the mean of previous levels (j.)

The j. operator specifies that each level of the attached factor variable be compared with the mean of

the previous levels. These are referred to as reverse Helmert contrasts (or effects), and j. is the reverse

Helmert operator. For this operator, the mean is computed using a simple average of the cell means. This

operator is meaningful only with factor variables that have a natural ordering in the levels.
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Here are the reverse Helmert contrasts of agegrp:

. contrast j.agegrp
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(20--29 vs 10--19) 1 4.73 0.0330
(30--39 vs <30--39) 1 28.51 0.0000
(40--59 vs <40--59) 1 43.18 0.0000
(60--79 vs <60--79) 1 63.65 0.0000

Joint 4 35.02 0.0000

Denominator 70

Contrast Std. err. [95% conf. interval]

agegrp
(20--29 vs 10--19) 8.203575 3.771628 .6812991 15.72585
(30--39 vs <30--39) 17.43927 3.266326 10.92479 23.95375
(40--59 vs <40--59) 20.2358 3.079522 14.09389 26.37771
(60--79 vs <60--79) 23.78838 2.981734 17.8415 29.73526

The row labeled (20–29 vs 10–19) tests 𝜇2 = 𝜇1, that is, that the cell means for the 20–29 and the

10–19 age groups are equal. The row labeled (30–39 vs <30–29) tests 𝜇3 = (𝜇1 + 𝜇2)/2, that is, that
the cell mean for the 30–39 age group is equal to the average of the cell means for the 10–19 and 20–29

age groups. The tests in the remaining rows are defined similarly.

Orthogonal polynomials (p. and q.)

The p. and q. operators specify that orthogonal polynomials be applied to the attached factor variable.
Orthogonal polynomial contrasts allow us to partition the effects of a factor variable into linear, quadratic,

cubic, and higher-order polynomial components. The p. operator applies orthogonal polynomials using

the values of the factor variable. The q. operator applies orthogonal polynomials using the level indices.

If the level values of the factor variable are equally spaced, as with our agegrp variable, then the p. and

q. operators yield the same result. These operators are meaningful only with factor variables that have

a natural ordering in the levels.
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Because agegrp has five levels, contrast can test the linear, quadratic, cubic, and quartic effects of

agegrp.

. contrast p.agegrp, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(linear) 1 139.11 0.0000

(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448

(quartic) 1 0.43 0.5153
Joint 4 35.02 0.0000

Denominator 70

The row labeled (linear) tests the linear effect of agegrp, the only effect that appears to be significant
in this case.

The labels for our agegrp variable show the age ranges that correspond to each level.

. label list ages
ages:

1 10--19
2 20--29
3 30--39
4 40--59
5 60--79

Notice that these groups do not have equal widths. Now, let’s refit our model using the agemidpt vari-

able. The values of agemidpt indicate the midpoint of each age group that was defined by the agegrp
variable and are, therefore, not equally spaced.

. anova chol agemidpt
Number of obs = 75 R-squared = 0.6668
Root MSE = 10.329 Adj R-squared = 0.6477

Source Partial SS df MS F Prob>F

Model 14943.4 4 3735.8499 35.02 0.0000

agemidpt 14943.4 4 3735.8499 35.02 0.0000

Residual 7468.2197 70 106.68885

Total 22411.619 74 302.85972
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Now if we use the q. operator, we will obtain the same results as above because the level indices of

agemidpt are equivalent to the values of agegrp.

. contrast q.agemidpt, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agemidpt
(linear) 1 139.11 0.0000

(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448

(quartic) 1 0.43 0.5153
Joint 4 35.02 0.0000

Denominator 70

However, if we use the p. operator, we will instead fit an orthogonal polynomial to the midpoint values.

. contrast p.agemidpt, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agemidpt
(linear) 1 133.45 0.0000

(quadratic) 1 5.40 0.0230
(cubic) 1 0.05 0.8198

(quartic) 1 1.16 0.2850
Joint 4 35.02 0.0000

Denominator 70

Using the values of the midpoints, the quadratic effect is also significant at the 5% level.

Technical note
We used the noeffects option when working with orthogonal polynomial contrasts. Apart from

perhaps the sign of the contrast, the values of the individual contrasts are not meaningful for orthogonal

polynomial contrasts. In addition, many textbooks provide tables with contrast coefficients that can be

used to compute orthogonal polynomial contrasts where the levels of a factor are equally spaced. If

we use these coefficients and calculate the contrasts manually with user-defined contrasts, as described

below, theWald tests for the polynomial termswill be equivalent, but the values of the individual contrasts

will not necessarily match those that we obtain when using the polynomial contrast operator. When we

use one of these contrast operators, an algorithm is used to calculate the coefficients of the polynomial

contrast that will allow for unequal spacing in the levels of the factor as well as in the weights for the

cell frequencies (when using pw. or qw.), as described in Methods and formulas.

https://www.stata.com/manuals/rcontrast.pdf#rcontrastMethodsandformulas
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User-defined contrasts
In the previous examples, we performed tests using contrast operators. When there is not a contrast

operator available to calculate the contrast in which we are interested, we can specify custom contrasts.

Here we fit a one-way model for cholesterol on the factor race, which has three levels:
. label list race
race:

1 Black
2 White
3 Other

. anova chol race
Number of obs = 75 R-squared = 0.0299
Root MSE = 17.3775 Adj R-squared = 0.0029

Source Partial SS df MS F Prob>F

Model 669.27823 2 334.63912 1.11 0.3357

race 669.27823 2 334.63912 1.11 0.3357

Residual 21742.341 72 301.97696

Total 22411.619 74 302.85972

margins calculates the estimated cell mean cholesterol level for each race:

. margins race
Adjusted predictions Number of obs = 75
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

race
Black 204.4279 3.475497 58.82 0.000 197.4996 211.3562
White 197.6132 3.475497 56.86 0.000 190.6849 204.5415
Other 198.7127 3.475497 57.18 0.000 191.7844 205.6409

Suppose we want to test the following linear combination:

3
∑
𝑖=1

𝑐𝑖𝜇𝑖

where 𝜇𝑖 is the cell mean of cholwhen race is equal to its 𝑖th level (the means estimated using margins
above). Assuming the 𝑐𝑖 elements sum to zero, this linear combination is a contrast. We can specify this

type of custom contrast by using the following syntax:

{race 𝑐1 𝑐2 𝑐3}
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The null hypothesis for the test of the main effects of race is

𝐻0race
∶ 𝜇1 = 𝜇2 = 𝜇3

Although 𝐻0race
can be tested using any of several different contrasts on the cell means, we will test it

by comparing the second and third cell means with the first. To test that the cell means for blacks and

whites are equal, 𝜇1 = 𝜇2, we can specify the contrast

{race -1 1 0}

To test that the cell means for blacks and other races are equal, 𝜇1 = 𝜇3, we can specify the contrast

{race -1 0 1}

We can use both in a single call to contrast.

. contrast {race -1 1 0} {race -1 0 1}
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race
(1) 1 1.92 0.1699
(2) 1 1.35 0.2488

Joint 2 1.11 0.3357

Denominator 72

Contrast Std. err. [95% conf. interval]

race
(1) -6.814717 4.915095 -16.61278 2.983345
(2) -5.715261 4.915095 -15.51332 4.082801

The row labeled (1) is the test for 𝜇1 = 𝜇2, the first specified contrast. The row labeled (2) is the test

for 𝜇1 = 𝜇3, the second specified contrast. The row labeled Joint is the overall test for the main effects

of race.

Now, let’s fit a model with two factors, race and age group:

. anova chol race##agegrp
Number of obs = 75 R-squared = 0.7524
Root MSE = 9.61785 Adj R-squared = 0.6946

Source Partial SS df MS F Prob>F

Model 16861.438 14 1204.3884 13.02 0.0000

race 669.27823 2 334.63912 3.62 0.0329
agegrp 14943.4 4 3735.8499 40.39 0.0000

race#agegrp 1248.7601 8 156.09501 1.69 0.1201

Residual 5550.1814 60 92.503024

Total 22411.619 74 302.85972
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The null hypothesis for the test of the main effects of race is now

𝐻0race
∶ 𝜇1⋅ = 𝜇2⋅ = 𝜇3⋅

where 𝜇𝑖⋅ is the marginal mean of chol when race is equal to its 𝑖th level.
We can use the same syntax as above to perform this test by specifying contrasts on the marginal

means of race:

. contrast {race -1 1 0} {race -1 0 1}
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race
(1) 1 6.28 0.0150
(2) 1 4.41 0.0399

Joint 2 3.62 0.0329

Denominator 60

Contrast Std. err. [95% conf. interval]

race
(1) -6.814717 2.720339 -12.2562 -1.37323
(2) -5.715261 2.720339 -11.15675 -.2737739

Custom contrasts may be specified on the cell means of interactions, too. Here we use margins to

calculate the mean of chol for each cell in the interaction of race and agegrp:

. margins race#agegrp
Adjusted predictions Number of obs = 75
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

race#agegrp
Black#10--19 179.2309 4.301233 41.67 0.000 170.6271 187.8346
Black#20--29 196.4777 4.301233 45.68 0.000 187.874 205.0814
Black#30--39 210.6694 4.301233 48.98 0.000 202.0656 219.2731
Black#40--59 214.097 4.301233 49.78 0.000 205.4933 222.7008
Black#60--79 221.6646 4.301233 51.54 0.000 213.0609 230.2684
White#10--19 186.0727 4.301233 43.26 0.000 177.469 194.6765
White#20--29 184.6714 4.301233 42.93 0.000 176.0676 193.2751
White#30--39 196.2633 4.301233 45.63 0.000 187.6595 204.867
White#40--59 209.9953 4.301233 48.82 0.000 201.3916 218.5991
White#60--79 211.0633 4.301233 49.07 0.000 202.4595 219.667
Other#10--19 176.2556 4.301233 40.98 0.000 167.6519 184.8594
Other#20--29 185.0209 4.301233 43.02 0.000 176.4172 193.6247
Other#30--39 199.2498 4.301233 46.32 0.000 190.646 207.8535
Other#40--59 207.9189 4.301233 48.34 0.000 199.3152 216.5227
Other#60--79 225.118 4.301233 52.34 0.000 216.5143 233.7218
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Now, we are interested in testing the following linear combination of these cell means:

3
∑
𝑖=1

5
∑
𝑗=1

𝑐𝑖𝑗𝜇𝑖𝑗

We can specify this type of custom contrast using the following syntax:

{race#agegrp 𝑐11 𝑐12 . . . 𝑐15 𝑐21 𝑐22 . . . 𝑐25 𝑐31 𝑐32 . . . 𝑐35}

Because the marginal means of chol for each level of race are linear combinations of the cell means,

we can compose the test for the main effects of race in terms of the cell means directly. The constraint

that the marginal means for blacks and whites are equal, 𝜇1⋅ = 𝜇2⋅, translates to the following constraint

on the cell means:

1
5

(𝜇11 + 𝜇12 + 𝜇13 + 𝜇14 + 𝜇15) = 1
5

(𝜇21 + 𝜇22 + 𝜇23 + 𝜇24 + 𝜇25)

Ignoring the common factor, we can specify this contrast as

{race#agegrp -1 -1 -1 -1 -1 1 1 1 1 1 0 0 0 0 0}

contrast will fill in the trailing zeros for us if we neglect to specify them, so

{race#agegrp -1 -1 -1 -1 -1 1 1 1 1 1}

is also allowed. The other constraint, 𝜇1⋅ = 𝜇3⋅, translates to

1
5

(𝜇11 + 𝜇12 + 𝜇13 + 𝜇14 + 𝜇15) = 1
5

(𝜇31 + 𝜇32 + 𝜇33 + 𝜇34 + 𝜇35)

This can be specified to contrast as

{race#agegrp -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1}

The following call to contrast yields the same test results as above.

. contrast {race#agegrp -1 -1 -1 -1 -1 1 1 1 1 1}
> {race#agegrp -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1}, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race#agegrp
(1) (1) 1 6.28 0.0150
(2) (2) 1 4.41 0.0399

Joint 2 3.62 0.0329

Denominator 60
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The row labeled (1) (1) is the test for

𝜇11 + 𝜇12 + 𝜇13 + 𝜇14 + 𝜇15 = 𝜇21 + 𝜇22 + 𝜇23 + 𝜇24 + 𝜇25

It was the first specified contrast. The row labeled (2) (2) is the test for

𝜇11 + 𝜇12 + 𝜇13 + 𝜇14 + 𝜇15 = 𝜇31 + 𝜇32 + 𝜇33 + 𝜇34 + 𝜇35

It was the second specified contrast. The row labeled Joint tests (1) (1) and (2) (2) simultaneously.

We used the noeffects option above to suppress the table of contrasts. We can omit the 1/5 from
the equations for 𝜇1⋅ = 𝜇2⋅ and 𝜇1⋅ = 𝜇3⋅ and still obtain the appropriate tests. However, if we want to

calculate the differences in the marginal means, we must include the 1/5 = 0.2 on each of the contrast

coefficients as follows:

. contrast {race#agegrp -0.2 -0.2 -0.2 -0.2 -0.2 ///
0.2 0.2 0.2 0.2 0.2} ///

{race#agegrp -0.2 -0.2 -0.2 -0.2 -0.2 ///
0 0 0 0 0 ///

0.2 0.2 0.2 0.2 0.2}

So far, we have reproduced the reference category contrasts by specifying user-defined contrasts on the

marginal means and then on the cell means. For this test, it would have been easier to use the r. contrast

operator:

. contrast r.race, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race
(White vs Black) 1 6.28 0.0150
(Other vs Black) 1 4.41 0.0399

Joint 2 3.62 0.0329

Denominator 60

In most cases, we can use contrast operators to perform tests. However, if we want to compare, for

instance, the second and third age groups with the fourth and fifth age groups with the test

1
2

(𝜇⋅2 + 𝜇⋅3) = 1
2

(𝜇⋅4 + 𝜇⋅5)

there is not a contrast operator that corresponds to this particular contrast. A custom contrast is necessary.
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. contrast {agegrp 0 -0.5 -0.5 0.5 0.5}
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp 1 62.19 0.0000

Denominator 60

Contrast Std. err. [95% conf. interval]

agegrp
(1) 19.58413 2.483318 14.61675 24.5515

Empty cells
An empty cell is a combination of the levels of factor variables that is not observed in the estimation

sample. In the previous examples, we have seen data with three levels of race, five levels of agegrp,
and all level combinations of race and agegrp present. Suppose there are no observations for white

individuals in the second age group (ages 20–29).

. use https://www.stata-press.com/data/r19/cholesterol2
(Artificial cholesterol data, empty cells)
. label list
race:

1 Black
2 White
3 Other

ages:
1 10--19
2 20--29
3 30--39
4 40--59
5 60--79
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. regress chol race##agegrp
note: 2.race#2.agegrp identifies no observations in the sample.

Source SS df MS Number of obs = 70
F(13, 56) = 13.51

Model 15751.6113 13 1211.66241 Prob > F = 0.0000
Residual 5022.71559 56 89.6913498 R-squared = 0.7582

Adj R-squared = 0.7021
Total 20774.3269 69 301.077201 Root MSE = 9.4706

chol Coefficient Std. err. t P>|t| [95% conf. interval]

race
White 12.84185 5.989703 2.14 0.036 .8430383 24.84067
Other -.167627 5.989703 -0.03 0.978 -12.16644 11.83119

agegrp
20--29 17.24681 5.989703 2.88 0.006 5.247991 29.24562
30--39 31.43847 5.989703 5.25 0.000 19.43966 43.43729
40--59 34.86613 5.989703 5.82 0.000 22.86732 46.86495
60--79 44.43374 5.989703 7.42 0.000 32.43492 56.43256

race#agegrp
White#20--29 0 (empty)
White#30--39 -22.83983 8.470719 -2.70 0.009 -39.80872 -5.870939
White#40--59 -14.67558 8.470719 -1.73 0.089 -31.64447 2.293306
White#60--79 -10.51115 8.470719 -1.24 0.220 -27.48004 6.457735
Other#20--29 -6.054425 8.470719 -0.71 0.478 -23.02331 10.91446
Other#30--39 -11.48083 8.470719 -1.36 0.181 -28.44971 5.488063
Other#40--59 -.6796112 8.470719 -0.08 0.936 -17.6485 16.28928
Other#60--79 -1.578052 8.470719 -0.19 0.853 -18.54694 15.39084

_cons 175.2309 4.235359 41.37 0.000 166.7464 183.7153

Now, let’s use contrast to test the main effects of race:

. contrast race
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race (not testable)

Denominator 56

By “not testable”, contrast means that it cannot form a test for the main effects of race based on es-

timable functions of the model coefficients. agegrp has five levels, so contrast constructs an estimate

of the 𝑖th margin for race as

̂𝜇𝑖⋅ = 1
5

5
∑
𝑗=1

̂𝜇𝑖𝑗 = ̂𝜇0 + ̂𝛼𝑖 + 1
5

5
∑
𝑗=1

{ ̂𝛽𝑗 + (𝛼𝛽)𝑖𝑗}

but (𝛼𝛽)22 was constrained to zero because of the empty cell, so ̂𝜇2⋅ is not an estimable function of the

model coefficients.
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See Estimable functions in Methods and formulas of [R] margins for a technical description of es-

timable functions. The emptycells(reweight) option causes contrast to estimate 𝜇2⋅ by

̂𝜇2⋅ = ̂𝜇21 + ̂𝜇23 + ̂𝜇24 + ̂𝜇25
4

which is an estimable function of the model coefficients.

. contrast race, emptycells(reweight)
Contrasts of marginal linear predictions
Margins: asbalanced
Empty cells: reweight

df F P>F

race 2 3.17 0.0498

Denominator 56

We can reconstruct the effect of the emptycells(reweight) option by using custom contrasts.

