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Description
ci computes confidence intervals for population means, proportions, variances, and standard devia-

tions.

cii is the immediate form of ci; see [U] 19 Immediate commands for a general discussion of im-

mediate commands.

Quick start
Confidence intervals for means of normally distributed variables v1, v2, and v3

ci means v1-v3

Confidence interval for mean of Poisson-distributed variable v4
ci means v4, poisson

Confidence interval for rate of v4 with total exposure recorded in v5
ci means v4, poisson exposure(v5)

Confidence interval for proportion of binary variable v6
ci proportions v6

Confidence intervals for variances of v1, v2, and v3
ci variances v1-v3

Same as above, but Bonett confidence intervals are produced

ci variances v1-v3, bonett

90% Bonett confidence intervals for standard deviations of v1, v2, and v3
ci variances v1-v3, sd bonett level(90)

Confidence interval for a mean based on a sample with 85 observations, a sample mean of 10, and a

standard deviation of 3

cii means 85 10 3

90% confidence interval for rate from a sample with 4,379 deaths over 11,394 person-years

cii means 11394 4379, poisson level(90)

Agresti–Coull confidence interval for proportion based on a sample with 2,377 observations and 136

successes

cii proportions 2377 136, agresti
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Bonett confidence interval for variance based on a sample with 20 observations, sample variance of 9,

and estimated kurtosis of 1.8

cii variances 20 9 1.8, bonett

Same as above, but with confidence interval for standard deviation

cii variances 20 3 1.8, sd bonett

Menu
ci
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Confidence intervals

cii for a normal mean
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Normal mean CI calculator

cii for a Poisson mean
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Poisson mean CI calculator

cii for a proportion
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Proportion CI calculator

cii for a variance
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Variance CI calculator

cii for a standard deviation
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Standard deviation CI calculator
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Syntax
Confidence intervals for means, normal distribution

ci means [ varlist ] [ if ] [ in ] [weight ] [ , options ]

cii means #obs #mean #sd [ , level(#) ]

Confidence intervals for means, Poisson distribution

ci means [ varlist ] [ if ] [ in ] [weight ], poisson [ exposure(varname) options ]

cii means #exposure #events , poisson [ level(#) ]

Confidence intervals for proportions

ci proportions [ varlist ] [ if ] [ in ] [weight ] [ , prop options options ]

cii proportions #obs #succ [ , prop options level(#) ]

Confidence intervals for variances

ci variances [ varlist ] [ if ] [ in ] [weight ] [ , bonett options ]

cii variances #obs #variance [ , level(#) ]

cii variances #obs #variance #kurtosis, bonett [ level(#) ]

Confidence intervals for standard deviations

ci variances [ varlist ] [ if ] [ in ] [weight ], sd [ bonett options ]

cii variances #obs #sd, sd [ level(#) ]

cii variances #obs #sd #kurtosis, sd bonett [ level(#) ]

#obs must be a positive integer. #exposure, #sd, and #variance must be a positive number. #succ and #events
must be a nonnegative integer or between 0 and 1. If the number is between 0 and 1, Stata interprets

it as the fraction of successes or events and converts it to an integer number representing the number

of successes or events. The computation then proceeds as if two integers had been specified. If the

bonett option is specified, you must additionally specify #kurtosis with cii variances.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rci.pdf#rciSyntaxweight
https://www.stata.com/manuals/rci.pdf#rciSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rci.pdf#rciSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rci.pdf#rciSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rci.pdf#rciSyntaxweight
https://www.stata.com/manuals/rci.pdf#rciSyntaxprop_options
https://www.stata.com/manuals/rci.pdf#rciSyntaxoptions
https://www.stata.com/manuals/rci.pdf#rciSyntaxprop_options
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rci.pdf#rciSyntaxweight
https://www.stata.com/manuals/rci.pdf#rciSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rci.pdf#rciSyntaxweight
https://www.stata.com/manuals/rci.pdf#rciSyntaxoptions
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prop options Description

exact calculate exact confidence intervals; the default

wald calculate Wald confidence intervals

wilson calculate Wilson confidence intervals

agresti calculate Agresti–Coull confidence intervals

jeffreys calculate Jeffreys confidence intervals

options Description

level(#) set confidence level; default is level(95)
separator(#) draw separator line after every # variables; default is separator(5)
total add output for all groups combined (for use with by only)

by, collect, and statsby are allowed with ci, and collect is allowed with cii; see [U] 11.1.10 Prefix commands.

aweights are allowed with ci means for normal data, and fweights are allowed with all ci subcommands; see
[U] 11.1.6 weight.

