clogit — Conditional (fixed-effects) logistic regression

Description
clogit fits a conditional logistic regression model for matched case–control data, also known as a fixed-effects logit model for panel data. clogit can compute robust and cluster–robust standard errors and adjust results for complex survey designs.

See [CM] cmclogit if you want to fit McFadden’s choice model (McFadden 1974).

Quick start
Conditional logistic regression model of \(y \) on \(x \) with matched case–control pairs data identified by \(idvar \)
\[
clogit y x, group(idvar)
\]
Fixed-effects logistic regression model with panels identified by \(idvar \)
\[
clogit y x, group(idvar)
\]
Add categorical variable \(a \) and report results as odds ratios
\[
clogit y x i.a, group(idvar) \text{ or }
\]
As above, but using sampling probability weight \(wvar \)
\[
clogit y x i.a [pweight = wvar], group(idvar) \text{ or }
\]

Menu
Statistics > Binary outcomes > Conditional logistic regression
Syntax

clogit depvar [indepvars] [if] [in] [weight], group(varname) [options]

depvar is treated as binary regardless of values; depvar equal to nonzero and nonmissing (typically equal to 1) indicates a positive outcome, whereas depvar equal to 0 indicates a negative outcome.

options Description

Model
 group(varname) matched group variable
 offset(varname) include varname in model with coefficient constrained to 1
 constraints(constraints) apply specified linear constraints

SE/Robust
 vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap, or jackknife
 nonest do not check that panels are nested within clusters

Reporting
 _level(#) set confidence level; default is _level(95)
 or
 noconsreport do not display constraints
 display_options control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling

Maximization
 maximize_options control the maximization process; seldom used
 collinear keep collinear variables
 coeflegend display legend instead of statistics

*group(varname) is required.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

bayes, bootstrap, by, fp, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: clogit.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

vce(), nonest, and weights are not allowed with the svy prefix; see [SVY] svy.

fw, iweights, and pweights are allowed (see [U] 11.1.6 weight), but they are interpreted to apply to groups as a whole, not to individual observations. See Use of weights below.

collinear and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

Model

 group(varname) is required; it specifies an identifier variable (numeric or string) for the matched groups. strata(varname) is a synonym for group().

offset(varname), constraints(constraints); see [R] Estimation options.
SE/Robust

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

nonest, available only with vce(cluster clustvar), prevents checking that matched groups are nested within clusters. It is the user’s responsibility to verify that the standard errors are theoretically correct.

Reporting

level(#); see [R] Estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, e^b rather than b. Standard errors and confidence intervals are similarly transformed. This option affects how results are displayed, not how they are estimated. or may be specified at estimation or when replaying previously estimated results.

nocnsreport; see [R] Estimation options.

display_options: noci, nopvalues, nomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(%,fmt), pformat(%,fmt), sformat(%,fmt), and nolstretch; see [R] Estimation options.

Maximization

maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with clogit but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Matched case–control data
Use of weights
Fixed-effects logit

Introduction

clogit fits maximum likelihood models with a dichotomous dependent variable coded as 0/1 (more precisely, clogit interprets 0 and not 0 to indicate the dichotomy). Conditional logistic analysis differs from regular logistic regression in that the data are grouped and the likelihood is calculated relative to each group; that is, a conditional likelihood is used. See Methods and formulas at the end of this entry.
Biostatisticians and epidemiologists call these models conditional logistic regression for matched case–control groups (see, for example, Hosmer, Lemeshow, and Sturdivant [2013, chap. 7]) and fit them when analyzing matched case–control studies with 1:1 matching, 1:k_{2i} matching, or k_{1i}:k_{2i} matching, where i denotes the ith matched group for $i = 1, 2, \ldots, n$, where n is the total number of groups. \texttt{clogit} fits a model appropriate for all of these matching schemes or for any mix of the schemes because the matching k_{1i}:k_{2i} can vary from group to group. \texttt{clogit} always uses the true conditional likelihood, not an approximation. Biostatisticians and epidemiologists sometimes refer to the matched groups as “strata”, but we will stick to the more generic term “group”.

