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Description
cfregress fits linear models with endogenous regressors using control functions. Endogenous vari-

ables are first modeled as a function of instruments using linear, probit, fractional probit, or Poisson

regression. The residuals, or generalized residuals, from these first-stage regressions are then included

in the main equation as control functions to make regression estimates robust to endogeneity.

Quick start
Control function estimation of a linear regression of y1 on x and endogenous regressor y2 that is instru-

mented by z
cfregress y1 x (y2 = z)

Same as above, but with two endogenous regressors and two instruments

cfregress y1 x (y2 y3 = z1 z2)

Same as above, but use z3 as an additional instrument for y3
cfregress y1 x (y2 = z1 z2) (y3 = z1 z2 z3)

Model the first stage for binary endogenous regressor y4 using probit regression

cfregress y1 x (y2 = z1 z2) (y4 = z1 z2 z3, probit)

Include an interaction term between w and the control function of y2 in the main equation

cfregress y1 x (y2 = z, interact(w))

Include an interaction term between the control functions of y2 and y3
cfregress y1 x (y2 = z1 z2) (y3 = z1 z2), cfinteract

Include w in the main equation for y1 but not in the first stage

cfregress y1 x (y2 = z), mainonly(w)

Include an endogenous interaction term between w and y2, and control for its endogeneity by including
an interaction term between w and the control function of y2

cfregress y1 x w (y2 = z, interact(w)), mainonly(c.y2#c.w)

Menu
Statistics > Endogenous covariates > Control-function linear regression
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Syntax
cfregress depvar [ indepvars ] (varlisten1 = varlistiv1 [ , cfopts ])

[ (varlisten2 = varlistiv2 [ , cfopts ]) ... ] [ if ] [ in ] [weight ] [ , options ]

cfopts Description

Model

linear model the endogenous variables using linear regression; the default

probit model the endogenous variables using probit regression

fprobit model the endogenous variables using fractional probit regression

poisson model the endogenous variables using Poisson regression

interact(varlistint) interact the variables in varlistint with the control functions

Only one of linear, probit, fprobit, or poisson is allowed in each set of parentheses.

options Description

Model

mainonly(varlistm) include the variables in varlistm as exogenous variables in the
main equation but not in the first-stage equations

cfinteract include interactions between control functions when there are
multiple endogenous variables

noconstant suppress constant term

hascons has user-supplied constant

SE/Robust

vce(vcetype) vcetype may be conventional, robust, cluster clustvar,
bootstrap, jackknife, or hac hacspec

Reporting

level set confidence level; default is level(95)
first report first-stage regressions

noheader display only the coefficient table

eform[ (string) ] report exponentiated coefficients and, optionally, label as string

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

indepvars, varlisten⋅, varlistiv⋅, varlistint, and varlistm may contain factor variables; see [U] 11.4.3 Factor variables.

depvars, indepvars, varlisten⋅, varlistiv⋅, varlistint, and varlistm may contain time-series operators; see [U] 11.4.4 Time-series

varlists.

bayesboot, bootstrap, by, collect, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

aweights are not allowed with the jackknife prefix; see [R] jackknife.

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rcfregress.pdf#rcfregressSyntaxweight
https://www.stata.com/manuals/rcfregress.pdf#rcfregressSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rcfregress.pdf#rcfregressOptionsvcetype
https://www.stata.com/manuals/rcfregress.pdf#rcfregressOptionshacspec
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/rcfregress.pdf#rcfregressOptionsdisplay_options
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/rjackknife.pdf#rjackknife
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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Options

� � �
Model �

linear, probit, fprobit, and poisson specify which regression model is used for the first-stage

model. A different model can be specified for each set of parentheses.

linear, the default, specifies a linear regression model.

probit specifies a probit regression model. Endogenous variables must be coded as 0/1.

fprobit specifies a fractional probit regression model. Endogenous variables must take values in

[0, 1].
poisson specifies a Poisson regression model. Endogenous variables must take nonnegative values.

interact(varlistint) includes in the main regression an interaction term between each variable in

varlistint and the control functions associated with the current set of parentheses. Variables are treated

as continuous by default.

mainonly(varlistm) includes the variables in varlistm as exogenous variables in the main regression but

excludes them from the first-stage regressions.

cfinteract specifies that all interactions between control functions be included in the main regression.