Options
Options are presented under the following headings:

Options for ci and cii means
Options for ci and cii proportions
Options for ci and cii variances

Options for ci and cii means

� � �
Main �

poisson specifies that the variables (or numbers for cii) are Poisson-distributed counts; exact Poisson
confidence intervals will be calculated. By default, confidence intervals for means are calculated

based on a normal distribution.

exposure(varname) is used only with poisson. You do not need to specify poisson if you specify

exposure(); poisson is assumed. varname contains the total exposure (typically a time or an area)

during which the number of events recorded in varlist was observed.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [R] level.

separator(#) specifies how often separation lines should be inserted into the output. The default is

separator(5), meaning that a line is drawn after every five variables. separator(10) would draw

the line after every 10 variables. separator(0) suppresses the separation line.

total is used with the by prefix. It requests that in addition to output for each by-group, output be added

for all groups combined.

https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rlevel.pdf#rlevel
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Options for ci and cii proportions

� � �
Main �

exact, wald, wilson, agresti, and jeffreys specify how binomial confidence intervals are to be

calculated.

exact is the default and specifies exact (also known in the literature as Clopper–Pearson [1934])

binomial confidence intervals.

wald specifies calculation of Wald confidence intervals.

wilson specifies calculation of Wilson confidence intervals.

agresti specifies calculation of Agresti–Coull confidence intervals.

jeffreys specifies calculation of Jeffreys confidence intervals.

See Brown, Cai, and DasGupta (2001) for a discussion and comparison of the different binomial

confidence intervals.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [R] level.

separator(#) specifies how often separation lines should be inserted into the output. The default is

separator(5), meaning that a line is drawn after every five variables. separator(10) would draw

the line after every 10 variables. separator(0) suppresses the separation line.

total is used with the by prefix. It requests that in addition to output for each by-group, output be added

for all groups combined.

Options for ci and cii variances

� � �
Main �

sd specifies that confidence intervals for standard deviations be calculated. The default is to compute

confidence intervals for variances.

bonett specifies that Bonett confidence intervals be calculated. The default is to compute normal-based

confidence intervals, which assume normality for the data.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [R] level.

separator(#) specifies how often separation lines should be inserted into the output. The default is

separator(5), meaning that a line is drawn after every five variables. separator(10) would draw

the line after every 10 variables. separator(0) suppresses the separation line.

total is used with the by prefix. It requests that in addition to output for each by-group, output be added

for all groups combined.

https://www.stata.com/manuals/rlevel.pdf#rlevel
https://www.stata.com/manuals/rlevel.pdf#rlevel
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Remarks and examples
Remarks are presented under the following headings:

Confidence intervals for means
Normal-based confidence intervals
Poisson confidence intervals

Confidence intervals for proportions
Confidence intervals for variances
Immediate form

Confidence intervals for means
ci means computes a confidence interval for the population mean for each of the variables in varlist.

Normal-based confidence intervals

Example 1: Normal-based confidence intervals
Without the poisson option, ci means produces normal-based confidence intervals that are correct

if the variable is normally distributed and asymptotically correct for all other distributions satisfying the

conditions of the central limit theorem.

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. ci means mpg price

Variable Obs Mean Std. err. [95% conf. interval]

mpg 74 21.2973 .6725511 19.9569 22.63769
price 74 6165.257 342.8719 5481.914 6848.6

The standard error of the mean of mpg is 0.67, and the 95% confidence interval is [ 19.96, 22.64 ]. We

can obtain wider confidence intervals, 99%, by typing

. ci means mpg price, level(99)
Variable Obs Mean Std. err. [99% conf. interval]

mpg 74 21.2973 .6725511 19.51849 23.07611
price 74 6165.257 342.8719 5258.405 7072.108

Example 2: The by prefix
The by prefix breaks out the confidence intervals according to by-group; total adds an overall sum-

mary. For instance,

https://www.stata.com/manuals/dby.pdf#dby
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. by foreign: ci means mpg, total

-> foreign = Domestic
Variable Obs Mean Std. err. [95% conf. interval]

mpg 52 19.82692 .657777 18.50638 21.14747

-> foreign = Foreign
Variable Obs Mean Std. err. [95% conf. interval]

mpg 22 24.77273 1.40951 21.84149 27.70396

-> Total
Variable Obs Mean Std. err. [95% conf. interval]

mpg 74 21.2973 .6725511 19.9569 22.63769

Example 3: Controlling the format
You can control the formatting of the numbers in the output by specifying a display format for the

variable; see [U] 12.5 Formats: Controlling how data are displayed. For instance,

. format mpg %9.2f

. ci means mpg
Variable Obs Mean Std. err. [95% conf. interval]

mpg 74 21.30 0.67 19.96 22.64

Poisson confidence intervals

If you specify the poisson option, ci means assumes count data and computes exact Poisson confi-

dence intervals.

Example 4: Poisson confidence intervals
We have data on the number of bacterial colonies on a Petri dish. The dish has been divided into

36 small squares, and the number of colonies in each square has been counted. Each observation in our

dataset represents a square on the dish. The variable count records the number of colonies in each square
counted, which varies from 0 to 5.