. contrast {race#agegrp -4 -4 -4 -4 -4 5 0 5 5 5}
> {race#agegrp -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1}, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race#agegrp
(1) (1) 1 1.06 0.3080
(2) (2) 1 2.37 0.1291

Joint 2 3.17 0.0498

Denominator 56

The row labeled (1) (1) is the test for

1
5

(𝜇11 + 𝜇12 + 𝜇13 + 𝜇14 + 𝜇15) = 1
4

(𝜇21 + 𝜇23 + 𝜇24 + 𝜇25)

It was the first specified contrast. The row labeled (2) (2) is the test for

𝜇11 + 𝜇12 + 𝜇13 + 𝜇14 + 𝜇15 = 𝜇31 + 𝜇32 + 𝜇33 + 𝜇34 + 𝜇35

It was the second specified contrast. The row labeled Joint is the overall test of the main effects of

race.

https://www.stata.com/manuals/rmargins.pdf#rmarginsMethodsandformulasEstimablefunctions
https://www.stata.com/manuals/rmargins.pdf#rmargins
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Empty cells, ANOVA style
Let’s refit the linear model from the previous example with anova to compare with contrast’s test

for the main effects of race.
. anova chol race##agegrp

Number of obs = 70 R-squared = 0.7582
Root MSE = 9.47055 Adj R-squared = 0.7021

Source Partial SS df MS F Prob>F

Model 15751.611 13 1211.6624 13.51 0.0000

race 305.49046 2 152.74523 1.70 0.1914
agegrp 14387.856 4 3596.964 40.10 0.0000

race#agegrp 795.80757 7 113.6868 1.27 0.2831

Residual 5022.7156 56 89.69135

Total 20774.327 69 301.0772

contrast and anova handled the empty cell differently; the 𝐹 statistic reported by contrast was

3.17, but anova reported 1.70. To see how they differ, consider the following table of the cell means and

margins for our situation.

agegrp
1 2 3 4 5

1 𝜇11 𝜇12 𝜇13 𝜇14 𝜇15 𝜇1⋅
race 2 𝜇21 𝜇23 𝜇24 𝜇25

3 𝜇31 𝜇32 𝜇33 𝜇34 𝜇35 𝜇3⋅
𝜇⋅1 𝜇⋅3 𝜇⋅4 𝜇⋅5

For testing the main effects of race, we know that we will be testing the equality of the marginal means

for rows 1 and 3, that is, 𝜇1⋅ = 𝜇3⋅. This translates into the following constraint:

𝜇11 + 𝜇12 + 𝜇13 + 𝜇14 + 𝜇15 = 𝜇31 + 𝜇32 + 𝜇33 + 𝜇34 + 𝜇35

Because row 2 contains an empty cell in column 2, anova dropped column 2 and tested the equality of

the marginal mean for row 2 with the average of the marginal means from rows 1 and 3, using only the

remaining cell means. This translates into the following constraint:

2(𝜇21 + 𝜇23 + 𝜇24 + 𝜇25) = 𝜇11 + 𝜇13 + 𝜇14 + 𝜇15 + 𝜇31 + 𝜇33 + 𝜇34 + 𝜇35 (1)

https://www.stata.com/manuals/rcontrast.pdf#rcontrastRemarksandexamplesEmptycells
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Now that we know the constraints that anova used to test for the main effects of race, we can use custom
contrasts to reproduce the anova test result.

. contrast {race#agegrp -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1}
> {race#agegrp 1 0 1 1 1 -2 0 -2 -2 -2 1 0 1 1 1}, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race#agegrp
(1) (1) 1 2.37 0.1291
(2) (2) 1 1.03 0.3138

Joint 2 1.70 0.1914

Denominator 56

The row labeled (1) (1) is the test for 𝜇1⋅ = 𝜇3⋅; it was the first specified contrast. The row labeled

(2) (2) is the test for the constraint in (1); it was the second specified contrast. The row labeled Joint
is an overall test for the main effects of race.

Nested effects
contrast has the | operator for computing simple effects when the levels of one factor are nested

within the levels of another. Here is a fictional example where we are interested in the effect of five

methods of teaching algebra on students’ scores for the math portion of the SAT. Suppose three algebra

classes are randomly sampled from classes using each of the five methods so that class is nested in

method as demonstrated in the following tabulation.

. use https://www.stata-press.com/data/r19/sat
(Fictional SAT data)
. tabulate class method

Five methods of teaching algebra
Class ID 1 2 3 4 5 Total

1 5 0 0 0 0 5
2 5 0 0 0 0 5
3 5 0 0 0 0 5
4 0 5 0 0 0 5
5 0 5 0 0 0 5
6 0 5 0 0 0 5
7 0 0 5 0 0 5
8 0 0 5 0 0 5
9 0 0 5 0 0 5

10 0 0 0 5 0 5
11 0 0 0 5 0 5
12 0 0 0 5 0 5
13 0 0 0 0 5 5
14 0 0 0 0 5 5
15 0 0 0 0 5 5

Total 15 15 15 15 15 75
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We will consider method as fixed and class nested in method as random. To use class nested in

method as the error term for method, we can specify the following anova model:

. anova score method / class|method /
Number of obs = 75 R-squared = 0.7599
Root MSE = 71.8517 Adj R-squared = 0.7039

Source Partial SS df MS F Prob>F

Model 980312 14 70022.286 13.56 0.0000

method 905872 4 226468 30.42 0.0000
class|method 74440 10 7444

class|method 74440 10 7444 1.44 0.1845

Residual 309760 60 5162.6667

Total 1290072 74 17433.405

Like anova, contrast allows the | operator, which specifies that one variable is nested in the levels

of another. We can use contrast to test the main effects of method and the simple effects of class
within method.

. contrast method class|method
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

method (not testable)

class|method
1 2 2.80 0.0687
2 2 0.91 0.4089
3 2 1.10 0.3390
4 2 0.22 0.8025
5 2 2.18 0.1221

Joint 10 1.44 0.1845

Denominator 60
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Although contrast was able to perform the individual tests for the simple effects of class within

method, empty cells in the interaction between method and class prevented contrast from testing for

a main effect of method. Here we add the emptycells(reweight) option so that contrast can take

the empty cells into account when computing the marginal means for method.

. contrast method class|method, emptycells(reweight)
Contrasts of marginal linear predictions
Margins: asbalanced
Empty cells: reweight

df F P>F

method 4 43.87 0.0000

class|method
1 2 2.80 0.0687
2 2 0.91 0.4089
3 2 1.10 0.3390
4 2 0.22 0.8025
5 2 2.18 0.1221

Joint 10 1.44 0.1845

Denominator 60

Now, contrast does report a test for the main effects of method. However, if we compare this with the
anova results, we will see that the results are different. They are different because contrast uses the

residual error term to compute the 𝐹 test by default. Using notation similar to anova, we can use the /
operator to specify a different error term for the test. Therefore, we can reproduce the test of main effects

from our anova command by typing

. contrast method / class|method /, emptycells(reweight)
Contrasts of marginal linear predictions
Margins: asbalanced
Empty cells: reweight

df F P>F

method 4 30.42 0.0000

class|method 10 (denominator)

class|method
1 2 2.80 0.0687
2 2 0.91 0.4089
3 2 1.10 0.3390
4 2 0.22 0.8025
5 2 2.18 0.1221

Joint 10 1.44 0.1845

Denominator 60
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Multiple comparisons
We have seen that contrast can report the individual linear combinations that make up the requested

effects. Depending upon the specified option, contrast will report confidence intervals, 𝑝-values, or
both in the effects table. By default, the reported confidence intervals and 𝑝-values are not adjusted for
multiple comparisons. Use the mcompare() option to adjust the confidence intervals and 𝑝-values for
multiple comparisons of the individual effects.

Let’s compute the grand mean effects of race using the g. operator. We also specify the

mcompare(bonferroni) option to compute 𝑝-values and confidence intervals using Bonferroni’s ad-

justment.

. use https://www.stata-press.com/data/r19/cholesterol
(Artificial cholesterol data)
. anova chol race##agegrp
(output omitted )

. contrast g.race, mcompare(bonferroni)
Contrasts of marginal linear predictions
Margins: asbalanced

Bonferroni
df F P>F P>F

race
(Black vs mean) 1 7.07 0.0100 0.0301
(White vs mean) 1 2.82 0.0982 0.2947
(Other vs mean) 1 0.96 0.3312 0.9936

Joint 2 3.62 0.0329

Denominator 60

Note: Bonferroni-adjusted p-values are reported for tests on
individual contrasts only.

Number of
comparisons

race 3

Bonferroni
Contrast Std. err. [95% conf. interval]

race
(Black vs mean) 4.17666 1.570588 .3083743 8.044945
(White vs mean) -2.638058 1.570588 -6.506343 1.230227
(Other vs mean) -1.538602 1.570588 -5.406887 2.329684

The last table reports a Bonferroni-adjusted confidence interval for each individual contrast. (Use the

effects option to add 𝑝-values to the last table.) The first table includes a Bonferroni-adjusted 𝑝-value
for each test that is not a joint test.
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Joint tests are never adjusted for multiple comparisons. For example,

. contrast race@agegrp, mcompare(bonferroni)
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race@agegrp
10--19 2 1.37 0.2620
20--29 2 2.44 0.0958
30--39 2 3.12 0.0512
40--59 2 0.53 0.5889
60--79 2 2.90 0.0628
Joint 10 2.07 0.0409

Denominator 60

Note: Bonferroni-adjusted p-values are reported
for tests on individual contrasts only.

Number of
comparisons

race@agegrp 10

Bonferroni
Contrast Std. err. [95% conf. interval]

race@agegrp
(White vs base) 10--19 6.841855 6.082862 -10.88697 24.57068
(White vs base) 20--29 -11.80631 6.082862 -29.53513 5.922513
(White vs base) 30--39 -14.40607 6.082862 -32.13489 3.322751
(White vs base) 40--59 -4.101691 6.082862 -21.83051 13.62713
(White vs base) 60--79 -10.60137 6.082862 -28.33019 7.127448
(Other vs base) 10--19 -2.975244 6.082862 -20.70407 14.75358
(Other vs base) 20--29 -11.45679 6.082862 -29.18561 6.272031
(Other vs base) 30--39 -11.41958 6.082862 -29.1484 6.309244
(Other vs base) 40--59 -6.17807 6.082862 -23.90689 11.55075
(Other vs base) 60--79 3.453375 6.082862 -14.27545 21.1822

Here we have five tests of simple effects with two degrees of freedom each. No Bonferroni-adjusted

𝑝-values are available for these tests, but the confidence intervals for the individual contrasts are adjusted.
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Unbalanced data
By default, contrast treats all factors as balanced when computing marginal means. By balanced,

we mean that contrast assumes an equal number of observations in each level of each factor and an

equal number of observations in each cell of each interaction. If our data are balanced, there is no issue.