If there is only one endogenous regressor, and thus only one control function, the option has no effect.

noconstant; see [R] Estimation options.

hascons indicates that a user-defined constant or its equivalent is specified among the independent vari-

ables.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that

use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

vce(conventional), the default, requests conventional standard errors appropriate under ho-

moskedasticity and no autocorrelation.

vce(hac hacspec) requests a heteroskedasticity- and autocorrelation-consistent (HAC) variance–

covariance matrix. The full syntax of hacspec is one of the following:

vce(hac kernel [ # ]) requests a HAC variance–covariance matrix using the specified kernel (see

below) with optional # lags. The bandwidth of a kernel is equal to # + 1. If # is not specified,

a kernel with 𝑁 − 2 lags is used, where 𝑁 is the sample size.

vce(hac kernel opt [ # ]) requests a HAC variance–covariance matrix using the specified kernel

(see below), and the lag order is selected using Newey andWest’s (1994) optimal lag-selection

algorithm. # is an optional tuning parameter that affects the lag order selected; see the discussion

in Methods and formulas of [R] ivregress.

kernel may be one of the following:

bartlett or nwest requests the Bartlett (Newey–West) kernel.

parzen or gallant requests the Parzen (Gallant 1987) kernel.

quadraticspectral or andrews requests the quadratic spectral (Andrews 1991) kernel.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/rivregress.pdf#rivregressMethodsandformulaswmatrixopt
https://www.stata.com/manuals/rivregress.pdf#rivregress
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� � �
Reporting �

level(#); see [R] Estimation options.

first requests that the results of first-stage regressions be displayed.

noheader suppresses the display of the summary statistics at the top of the output, displaying only the

coefficient table.

eform and eform(string) specify that the coefficient table be displayed in exponentiated form and that

exp(b) and string, respectively, be used to label the exponentiated coefficients in the table. Standard

errors and confidence intervals are also transformed.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

The following option is available with cfregress but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
cfregress fits linear models with endogenous regressors by estimating one or more control func-

tions and including them in the main regression equation. These control functions are estimated as the

residuals, or generalized residuals, of first-stage regressions.

Control-function methods are closely related to standard instrumental-variables (IV) methods and in

the simplest cases produce the same regression estimates. However, control-function methods allow for

more flexibility than comparable IVmethods. Wooldridge (2015) gives an overview of control-function

regression methods.

The main equation in the model fit by cfregress is

𝑦𝑖0 = y𝑖β1 + x𝑖β2 + w𝑖β3 + 𝑢𝑖 (1)

where 𝑦𝑖0 is the dependent variable for the 𝑖th observation; y𝑖 = (𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝑝)′ is a row vector of 𝑝
endogenous regressors; x𝑖 is a row vector of exogenous regressors to be included in the main equation

and in first-stage regressions; w𝑖 is a row vector of exogenous regressors to be included only in the main

equation; β1, β2, and β3 are vectors of coefficients; and 𝑢𝑖 is an error term whose conditional mean is

thought to depend on the endogenous variables y𝑖.

We assume the existence of a set of exogenous instruments for each endogenous regressor. These

sets of instruments can be the same across endogenous regressors, or they can be different. Let z𝑘
𝑖 be

the vector containing the instruments for endogenous regressor 𝑦𝑖𝑘, and let z𝑖 = (z1
𝑖 , z2

𝑖 , . . . , z𝑝
𝑖 )′ be the

vector containing the instruments for all endogenous regressors in the model.

