cloglog — Complementary log-log regression

Description

cloglog fits a complementary log-log model for a binary dependent variable, typically with one of the outcomes rare relative to the other. It can also be used to fit a gompit model. cloglog can compute robust and cluster–robust standard errors and adjust results for complex survey designs.

Quick start

Complementary log-log model of \(y \) on \(x_1 \) and \(x_2 \)
```
cloglog y x1 x2
```
With robust standard errors
```
cloglog y x1 x2, vce(robust)
```
Adjust for complex survey design using \texttt{svyset} data
```
svy: cloglog y x1 x2
```

Menu

Statistics \> Binary outcomes \> Complementary log-log regression
Syntax

cloglog depvar [indevars] [if] [in] [weight] [, options]

options Description

Model
 noconstant suppress constant term
 offset(varname) include varname in model with coefficient constrained to 1
 asis retain perfect predictor variables
 constraints(constraints) apply specified linear constraints

SE/Robust
 vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap, or jackknife

Reporting
 level(#) set confidence level; default is level(95)
 eform report exponentiated coefficients
 nocsrsreport do not display constraints
 display_options control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling

Maximization
 maximize_options control the maximization process; seldom used
 collinear keep collinear variables
 coeflegend display legend instead of statistics

indevars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indevars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes, bootstrap, by, fmm, fp, jackknife, mi estimate, nestreg, rolling, statsby, stepwise, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: cloglog and [FMM] fmm: cloglog.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

noconstant, offset(varname); see [R] Estimation options.

asis forces retention of perfect predictor variables and their associated perfectly predicted observations and may produce instabilities in maximization; see [R] probit.

constraints(constraints); see [R] Estimation options.
vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

Reporting

level(#) ; see [R] Estimation options.

eform displays the exponentiated coefficients and corresponding standard errors and confidence intervals.

nocnsreport; see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt), pformat(%fmt), sformat(%fmt), and nolstretch; see [R] Estimation options.

Maximization

maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), iter tolerance(#), nrtolerance(#), nrtolerance, and from(init_specs); see [R] Maximize. These options are seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with cloglog but are not shown in the dialog box:
collinear, coeflegend; see [R] Estimation options.

Remarks and examples

stata.com

Remarks are presented under the following headings:

Introduction to complementary log-log regression
Robust standard errors

Introduction to complementary log-log regression

cloglog fits maximum likelihood models with dichotomous dependent variables coded as 0/1 (or, more precisely, coded as 0 and not 0).

Example 1

We have data on the make, weight, and mileage rating of 22 foreign and 52 domestic automobiles. We wish to fit a model explaining whether a car is foreign based on its weight and mileage. Here is an overview of our data:
. use https://www.stata-press.com/data/r16/auto
(1978 Automobile Data)
. keep make mpg weight foreign
. describe
Contains data from https://www.stata-press.com/data/r16/auto.dta
obs: 74 1978 Automobile Data
vars: 4 13 Apr 2018 17:45

<table>
<thead>
<tr>
<th>variable name</th>
<th>storage</th>
<th>type</th>
<th>format</th>
<th>value</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>make</td>
<td>str18</td>
<td>%-18s</td>
<td>Make and Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mpg</td>
<td>int</td>
<td>%8.0g</td>
<td>Mileage (mpg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>weight</td>
<td>int</td>
<td>%8.0gc</td>
<td>Weight (lbs.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>foreign</td>
<td>byte</td>
<td>%8.0g</td>
<td>origin Car type</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sorted by: foreign
Note: Dataset has changed since last saved.

. inspect foreign
foreign: Car type

<table>
<thead>
<tr>
<th>Number of Observations</th>
<th>Total</th>
<th>Integers</th>
<th>Nonintegers</th>
</tr>
</thead>
<tbody>
<tr>
<td># Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td># Zero</td>
<td>52</td>
<td>52</td>
<td>-</td>
</tr>
<tr>
<td># Positive</td>
<td>22</td>
<td>22</td>
<td>-</td>
</tr>
<tr>
<td># # Total</td>
<td>74</td>
<td>74</td>
<td>-</td>
</tr>
<tr>
<td># # Missing</td>
<td>-</td>
<td>74</td>
<td>-</td>
</tr>
</tbody>
</table>

(2 unique values)
foreign is labeled and all values are documented in the label.

The variable foreign takes on two unique values, 0 and 1. The value 0 denotes a domestic car, and 1 denotes a foreign car.