Economists and other social scientists typically call the model fit by \texttt{clogit} a fixed-effects logit model for panel data (see, for example, Chamberlain [1980]). The data used to fit a fixed-effects logit model look exactly like the data biostatisticians and epidemiologists call k_{1i}:k_{2i} matched case–control data. In terms of how the data are arranged, k_{1i}:k_{2i} matching means that in the ith group, the dependent variable is 1 a total of k_{1i} times and 0 a total of k_{2i} times. There are a total of $T_i = k_{1i} + k_{2i}$ observations for the ith group. This data arrangement is what economists and other social scientists call “panel data”, “longitudinal data”, or “cross-sectional time-series data”.

So no matter what terminology you use, the computation and the use of the \texttt{clogit} command is the same. The following example shows how your data should be arranged to use \texttt{clogit}.

Example 1

Suppose that we have grouped data with the variable \texttt{id} containing a unique identifier for each group. Our outcome variable, \texttt{y}, contains 0s and 1s. If we were biostatisticians, $y = 1$ would indicate a case, $y = 0$ would be a control, and \texttt{id} would be an identifier variable that indicates the groups of matched case–control subjects.

If we were economists, $y = 1$ might indicate that a person was unemployed at any time during a year and $y = 0$, that a person was employed all year, and \texttt{id} would be an identifier variable for persons.

If we list the first few observations of this dataset, it looks like

```stata
. use https://www.stata-press.com/data/r16/clogitid
. list y x1 x2 id in 1/11
```

<table>
<thead>
<tr>
<th>y</th>
<th>x1</th>
<th>x2</th>
<th>id</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0</td>
<td>0</td>
<td>4 1014</td>
</tr>
<tr>
<td>2.</td>
<td>0</td>
<td>1</td>
<td>4 1014</td>
</tr>
<tr>
<td>3.</td>
<td>0</td>
<td>1</td>
<td>6 1014</td>
</tr>
<tr>
<td>4.</td>
<td>1</td>
<td>1</td>
<td>8 1014</td>
</tr>
<tr>
<td>5.</td>
<td>0</td>
<td>0</td>
<td>1 1017</td>
</tr>
<tr>
<td>6.</td>
<td>0</td>
<td>0</td>
<td>7 1017</td>
</tr>
<tr>
<td>7.</td>
<td>1</td>
<td>1</td>
<td>10 1017</td>
</tr>
<tr>
<td>8.</td>
<td>0</td>
<td>0</td>
<td>1 1019</td>
</tr>
<tr>
<td>9.</td>
<td>0</td>
<td>1</td>
<td>7 1019</td>
</tr>
<tr>
<td>10.</td>
<td>1</td>
<td>1</td>
<td>7 1019</td>
</tr>
<tr>
<td>11.</td>
<td>1</td>
<td>1</td>
<td>9 1019</td>
</tr>
</tbody>
</table>

Pretending that we are biostatisticians, we describe our data as follows. The first group (\texttt{id} = 1014) consists of four matched persons: 1 case ($y = 1$) and three controls ($y = 0$), that is, 1:3 matching. The second group has 1:2 matching, and the third 2:2.
Pretending that we are economists, we describe our data as follows. The first group consists of 4 observations (one per year) for person 1014. This person had a period of unemployment during 1 year of 4. The second person had a period of unemployment during 1 year of 3, and the third had a period of 2 years of 4.

Our independent variables are x_1 and x_2. To fit the conditional (fixed-effects) logistic model, we type

```
clogit y x1 x2, group(id)
note: multiple positive outcomes within groups encountered.
```

```
Iteration 0: log likelihood = -123.42828
Iteration 1: log likelihood = -123.41386
Iteration 2: log likelihood = -123.41386
```

```
Conditional (fixed-effects) logistic regression
```

<table>
<thead>
<tr>
<th></th>
<th>Number of obs</th>
<th>LR chi2(2)</th>
<th>Prob > chi2</th>
<th>Pseudo R2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>369</td>
<td>9.07</td>
<td>0.0107</td>
<td>0.0355</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-123.41386</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|--------|-----------|-------|--------|----------------------|
| x_1 | .653363| .2875215 | 2.27 | 0.023 | .0898312 | 1.216895 |
| x_2 | .0659169| .0449555 | 1.47 | 0.143 | -.0221943 | .1540281 |

Technical note

The message “note: multiple positive outcomes within groups encountered” at the top of the `clogit` output for the previous example merely informs us that we have $k_{1i}:k_{2i}$ matching with $k_{1i} > 1$ for at least one group. If your data should be $1:k_{2i}$ matched, this message tells you that there is an error in the data somewhere.