. use https://www.stata-press.com/data/r19/petri, clear

. ci means count, poisson
Poisson exact

Variable Exposure Mean Std. err. [95% conf. interval]

count 36 2.333333 .2545875 1.861158 2.888825

ci reports that the average number of colonies per square is 2.33. If the expected number of colonies

per square were as low as 1.86, the probability of observing 2.33 or more colonies per square would be

2.5%. If the expected number were as large as 2.89, the probability of observing 2.33 or fewer colonies

per square would be 2.5%.

https://www.stata.com/manuals/u12.pdf#u12.5FormatsControllinghowdataaredisplayed
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Example 5: Option exposure()
The number of “observations”—how finely the Petri dish is divided—makes no difference. The

Poisson distribution is a function only of the count. In example 4, we observed a total of 2.33× 36 = 84

colonies and a confidence interval of [ 1.86 × 36, 2.89 × 36 ] = [ 67, 104 ]. We would obtain the same

[ 67, 104 ] confidence interval if our dish were divided into, say, 49 squares rather than 36.
For the counts, it is not even important that all the squares be of the same size. For rates, however,

such differences do matter but in an easy-to-calculate way. Rates are obtained from counts by dividing

by exposure, which is typically a number multiplied by either time or an area. For our Petri dishes, we

divide by an area to obtain a rate, but if our example were cast in terms of being infected by a disease, we

might divide by person-years to obtain the rate. Rates are convenient because they are easier to compare:

we might have 2.3 colonies per square inch or 0.0005 infections per person-year.

So let’s assume that we wish to obtain the number of colonies per square inch and, moreover, that not

all the “squares” on our dish are of equal size. We have a variable called area that records the area of

each square:

. ci means count, exposure(area)
Poisson exact

Variable Exposure Mean Std. err. [95% conf. interval]

count 3 28 3.055051 22.3339 34.66591

The rates are now in more familiar terms. In our sample, there are 28 colonies per square inch, and

the 95% confidence interval is [ 22.3, 34.7 ]. When we did not specify exposure(), ci means with the

poisson option assumed that each observation contributed 1 to exposure.

Technical note
If there were no colonies on our dish, ci means with the poisson option would calculate a one-sided

confidence interval:

. use https://www.stata-press.com/data/r19/petrinone

. ci means count, poisson
Poisson exact

Variable Exposure Mean Std. err. [95% conf. interval]

count 36 0 0 0 .1024689*
(*) one-sided, 97.5% confidence interval

Confidence intervals for proportions
The ci proportions command assumes binary (0/1) data and computes binomial confidence inter-

vals.

https://www.stata.com/manuals/rci.pdf#rciRemarksandexamplesex4
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Example 6: Exact binomial (Clopper–Pearson) confidence interval
We have data on employees, including a variable marking whether the employee was promoted last

year.

. use https://www.stata-press.com/data/r19/promo

. ci proportions promoted
Binomial exact

Variable Obs Proportion Std. err. [95% conf. interval]

promoted 20 .1 .067082 .0123485 .3169827

The exact binomial, also known as the Clopper–Pearson (1934) interval, is computed by default.

Nominally, the interpretation of a 95% confidence interval is that under repeated samples or experi-

ments, 95% of the resultant intervals would contain the unknown parameter in question. However, for

binomial data, the actual coverage probability, regardless of method, usually differs from that interpre-

tation. This result occurs because of the discreteness of the binomial distribution, which produces only

a finite set of outcomes, meaning that coverage probabilities are subject to discrete jumps and that the

exact nominal level cannot always be achieved. Therefore, the term “exact confidence interval” refers to

its being derived from the binomial distribution, the distribution exactly generating the data, rather than

resulting in exactly the nominal coverage.

For the Clopper–Pearson interval, the actual coverage probability is guaranteed to be greater than or

equal to the nominal confidence level, here 95%. Because of the way it is calculated—see Methods and

formulas—it may also be interpreted as follows: If the true probability of being promoted were 0.012,

the chances of observing a result as extreme or more extreme than the result observed (20 × 0.1 = 2 or

more promotions) would be 2.5%. If the true probability of being promoted were 0.317, the chances of

observing a result as extreme or more extreme than the result observed (two or fewer promotions) would

be 2.5%.

Example 7: Other confidence intervals
The Clopper–Pearson interval is desirable because it guarantees nominal coverage; however, by drop-

ping this restriction, youmay obtain accurate intervals that are not as conservative. In this vein, youmight

opt for the Wilson (1927) interval,

. ci proportions promoted, wilson
Wilson

Variable Obs Proportion Std. err. [95% conf. interval]

promoted 20 .1 .067082 .0278665 .3010336

the Agresti–Coull (1998) interval,

. ci proportions promoted, agresti
Agresti--Coull

Variable Obs Proportion Std. err. [95% conf. interval]

promoted 20 .1 .067082 .0156562 .3132439

https://www.stata.com/manuals/rci.pdf#rciMethodsandformulas
https://www.stata.com/manuals/rci.pdf#rciMethodsandformulas
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or the Bayesian-derived Jeffreys interval (Brown, Cai, and DasGupta 2001),

. ci proportions promoted, jeffreys
Jeffreys

Variable Obs Proportion Std. err. [95% conf. interval]

promoted 20 .1 .067082 .0213725 .2838533

Picking the best interval is a matter of balancing accuracy (coverage) against precision (average in-

terval length) and depends on sample size and success probability. Brown, Cai, and DasGupta (2001)

recommend the Wilson or Jeffreys interval for small sample sizes (≤40) yet favor the Agresti–Coull

interval for its simplicity, decent performance for sample sizes less than or equal to 40, and performance

comparable toWilson or Jeffreys for sample sizes greater than 40. They also deem the Clopper–Pearson

interval to be “wastefully conservative and [. . .] not a good choice for practical use”, unless of course

one requires, at a minimum, the nominal coverage level.