The model that we wish to fit is

\[\Pr(\text{foreign} = 1) = F(\beta_0 + \beta_1 \text{weight} + \beta_2 \text{mpg}) \]

where \(F(z) = 1 - \exp\{-\exp(z)\} \).
To fit this model, we type

```
cloglog foreign weight mpg
```

Iteration 0: log likelihood = -34.054593
Iteration 1: log likelihood = -27.869915
Iteration 2: log likelihood = -27.742997
Iteration 3: log likelihood = -27.742769
Iteration 4: log likelihood = -27.742769

Complementary log-log regression Number of obs = 74
Zero outcomes = 52
Nonzero outcomes = 22
LR chi2(2) = 34.58
Log likelihood = -27.742769 Prob > chi2 = 0.0000

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|--------|-----------|------|------|---------------------|
| foreign| -.0029153 | .0006974 | -4.18 | 0.000 | -.0042823 -.0015483 |
| weight | -.1422911 | .076387 | -1.86 | 0.062 | -.2920069 .0074247 |
| _cons | 10.09694 | 3.351841 | 3.01 | 0.003 | 3.527448 16.66642 |

We find that heavier cars are less likely to be foreign and that cars yielding better gas mileage are also less likely to be foreign, at least when holding the weight of the car constant.

See [R] **Maximize** for an explanation of the output.

Technical note

Stata interprets a value of 0 as a negative outcome (failure) and treats all other values (except missing) as positive outcomes (successes). Thus, if your dependent variable takes on the values 0 and 1, 0 is interpreted as failure and 1 as success. If your dependent variable takes on the values 0, 1, and 2, 0 is still interpreted as failure, but both 1 and 2 are treated as successes.

If you prefer a more formal mathematical statement, when you type `cloglog y x`, Stata fits the model

$$Pr(y_j \neq 0 \mid x_j) = 1 - \exp\{-\exp(x_j\beta)\}$$

Robust standard errors

If you specify the `vce(robust)` option, `cloglog` reports robust standard errors, as described in [U] **20.22 Obtaining robust variance estimates.** For the model of `foreign` on `weight` and `mpg`, the robust calculation increases the standard error of the coefficient on `mpg` by 44%:
. cloglog foreign weight mpg, vce(robust)
Iteration 0: log pseudolikelihood = -34.054593
Iteration 1: log pseudolikelihood = -27.869915
Iteration 2: log pseudolikelihood = -27.742997
Iteration 3: log pseudolikelihood = -27.742769
Iteration 4: log pseudolikelihood = -27.742769

Complementary log-log regression
Number of obs = 74
Zero outcomes = 52
Nonzero outcomes = 22
Wald chi2(2) = 29.74
Log pseudolikelihood = -27.742769
Prob > chi2 = 0.0000

| | Robust Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----|--------------|-----------|------|-----|---------------------|
| weight | -.0029153 | .0007484 | -3.90 | 0.000 | -.0043822 -.0014484 |
| mpg | -.1422911 | .1102466 | -1.29 | 0.197 | -.3583704 .0737882 |
| _cons | 10.09694 | 4.317305 | 2.34 | 0.019 | 1.635174 18.5587 |

Without `vce(robust)`, the standard error for the coefficient on `mpg` was reported to be 0.076, with a resulting confidence interval of $[-0.29, 0.01]$.

The `vce(cluster clustvar)` option can relax the independence assumption required by the complementary log-log estimator to being just independence between clusters. To demonstrate this ability, we will switch to a different dataset.