The main equation is similar to those fit by linear IV methods. However, the control-function ap-

proach imposes additional structure on the model in that the endogeneity in the error term 𝑢𝑖 is explicitly

modeled. Specifically, we assume

𝐸(𝑢𝑖|y𝑖, x𝑖, z𝑖,w𝑖) = 𝐸(𝑢𝑖|ν𝑖, y𝑖, x𝑖, z𝑖,w𝑖)
= ν𝑖ρ + ℎ(ν𝑖, y𝑖, x𝑖, z𝑖,w𝑖)′ρℎ (2)

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Here ν𝑖 = (𝜈𝑖1, 𝜈𝑖2, . . . , 𝜈𝑖𝑝)′ is a row vector of control functions, one for each endogenous variable,

and ρ = (𝜌1, 𝜌2, . . . , 𝜌𝑝) is a vector of coefficients. ℎ(⋅) is a known vector-valued function and can

include, for our purposes, interactions among the control functions in ν𝑖, as well as between the control

functions and the exogenous or endogenous variables. ρℎ is a set of associated parameters.

For example, suppose that we have one endogenous variable 𝑦𝑖1 and two instruments 𝑧1
𝑖1 and 𝑧1

𝑖2 and

that x𝑖 and w𝑖 are empty. ℎ(ν𝑖, 𝑦𝑖1, z1
𝑖 ) might take the form (𝜈𝑖1𝑧1

𝑖1, 𝜈𝑖1𝑧1
𝑖2). Combining (1) and (2) and

specifying that 𝜖𝑖 = 𝑢𝑖 − 𝐸(𝑢𝑖|y𝑖, z𝑖), we can write

𝑦𝑖0 = 𝑦𝑖1𝛽1 + 𝜈𝑖1𝜌1 + 𝜈𝑖1𝑧1
𝑖1𝜌ℎ1 + 𝜈𝑖1𝑧1

𝑖2𝜌ℎ2 + 𝜖𝑖

When ℎ(⋅) ≡ 0 and all first-stage models are linear, control-function estimates of the coefficients of

the main equation are numerically equivalent to two-stage least-squares IV estimates of the same main

equation with the same instruments.

Example 1: Single endogenous regressor, linear first stage
In practice, control functions are not observed but rather estimated. Specifically, the residuals or

generalized residuals produced in first-stage regressions serve as control functions. We can model the

endogenous variable 𝑦𝑖1 by the linear regression

𝑦𝑖1 = x𝑖π11 + z1
𝑖π12 + 𝜈𝑖1

and use the estimate ̂𝜈𝑖1 as our control function for 𝑦𝑖1.

To illustrate, we revisit example 1 in [R] ivregress using census data on housing. We have state data

from the 1980 census on the median home value (hsngval) and the median monthly gross rent (rent).
We can model (rent) as a function of hsngval and the percentage of the population living in urban areas
(pcturban),

rent𝑖 = 𝛽0 + 𝛽1hsngval𝑖 + 𝛽2pcturban𝑖 + 𝑢𝑖

where 𝑖 indexes states. We believe that hsngval is endogenous; thus, we instrument it using the state’s

median family income (faminc) and census region (region).

https://www.stata.com/manuals/rivregress.pdf#rivregressRemarksandexamplesex_ivregress_2sls
https://www.stata.com/manuals/rivregress.pdf#rivregress
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We can re-create the ivregress 2sls estimates for this model using cfregress. Here, however,
we rescale hsngval and faminc to be in thousands of dollars so that they are on a scale similar to rent:

. use https://www.stata-press.com/data/r19/hsng
(1980 Census housing data)
. replace hsngval = hsngval/1000
variable hsngval was long now double

(50 real changes made)
. replace faminc = faminc/1000
variable faminc was long now double

(50 real changes made)
. cfregress rent pcturban (hsngval = faminc i.region)
Control-function linear regression Number of obs = 50