We can see the distribution of k_{1i} and $T_i = k_{1i} + k_{2i}$ for the data of the example 1 by using the following steps:

```bash
. by id, sort: generate k1 = sum(y)
. by id: replace k1 = . if _n < _N
   (303 real changes made, 303 to missing)
. by id: generate T = sum(y<.)
. by id: replace T = . if _n < _N
   (303 real changes made, 303 to missing)
. tabulate k1
```

<table>
<thead>
<tr>
<th></th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48</td>
<td>72.73</td>
<td>72.73</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>18.18</td>
<td>90.91</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>6.06</td>
<td>96.97</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3.03</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Total | 66 | 100.00 |
We see that \(k_{1i} \) ranges from 1 to 4 and \(T_i \) ranges from 2 to 10 for these data.

Technical note

For \(k_{1i}:k_{2i} \) matching (and hence in the general case of fixed-effects logit), \texttt{clogit} uses a recursive algorithm to compute the likelihood, which means that there are no limits on the size of \(T_i \). However, computation time is proportional to \(\sum T_i \min(k_{1i}, k_{2i}) \), so \texttt{clogit} will take roughly 10 times longer to fit a model with 10:10 matching than one with 1:10 matching. But \texttt{clogit} is fast, so computation time becomes an issue only when \(\min(k_{1i}, k_{2i}) \) is around 100 or more. See \textit{Methods and formulas} for details.

Matched case–control data

Here we give a more detailed example of matched case–control data.

Example 2

\textit{Hosmer, Lemeshow, and Sturdivant (2013, 24)} present data on matched pairs of infants, each pair having one with low birthweight and another with regular birthweight. The data are matched on age of the mother. Several possible maternal exposures are considered: race (three categories), smoking status, presence of hypertension, presence of uterine irritability, previous preterm delivery, and weight at the last menstrual period.
. use https://www.stata-press.com/data/r16/lowbirth2, clear
(Applied Logistic Regression, Hosmer & Lemeshow)
. describe
Contains data from https://www.stata-press.com/data/r16/lowbirth2.dta
obs: 112 Applied Logistic Regression, Hosmer & Lemeshow
vars: 9 30 Jan 2018 08:46

storage display value
variable name type format label variable label

pairid byte %8.0g Case-control pair ID
low byte %8.0g Baby has low birthweight
age byte %8.0g Age of mother
lwt int %8.0g Mother’s last menstrual weight
smoke byte %8.0g Mother smoked during pregnancy
ptd byte %8.0g Mother had previous preterm baby
ht byte %8.0g Mother has hypertension
ui byte %8.0g Uterine irritability
race byte %9.0g race race of mother: 1=white, 2=black, 3=other

Sorted by:

We list the case–control indicator variable, low; the match identifier variable, pairid; and two of the covariates, lwt and smoke, for the first 10 observations.

. list low lwt smoke pairid in 1/10

<table>
<thead>
<tr>
<th>low</th>
<th>lwt</th>
<th>smoke</th>
<th>pairid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>135</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>101</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>98</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>115</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>95</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>130</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>103</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>130</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>122</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>110</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>
We fit a conditional logistic model of low birthweight on mother's weight, race, smoking behavior, and history.

```
clogit low lwt smoke ptd ht ui i.race, group(pairid) nolog
```

```
Conditional (fixed-effects) logistic regression
Number of obs = 112
LR chi2(7) = 26.04
Prob > chi2 = 0.0005
Log likelihood = -25.794271 Pseudo R2 = 0.3355

|     | Coef. | Std. Err. | z    | P>|z| | [95% Conf. Interval] |
|-----|-------|-----------|------|------|----------------------|
| lwt | -0.0183757 | 0.0100806 | -1.82 | 0.068 | -0.0381333 - 0.0013819 |
| smoke | 1.400656 | 0.6278396 | 2.23  | 0.026 | 0.1701131 2.631199 |
| ptd | 1.808009 | 0.7886502 | 2.29  | 0.022 | 0.2622828 3.353735 |
| ht  | 2.361152 | 1.086128  | 2.17  | 0.030 | 0.2323796 4.489924 |
| ui  | 1.401929 | 0.6961585 | 2.01  | 0.044 | 0.037436 2.766375 |
| race |     |           |      |      |                      |
| black | 0.5713643 | 0.689645 | 0.83 | 0.407 | -0.7803149 1.923044 |
| other | -0.0253148 | 0.6992044 | -0.04 | 0.971 | -1.39573 1.345101 |
```