We are studying unionization of women in the United States by using the `union` dataset; see `[XT] xt`. We fit the following model, ignoring that women are observed an average of 5.9 times each in this dataset:

```
. use https://www.stata-press.com/data/r16/union, clear
(NLS Women 14-24 in 1968)
. cloglog union age grade not_smsa south##c.year
```

```
Iteration 0: log likelihood = -13606.373
Iteration 1: log likelihood = -13540.726
Iteration 2: log likelihood = -13540.607
Iteration 3: log likelihood = -13540.607

Complementary log-log regression
Number of obs = 26,200
Zero outcomes = 20,389
Nonzero outcomes = 5,811
LR chi2(6) = 647.24
Log likelihood = -13540.607
Prob > chi2 = 0.0000

|     | Robust Coef. | Std. Err. | z    | P>|z| | [95% Conf. Interval] |
|-----|--------------|-----------|------|-----|---------------------|
| age   | .0185346    | .0043616  | 4.25 | 0.000 | .009986   .0270833 |
| grade | .0452772    | .0057125  | 7.93 | 0.000 | .0340809  .0564736 |
| not_smsa | -.1886592 | .0317801  | -5.94 | 0.000 | -.2509471 -.1263712 |
| 1.south | -1.422292  | .3949381  | -3.60 | 0.000 | -.2196356 -.1263712 |
| year   | -.0133007   | .0049576  | -2.68 | 0.007 | -.0230174 -.0035839 |
| south#c.year 1 | .0105659 | .0049234  | 2.15  | 0.032 | .0009161 .0202157 |
| _cons  | -1.219801   | .2952374  | -4.13 | 0.000 | -.1798455 -.6411462 |
```
The reported standard errors in this model are probably meaningless. Women are observed repeatedly, and so the observations are not independent. Looking at the coefficients, we find a large southern effect against unionization and a different time trend for the south. The `vce(cluster clustvar)` option provides a way to fit this model and obtains correct standard errors:

```
cloglog union age grade not_smsa south##c.year, vce(cluster id) nolog
```

```
Complementary log-log regression
Number of obs = 26,200
Zero outcomes = 20,389
Nonzero outcomes = 5,811
Wald chi2(6) = 160.76
Log pseudolikelihood = -13540.607 Prob > chi2 = 0.0000
(Std. Err. adjusted for 4,434 clusters in idcode)
Robust

| Coef. | Std. Err. | z    | P>|z|    | [95% Conf. Interval] |
|-------|-----------|-----|-------|-----------------------|
| union |           |     |       |                       |
| age   | 0.0185346 | 0.0084873 | 2.18 | 0.029 | 0.0018999 - 0.0351694 |
| grade | 0.0452772 | 0.0125776 | 3.60 | 0.000 | 0.0206255 - 0.0699291 |
| not_smsa | -0.1886592 | 0.0642068 | -2.94 | 0.003 | -0.3145021 - 0.0628162 |
| 1.south | -1.422292 | 0.506517 | -2.81 | 0.005 | -2.415047 - 0.4295365 |
| year | -0.0133007 | 0.0090628 | -1.47 | 0.142 | -0.0310633 - 0.004462 |
| south#c.year | 1 | 0.0105659 | 0.0063175 | 1.67 | 0.094 | -0.0018162 - 0.022948 |
| _cons | -1.219801 | 0.5175129 | -2.36 | 0.018 | -2.234107 - 0.2054942 |
```

These standard errors are larger than those reported by the inappropriate conventional calculation. By comparison, another way we could fit this model is with an equal-correlation population-averaged complementary log-log model:

```
xtcloglog union age grade not_smsa south##c.year, pa nolog
```

```
GEE population-averaged model
Number of obs = 26,200
Group variable: idcode Number of groups = 4,434
Link: cloglog Obs per group:
Family: binomial min = 1
Correlation: exchangeable avg = 5.9
max = 12
Wald chi2(6) = 234.66
Scale parameter: 1 Prob > chi2 = 0.0000

| Coef. | Std. Err. | z    | P>|z|    | [95% Conf. Interval] |
|-------|-----------|-----|-------|-----------------------|
| union |           |     |       |                       |
| age   | 0.0153737 | 0.0081156 | 1.89 | 0.058 | -0.0055326 - 0.03128 |
| grade | 0.0549618 | 0.0095093 | 5.78 | 0.000 | 0.0363139 - 0.0738897 |
| not_smsa | -0.1045323 | 0.0431082 | 2.42 | 0.015 | -0.190138 - 0.0200326 |
| 1.south | -1.714688 | 0.3384558 | -5.07 | 0.000 | -2.378229 - 1.051507 |
| year | -0.0115881 | 0.0084125 | -1.38 | 0.168 | -0.0280763 - 0.0049001 |
| south#c.year | 1 | 0.0149796 | 0.0041687 | 3.59 | 0.000 | 0.0068091 - 0.0231501 |
| _cons | -1.488278 | 0.4468005 | -3.33 | 0.001 | -2.363991 - 0.6125652 |
```

The coefficient estimates are similar, but these standard errors are smaller than those produced by cloglog, vce(cluster clustvar). This finding is as we would expect. If the within-panel correlation assumptions are valid, the population-averaged estimator should be more efficient.
In addition to this estimator, we may use the `xtgee` command to fit a panel estimator (with complementary log-log link) and any number of assumptions on the within-idcode correlation.