Finally, the binomial Wald confidence interval is obtained by specifying the wald option. The Wald

interval is the one taught in most introductory statistics courses and, for the above, is simply, for level

1 − 𝛼, Proportion±𝑧𝛼/2(Std. err.), where 𝑧𝛼/2 is the 1 − 𝛼/2 quantile of the standard normal.

Because its overall poor performance makes it impractical, the Wald interval is available mainly for

pedagogical purposes. The binomial Wald interval is also similar to the interval produced by treating

binary data as normal data and using ci means, with two exceptions. First, the calculation of the standard
error in ci proportions uses denominator 𝑛 rather than 𝑛 − 1, used for normal data in ci means.
Second, confidence intervals for normal data are based on the 𝑡 distribution rather than the standard

normal. Of course, both discrepancies vanish as sample size increases.

Technical note
Let’s repeat example 6, but this time with data in which there are no promotions over the observed

period:

. use https://www.stata-press.com/data/r19/promonone

. ci proportions promoted
Binomial exact

Variable Obs Proportion Std. err. [95% conf. interval]

promoted 20 0 0 0 .1684335*
(*) one-sided, 97.5% confidence interval

The confidence interval is [ 0, 0.168 ], and this is the confidence interval that most books publish. It is

not, however, a true 95% confidence interval because the lower tail has vanished. As Stata notes, it is

a one-sided, 97.5% confidence interval. If you wanted to put 5% in the right tail, you could type ci
proportions promoted, level(90).

https://www.stata.com/manuals/rci.pdf#rciRemarksandexamplesex6
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Technical note
ci proportions ignores any variables that do not take on the values 0 and 1 exclusively. For instance,

with our automobile dataset,

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. ci proportions mpg foreign

Binomial exact
Variable Obs Proportion Std. err. [95% conf. interval]

foreign 74 .2972973 .0531331 .196584 .4148353
Note: The results are produced only for binary (0/1) variables.

We also requested the confidence interval for mpg, but Stata ignored us. It does that so you can type ci
proportions and obtain correct confidence intervals for all the variables that are 0/1 in your data.

Confidence intervals for variances
The ci variances command computes confidence intervals for the variances or, if the sd option is

specified, for the standard deviations. The default is a normal-based confidence interval that assumes the

data are normal and uses a 𝜒2 distribution to construct the confidence intervals. If normality is suspect,

you may consider using the bonett option to compute Bonett (2006) confidence intervals, which are

more robust to nonnormality.

Example 8: Normal-based confidence intervals
So far, we have restricted our attention to confidence intervals for means and proportions. Typically,

when people think of statistical inference, they usually have in mind inferences concerning population

means. However, the population parameter of interest will vary from one situation to another. In many

scenarios, the population variance is as important as the population mean. For example, in a quality

control study, a machine that fills 16-ounce canned peas is investigated at regular time intervals. A

random sample of 𝑛 = 8 containers is selected every hour. Ideally, the amount of peas in a can should

vary only slightly about the 16-ounce value. If the variance was large, then a large proportion of cans

would be either underfilled, thus cheating the customer, or overfilled, thus resulting in economic loss

to the manufacturing company. Suppose that the weights of 16-ounce cans filled by the machine are

normally distributed. The acceptable variability in the weights is expected to be 0.09 with the respective

standard deviation of 0.3 ounces. To monitor the machine’s performance, we can compute confidence

intervals for the variance of the weights of cans:

. use https://www.stata-press.com/data/r19/peas_normdist
(Weights of canned peas, normal distribution)
. ci variances weight

Variable Obs Variance [95% conf. interval]

weight 8 .3888409 .1699823 1.610708

The command reports the sample estimate of the variance of 0.39 with the 95% confidence interval of

[ 0.17, 1.61 ].
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Instead of the variance, we may be interested in confidence intervals for the standard deviation. We

can specify the sd option to compute such confidence intervals.

. ci variances weight, sd
Variable Obs Std. dev. [95% conf. interval]

weight 8 .6235711 .4122891 1.269137

The 95% confidence interval for the standard deviation of the weights is [0.41, 1.27]. Because the desired
value for the standard deviation, 0.3 ounces, falls outside the interval, the machine may require some

tuning.