We might prefer to see results presented as odds ratios. We could have specified the `or` option when we first fit the model, or we can now redisplay results and specify `or`:

```
clogit, or
```

```
Conditional (fixed-effects) logistic regression
Number of obs = 112
LR chi2(7) = 26.04
Prob > chi2 = 0.0005
Log likelihood = -25.794271 Pseudo R2 = 0.3355

|     | Odds Ratio | Std. Err. | z    | P>|z| | [95% Conf. Interval] |
|-----|------------|-----------|------|------|----------------------|
| lwt | .9817921 | .009897 | -1.82 | 0.068 | .9625847 1.001383 |
| smoke | 4.057862 | 2.547686 | 2.23  | 0.026 | 1.185439 13.89042 |
| ptd | 6.098293 | 4.80942 | 2.29  | 0.022 | 1.299894 28.60938 |
| ht  | 10.60316 | 11.51639 | 2.17  | 0.030 | 1.261599 89.11467 |
| ui  | 4.06303 | 2.828513 | 2.01  | 0.044 | 1.038195 15.90088 |
| race |     |           |      |      |                      |
| black | 1.770681 | 1.221141 | 0.83 | 0.407 | .4582617 6.84175 |
| other | .975003 | .6817263 | -0.04 | 0.971 | .2476522 3.838573 |
```

Smoking, previous preterm delivery, hypertension, uterine irritability, and possibly the mother's weight all contribute to low birthweight. Race of black and race of other are statistically insignificant when compared with the race of white omitted group, although the race of black effect is large. We can test the joint statistical significance of race being black (2.race) and race being other (3.race) by using `test`:

```
.test 2.race 3.race
( 1) [low]2.race = 0
( 2) [low]3.race = 0
chisq( 2) = 0.88
Prob > chisq = 0.6436
```
For a more complete description of `test`, see [R] `test`. `test` presents results in coefficients rather than odds ratios. Jointly testing that the coefficients on `2.race` and `3.race` are 0 is equivalent to jointly testing that the odds ratios are 1.

Here one case was matched to one control, that is, 1:1 matching. From `clogit`’s point of view, that was not important—k_1 cases could have been matched to k_2 controls ($k_1:k_2$ matching), and we would have fit the model in the same way. Furthermore, the matching can change from group to group, which we have denoted as $k_{1i}:k_{2i}$ matching, where i denotes the group. `clogit` does not care. To fit the conditional logistic regression model, we specified the `group(varname)` option, `group(pairid)`. The case and control are stored in separate observations. `clogit` knew that they were linked (in the same group) because the related observations share the same value of `pairid`.

Technical note

`clogit` provides a way to extend McNemar’s test to multiple controls per case ($1:k_{2i}$ matching) and to multiple controls matched with multiple cases ($k_{1i}:k_{2i}$ matching).

In Stata, McNemar’s test is calculated by the `mcc` command; see [R] Epitab. The `mcc` command, however, requires that the matched case and control appear in one observation, so the data will need to be manipulated from 1 to 2 observations per stratum before using `clogit`. Alternatively, if you begin with `clogit`’s 2-observations-per-group organization, you will have to change it to 1 observation per group if you wish to use `mcc`. In either case, `reshape` provides an easy way to change the organization of the data. We will demonstrate its use below, but we direct you to [D] `reshape` for a more thorough discussion.