Wald chi2(2) = 90.76
Prob > chi2 = 0.0000
R-squared = 0.5989
Root MSE = 22.1656

Endogenous variable model:
Linear: hsngval

rent Coefficient Std. err. z P>|z| [95% conf. interval]

rent
hsngval 2.239833 .3284392 6.82 0.000 1.596104 2.883562

pcturban .081516 .2987652 0.27 0.785 -.504053 .667085
_cons 120.7065 15.22839 7.93 0.000 90.85942 150.5536

e.rent
cf(hsngval) -1.588908 .4333422 -3.67 0.000 -2.438243 -.7395726

Instruments for hsngval: faminc 2.region 3.region 4.region

Accounting for scaling, these estimates are identical to comparable estimates produced by ivregress
2sls, but cfregress also includes an estimate of the coefficient on the control function, reported as

cf(hsngval). Here e.rent denotes the model used for 𝑢𝑖, the error term in the main equation for the

dependent variable, rent. This error term is modeled as a function of the control functions and, in some

cases, other interaction terms involving them. In our example, a test of the hypothesis that the coefficient

on cf(hsngval) is different from zero can be interpreted as a test of the endogeneity of hsngval.
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We may suspect, however, that our model for 𝑢𝑖 in the previous example is misspecified. We

can add an interaction term between the control function and faminc to this model by using the

interact(faminc) option:

. cfregress rent pcturban (hsngval = faminc i.region, interact(faminc))
Control-function linear regression Number of obs = 50

Wald chi2(2) = 95.16
Prob > chi2 = 0.0000
R-squared = 0.5945
Root MSE = 22.2851

Endogenous variable model:
Linear: hsngval

rent Coefficient Std. err. z P>|z| [95% conf. interval]

rent
hsngval 2.155381 .3437284 6.27 0.000 1.481686 2.829076

pcturban .4794597 .2362242 2.03 0.042 .0164688 .9424506
_cons 98.15909 13.86958 7.08 0.000 70.97521 125.343

e.rent
cf(hsngval) 10.66765 3.619442 2.95 0.003 3.573673 17.76163

cf(hsngval)
faminc -.5610651 .1743049 -3.22 0.001 -.9026965 -.2194338

Instruments for hsngval: faminc 2.region 3.region 4.region

The coefficient on the endogenous variable, hsngval, is slightly different but not substantially

changed. However, the coefficient on pcturban is now noticeably larger, and there is evidence it is

different from zero. The coefficient on the control function cf(hsngval) has changed sign, and there

is evidence that the coefficient on the interaction term is also relevant in the model, suggesting that in-

cluding it in the model for the error term is appropriate. In this case, a joint test of cf(hsngval) and

cf(hsngval)#faminc is equivalent to a test of the endogeneity of hsngval.

We can perform this test using the postestimation command estat endogenous.

. estat endogenous
Tests of endogeneity
H0: Variables are exogenous
( 1) [e.rent]cf(hsngval) = 0
( 2) [e.rent]cf(hsngval)#c.faminc = 0

chi2( 2) = 15.30
Prob > chi2 = 0.0005

We note here that as long as the instruments are valid, misspecification of the endogeneity in the

error term, such as by using a two-stage least-squares IV estimator when the data-generating process has

ℎ(𝑢𝑖|y𝑖, x𝑖, z𝑖,w𝑖) ≠ 0, will not affect the consistency of the regression estimates. However, it may lead

to biased estimates or invalid inference in small samples. Kim and Petrin (2011) discuss issues related

to the specification of the endogeneity in the error term.
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Example 2: Endogenous variables entering as interactions
Oftentimes, we have amodel with a single endogenous regressor, 𝑦𝑖1, that appears in themain equation

interacted with an exogenous variable 𝑥𝑖1,

𝑦𝑖0 = 𝑦𝑖1β1 + 𝑦𝑖1𝑥𝑖1β2 + x𝑖β3 + 𝑢𝑖

In these cases, it is natural to model 𝑢𝑖 as a linear function of the control function for 𝑦𝑖1, 𝜈1, and the

interaction term 𝜈1𝑥𝑖1,

𝐸(𝑢𝑖|𝑦𝑖1, x𝑖, z1
𝑖 ) = 𝜌1𝜈1 + 𝜌2𝜈1𝑥𝑖1

We can add an interaction term to the main equation and, at the same time, model 𝑢𝑖 using the

mainonly() and interact() options.