Confidence intervals in example 8 are based on the assumption that the random sample is selected from

a population having a normal distribution. Nonnormality of the population distribution, in the form of

skewness or heavy tails, can have a drastic impact on the asymptotic coverage probability of the normal-

based confidence intervals. This is the case even for distributions that are similar to normal. Scheffé

(1959, 336) showed that the normal-based interval has an asymptotic coverage probability of about 0.76,

0.63, 0.60, and 0.51 for the logistic, 𝑡 with seven degrees of freedom, Laplace, and 𝑡 with five degrees of
freedom distributions, respectively. Miller (1997, 264) describes this situation as “catastrophic” because

these distributions are symmetric and not easily distinguishable from a normal distribution unless the

sample size is large. Hence, it is judicious to evaluate the normality of the data prior to constructing the

normal-based confidence intervals for variances or standard deviations.

Bonett (2006) proposed a confidence interval that performs well in small samples under moderate

departures from normality. His interval performs only slightly worse than the exact normal-based con-

fidence interval when sampling from a normal distribution. A larger sample size provides Bonett confi-

dence intervals with greater protection against nonnormality.

Example 9: Bonett confidence interval for normal data
We will repeat example 8 and construct a Bonett confidence interval for the standard deviation by

specifying the bonett option. The results are similar, and both examples lead to the same inferential

conclusion.

. ci variances weight, sd bonett
Bonett

Variable Obs Std. dev. [95% conf. interval]

weight 8 .6235711 .3997041 1.288498

The Bonett confidence interval is wider than the normal-based confidence interval in example 8. For

normal data, Bonett (2006) suggested that if Bonett confidence interval is used for a sample of size

𝑛+3, then its average width will be about the same as the average width of the normal-based confidence

interval from a sample size of 𝑛. Sampling three more observations may be a small price to pay because
Bonett confidence intervals perform substantially better than the normal-based confidence intervals for

nonnormal data.

https://www.stata.com/manuals/rci.pdf#rciRemarksandexamplesex8
https://www.stata.com/manuals/rci.pdf#rciRemarksandexamplesex8
https://www.stata.com/manuals/rci.pdf#rciRemarksandexamplesex8
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Example 10: Bonett confidence interval for nonnormal data
The following data have been generated from a 𝑡 distribution with five degrees of freedom to illustrate

the effect of wrongfully using the normal-based confidence interval when the data-generating process is

not normal.

. use https://www.stata-press.com/data/r19/peas_tdist
(Weights of canned peas, t distribution)
. ci variances weight, sd

Variable Obs Std. dev. [95% conf. interval]

weight 8 2.226558 1.472143 4.531652

The standard deviation of a 𝑡 distribution with five degrees of freedom is √5/3 ≈ 1.29 and falls outside

the confidence interval limits. If we suspect that data may not be normal, the Bonett confidence interval

is typically a better choice:

. ci variances weight, sd bonett
Bonett

Variable Obs Std. dev. [95% conf. interval]

weight 8 2.226558 1.137505 5.772519

The value 1.29 is within the limits of the Bonett confidence interval [ 1.14, 5.77 ]

Immediate form
So far, we computed confidence intervals for various parameters using data in memory. We can

also compute confidence intervals using only data summaries, without any data in memory. Each of

the considered ci commands has an immediate cii version that computes the respective confidence

intervals using data summaries.

Example 11: Confidence interval for a normal mean
We are reading a soon-to-be-published paper by a colleague. In it is a table showing the number of

observations, mean, and standard deviation of the 1980 median family income for the Northeast and

West. We correctly think that the paper would be much improved if it included the confidence intervals.

The paper claims that for 166 cities in the Northeast, the average of median family income is $19,509

with a standard deviation of $4,379:

For the Northeast:

. cii means 166 19509 4379
Variable Obs Mean Std. err. [95% conf. interval]

166 19509 339.8763 18837.93 20180.07

For the West:

. cii means 256 22557 5003
Variable Obs Mean Std. err. [95% conf. interval]

256 22557 312.6875 21941.22 23172.78
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Example 12: Confidence interval for a Poisson mean
The number of reported traffic accidents in Santa Monica over a 24-hour period is 27. We need know

nothing else to compute a confidence interval for the mean number of accidents for a day:

. cii means 1 27, poisson
Poisson exact

Variable Exposure Mean Std. err. [95% conf. interval]

1 27 5.196152 17.79317 39.28358

Example 13: Confidence interval for a proportion
We flip a coin 10 times, and it comes up heads only once. We are shocked and decide to obtain a 99%

confidence interval for this coin:

. cii proportions 10 1, level(99)
Binomial exact

Variable Obs Proportion Std. err. [99% conf. interval]

10 .1 .0948683 .0005011 .5442871

Example 14: Confidence interval for a variance
A company fills 32-ounce tomato juice jars with a quantity of juice having a normal distribution with

a claimed variance not exceeding 0.2. A random sample of 15 jars is collected to evaluate this claim.

The sample variance is 0.5:

. cii variances 15 0.5
Variable Obs Variance [95% conf. interval]

15 .5 .2680047 1.243621

Because the advertised value of 0.2 does not fall inside the confidence interval, the company is allowing

too much variation in the amount of tomato juice per jar.