If, however, our data are not balanced, we might prefer that contrast use the actual cell frequencies

from our data in computing marginal means. We instruct contrast to use observed frequencies by

adding the asobserved option.

Even if our data are unbalanced, we might still want contrast to compute balanced marginal means.

It depends on what we want to test and what our data represent. If we have data from a designed exper-

iment that started with an equal number of males and females but the data became unbalanced because

the data from a few males were unusable, we might still want our margins computed as though the data

were balanced. If, however, we have a representative sample of individuals from LosAngeles with 40%

of European descent, 34%African-American, 25% Hispanic, and 1%Australian, we probably want our

margins computed using these representative frequencies. We do not wantAustralians receiving the same

weight as Europeans.

The following examples will use an unbalanced version of our dataset.

. use https://www.stata-press.com/data/r19/cholesterol3
(Artificial cholesterol data, unbalanced)
. tab race agegrp

Age group
Race 10--19 20--29 30--39 40--59 60--79 Total

Black 1 5 5 4 3 18
White 4 5 7 4 4 24
Other 3 7 6 5 4 25

Total 8 17 18 13 11 67

The row labeled Total gives observed cell frequencies for age group. These can be obtained by sum-

ming frequencies from the cells in the corresponding column. In this respect, we can also refer to them

as marginal frequencies. We use the terms marginal frequencies and cell frequencies interchangeably

below.

We begin by fitting the two-factor model with an interaction.

. anova chol race##agegrp
Number of obs = 67 R-squared = 0.8179
Root MSE = 8.37496 Adj R-squared = 0.7689

Source Partial SS df MS F Prob>F

Model 16379.993 14 1169.9995 16.68 0.0000

race 230.7544 2 115.3772 1.64 0.2029
agegrp 13857.988 4 3464.4969 49.39 0.0000

race#agegrp 857.81521 8 107.2269 1.53 0.1701

Residual 3647.2774 52 70.13995

Total 20027.27 66 303.44349
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Using observed cell frequencies

Recall that the marginal means are computed from the cell means. Treating the factors as balanced

yields the following marginal means for race:

𝜂1⋅ = 1
5

(𝜇11 + 𝜇12 + 𝜇13 + 𝜇14 + 𝜇15)

𝜂2⋅ = 1
5

(𝜇21 + 𝜇22 + 𝜇23 + 𝜇24 + 𝜇25)

𝜂3⋅ = 1
5

(𝜇31 + 𝜇32 + 𝜇33 + 𝜇34 + 𝜇35)

If we have a fixed population and unbalanced cells, then the 𝜂𝑖⋅ do not represent population means. If,

however, our data are representative of the population, we can use the frequencies from our estimation

sample to estimate the population marginal means, denoted 𝜇𝑖⋅.

Here are the results of testing for a main effect of race, treating all the factors as balanced.
. contrast r.race
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race
(White vs Black) 1 3.28 0.0757
(Other vs Black) 1 1.50 0.2263

Joint 2 1.64 0.2029

Denominator 52

Contrast Std. err. [95% conf. interval]

race
(White vs Black) -5.324254 2.93778 -11.21934 .5708338
(Other vs Black) -3.596867 2.93778 -9.491955 2.298221

The row labeled (White vs Black) is the test for 𝜂2⋅ = 𝜂1⋅. The row labeled (Other vs Black) is the

test for 𝜂3⋅ = 𝜂1⋅.
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If the observed marginal frequencies are representative of the distribution of the levels of agegrp, we
can use them to form the marginal means of chol for each of the levels of race from the cell means.

𝜇1⋅ = 1
67

(8𝜇11 + 17𝜇12 + 18𝜇13 + 13𝜇14 + 11𝜇15)

𝜇2⋅ = 1
67

(8𝜇21 + 17𝜇22 + 18𝜇23 + 13𝜇24 + 11𝜇25)

𝜇3⋅ = 1
67

(8𝜇31 + 17𝜇32 + 18𝜇33 + 13𝜇34 + 11𝜇35)

Here are the results of testing for the main effects of race, using the observed marginal frequencies:

. contrast r.race, asobserved
Contrasts of marginal linear predictions
Margins: asobserved

df F P>F

race
(White vs Black) 1 7.25 0.0095
(Other vs Black) 1 3.89 0.0538

Joint 2 3.74 0.0304

Denominator 52

Contrast Std. err. [95% conf. interval]

race
(White vs Black) -7.232433 2.686089 -12.62246 -1.842402
(Other vs Black) -5.231198 2.651203 -10.55123 .0888295

The row labeled (White vs Black) is the test for 𝜇2⋅ = 𝜇1⋅. The row labeled (Other vs Black)
is the test for 𝜇3⋅ = 𝜇1⋅. Both tests were insignificant when we tested the cell means resulting from

balanced frequencies; however, when we tested the cell means from observed frequencies, the first test

is significant beyond the 5% level (and the second test is nearly so).
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Here we reproduce the results of the asobserved option with custom contrasts. Because we are

modifying the way that the marginal means are constructed from the cell means, we will specify the

contrasts on the predicted cell means. We use macro expansion, =exp, to evaluate the fractions instead
of approximating them with decimals. Macro expansion guarantees that the contrast coefficients sum to

zero. For more information, see Macro expansion operators and function in [P] macro.

. contrast {race#agegrp -‘=8/67’ -‘=17/67’ -‘=18/67’ -‘=13/67’ -‘=11/67’
> ‘=8/67’ ‘=17/67’ ‘=18/67’ ‘=13/67’ ‘=11/67’}
> {race#agegrp -‘=8/67’ -‘=17/67’ -‘=18/67’ -‘=13/67’ -‘=11/67’
> 0 0 0 0 0
> ‘=8/67’ ‘=17/67’ ‘=18/67’ ‘=13/67’ ‘=11/67’}
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race#agegrp
(1) (1) 1 7.25 0.0095
(2) (2) 1 3.89 0.0538

Joint 2 3.74 0.0304

Denominator 52

Contrast Std. err. [95% conf. interval]

race#agegrp
(1) (1) -7.232433 2.686089 -12.62246 -1.842402
(2) (2) -5.231198 2.651203 -10.55123 .0888295

Weighted contrast operators

contrast provides observation-weighted versions of five of the contrast operators—gw., hw., jw.,
pw., and qw.. The first three of these operators perform comparisons of means across cells, and like

the marginal means just discussed, these means can be computed in two ways: 1) as though the cell fre-

quencies were equal or 2) using the observed cell frequencies from the estimation sample. The weighted

operators provide versions of the standard (as balanced) operators that weight these means by their cell

frequencies. The two orthogonal polynomial operators involve similar adjustments for weighting.

Let’s examine what this means by using the gw. operator. The gw. operator is a weighted version of

the g. operator. The gw. operator computes the grand mean using the cell frequencies for race obtained

from the model fit.

Here we test the effects of race, comparing each level with the weighted grand mean but otherwise
treating the factors as balanced in the marginal mean calculations.

https://www.stata.com/manuals/pmacro.pdf#pmacroRemarksandexamplesMacroexpansionoperatorsandfunction
https://www.stata.com/manuals/pmacro.pdf#pmacro
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. contrast gw.race
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race
(Black vs mean) 1 2.78 0.1014
(White vs mean) 1 2.06 0.1573
(Other vs mean) 1 0.06 0.8068

Joint 2 1.64 0.2029

Denominator 52

Contrast Std. err. [95% conf. interval]

race
(Black vs mean) 3.24931 1.948468 -.6605779 7.159198
(White vs mean) -2.074944 1.44618 -4.976915 .8270276
(Other vs mean) -.347557 1.414182 -3.18532 2.490206

The observed marginal frequencies of race are 18, 24, and 25. Thus, the row labeled (Black vs Mean)
tests 𝜂1⋅ = (18𝜂1⋅ + 24𝜂2⋅ + 25𝜂3⋅)/67; the row labeled (White vs Mean) tests 𝜂2⋅ = (18𝜂1⋅ + 24𝜂2⋅ +
25𝜂3⋅)/67; and the row labeled (Other vs Mean) tests 𝜂3⋅ = (18𝜂1⋅ + 24𝜂2⋅ + 25𝜂3⋅)/67.

Now, we reproduce the above results using custom contrasts. We are weighting the calculation of the

grand mean from the marginal means for each of the races, but we are not weighting the calculation of

the marginal means themselves. Therefore, we can specify the custom contrast on the marginal means

for race instead of on the cell means.

. contrast {race ‘=49/67’ -‘=24/67’ -‘=25/67’}
> {race -‘=18/67’ ‘=43/67’ -‘=25/67’}
> {race -‘=18/67’ -‘=24/67’ ‘=42/67’}
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race
(1) 1 2.78 0.1014
(2) 1 2.06 0.1573
(3) 1 0.06 0.8068

Joint 2 1.64 0.2029

Denominator 52

Contrast Std. err. [95% conf. interval]

race
(1) 3.24931 1.948468 -.6605779 7.159198
(2) -2.074944 1.44618 -4.976915 .8270276
(3) -.347557 1.414182 -3.18532 2.490206

https://www.stata.com/manuals/rcontrast.pdf#rcontrastRemarksandexamplesUnbalanceddata
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Now, we will test for each race the difference between the marginal mean and the weighted grand

mean, treating the factors as observed in the marginal mean calculations.