In example 2, we used `clogit` to analyze the relationship between low birthweight and various characteristics of the mother. Assume that we now want to assess the relationship between low birthweight and smoking, ignoring the mother’s other characteristics. Using `clogit`, we obtain the following results:

```
. clogit low smoke, group(pairid) or
```

```
  Conditional (fixed-effects) logistic regression

Iteration 0:  log likelihood = -35.425931
Iteration 1:  log likelihood = -35.419283
Iteration 2:  log likelihood = -35.419282

  Conditional (fixed-effects) logistic regression
Number of obs     =      112
LR chi2(1)        =       6.79
Prob > chi2       =    0.0091
Log likelihood    =   -35.419282  Pseudo R2     =    0.0875

Odds Ratio Std. Err. z  P>|z|   [95% Conf. Interval]
  smoke       2.75   1.135369   2.45  0.014    1.224347    6.176763
```

In example 2, we used `clogit` to analyze the relationship between low birthweight and various characteristics of the mother. Assume that we now want to assess the relationship between low birthweight and smoking, ignoring the mother’s other characteristics. Using `clogit`, we obtain the following results:
Let’s compare our estimated odds ratio and 95% confidence interval with that produced by \texttt{mcc}.

We begin by reshaping the data:

\begin{verbatim}
. keep low smoke pairid
. reshape wide smoke, i(pairid) j(low 0 1)
\end{verbatim}

Data long \rightarrow wide
\begin{table}[h]
\begin{tabular}{lrr}
Number of obs. & 112 & 56 \\
Number of variables & 3 & 3 \\
j variable (2 values) & low & (dropped) \\
xij variables: & smoke & smoke0 smoke1 \\
\end{tabular}
\end{table}

We now have the variables smoke0 (formed from smoke and low = 0), recording 1 if the control mother smoked and 0 otherwise; and smoke1 (formed from smoke and low = 1), recording 1 if the case mother smoked and 0 otherwise. We can now use \texttt{mcc}:

\begin{verbatim}
. mcc smoke1 smoke0
\end{verbatim}

\begin{table}[h]
\begin{tabular}{lrrrrr}
Cases & Controls & & Unexposed & & Total \\
\hline
Exposed & 8 & 22 & 30 \\
Unexposed & 8 & 18 & 26 \\
Total & 16 & 40 & 56 \\
\hline
McNemar’s chi2(1) = 6.53 & Prob > chi2 = 0.0106 & Exact McNemar significance probability = 0.0161 \\
Proportion with factor Cases .5357143 & Controls .2857143 & [95% Conf. Interval] \\
difference & .25 & .0519726 & .4480274 \\
ratio & 1.875 & 1.148685 & 3.060565 \\
rel. diff. & .35 & .1336258 & .5663742 \\
ods ratio & 2.75 & 1.179154 & 7.143667 (exact) \\
\end{tabular}
\end{table}

Both methods estimated the same odds ratio, and the 95% confidence intervals are similar. \texttt{clogit} produced a confidence interval of [1.22, 6.18], whereas \texttt{mcc} produced a confidence interval of [1.18, 7.14].

\subsection*{Use of weights}

With \texttt{clogit}, weights apply to groups as a whole, not to individual observations. For example, if there is a group in your dataset with a frequency weight of 3, there are a total of three groups in your sample with the same values of the dependent and independent variables as this one group. Weights must have the same value for all observations belonging to the same group; otherwise, an error message will be displayed.
Example 3

We use the example from the above discussion of the `mcc` command. Here we have a total of 56 matched case–control groups, each with one case matched to one control. We had 8 matched pairs in which both the case and the control are exposed, 22 pairs in which the case is exposed and the control is unexposed, 8 pairs in which the case is unexposed and the control is exposed, and 18 pairs in which they are both unexposed.