Returning to the housing value model in the previous example, suppose that we want to include

faminc as an exogenous variable and to include an interaction term between it and the endogenous

regressor hsngval in the main equation for rent. At the same time, we want to control for endogeneity
by including the interaction term between the control function of hsngval and faminc. We can type

. cfregress rent pcturban faminc (hsngval = i.region, interact(faminc)),
> mainonly(c.hsngval#c.faminc)
Control-function linear regression Number of obs = 50

Wald chi2(4) = 169.37
Prob > chi2 = 0.0000
R-squared = 0.7694
Root MSE = 16.8055

Endogenous variable model:
Linear: hsngval

rent Coefficient Std. err. z P>|z| [95% conf. interval]

rent
hsngval -.1299135 1.66665 -0.08 0.938 -3.396487 3.13666

c.hsngval#
c.faminc .0744869 .078061 0.95 0.340 -.0785099 .2274836

pcturban .405831 .2078664 1.95 0.051 -.0015798 .8132417
faminc .7928874 3.834329 0.21 0.836 -6.722259 8.308034
_cons 125.9643 73.74242 1.71 0.088 -18.56818 270.4968

e.rent
cf(hsngval) 7.225214 2.793552 2.59 0.010 1.749952 12.70048

cf(hsngval)
faminc -.374434 .1321422 -2.83 0.005 -.633428 -.1154401

Instruments for hsngval: 2.region 3.region 4.region

By specifying mainonly(c.hsngval#c.faminc), we request that the interaction term is included in

the main equation but not in the first-stage regression for hsngval. By specifying interact(faminc),
we request that the interaction term cf(hsngval)#faminc be included to control for endogeneity.
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Example 3: Binary endogenous regressor, probit first stage
Because control-function methods involve explicitly specifying first-stage models for the endoge-

nous variables, the first stage need not be restricted to linear regression. cfregress allows for probit,

fractional probit, and Poisson regression in the first-stage models for the endogenous variables. This

flexibility means that a surprising variety of models can be estimated using cfregress.

For instance, example 2 in [CAUSAL] etregress uses a control-function estimator to estimate the effect

of having health insurance (ins) on the log of prescription drug expenditure (lndrug). The endogenous
binary treatment variable, ins, is instrumented using marital status (married) and employment status

(work). We can reproduce the estimates in the example using cfregresswith the probit, interact(),
and mainonly() options:

. use https://www.stata-press.com/data/r19/drugexp
(Prescription drug expenditures)
. cfregress lndrug age lninc (ins = i.married i.work, probit interact(i.ins)),
> mainonly(i.chron) vce(robust)
Control-function linear regression Number of obs = 6,000

Wald chi2(4) = 1973.78
Prob > chi2 = 0.0000
R-squared = 0.2432
Root MSE = 1.2172

Endogenous variable model:
Probit: 1.ins

Robust
lndrug Coefficient std. err. z P>|z| [95% conf. interval]

lndrug
1.ins -.8598836 .3483648 -2.47 0.014 -1.542666 -.1771011

1.chron .4671725 .0319731 14.61 0.000 .4045064 .5298387
age .1021359 .00292 34.98 0.000 .0964128 .1078589

lninc .0550672 .0225036 2.45 0.014 .0109609 .0991735
_cons 1.665539 .2527527 6.59 0.000 1.170153 2.160925