`cloglog`, `vce(cluster clustvar)` is robust to assumptions about within-cluster correlation. That is, it inefficiently sums within cluster for the standard-error calculation rather than attempting to exploit what might be assumed about the within-cluster correlation (as do the `xtgee` population-averaged models).

Stored results

`cloglog` stores the following in `e()`:

Scalars

- `e(N)`: number of observations
- `e(k)`: number of parameters
- `e(k_eq)`: number of equations in `e(b)`
- `e(k_eq_model)`: number of equations in overall model test
- `e(k_dv)`: number of dependent variables
- `e(N_f)`: number of zero outcomes
- `e(N_s)`: number of nonzero outcomes
- `e(df_m)`: model degrees of freedom
- `e(ll)`: log likelihood
- `e(ll_0)`: log likelihood, constant-only model
- `e(l1)`: log likelihood
- `e(l1_0)`: log likelihood, constant-only model
- `e(N_cluster)`: number of clusters
- `e(chi2)`: χ²
- `e(p)`: p-value for model test
- `e(rank)`: rank of `e(V)`
- `e(ic)`: number of iterations
- `e(rc)`: return code
- `e(converged)`: 1 if converged, 0 otherwise

Macros

- `e(cmd)`: `cloglog`
- `e(cmdline)`: command as typed
- `e(depvar)`: name of dependent variable
- `e(wtype)`: weight type
- `e(wexp)`: weight expression
- `e(title)`: title in estimation output
- `e(clustvar)`: name of cluster variable
- `e(offset)`: linear offset variable
- `e(chi2type)`: Wald or LR; type of model χ² test
- `e(vcetype)`: vcetype specified in `vce()`
- `e(properties)`: `b V`
- `e(predict)`: program used to implement `predict`
- `e(properties)`: `b V`
- `e(marginsok)`: predictions allowed by `margins`
- `e(marginsnotok)`: predictions disallowed by `margins`
- `e(asbalanced)`: factor variables `fvset as asbalanced`
- `e(asobserved)`: factor variables `fvset as asobserved`
Complementary log-log analysis (related to the gompit model, so named because of its relationship to the Gompertz distribution) is an alternative to logit and probit analysis, but it is unlike these other estimators in that the transformation is not symmetric. Typically, this model is used when the positive (or negative) outcome is rare.

The log-likelihood function for complementary log-log is

\[
\ln L = \sum_{j \in S} w_j \ln F(x_j b) + \sum_{j \notin S} w_j \ln \left\{1 - F(x_j b)\right\}
\]

where \(S \) is the set of all observations \(j \) such that \(y_j \neq 0 \), \(F(z) = 1 - \exp\{- \exp(z)\} \), and \(w_j \) denotes the optional weights. \(\ln L \) is maximized as described in [R] Maximize.

We can fit a gompit model by reversing the success–failure sense of the dependent variable and using cloglog.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version using vce(robust) and vce(cluster clustvar), respectively. See [P] _robust, particularly Maximum likelihood estimators and Methods and formulas. The scores are calculated as \(u_j = [\exp(x_j b) \exp\{- \exp(x_j b)\}] / F(x_j b)]x_j \) for the positive outcomes and \(\{- \exp(x_j b)\}x_j \) for the negative outcomes.

cloglog also supports estimation with survey data. For details on VCEs with survey data, see [SVY] Variance estimation.

Acknowledgment

We thank Joseph Hilbe (1944–2017) of Arizona State University for providing the inspiration for the cloglog command.

References

Long, J. S., and J. Freese. 2014. Regression Models for Categorical Dependent Variables Using Stata. 3rd ed. College Station, TX: Stata Press.
Also see

[R] cloglog postestimation — Postestimation tools for cloglog
[R] clogit — Conditional (fixed-effects) logistic regression
[R] glm — Generalized linear models
[R] logistic — Logistic regression, reporting odds ratios
[R] scobit — Skewed logistic regression
[BAYES] bayes: cloglog — Bayesian complementary log-log regression
[FMM] fmm: cloglog — Finite mixtures of complementary log-log regression models
[ME] mecloglog — Multilevel mixed-effects complementary log-log regression
[MI] Estimation — Estimation commands for use with mi estimate
[SVY] svy estimation — Estimation commands for survey data
[XT] xtcloglog — Random-effects and population-averaged cloglog models
[U] 20 Estimation and postestimation commands