. contrast gw.race, asobserved wald ci
Contrasts of marginal linear predictions
Margins: asobserved

df F P>F

race
(Black vs mean) 1 6.81 0.0118
(White vs mean) 1 3.74 0.0587
(Other vs mean) 1 0.26 0.6099

Joint 2 3.74 0.0304

Denominator 52

Contrast Std. err. [95% conf. interval]

race
(Black vs mean) 4.542662 1.740331 1.050432 8.034891
(White vs mean) -2.689771 1.39142 -5.481859 .1023172
(Other vs mean) -.6885363 1.341261 -3.379973 2.002901

The row labeled (Black vs Mean) tests 𝜇1⋅ = (18𝜇1⋅ + 24𝜇2⋅ + 25𝜇3⋅)/67; the row labeled (White
vs Mean) tests 𝜇2⋅ = (18𝜇1⋅ + 24𝜇2⋅ + 25𝜇3⋅)/67; and the row labeled (Other vs Mean) tests 𝜇3⋅ =
(18𝜇1⋅ + 24𝜇2⋅ + 25𝜇3⋅)/67.

Here we use a custom contrast to reproduce the above result testing 𝜇1⋅ = (18𝜇1⋅+24𝜇2⋅+25𝜇3⋅)/67.
Because both the calculation of the marginal means and the calculation of the grand mean are adjusted,

we specify the custom contrast on the cell means.

. contrast {race#agegrp ‘=49/67*8/67’ ‘=49/67*17/67’ ‘=49/67*18/67’
> ‘=49/67*13/67’ ‘=49/67*11/67’
> -‘=24/67*8/67’ -‘=24/67*17/67’ -‘=24/67*18/67’
> -‘=24/67*13/67’ -‘=24/67*11/67’
> -‘=25/67*8/67’ -‘=25/67*17/67’ -‘=25/67*18/67’
> -‘=25/67*13/67’ -‘=25/67*11/67’}, nowald
Contrasts of marginal linear predictions
Margins: asbalanced

Contrast Std. err. [95% conf. interval]

race#agegrp
(1) (1) 4.542662 1.740331 1.050432 8.034891

The Helmert and reverse Helmert contrasts also involve calculating averages of the marginal means;

therefore, weighted versions of these parameters are available as well. The hw. operator is a weighted

version of the h. operator that computes the mean of the subsequent levels using the cell frequencies

obtained from the model fit. The jw. operator is a weighted version of the j. operator that computes the

mean of the previous levels using the cell frequencies obtained from the model fit.

For orthogonal polynomials, we can use the pw. and qw. operators, which are the weighted versions

of the p. and q. operators. In this case, the cell frequencies from the model fit are used in the calculation

of the orthogonal polynomial contrast coefficients.
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Testing factor effects on slopes
For linear models where the independent variables are all factor variables, the linear prediction at

fixed levels of the factor variables turns out to be a cell mean. With these models, contrast computes

and tests the effects of the factor variables on the expected mean of the dependent variable. When factor

variables are interacted with continuous variables, contrast distinguishes factor effects on the intercept

from factor effects on the slope.

Here we have 1980 census data including information on the birthrate (brate), the median age

(medage), and the region of the country (region) for each of the 50 states. We can fit an ANCOVA

model for brate using main effects of the factor variable region and the continuous variable medage.
. use https://www.stata-press.com/data/r19/census3
(1980 Census data by state)
. label list cenreg
cenreg:

1 NE
2 NCentral
3 South
4 West

. anova brate i.region c.medage
Number of obs = 50 R-squared = 0.8264
Root MSE = 12.7575 Adj R-squared = 0.8110

Source Partial SS df MS F Prob>F

Model 34872.859 4 8718.2147 53.57 0.0000

region 2197.7545 3 732.58484 4.50 0.0076
medage 15327.423 1 15327.423 94.18 0.0000

Residual 7323.9611 45 162.75469

Total 42196.82 49 861.15959

For those more comfortable with linear regression, this is equivalent to the regression model

. regress brate i.region c.medage

You may use either.
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We can use contrast to compute reference category effects for region. These contrasts compare
the adjusted means of NCentral, South, and West regions with the adjusted mean of the NE region.

. contrast r.region
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

region
(NCentral vs NE) 1 2.24 0.1417

(South vs NE) 1 0.78 0.3805
(West vs NE) 1 10.33 0.0024

Joint 3 4.50 0.0076

Denominator 45

Contrast Std. err. [95% conf. interval]

region
(NCentral vs NE) 9.061063 6.057484 -3.139337 21.26146

(South vs NE) 5.06991 5.72396 -6.458738 16.59856
(West vs NE) 21.71328 6.755616 8.106774 35.31979

Let’s add the interaction between region and medage to the model.

. anova brate region##c.medage
Number of obs = 50 R-squared = 0.9000
Root MSE = 10.0244 Adj R-squared = 0.8833

Source Partial SS df MS F Prob>F

Model 37976.315 7 5425.1878 53.99 0.0000

region 3405.0704 3 1135.0235 11.30 0.0000
medage 5279.7145 1 5279.7145 52.54 0.0000

region#medage 3103.456 3 1034.4853 10.29 0.0000

Residual 4220.5051 42 100.48822

Total 42196.82 49 861.15959

The parameterization for the expected value of brate as a function of region and medage is given by

𝐸(brate|region = 𝑖, medage) = 𝛼0 + 𝛼𝑖 + 𝛽0medage + 𝛽𝑖medage

where 𝛼0 is the intercept and 𝛽0 is the slope of medage. We are modeling the effects of region in two

different ways. The 𝛼𝑖 parameters measure the effect of region on the intercept, and the 𝛽𝑖 parameters

measure the effect of region on the slope of medage.
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contrast computes and tests effects on slopes separately from effects on intercepts. First, we will

compute the reference category effects of region on the intercept:

. contrast r.region
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

region
(NCentral vs NE) 1 0.09 0.7691

(South vs NE) 1 0.01 0.9389
(West vs NE) 1 8.50 0.0057

Joint 3 11.30 0.0000

Denominator 42

Contrast Std. err. [95% conf. interval]

region
(NCentral vs NE) -49.38396 167.1281 -386.6622 287.8942

(South vs NE) -9.058983 117.424 -246.0302 227.9123
(West vs NE) 343.0024 117.6547 105.5656 580.4393

Now, we will compute the reference category effects of region on the slope of medage:

. contrast r.region#c.medage
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

region#c.medage
(NCentral vs NE) 1 0.16 0.6917

(South vs NE) 1 0.03 0.8558
(West vs NE) 1 8.18 0.0066

Joint 3 10.29 0.0000

Denominator 42

Contrast Std. err. [95% conf. interval]

region#c.medage
(NCentral vs NE) 2.208539 5.530981 -8.953432 13.37051

(South vs NE) .6928008 3.788735 -6.953175 8.338777
(West vs NE) -10.94649 3.827357 -18.67041 -3.22257

At the 5% level, the slope of medage for the West region differs from that of the NE region, but at that

level of significance, we cannot say that the slope for the NCentral or the South region differs from

that of the NE region.
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This model is simple enough that the reference category contrasts reproduce the coefficients for

region and for the interactions in an equivalent model fit by regress.

. regress brate region##c.medage
Source SS df MS Number of obs = 50

F(7, 42) = 53.99
Model 37976.3149 7 5425.18784 Prob > F = 0.0000

Residual 4220.5051 42 100.488217 R-squared = 0.9000
Adj R-squared = 0.8833

Total 42196.82 49 861.159592 Root MSE = 10.024

brate Coefficient Std. err. t P>|t| [95% conf. interval]

region
NCentral -49.38396 167.1281 -0.30 0.769 -386.6622 287.8942

South -9.058983 117.424 -0.08 0.939 -246.0302 227.9123
West 343.0024 117.6547 2.92 0.006 105.5656 580.4393

medage -8.802707 3.462865 -2.54 0.015 -15.79105 -1.814362

region#
c.medage

NCentral 2.208539 5.530981 0.40 0.692 -8.953432 13.37051
South .6928008 3.788735 0.18 0.856 -6.953175 8.338777
West -10.94649 3.827357 -2.86 0.007 -18.67041 -3.22257

_cons 411.8268 108.2084 3.81 0.000 193.4533 630.2002

This will not be the case for models that are more complicated.

Chow tests
Now, let’s suppose we are fitting a model for birthrates on median age and marriage rate. We are also

interested in whether the regression coefficients differ for states in the east versus states in the west. We

use census divisions to create a new variable, west, that indicates which states are in the western half of
the United States.

. generate west = inlist(division, 4, 7, 8, 9)
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We fit a model that includes a separate intercept for west as well as an interaction between west and

each of the other variables in our model.