e.lndrug
cf(1.ins) .5252243 .226367 2.32 0.020 .0815532 .9688954

cf(1.ins)#ins
0 0 (omitted)
1 .2702095 .2585099 1.05 0.296 -.2364605 .7768796

Instruments for 1.ins: 1.married 1.work

Here the first stage is specified as a probit model and an interaction term is included so that the main

error term depends on the value of the treatment variable. We specify the covariate chron (whether the

individual has a chronic health condition) as present in the main equation but not in the treatment model

by using the mainonly() option. The main equation, accounting for the specification of endogeneity,

thus takes the form

lndrug = 𝛽0 + 𝛽1ins + 𝛽2age + 𝛽3lninc + 𝛽4chron

+ 𝜌1cf(1.ins) + 𝜌ℎ1cf(1.ins)#ins + 𝜖

The first-stage model is a standard probit model with ins as the left-hand side variable and married,
work, age, and lninc as right-hand side variables. The estimated control function cf(1.ins) is the

generalized error from this first-stage probit regression, as defined in Methods and formulas.

https://www.stata.com/manuals/causaletregress.pdf#causaletregressRemarksandexamplesex2
https://www.stata.com/manuals/causaletregress.pdf#causaletregress
https://www.stata.com/manuals/rcfregress.pdf#rcfregressMethodsandformulas
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The output allows us to assess the way the endogeneity of ins has implicitly been specified by

the treatment-regression model. The model allows the main error term to be correlated with the treat-

ment model error conditional on the value of the treatment variable, which implies that the conditional

mean of the main error depends on the interaction of cf(1.ins) and ins. The estimated coefficient on
cf(1.ins)#ins does not, as it turns out, give evidence that this is the case.

Given this absence of evidence for a treatment-specific error term, we may wish to estimate a regres-

sion that does not include the interaction. This is not possible with etregress, but in cfregress we

can simply drop the interact() option.

. cfregress lndrug age lninc (ins = i.married i.work, probit),
> mainonly(i.chron) vce(robust)
Control-function linear regression Number of obs = 6,000

Wald chi2(4) = 2833.77
Prob > chi2 = 0.0000
R-squared = 0.2393
Root MSE = 1.2203

Endogenous variable model:
Probit: 1.ins

Robust
lndrug Coefficient std. err. z P>|z| [95% conf. interval]

lndrug
1.ins -.8992025 .3399829 -2.64 0.008 -1.565557 -.2328483

1.chron .4675479 .0319717 14.62 0.000 .4048845 .5302113
age .1011597 .0027163 37.24 0.000 .0958359 .1064836

lninc .0505756 .0217621 2.32 0.020 .0079228 .0932285
_cons 1.827957 .1784883 10.24 0.000 1.478126 2.177787

e.lndrug
cf(1.ins) .6157838 .1991464 3.09 0.002 .225464 1.006104

Instruments for 1.ins: 1.married 1.work

Here we find a slightly more extreme main effect of ins and slightly more precise estimates of each

of the coefficients after dropping the interaction term.

Because we have explicit control of the model for the conditional expectation of the error term, we

can not only treat other kinds of models as special cases but also customize these special cases for our

setting, as in the preceding binary treatment example. Similarly, control function regression can be used

to flexibly model correlated random coefficients in linear models, as outlined in Wooldridge (2015).

cfregress also allows for multiple endogenous regressors, each of which can have a different first-

stage model and set of instruments.
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Stored results
cfregress stores the following in e():

Scalars

e(N) number of observations

e(k endog) number of endogenous variables

e(df m) model degrees of freedom

e(rmse) root mean squared error

e(r2) 𝑅2

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(N clust) number of clusters

e(hac lag) HAC lag

e(rank) rank of e(V)

Macros

e(cmd) cfregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(endog) names of endogenous variables

e(exog) names of exogenous variables

e(exog main) names of exogenous variables in main equation only

e(constant) noconstant or hasconstant, if specified
e(wtype) weight type

e(wexp) weight expression

e(modeltypes) model specification (linear, probit, etc.) for each endogenous regressor
e(cfinteract) cfinteract, if specified
e(title) title in estimation output

e(clustvar) name of cluster variable

e(hac kernel) HAC kernel

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(exogr) exogenous regressors