With weights, it is easy to enter these data into Stata and run `clogit`.

```
. clear
. input id case exposed weight
  id case exposed weight
  1 1 1 8
  2 1 0 1 8
  3 2 1 1 22
  4 2 0 0 22
  5 3 1 0 8
  6 3 0 1 8
  7 4 1 0 18
  8 4 0 0 18
  9 end
. clogit case exposed [w=weight], group(id) or
(frequency weights assumed)
Iteration 0: log likelihood = -35.425931
Iteration 1: log likelihood = -35.419283
Iteration 2: log likelihood = -35.419282
Conditional (fixed-effects) logistic regression
  Number of obs = 112
  LR chi2(1) = 6.79
  Prob > chi2 = 0.0091
  Log likelihood = -35.419282
  Pseudo R2 = 0.0875

  case | Odds Ratio Std. Err.    z  P>|z|     [95% Conf. Interval]
  --------+--------------------------------------------------
  exposed | 2.75     1.135369  2.45  0.014     1.224347    6.176763
```

Fixed-effects logit

The fixed-effects logit model can be written as

\[\Pr(y_{it} = 1 \mid x_{it}) = F(\alpha_i + x_{it} \beta) \]

where \(F \) is the cumulative logistic distribution

\[F(z) = \frac{\exp(z)}{1 + \exp(z)} \]

\(i = 1, 2, \ldots, n \) denotes the independent units (called “groups” by `clogit`), and \(t = 1, 2, \ldots, T_i \) denotes the observations for the \(i \)th unit (group).
Fitting this model by using a full maximum-likelihood approach leads to difficulties, however. When \(T_i \) is fixed, the maximum likelihood estimates for \(\alpha_i \) and \(\beta \) are inconsistent (Andersen 1970; Chamberlain 1980). This difficulty can be circumvented by looking at the probability of \(y_i = (y_{i1}, \ldots, y_{iT_i}) \) conditional on \(\sum_{t=1}^{T_i} y_{it} \). This conditional probability does not involve the \(\alpha_i \), so they are never estimated when the resulting conditional likelihood is used. See Hamerle and Ronning (1995) for a succinct and lucid development. See Methods and formulas for the estimation equation.

Example 4

We are studying unionization of women in the United States by using the union dataset; see \[XT] xt. We fit the fixed-effects logit model:

```
. use https://www.stata-press.com/data/r16/union, clear
(NLS Women 14–24 in 1968)
. clogit union age grade not_smsa south black, group(idcode)
```

```
Multiple positive outcomes within groups encountered.
```

```
2,744 groups (14,165 obs) dropped because of all positive or all negative outcomes.
```

```
black omitted because of no within-group variance.
```

```
Iteration 0: log likelihood = -4521.3385
Iteration 1: log likelihood = -4516.1404
Iteration 2: log likelihood = -4516.1385
Iteration 3: log likelihood = -4516.1385
```

```
Conditional (fixed-effects) logistic regression
Number of obs = 12,035
LR chi2(4) = 68.09
Prob > chi2 = 0.0000
Log likelihood = -4516.1385
Pseudo R2 = 0.0075

                     Coef. Std. Err.    z  P>|z|     [95% Conf. Interval]
union
  age          .0170301   .004146  4.11  0.000    .0089042    .0251561
  grade        .0853572   .041878  2.04  0.042    .0032777   .1674368
  not_smsa    .0083678   .1127963 0.07  0.941    -.2127088   .2294445
  south       -.748023    .1251752 -5.98  0.000   -.9933619   -.5026842
  black       (omitted)
```

We received three messages at the top of the output. The first one, “multiple positive outcomes within groups encountered”, we expected. Our data do indeed have multiple positive outcomes (union = 1) in many groups. (Here a group consists of all the observations for a particular individual.)

The second message tells us that 2,744 groups were “dropped” by clogit. When either union = 0 or union = 1 for all observations for an individual, this individual’s contribution to the log-likelihood is zero. Although these are perfectly valid observations in every sense, they have no effect on the estimation, so they are not included in the total “Number of obs”. Hence, the reported “Number of obs” gives the effective sample size of the estimation. Here it is 12,035 observations—only 46% of the total 26,200.
We can easily check that there are indeed 2,744 groups with union either all 0 or all 1. We will generate a variable that contains the fraction of observations for each individual who has union = 1.

```
. by idcode, sort: generate fraction = sum(union)/sum(union < .)  
. by idcode: replace fraction = . if _n < _N  
(21,766 real changes made, 21,766 to missing)  
. tabulate fraction

fraction       Freq.  Percent    Cum.  
0             2,481     55.95     55.95  
.0833333      30       0.68      56.63  
.0909091      33       0.74      57.37  
.1            53       1.20      58.57  
(output omitted)         
.9             10      0.23      93.59  
.9090909      11      0.25      93.84  
.9166667      10      0.23      94.07  
1             263      5.93     100.00  
```

Because 2481 + 263 = 2744, we confirm what clogit did.