. regress brate i.west##c.medage i.west##c.mrgrate
Source SS df MS Number of obs = 50

F(5, 44) = 92.09
Model 38516.2172 5 7703.24344 Prob > F = 0.0000

Residual 3680.60281 44 83.6500639 R-squared = 0.9128
Adj R-squared = 0.9029

Total 42196.82 49 861.159592 Root MSE = 9.146

brate Coefficient Std. err. t P>|t| [95% conf. interval]

1.west 327.8733 58.71793 5.58 0.000 209.5351 446.2115
medage -7.532304 1.387624 -5.43 0.000 -10.32888 -4.735731

west#
c.medage

1 -10.11443 1.849103 -5.47 0.000 -13.84105 -6.387808

mrgrate 828.6813 643.3443 1.29 0.204 -467.8939 2125.257

west#
c.mrgrate

1 -800.8036 645.488 -1.24 0.221 -2101.699 500.092

_cons 366.5325 47.08904 7.78 0.000 271.6308 461.4343

We can test the effects of west on the intercept and on the slopes of medage and mrgrate. We will

specify all of these effects in a single contrast command and include the overall option to obtain a

joint test of effects, that is, a test that the coefficients for eastern states and for western states are equal.

. contrast west west#c.medage west#c.mrgrate, overall
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

west 1 31.18 0.0000

west#c.medage 1 29.92 0.0000

west#c.mrgrate 1 1.54 0.2213

Overall 3 22.82 0.0000

Denominator 44

This overall test is referred to as a Chow test in econometrics (Chow 1960).
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Beyond linear models
contrast may be used after almost any estimation command, with the added benefit that contrast

provides direct support for testing main and interaction effects that is not available in most estimation

commands. To illustrate, we will use contrast with results from a logistic regression. Stata’s logit
command fits logistic regression models, reporting the fitted regression coefficients. The logistic
command fits the same models but reports odds ratios. Although contrast can report odds ratios for the

computed effects, the tests are all computed from linear combinations of themodel coefficients regardless

of which estimation command we used.

Suppose we have data on patient satisfaction for three hospitals in a city. Let’s begin by fitting a

model for satisfied, whether the patient was satisfied with his or her treatment, using the main effects
of hospital:

. use https://www.stata-press.com/data/r19/hospital, clear
(Artificial hospital satisfaction data)
. logit satisfied i.hospital
Iteration 0: Log likelihood = -393.72216
Iteration 1: Log likelihood = -387.55736
Iteration 2: Log likelihood = -387.4768
Iteration 3: Log likelihood = -387.47679
Logistic regression Number of obs = 802

LR chi2(2) = 12.49
Prob > chi2 = 0.0019

Log likelihood = -387.47679 Pseudo R2 = 0.0159

satisfied Coefficient Std. err. z P>|z| [95% conf. interval]

hospital
2 .5348129 .2136021 2.50 0.012 .1161604 .9534654
3 .7354519 .2221929 3.31 0.001 .2999618 1.170942

_cons 1.034708 .1391469 7.44 0.000 .7619855 1.307431

Because there are no other independent variables in this model, the reference category effects of

hospital computed by contrast will match the fitted model coefficients, assuming a common refer-

ence level.

. contrast r.hospital
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

hospital
(2 vs 1) 1 6.27 0.0123
(3 vs 1) 1 10.96 0.0009

Joint 2 12.55 0.0019

Contrast Std. err. [95% conf. interval]

hospital
(2 vs 1) .5348129 .2136021 .1161604 .9534654
(3 vs 1) .7354519 .2221929 .2999618 1.170942
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We see that the reference category effects are equal to the fitted coefficients. They also have the same

interpretation, the difference in log odds from the reference category. The top table also provides a joint

test of these effects, a test of the main effects of hospital.

We also have information on the condition for which each patient is being treated in the variable

illness. Here we fit a logistic regression using a two-way crossed model of hospital and illness.

. label list illness
illness:

1 Heart attack
2 Stroke
3 Pneumonia
4 Lung disease
5 Kidney failure

. logistic satisfied hospital##illness
Logistic regression Number of obs = 802

LR chi2(14) = 38.51
Prob > chi2 = 0.0004

Log likelihood = -374.46865 Pseudo R2 = 0.0489

satisfied Odds ratio Std. err. z P>|z| [95% conf. interval]

hospital
2 1.226496 .5492177 0.46 0.648 .509921 2.950049
3 1.711111 .8061016 1.14 0.254 .6796395 4.308021

illness
Stroke 1.328704 .6044214 0.62 0.532 .544779 3.240678

Pneumonia .7993827 .3408305 -0.53 0.599 .3466015 1.843653
Lung dise.. 1.231481 .5627958 0.46 0.649 .5028318 3.016012
Kidney fa.. 1.25 .5489438 0.51 0.611 .5285676 2.956102

hospital#
illness

2#Stroke 2.434061 1.768427 1.22 0.221 .5860099 10.11016
2#Pneumonia 4.045805 2.868559 1.97 0.049 1.008058 16.23769

2 #
Lung dise.. .54713 .3469342 -0.95 0.342 .1578866 1.89599

2 #
Kidney fa.. 1.594425 1.081104 0.69 0.491 .4221288 6.022312

3#Stroke .5416535 .3590089 -0.93 0.355 .1477555 1.985635
3#Pneumonia 1.579502 1.042504 0.69 0.489 .4332209 5.758783

3 #
Lung dise.. 3.137388 2.595748 1.38 0.167 .6198955 15.87881

3 #
Kidney fa.. 1.672727 1.226149 0.70 0.483 .3976256 7.036812

_cons 2.571429 .8099239 3.00 0.003 1.386983 4.767358

Note: _cons estimates baseline odds.
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Using contrast, we can obtain anANOVA-style table of tests for the main effects and interaction effects
of hospital and illness.

. contrast hospital##illness
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

hospital 2 14.92 0.0006

illness 4 4.09 0.3937

hospital#illness 8 20.45 0.0088

Our interaction effect is significant, so we decide to evaluate the simple reference category effects of

hospital within illness. We are particularly interested in patient satisfaction when being treated for

a heart attack or stroke, so we will use the i. operator to limit our output to simple effects within the

first two illnesses.

. contrast r.hospital@i(1 2).illness, nowald
Contrasts of marginal linear predictions
Margins: asbalanced

Contrast Std. err. [95% conf. interval]

hospital@illness
(2 vs 1) Heart attack .2041611 .4477942 -.6734995 1.081822

(2 vs 1) Stroke 1.093722 .5721288 -.0276296 2.215074
(3 vs 1) Heart attack .5371429 .4710983 -.3861928 1.460479

(3 vs 1) Stroke -.0759859 .4662325 -.9897847 .8378129

The row labeled (2 vs 1) heart attack estimates simple effects on the log odds when comparing hos-

pital 2 with hospital 1 for patients having heart attacks. These effects are differences in the cell means of

the linear predictions.

We can add the or option to report an odds ratio for each of these simple effects:

. contrast r.hospital@i(1 2).illness, nowald or
Contrasts of marginal linear predictions
Margins: asbalanced

Odds ratio Std. err. [95% conf. interval]

hospital@illness
(2 vs 1) Heart attack 1.226496 .5492177 .509921 2.950049

(2 vs 1) Stroke 2.985366 1.708014 .9727486 9.162089
(3 vs 1) Heart attack 1.711111 .8061016 .6796395 4.308021

(3 vs 1) Stroke .9268293 .4321179 .3716567 2.311306

These odds ratios are just the exponentiated version of the contrasts in the previous table.

For contrasts of the margins of nonlinear predictions, such as predicted probabilities, see [R]margins,

contrast.

https://www.stata.com/manuals/rmarginscontrast.pdf#rmargins,contrast
https://www.stata.com/manuals/rmarginscontrast.pdf#rmargins,contrast
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Multiple equations
contrastworks with models containingmultiple equations. Commands such as intreg and gnbreg

allow their ancillary parameters to be modeled as functions of independent variables, and contrast can

compute and test effects within these equations. In addition, contrast allows a special pseudofactor for

equation—called eqns—when working with results from manova, mvreg, mlogit, and mprobit.

In example 4 of [MV] manova, we fit a two-way MANOVA model using data from Woodard (1931).

Here we will fit this model using mvreg. The data represent patients with jaw fractures. y1 is the patient’s
age, y2 is blood lymphocytes, and y3 is blood polymorphonuclears. Two factor variables, gender and

fracture, are used as independent variables.
. use https://www.stata-press.com/data/r19/jaw
(Table 4.6. Two-way unbalanced data for fractures of the jaw, Rencher (1998))
. mvreg y1 y2 y3 = gender##fracture, vsquish nofvlabel
Equation Obs Parms RMSE ”R-sq” F P>F

y1 27 6 10.21777 0.4086 2.902124 0.0382
y2 27 6 5.268768 0.4743 3.78967 0.0133
y3 27 6 4.993647 0.4518 3.460938 0.0195

Coefficient Std. err. t P>|t| [95% conf. interval]

y1
2.gender -17.5 11.03645 -1.59 0.128 -40.45156 5.451555
fracture

2 -12.625 5.518225 -2.29 0.033 -24.10078 -1.149222
3 5.666667 5.899231 0.96 0.348 -6.601456 17.93479

gender#
fracture

2 2 21.375 12.68678 1.68 0.107 -5.008595 47.75859
2 3 8.833333 13.83492 0.64 0.530 -19.93796 37.60463

_cons 39.5 4.171386 9.47 0.000 30.82513 48.17487

y2
2.gender 20.5 5.69092 3.60 0.002 8.665083 32.33492
fracture

2 -3.125 2.84546 -1.10 0.285 -9.042458 2.792458
3 .6666667 3.041925 0.22 0.829 -5.659362 6.992696

gender#
fracture

2 2 -19.625 6.541907 -3.00 0.007 -33.22964 -6.02036
2 3 -23.66667 7.133946 -3.32 0.003 -38.50252 -8.830813

_cons 35.5 2.150966 16.50 0.000 31.02682 39.97318

y3
2.gender -18.16667 5.393755 -3.37 0.003 -29.38359 -6.949739
fracture

2 1.083333 2.696877 0.40 0.692 -4.52513 6.691797
3 -3 2.883083 -1.04 0.310 -8.9957 2.9957

gender#
fracture

2 2 19.91667 6.200305 3.21 0.004 7.022426 32.81091
2 3 23.5 6.76143 3.48 0.002 9.438837 37.56116

_cons 61.16667 2.038648 30.00 0.000 56.92707 65.40627

https://www.stata.com/manuals/mvmanova.pdf#mvmanova
https://www.stata.com/manuals/mvmvreg.pdf#mvmvreg
https://www.stata.com/manuals/rmlogit.pdf#rmlogit
https://www.stata.com/manuals/rmprobit.pdf#rmprobit
https://www.stata.com/manuals/mvmanova.pdf#mvmanovaRemarksandexamplesTwo-wayMANOVAwithunbalanceddata
https://www.stata.com/manuals/mvmanova.pdf#mvmanova
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contrast computes Wald tests using the coefficients from the first equation by default.