Example 15: Confidence interval for a standard deviation
Suppose the director of statistical development at a statistical software company is a big soccer fan

and requires all developers to play on the company team in the city’s local soccer league. Ten developers

are randomly selected to participate in the game. To ensure an advantage over other teams, the director

requires each of the 10 developers to cover 6 miles on average each game. Being merciful, she will

tolerate a standard deviation of 0.3 miles across different players, arguing that this will keep the team’s

performance consistent. The distance covered by each player is measured using a pedometer. At the end

of the game, the sample standard deviation of the distances covered by the 10 players was 0.56 miles:

. cii variances 10 0.56, sd
Variable Obs Std. dev. [95% conf. interval]

10 .56 .3851877 1.022342
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Because the confidence interval does not include the designated value for the standard deviation, 0.3

miles, it is clear the team is not meeting standards, and an unpleasant meeting is planned.

Example 16: Confidence interval for a standard deviation of nonnormal data
Continuingwith example 15, a clever statistician points out that distances covered by company players

in a soccer match do not follow the normal distribution because some players, mostly econometricians,

walk on the field, while others, mostly statisticians, do all the running. Therefore, the normal-based

confidence interval (which assumes normality) is not valid. Instead, we should use the Bonett confidence

interval, which additionally requires an estimate of kurtosis; see Methods and formulas. If kurtosis is

estimated to be 5, we would obtain the following:

. cii variances 10 0.56 5, sd bonett
Bonett

Variable Obs Std. dev. [95% conf. interval]

10 .56 .2689449 1.45029

TheBonett confidence interval now contains the specified value for the standard deviation, 0.3miles. The

director of statistics concludes that overall team performance is acceptable. An uncomfortable meeting

is still planned but for a smaller group.

Stored results
ci means and cii means store the following in r():
Scalars

r(N) number of observations or, if poisson is specified, exposure

r(mean) mean

r(se) estimate of standard error

r(lb) lower bound of confidence interval

r(ub) upper bound of confidence interval

r(level) confidence level of confidence interval

Macros

r(citype) normal or poisson; type of confidence interval
r(exposure) name of exposure variable with poisson

ci proportions and cii proportions store the following in r():
Scalars

r(N) number of observations

r(proportion) proportion

r(se) estimate of standard error

r(lb) lower bound of confidence interval

r(ub) upper bound of confidence interval

r(level) confidence level of confidence interval

Macros

r(citype) exact, wald, wilson, agresti, or jeffreys; type of confidence interval

ci variances and cii variances store the following in r():
Scalars

r(N) number of observations

r(Var) variance

https://www.stata.com/manuals/rci.pdf#rciRemarksandexamplesex15
https://www.stata.com/manuals/rci.pdf#rciMethodsandformulas
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r(sd) standard deviation, if sd is specified

r(kurtosis) kurtosis, only if bonett is specified

r(lb) lower bound of confidence interval

r(ub) upper bound of confidence interval

r(level) confidence level of confidence interval

Macros

r(citype) normal or bonett, type of confidence interval

Methods and formulas
Methods and formulas are presented under the following headings:

Normal mean
Poisson mean
Binomial proportion
Variance and standard deviation

Normal mean
Define 𝑛, 𝑥, and 𝑠2 as, respectively, the number of observations, (weighted) average, and (unbiased)

estimated variance of the variable in question; see [R] summarize.

The standard error of the mean, 𝑠𝜇, is defined as √𝑠2/𝑛.
Let 𝛼 be 1−𝑙/100, where 𝑙 is the confidence level specified by the user in the level() option. Define

𝑡𝛼/2 as the two-sided 𝑡 statistic corresponding to a significance level of 𝛼 with 𝑛−1 degrees of freedom;

𝑡𝛼/2 is obtained from Stata as invttail(𝑛-1,0.5*𝛼). The lower and upper confidence bounds are,

respectively, 𝑥 − 𝑠𝜇𝑡𝛼/2 and 𝑥 + 𝑠𝜇𝑡𝛼/2.

Poisson mean
Given the total cases, 𝑘, the estimate of the expected count 𝜆 is 𝑘, and its standard error is

√
𝑘. ci

means with the poisson option calculates the exact confidence interval [ 𝜆1, 𝜆2 ] such that

Pr(𝐾 ≥ 𝑘|𝜆 = 𝜆1) = 𝛼/2

and

Pr(𝐾 ≤ 𝑘|𝜆 = 𝜆2) = 𝛼/2

where 𝐾 is Poisson with mean 𝜆. Solution is obtained by Newton’s method. If 𝑘 = 0, the calculation

of 𝜆1 is skipped. All values are then reported as rates, which are the above numbers divided by the total

exposure.