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(footnote) program used to implement footnote display

e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Methods and formulas
As discussed in Remarks and examples, the main equation estimated by cfregress has the form

𝑦𝑖0 = y𝑖β1 + x𝑖β2 + w𝑖β3 + 𝑢𝑖

where 𝑦𝑖0 is the dependent variable for the 𝑖th observation; y𝑖 = (𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝑝)′ is a row vector of 𝑝
endogenous regressors; x𝑖 is a row vector of exogenous regressors to be included in the main equation

and in first-stage regressions; w𝑖 is a row vector of exogenous regressors to be included only in the main

equation; β1, β2, and β3 are vectors of coefficients; and 𝑢𝑖 is an error term whose conditional mean is

thought to depend on the endogenous variables y𝑖.

We also specify first-stage models for each endogenous regressor 𝑦𝑖𝑘 as a function of the exogenous

regressors x𝑖 and instruments z
𝑘
𝑖 . If a linear model is specified for 𝑦𝑖𝑘, either using the linear option or

by default, its first-stage equation has the form

𝑦𝑖𝑘 = x𝑖π𝑘,1 + z𝑘
𝑖 π𝑘,2 + 𝜈𝑖𝑘

where π𝑘,1 and π𝑘,2 are coefficients and 𝜈𝑖𝑘 is an error term.

If a probit model is specified using the probit option, the first-stage model for 𝑦𝑖𝑘 has the form

𝑃(𝑦𝑖𝑘 = 1|x𝑖, z𝑘
𝑖 ) = Φ(x𝑖π𝑘,1 + z𝑘

𝑖 π𝑘,2)

If a fractional probit model is specified using the fprobit option, the first-stage model for the con-

ditional mean of 𝑦𝑖𝑘 can be written as

𝐸(𝑦𝑖𝑘|x𝑖, z𝑘
𝑖 ) = Φ(x𝑖π𝑘,1 + z𝑘

𝑖 π𝑘,2)

Finally, if a Poisson model is specified using the poisson option, the first-stage model for the condi-

tional mean of 𝑦𝑖𝑘 can be written as

𝐸(𝑦𝑖𝑘|x𝑖, z𝑘
𝑖 ) = exp(x𝑖π𝑘,1 + z𝑘

𝑖 π𝑘,2)

For each endogenous variable 𝑦𝑖𝑘, a control function 𝜈𝑖𝑘(𝑦𝑖𝑘, x𝑖, z𝑘
𝑖 ) is estimated. In the linear case,

this is simply the estimate of the linear error term.

For probit and fractional probit models, it is an estimate at the optimum of the “generalized error”,

which is equal to the first derivative of the probit log likelihood with respect to x𝑖π𝑘,1 + z𝑘
𝑖 π𝑘,2,

𝜈𝑖𝑘(𝑦𝑖𝑘, x𝑖, z𝑘
𝑖 ) = 𝑦𝑖𝑘

𝜙(x𝑖π𝑘,1 + z𝑘
𝑖 π𝑘,2)

Φ(x𝑖π𝑘,1 + z𝑘
𝑖 π𝑘,2)

− (1 − 𝑦𝑖𝑘)
𝜙{−(x𝑖π𝑘,1 + z𝑘

𝑖 π𝑘,2)}
Φ{−(x𝑖π𝑘,1 + z𝑘

𝑖 π𝑘,2)}

For a Poisson first-stage model, 𝜈𝑖𝑘(𝑦𝑖𝑘, x𝑖, z𝑘
𝑖 ) is equal to the first derivative of the Poisson log

likelihood with respect to x𝑖π𝑘,1 + z𝑘
𝑖 π𝑘,2,

𝜈𝑖𝑘(𝑦𝑖𝑘, x𝑖, z𝑘
𝑖 ) = 𝑦𝑖𝑘 − exp(x𝑖π𝑘,1 + z𝑘

𝑖 π𝑘,2)