. contrast gender##fracture
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

y1
gender 1 2.16 0.1569

fracture 2 2.74 0.0880

gender#fracture 2 1.69 0.2085

Denominator 21

Here we use the equation() option to compute the Wald tests in the y2 equation:

. contrast gender##fracture, equation(y2)
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

y2
gender 1 5.41 0.0301

fracture 2 7.97 0.0027

gender#fracture 2 5.97 0.0088

Denominator 21

Here we use the equation index to compute the Wald tests in the third equation:

. contrast gender##fracture, equation(#3)
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

y3
gender 1 2.23 0.1502

fracture 2 6.36 0.0069

gender#fracture 2 6.66 0.0058

Denominator 21
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Here we use the atequations option to compute Wald tests for each equation in the model. We also

use the vsquish option to suppress the extra blank lines between terms.

. contrast gender##fracture, atequations vsquish
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

y1
gender 1 2.16 0.1569

fracture 2 2.74 0.0880
gender#fracture 2 1.69 0.2085

y2
gender 1 5.41 0.0301

fracture 2 7.97 0.0027
gender#fracture 2 5.97 0.0088

y3
gender 1 2.23 0.1502

fracture 2 6.36 0.0069
gender#fracture 2 6.66 0.0058

Denominator 21

Because we are investigating the results from mvreg, we can use the special eqns factor to test for

a marginal effect on the means among the dependent variables:

. contrast _eqns
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

_eqns 2 49.19 0.0000

Denominator 21

Here we test whether the main effects of gender differ among the dependent variables:

. contrast gender#_eqns
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

gender#_eqns 2 3.61 0.0448

Denominator 21
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Although it is not terribly interesting in this case, we can even calculate contrasts across equations:

. contrast gender#r._eqns
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

gender#_eqns
(joint) (2 vs 1) 1 5.82 0.0251
(joint) (3 vs 1) 1 0.40 0.5352

Joint 2 3.61 0.0448

Denominator 21

Video example
Introduction to contrasts in Stata: One-way ANOVA

Stored results
contrast stores the following in r():

Scalars

r(df r) variance degrees of freedom

r(k terms) number of terms in termlist

r(level) confidence level of confidence intervals

Macros

r(cmd) contrast
r(cmdline) command as typed

r(est cmd) e(cmd) from original estimation results

r(est cmdline) e(cmdline) from original estimation results

r(title) title in output

r(overall) overall or empty

r(emptycells) empspec from emptycells()
r(mcmethod) method from mcompare()
r(mctitle) title for method from mcompare()
r(mcadjustall) adjustall or empty

r(margin method) asbalanced or asobserved

Matrices

r(b) contrast estimates

r(V) variance–covariance matrix of the contrast estimates

r(error) contrast estimability codes;

0 means estimable,

8 means not estimable

r(L) matrix of contrasts applied to the model coefficients

r(table) matrix containing the contrasts with their standard errors,

test statistics, 𝑝-values, and confidence intervals
r(F) vector of 𝐹 statistics; r(df r) present

r(chi2) vector of 𝜒2 statistics; r(df r) not present

r(p) vector of 𝑝-values corresponding to r(F) or r(chi2)
r(df) vector of degrees of freedom corresponding to r(p)
r(df2) vector of denominator degrees of freedom corresponding to r(F)

https://www.youtube.com/watch?v=XaeStjh6n-A


contrast — Contrasts and linear hypothesis tests after estimation 64

contrast with the post option stores the following in e():

Scalars

e(df r) variance degrees of freedom

e(k terms) number of terms in termlist

Macros

e(cmd) contrast
e(cmdline) command as typed

e(properties) b V
e(est cmd) e(cmd) from original estimation results

e(est cmdline) e(cmdline) from original estimation results

e(title) title in output

e(overall) overall or empty

e(emptycells) empspec from emptycells()
e(margin method) asbalanced or asobserved
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) contrast estimates

e(V) variance–covariance matrix of the contrast estimates

e(error) contrast estimability codes;

0 means estimable,

8 means not estimable

e(L) matrix of contrasts applied to the model coefficients

e(F) vector of unadjusted 𝐹 statistics; e(df r) present

e(chi2) vector of 𝜒2 statistics; e(df r) not present

e(p) vector of unadjusted 𝑝-values corresponding to e(F) or e(chi2)
e(df) vector of degrees of freedom corresponding to e(p)
e(df2) vector of denominator degrees of freedom corresponding to e(F)

Methods and formulas
Methods and formulas are presented under the following headings:

Marginal linear predictions
Contrast operators

Reference level contrasts
Adjacent contrasts
Grand mean contrasts
Helmert contrasts
Reverse Helmert contrasts
Orthogonal polynomial contrasts

Contrasts within interactions
Multiple comparisons
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Marginal linear predictions
contrast treats intercept effects separately from slope effects. To illustrate, consider the following

parameterization for a quadratic regression of 𝑦 on 𝑥 that also models the effects of two factor variables

𝐴 and 𝐵, where the levels of 𝐴 are indexed by 𝑖 = 1, . . . , 𝑘𝑎 and the levels of 𝐵 are indexed by 𝑗 =
1, . . . , 𝑘𝑏.

𝐸(𝑦|𝐴 = 𝑖, 𝐵 = 𝑗, 𝑥) = 𝜂0𝑖𝑗 + 𝜂1𝑖𝑗𝑥 + 𝜂2𝑖𝑗𝑥2

𝜂0𝑖𝑗 = 𝜂0 + 𝛼0𝑖 + 𝛽0𝑗 + (𝛼𝛽)0𝑖𝑗

𝜂1𝑖𝑗 = 𝜂1 + 𝛼1𝑖 + 𝛽1𝑗 + (𝛼𝛽)1𝑖𝑗

𝜂2𝑖𝑗 = 𝜂2 + 𝛼2𝑖 + 𝛽2𝑗 + (𝛼𝛽)2𝑖𝑗

We have partitioned the coefficients into three groups of parameters: 𝜂0𝑖𝑗 is a cell prediction for the

intercept, 𝜂1𝑖𝑗 is a cell prediction for the slope on 𝑥, and 𝜂2𝑖𝑗 is a cell prediction for the slope on 𝑥2. For

the intercept parameters, 𝜂0 is the intercept, 𝛼0𝑖 represents a main effect for factor 𝐴 at its 𝑖th level, 𝛽0𝑗
represents a main effect for factor 𝐵 at its 𝑗th level, and (𝛼𝛽)0𝑖𝑗 represents an effect for the interaction

of 𝐴 and 𝐵 at the 𝑖𝑗th level. The individual coefficients in 𝜂1𝑖𝑗 and 𝜂2𝑖𝑗 have similar interpretations, but

the effects are on the slopes of 𝑥 and 𝑥2, respectively.

The marginal intercepts for 𝐴 are given by

𝜂0𝑖. =
𝑘𝑏

∑
𝑗=1

𝑓𝑖𝑗𝜂0𝑖𝑗

where 𝑓𝑖𝑗 is a marginal relative frequency of the 𝑗th level of 𝐵 and is controlled by the asobserved and

emptycells(reweight) options according to

𝑓𝑖𝑗 =

⎧{{
⎨{{⎩

1/𝑘𝑏, default

𝑤.𝑗/𝑤.., asobserved
1/(𝑘𝑏 − 𝑒𝑖.), emptycells(reweight)
𝑤𝑖𝑗/𝑤𝑖., emptycells(reweight) and asobserved

Above, 𝑤𝑖𝑗 is the number of individuals with 𝐴 at its 𝑖th level and 𝐵 at its 𝑗th,

𝑤𝑖. =
𝑘𝑏

∑
𝑗=1

𝑤𝑖𝑗

𝑤.𝑗 =
𝑘𝑎

∑
𝑖=1

𝑤𝑖𝑗

𝑤.. =
𝑘𝑎

∑
𝑖=1

𝑘𝑏

∑
𝑗=1

𝑤𝑖𝑗

and 𝑒𝑖. is the number of empty cells where𝐴 is at its 𝑖th level. The marginal intercepts for𝐵 andmarginal

slopes on 𝑥 and 𝑥2 are similarly defined.
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Estimates for the cell intercepts and slopes are computed using the corresponding linear combination

of the coefficients from the fitted model. For example, the estimated cell intercepts are computed using

̂𝜂0𝑖𝑗 = ̂𝜂0 + ̂𝛼0𝑖 + ̂𝛽0𝑗 + (𝛼𝛽)0𝑖𝑗

and the estimated marginal intercepts for 𝐴 are computed as

̂𝜂0𝑖. =
𝑘𝑏

∑
𝑗=1

𝑓𝑖𝑗 ̂𝜂0𝑖𝑗

Contrast operators
contrast performsWald tests using linear combinations of marginal linear predictions. For example,

the following linear combination can be used to test for a specific effect of factor 𝐴 on the marginal

intercepts.