Binomial proportion
Given 𝑘 successes of 𝑛 trials, the estimated probability of a success is ̂𝑝 = 𝑘/𝑛 with standard error

√ ̂𝑝(1 − ̂𝑝)/𝑛. ci calculates the exact (Clopper–Pearson) confidence interval [ 𝑝1, 𝑝2 ] such that

Pr(𝐾 ≥ 𝑘|𝑝 = 𝑝1) = 𝛼/2

and

Pr(𝐾 ≤ 𝑘|𝑝 = 𝑝2) = 𝛼/2

https://www.stata.com/manuals/rsummarize.pdf#rsummarize
https://www.stata.com/manuals/fnstatisticalfunctions.pdf#fnStatisticalfunctionsFunctionsinvttail()
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where 𝐾 is distributed as binomial(𝑛, 𝑝). The endpoints may be obtained directly by using Stata’s

invbinomial() function. If 𝑘 = 0 or 𝑘 = 𝑛, the calculation of the appropriate tail is skipped.
TheWald interval is ̂𝑝±𝑧𝛼/2√ ̂𝑝(1 − ̂𝑝)/𝑛, where 𝑧𝛼/2 is the 1−𝛼/2 quantile of the standard normal.

The interval is obtained by inverting the acceptance region of the large-sample Wald test of 𝐻0 ∶ 𝑝 = 𝑝0
versus the two-sided alternative. That is, the confidence interval is the set of all 𝑝0 such that

∣ ̂𝑝 − 𝑝0

√𝑛−1 ̂𝑝(1 − ̂𝑝)
∣ ≤ 𝑧𝛼/2

TheWilson interval is a variation on theWald interval, using the null standard error √𝑛−1𝑝0(1 − 𝑝0)
in place of the estimated standard error√𝑛−1 ̂𝑝(1 − ̂𝑝) in the above expression. Inverting this acceptance
region is more complicated yet results in the closed form

𝑘 + 𝑧2
𝛼/2/2

𝑛 + 𝑧2
𝛼/2

±
𝑧𝛼/2𝑛1/2

𝑛 + 𝑧2
𝛼/2

{ ̂𝑝(1 − ̂𝑝) +
𝑧2

𝛼/2

4𝑛
}

1/2

TheAgresti–Coull interval is basically aWald interval that borrows its center from theWilson interval.

Defining �̃� = 𝑘 + 𝑧2
𝛼/2/2, �̃� = 𝑛 + 𝑧2

𝛼/2, and (hence) ̃𝑝 = �̃�/�̃�, the Agresti–Coull interval is

̃𝑝 ± 𝑧𝛼/2√ ̃𝑝(1 − ̃𝑝)/�̃�

When𝛼 = 0.05, 𝑧𝛼/2 is near enough to 2 that ̃𝑝 can be thought of as a typical estimate of proportion where
two successes and two failures have been added to the sample (Agresti and Coull 1998). This typical

estimate of proportion makes the Agresti–Coull interval an easy-to-present alternative for introductory

statistics students.

The Jeffreys interval is a Bayesian credible interval and is based on the Jeffreys prior, which is the

Beta(1/2, 1/2) distribution. Assigning this prior to 𝑝 results in a posterior distribution for 𝑝 that is Beta

with parameters 𝑘+1/2 and𝑛−𝑘+1/2. The Jeffreys interval is then taken to be the 1−𝛼 central posterior

probability interval, namely, the 𝛼/2 and 1−𝛼/2 quantiles of the Beta(𝑘+1/2, 𝑛−𝑘+1/2) distribution.
These quantiles may be obtained directly by using Stata’s invibeta() function. See [BAYES] bayesstats
summary for more details about credible intervals.

https://www.stata.com/manuals/fnstatisticalfunctions.pdf#fnStatisticalfunctionsFunctionsinvibeta()
https://www.stata.com/manuals/bayesbayesstatssummary.pdf#bayesbayesstatssummary
https://www.stata.com/manuals/bayesbayesstatssummary.pdf#bayesbayesstatssummary
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Variance and standard deviation
Let𝑋1, . . . , 𝑋𝑛 be a random sample and assume that𝑋𝑖 ∼ 𝑁(𝜇, 𝜎2). Because (𝑛−1)𝑠2/𝜎2 ∼ 𝜒2

𝑛−1,

we have Pr{𝜒2
𝑛−1,𝛼/2 ≤ (𝑛 − 1)𝑠2/𝜎2 ≤ 𝜒2

𝑛−1,1−𝛼/2} = 1− 𝛼, where 𝜒2
𝑛−1,𝛼/2 and 𝜒2

𝑛−1,1−𝛼/2 are the

𝛼/2 and 1 − 𝛼/2 quantiles of the 𝜒2
𝑛−1 distribution. Thus, the normal-based confidence interval for the

population variance 𝜎2 with 100(1 − 𝛼)% confidence level is given by

𝐼normal = [ (𝑛 − 1)𝑠2

𝜒2
𝑛−1,1−𝛼/2

, (𝑛 − 1)𝑠2

𝜒2
𝑛−1,𝛼/2

]

𝜒2
𝑛−1,1−𝛼/2 and 𝜒2

𝑛−1,𝛼/2 are obtained from Stata as invchi2tail(𝑛-1,0.5*𝛼) and invchi2(𝑛-
1,0.5*𝛼), respectively.