The third warning message from clogit said “black omitted because of no within-group variance”. Obviously, race stays constant for an individual across time. Any such variables are collinear with the α_i (that is, the fixed effects), and just as the α_i drop out of the conditional likelihood, so do all variables that are unchanging within groups. Thus they cannot be estimated with the conditional fixed-effects model.

There are several other estimators implemented in Stata that we could use with these data:

```
cloglog ... , vce(cluster idcode)  
logit ... , vce(cluster idcode)  
probit ... , vce(cluster idcode)  
scobit ... , vce(cluster idcode)  
tcloglog ...  
xgee ... , family(binomial) link(logit) corr(exchangeable)  
xlogit ...  
xprobit ... 
```

clogit stores the following in \(e() \):

Scalars

- \(e(N) \): number of observations
- \(e(N_drop) \): number of observations dropped because of all positive or all negative outcomes
- \(e(N_group_drop) \): number of groups dropped because of all positive or all negative outcomes
- \(e(k) \): number of parameters
- \(e(k_eq) \): number of equations in \(e(b) \)
- \(e(k_eq_model) \): number of equations in overall model test
- \(e(k_dv) \): number of dependent variables
- \(e(df_m) \): model degrees of freedom
- \(e(r2_p) \): pseudo-\(R^2 \)-squared
- \(e(ll) \): log likelihood
- \(e(ll_0) \): log likelihood, constant-only model
- \(e(N_clust) \): number of clusters
- \(e(chi2) \): \(\chi^2 \)-value for model test
- \(e(p) \): \(p \)-value for model test
- \(e(rank) \): rank of \(e(V) \)
- \(e(ic) \): number of iterations
- \(e(rc) \): return code
- \(e(converged) \): 1 if converged, 0 otherwise

Macros

- \(e(cmd) \): clogit
- \(e(cmdline) \): command as typed
- \(e(depvar) \): name of dependent variable
- \(e(group) \): name of group() variable
- \(e(multiple) \): multiple if multiple positive outcomes within group
- \(e(wtype) \): weight type
- \(e(wexp) \): weight expression
- \(e(title) \): title in estimation output
- \(e(clustvar) \): name of cluster variable
- \(e(offset) \): linear offset variable
- \(e(chi2type) \): Wald or LR; type of model \(\chi^2 \) test
- \(e(vcetype) \): vcetype specified in vce()
- \(e(vcetype) \): title used to label Std. Err.
- \(e(opt) \): type of optimization
- \(e(which) \): \(\text{max} \) or \(\text{min} \); whether optimizer is to perform maximization or minimization
- \(e(ml_method) \): type of ml method
- \(e(user) \): name of likelihood-evaluator program
- \(e(technique) \): maximization technique
- \(e(properties) \): \(b \ V \)
- \(e(predict) \): program used to implement predict
- \(e(marginsok) \): predictions allowed by margins
- \(e(marginsnotok) \): predictions disallowed by margins
- \(e(marginsdefault) \): default predict() specification for margins
- \(e(asbalanced) \): factor variables fvset as asbalanced
- \(e(asobserved) \): factor variables fvset as asobserved

Matrices

- \(e(b) \): coefficient vector
- \(e(Cns) \): constraints matrix
- \(e(ll_log) \): iteration log (up to 20 iterations)
- \(e(gradient) \): gradient vector
- \(e(V) \): variance–covariance matrix of the estimators
- \(e(V_modelbased) \): model-based variance

Functions

- \(e(sample) \): marks estimation sample
Methods and formulas

Let \(i = 1, 2, \ldots, n \) denote the groups and let \(t = 1, 2, \ldots, T_i \) denote the observations for the \(i \)th group. Let \(y_{it} \) be the dependent variable taking on values 0 or 1. Let \(y_i = (y_{i1}, \ldots, y_{iT_i}) \) be the outcomes for the \(i \)th group as a whole. Let \(x_{it} \) be a row vector of covariates. Let

\[
k_{1i} = \sum_{t=1}^{T_i} y_{it}
\]

be the observed number of ones for the dependent variable in the \(i \)th group. Biostatisticians would say that there are \(k_{1i} \) cases matched to \(k_{2i} = T_i - k_{1i} \) controls in the \(i \)th group.