𝑘𝑎

∑
𝑖=1

𝑐𝑖𝜂0𝑖.

If the 𝑐𝑖 elements sum to zero, the linear combination is called a contrast. If the factor 𝐴 is represented

by a variable named A, then we specify this contrast using the following syntax:

{A 𝑐1 𝑐2 ... 𝑐𝑘𝑎
}

Similarly, the following linear combination can be used to test for a specific interaction effect of factors

𝐴 and 𝐵 on the marginal slope of 𝑥.

𝑘𝑎

∑
𝑖=1

𝑘𝑏

∑
𝑗=1

𝑐𝑖𝑗𝜂1𝑖𝑗

If the factor 𝐵 is represented by a variable named B, then we specify this contrast using the following

syntax:

{A#B 𝑐11 𝑐12 ... 𝑐1𝑘𝑏
𝑐21 ... 𝑐𝑘𝑎𝑘𝑏

}

contrast has variable operators for several commonly used contrasts. Each contrast operator speci-

fies a matrix of linear combinations that yield the requested set of contrasts to be applied to the marginal

linear predictions associated with the attached factor variable.
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Reference level contrasts

The r. operator compares each level with a reference level. Let R be the corresponding contrast

matrix for factor 𝐴, and then R is a (𝑘𝑎 − 1) × 𝑘𝑎 matrix with elements

R𝑖𝑗 =

⎧{{
⎨{{⎩

−1, if 𝑗 is the reference level
1, if 𝑖 = 𝑗 and 𝑗 is less than the reference level
1, if 𝑖 + 1 = 𝑗 and 𝑗 is greater than the reference level
0, otherwise

If 𝑘𝑎 = 5 and the reference level is the third level of 𝐴 (specified as rb(#3).A), then

R =
⎛⎜⎜⎜
⎝

1 0 −1 0 0
0 1 −1 0 0
0 0 −1 1 0
0 0 −1 0 1

⎞⎟⎟⎟
⎠

Adjacent contrasts

The a. operator compares each level with the next level. Let A be the corresponding contrast matrix

for factor 𝐴, and then A is a (𝑘𝑎 − 1) × 𝑘𝑎 matrix with elements

A𝑖𝑗 =
⎧{
⎨{⎩

1, if 𝑖 = 𝑗
−1, if 𝑖 + 1 = 𝑗

0, otherwise

If 𝑘𝑎 = 5, then

A =
⎛⎜⎜⎜
⎝

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

⎞⎟⎟⎟
⎠

The ar. operator compares each level with the previous level. If A is the contrast matrix for the

a. operator, then −A is the corresponding contrast matrix for the ar. operator.
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Grand mean contrasts

The g. operator compares each level with the mean of all the levels. Let G be the corresponding

contrast matrix for factor 𝐴, and then G is a 𝑘𝑎 × 𝑘𝑎 matrix with elements

G𝑖𝑗 = {1 − 1/𝑘𝑎, if 𝑖 = 𝑗
− 1/𝑘𝑎, if 𝑖 ≠ 𝑗

If 𝑘𝑎 = 5, then

G =
⎛⎜⎜⎜⎜⎜⎜
⎝

4/5 −1/5 −1/5 −1/5 −1/5
−1/5 4/5 −1/5 −1/5 −1/5
−1/5 −1/5 4/5 −1/5 −1/5
−1/5 −1/5 −1/5 4/5 −1/5
−1/5 −1/5 −1/5 −1/5 4/5

⎞⎟⎟⎟⎟⎟⎟
⎠

The gw. operator compares each level with the weighted mean of all the levels. The weights are taken

from the observed weighted cell frequencies in the estimation sample of the fitted model. Let G𝑤 be the

corresponding contrast matrix for factor 𝐴, and then G𝑤 is a 𝑘𝑎 × 𝑘𝑎 matrix with elements

G𝑖𝑗 = {1 − 𝑤𝑖/𝑤⋅, if 𝑖 = 𝑗
− 𝑤𝑗/𝑤⋅, if 𝑖 ≠ 𝑗

where 𝑤𝑖 is a marginal weight representing the number of individuals with 𝐴 at its 𝑖th level and 𝑤⋅ =
∑𝑖 𝑤𝑖.

Helmert contrasts

The h. operator compares each level with the mean of the subsequent levels. Let H be the corre-

sponding contrast matrix for factor 𝐴, and then H is a (𝑘𝑎 − 1) × 𝑘𝑎 matrix with elements

H𝑖𝑗 =
⎧{
⎨{⎩

1, if 𝑖 = 𝑗
−1/(𝑘𝑎 − 𝑖), if 𝑖 < 𝑗

0, otherwise

If 𝑘𝑎 = 5, then

H =
⎛⎜⎜⎜
⎝

1 −1/4 −1/4 −1/4 −1/4
0 1 −1/3 −1/3 −1/3
0 0 1 −1/2 −1/2
0 0 0 1 −1

⎞⎟⎟⎟
⎠
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The hw. operator compares each level with the weighted mean of the subsequent levels. Let H𝑤 be

the corresponding contrast matrix for factor 𝐴, and then H𝑤 is a (𝑘𝑎 − 1) × 𝑘𝑎 matrix with elements

H𝑤𝑖𝑗 =
⎧{
⎨{⎩

1, if 𝑖 = 𝑗
−𝑤𝑗/ ∑𝑘𝑎

𝑙=𝑗 𝑤𝑙, if 𝑖 < 𝑗
0, otherwise

Reverse Helmert contrasts

The j. operator compares each level with the mean of the previous levels. Let J be the corresponding

contrast matrix for factor 𝐴, and then J is a (𝑘𝑎 − 1) × 𝑘𝑎 matrix with elements

J𝑖𝑗 =
⎧{
⎨{⎩

1, if 𝑖 + 1 = 𝑗
−1/𝑖, if 𝑗 ≤ 𝑖

0, otherwise

If 𝑘𝑎 = 5, then

H =
⎛⎜⎜⎜
⎝

−1 1 0 0 0
−1/2 −1/2 1 0 0
−1/3 −1/3 −1/3 1 0
−1/4 −1/4 −1/4 −1/4 1

⎞⎟⎟⎟
⎠

The jw. operator compares each level with the weighted mean of the previous levels. Let J𝑤 be the

corresponding contrast matrix for factor 𝐴, and then J𝑤 is a (𝑘𝑎 − 1) × 𝑘𝑎 matrix with elements

J𝑤𝑖𝑗 =
⎧{
⎨{⎩

1, if 𝑖 + 1 = 𝑗
−𝑤𝑗/ ∑𝑖

𝑙=1 𝑤𝑙, if 𝑖 ≤ 𝑗
0, otherwise
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Orthogonal polynomial contrasts

The p. operator applies orthogonal polynomial contrasts using the level values of the attached factor

variable. The q. operator applies orthogonal polynomial contrasts using the level indices of the attached

factor variable. These two operators are equivalent when the level values of the attached factor are equally

spaced. The pw. and qw. operators are weighted versions of p. and q., where the weights are taken from
the observed weighted cell frequencies in the estimation sample of the fitted model. contrast uses the

Christoffel–Darboux recurrence formula for computing orthogonal polynomial contrasts (Abramowitz

and Stegun 1964). The elements of the contrasts are normalized such that

Q′WQ = 1
𝑤⋅
I

whereW is a diagonal matrix of the marginal cell weights 𝑤1, 𝑤2, . . . , 𝑤𝑘 of the attached factor variable

(all 1 for p. and q.), and 𝑤⋅ is the sum of the weights (the number of levels 𝑘 for p. and q.).

Contrasts within interactions
Contrast operators are allowed to be specified on factor variables participating in interactions. In

such cases, contrast applies the proper matrix product of the contrast matrices to the cell margins of

the interacted factor variables.

For example, consider the contrasts implied by specifying r.A#h.B. LetM be the matrix of estimated

cell margins for the levels of 𝐴 and 𝐵, where the rows of M are indexed by the levels of 𝐴 and the

columns are indexed by the levels of 𝐵. contrast puts the estimated cell margins in the following

vector form:

v = vec(M′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

M11
M12

⋮
M1𝑘𝑏
M21
M22

⋮
M2𝑘𝑏

⋮
M𝑘𝑎𝑘𝑏

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The individual contrasts are then given by the elements of

(R⊗H)v

where ⊗ denotes the Kronecker direct product.
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Multiple comparisons
See [R] pwcompare for details on the methods and formulas used to adjust 𝑝-values and confidence

intervals for multiple comparisons. The formulas for Bonferroni’s method and Šidák’s method are pre-

sented with m = k(k − 1)/2, the number of pairwise comparisons for a factor term with k levels. For

contrasts, m is instead the number of contrasts being performed on the factor term; often, m = k − 1 for

a term with k levels.
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