We also assume a known form for the endogeneity in 𝑢𝑖. Specifically,

𝐸(𝑢𝑖|y𝑖, x𝑖, z𝑖,w𝑖) = 𝐸(𝑢𝑖|ν𝑖, y𝑖, x𝑖, z𝑖,w𝑖)
= 𝜈𝑖ρ + ℎ(ν𝑖, y𝑖, x𝑖, z𝑖,w𝑖)′ρℎ

https://www.stata.com/manuals/rcfregress.pdf#rcfregressRemarksandexamples
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where ν𝑖 = {𝜈𝑖1(𝑦𝑖1, x𝑖, z1
𝑖 ), . . . , 𝜈𝑖𝑝(𝑦𝑖𝑝, x𝑖, z

𝑝
𝑖 )}′, ℎ(⋅) is known, ρ = (𝜌1, 𝜌2, . . . , 𝜌𝑝), ρℎ is a vector

of coefficients associated with the elements of ℎ(ν𝑖, y𝑖, x𝑖, z𝑖,w𝑖), and z𝑖 = (z1
𝑖 , z2

𝑖 , . . . , z𝑝
𝑖 )′. Accord-

ingly, we produce estimates of our regression coefficients using a modified main equation of the form

𝑦𝑖0 = y𝑖β1 + x𝑖β2 + w𝑖β3 + ν̂𝑖ρ + ℎ(ν̂𝑖, y𝑖, x𝑖, z𝑖,w𝑖)′ρℎ + 𝜖𝑖

where ν̂𝑖 is an estimate of ν𝑖 computed in first-stage regressions and 𝜖𝑖 is an error term. This equation

is estimated by ordinary least squares to produce estimates of the coefficients that are appropriately

corrected for endogeneity.

Similarly to two-stage least-squares instrumental-variables estimation, the standard errors returned by

this two-stage procedure will be incorrect, because 𝜖𝑖 will be incorrectly taken as the overall error term,

rather than as a component of the true overall error term 𝑢𝑖 = ν𝑖ρ + ℎ(ν𝑖, y𝑖, x𝑖, z𝑖,w𝑖)′ρℎ + 𝜖𝑖.

To correct this, the standard errors are computed as if the model was estimated using generalized

method of moments (GMM). The GMM specification used to produce standard errors includes a set of

moment conditions for the main equation, as well as a set of moment conditions for each of the first-

stage models.

The error function for the dependent variable is

𝜖𝑖(y𝑖, x𝑖, z𝑖,w𝑖,β1,β2,β3,ρ,ρℎ) = 𝑦𝑖0 − y𝑖β1 − x𝑖β2 − w𝑖β3 − ν𝑖(y𝑖, x𝑖, z𝑖)ρ
− ℎ(ν𝑖(y𝑖, x𝑖, z𝑖), y𝑖, x𝑖, z𝑖,w𝑖)′ρℎ

It forms a set of moment conditions with associated instruments y𝑖, x𝑖,w𝑖, ν̂𝑖, and ℎ(ν̂𝑖, y𝑖, x𝑖, z𝑖,w𝑖).
Additionally, each of the control functions ν𝑖𝑘(y𝑖, x𝑖, z𝑘

𝑖 ) is taken as an error function that forms a set
of moment conditions with the exogenous variables x𝑖 and associated instruments z

𝑘
𝑖 .

Together, these moment conditions define an exactly identified model for the purpose of GMM esti-

mation, even if there are more instruments in z𝑖 than there are endogenous variables (in this sense, it is a

method of moments specification). This is because each instrument in the moment conditions is associ-

ated with a unique parameter. Because the GMM model is exactly identified, the results are invariant to

the choice of the GMM weight matrix.
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