We consider the probability of a possible value of \(y_i \) conditional on \(\sum_{t=1}^{T_i} y_{it} = k_{1i} \) (Hamerle and Ronning 1995, eq. 8.33; Hosmer, Lemeshow, and Sturdivant 2013, eq. 7.4),

\[
\Pr(y_i \mid \sum_{t=1}^{T_i} y_{it} = k_{1i}) = \frac{\exp(\sum_{t=1}^{T_i} y_{it} x_{it} \beta)}{\sum_{d_i \in S_i} \exp(\sum_{t=1}^{T_i} d_{it} x_{it} \beta)}
\]

where \(d_{it} \) is equal to 0 or 1 with \(\sum_{t=1}^{T_i} d_{it} = k_{1i} \), and \(S_i \) is the set of all possible combinations of \(k_{1i} \) ones and \(k_{2i} \) zeros. Clearly, there are \(\binom{T_i}{k_{1i}} \) such combinations, but we need not count all of these combinations to compute the denominator of the above equation. It can be computed recursively.

Denote the denominator by

\[
f_i(T_i, k_{1i}) = \sum_{d_i \in S_i} \exp\left(\sum_{t=1}^{T_i} d_{it} x_{it} \beta\right)
\]

Consider, computationally, how \(f_i \) changes as we go from a total of 1 observation in the group to 2 observations to 3, etc. Doing this, we derive the recursive formula

\[
f_i(T, k) = f_i(T - 1, k) + f_i(T - 1, k - 1) \exp(x_{iT} \beta)
\]

where we define \(f_i(T, k) = 0 \) if \(T < k \) and \(f_i(T, 0) = 1 \).

The conditional log-likelihood is

\[
\ln L = \sum_{i=1}^{n} \left\{ \sum_{t=1}^{T_i} y_{it} x_{it} \beta - \log f_i(T_i, k_{1i}) \right\}
\]

The derivatives of the conditional log-likelihood can also be computed recursively by taking derivatives of the recursive formula for \(f_i \).

Computation time is roughly proportional to

\[
p^2 \sum_{i=1}^{n} T_i \min(k_{1i}, k_{2i})
\]

where \(p \) is the number of independent variables in the model. If \(\min(k_{1i}, k_{2i}) \) is small, computation time is not an issue. But if it is large—say, 100 or more—patience may be required.
If T_i is large for all groups, the bias of the unconditional fixed-effects estimator is not a concern, and we can confidently use logit with an indicator variable for each group (provided, of course, that the number of groups is held within a Stata matrix; see [R] Limits).

This command supports the clustered version of the Huber/White/sandwich estimator of the variance using vce(robust) and vce(cluster clustvar). See [P] _robust, particularly Maximum likelihood estimators and Methods and formulas. Specifying vce(robust) is equivalent to specifying vce(cluster groupvar), where groupvar is the variable for the matched groups.

clogit also supports estimation with survey data. For details on VCEs with survey data, see [SVY] Variance estimation.

References

Long, J. S., and J. Freese. 2014. Regression Models for Categorical Dependent Variables Using Stata. 3rd ed. College Station, TX: Stata Press.

Also see

[R] clogit postestimation — Postestimation tools for clogit

[R] logistic — Logistic regression, reporting odds ratios

[R] mlogit — Multinomial (polytomous) logistic regression

[R] ologit — Ordered logistic regression

[R] scobit — Skewed logistic regression

[BAYES] bayes: clogit — Bayesian conditional logistic regression

[CM] cmclogit — Conditional logit (McFadden’s) choice model

[CM] nlogit — Nested logit regression

[MI] Estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[XT] xtgee — Fit population-averaged panel-data models by using GEE

[XT] xtologit — Fixed-effects, random-effects, and population-averaged logit models

[U] 20 Estimation and postestimation commands