The normal-based confidence interval is very sensitive to minor departures from the normality as-

sumption, and its performance does not improve with increasing sample size. For scenarios in which

the population distribution is not normal, the actual coverage probability of the normal-based confidence

interval can be drastically lower than the nominal confidence level 𝛼.
Bonett (2006) proposed an alternative to the normal-based confidence interval that is nearly exact

under normality and has coverage probability close to 1 − 𝛼 under moderate nonnormality. It also has

1− 𝛼 asymptotic coverage probability for nonnormal distributions with finite fourth moment. Instead of

assuming that 𝑋𝑖 ∼ 𝑁(𝜇, 𝜎2), Bonett’s approach requires continuous i.i.d. random variables with finite

fourth moment. The variance of 𝑠2 may be expressed as 𝜎4 {𝛾4 − (𝑛 − 3)/(𝑛 − 1)} /𝑛 (see Casella and

Berger [2002, ex. 5.8, 257]), where 𝛾4 = 𝜇4/𝜎4 is the kurtosis and 𝜇4 = 𝐸 (𝑋𝑖 − 𝜇)4
is the population

fourth central moment. The variance-stabilizing transformation ln (𝑠2) and the delta method can be used
to construct an asymptotic 100(1 − 𝛼)% confidence interval for 𝜎2,

[ exp{ ln (𝑠2) − 𝑧𝛼/2𝑠𝑒} , exp{ ln (𝑠2) + 𝑧𝛼/2𝑠𝑒}]

where 𝑠𝑒 = { ̂𝛾4 − (𝑛 − 3)/(𝑛 − 1)} /𝑛 ≈ Var { ln (𝑠2)} and ̂𝛾4 is an estimate of the kurtosis. Bonett

introduced three adjustments to improve the small-sample properties of the above confidence inter-

val. First, he swapped the inner and outer denominator in the expression for 𝑠𝑒 and changed it to

{ ̂𝛾4 − (𝑛 − 3)/𝑛} /(𝑛 − 1). This was suggested by Shoemaker (2003) who used it to improve the

small-sample performance of his variance test. Second, with regard to the estimation of kurtosis,

Bonett proposed ̂𝛾4 = 𝑛 ∑ (𝑋𝑖 − 𝑚)4 / {∑ (𝑋𝑖 − 𝑋)2}
2
, where 𝑚 is a trimmed mean with a trim-

proportion equal to 1/ {2(𝑛 − 4)1/2}. This kurtosis estimator reduces the negative bias in symmetric

and skewed heavy-tailed distributions. Last, he empirically derived a small-sample correction factor

𝑐 = 𝑛/(𝑛 − 𝑧𝛼/2) that helps equalize the tail probabilities. These modifications yield

𝐼Bonett = [ exp{ ln (𝑐𝑠2) − 𝑧𝛼/2𝑠𝑒} , exp{ ln (𝑐𝑠2) + 𝑧𝛼/2𝑠𝑒}]

where 𝑧𝛼/2 is the 1 − 𝛼/2 quantile of the standard normal and 𝑠𝑒 = 𝑐 [{ ̂𝛾4 − (𝑛 − 3)/𝑛} /(𝑛 − 1)].
Taking the square root of the endpoints of both intervals gives confidence intervals for the standard

deviation 𝜎.

https://www.stata.com/manuals/fnstatisticalfunctions.pdf#fnStatisticalfunctionsFunctionsinvchi2tail()
https://www.stata.com/manuals/fnstatisticalfunctions.pdf#fnStatisticalfunctionsFunctionsinvchi2()
https://www.stata.com/manuals/fnstatisticalfunctions.pdf#fnStatisticalfunctionsFunctionsinvchi2()
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� �
Edwin Bidwell (E. B.) Wilson (1879–1964) majored in mathematics at Harvard and studied and

taught at Yale and MIT before returning to Harvard in 1922. He worked in mathematics, physics,

and statistics. His method for binomial intervals can be considered a precursor, for a particular

problem, of Neyman’s concept of confidence intervals.

Jerzy Neyman (1894–1981) was born in Bendery, Russia, now Moldavia. He studied and then

taught at Kharkov University, moving from physics to mathematics. In 1921, Neyman moved to

Poland, where he worked in statistics at Bydgoszcz and then Warsaw. Neyman received a Rocke-

feller Fellowship to work with Karl Pearson at University College London. There he collaborated

with Egon Pearson, Karl’s son, on the theory of hypothesis testing. Life in Poland became pro-

gressively more difficult, and Neyman returned to UCL to work there from 1934 to 1938. At this

time, he published on the theory of confidence intervals. He then was offered a post in California at

Berkeley, where he settled. Neyman established an outstanding statistics department and remained

highly active in research, including applications in astronomy, meteorology, and medicine. He was

one of the great statisticians of the 20th century.� �
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