bsample — Sampling with replacement

Description

bsample replaces the data in memory with a bootstrap sample (random sample with replacement) drawn from the current dataset. Clusters can be optionally sampled during each replication in place of observations. Bootstrap samples can also be selected within strata.

Quick start

Bootstrap sample with the same number of observations as the current dataset

 bsample

As above, but restrict to just 100 observations

 bsample 100

Stratified bootstrap sample of 100 observations at each level of svar

 bsample 100, strata(svar)

Bootstrap sample of 10 clusters identified by values of cvar

 bsample 10, cluster(cvar)

As above, but create a new unique ID code for sampled clusters and store it in cvar2

 bsample 10, cluster(cvar) idcluster(cvar2)

Menu

Statistics > Resampling > Draw bootstrap sample
Syntax

```
bsample [exp] [if] [in] [, options]
```

where `exp` is a standard Stata expression specifying the size of the sample; see `[U] 13 Functions and expressions.

`exp` must be less than or equal to _N (the number of observations; [U] 13.4 System variables (_variables)) when neither the `cluster()` nor the `strata()` option is specified. _N is the default when `exp` is not specified.

Observations that do not meet the optional `if` and `in` criteria are dropped from the resulting dataset.

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>strata(varlist)</code></td>
<td>variables identifying strata</td>
</tr>
<tr>
<td><code>cluster(varlist)</code></td>
<td>variables identifying resampling clusters</td>
</tr>
<tr>
<td><code>idcluster(newvar)</code></td>
<td>create new cluster ID variable</td>
</tr>
<tr>
<td><code>weight(varname)</code></td>
<td>replace <code>varname</code> with frequency weights</td>
</tr>
</tbody>
</table>

Options

`strata(varlist)` specifies the variables identifying strata. If `strata()` is specified, bootstrap samples are selected within each stratum, and `exp` must be less than or equal to _N within the defined strata.

`cluster(varlist)` specifies the variables identifying resampling clusters. If `cluster()` is specified, the sample drawn during each replication is a bootstrap sample of clusters, and `exp` must be less than or equal to \(N_c\) (the number of clusters identified by the `cluster()` option). If `strata()` is also specified, `exp` must be less than or equal to the number of within-strata clusters.

`idcluster(newvar)` creates a new variable containing a unique identifier for each resampled cluster.

`weight(varname)` specifies a variable in which the sampling frequencies will be placed. `varname` must be an existing variable, which will be replaced. After `bsample`, `varname` can be used as an `fweight` in any Stata command that accepts `fweights`, which can speed up resampling for commands like `regress` and `summarize`. This option cannot be combined with `idcluster()`.

By default, `bsample` replaces the data in memory with the sampled observations; however, specifying the `weight()` option causes only the specified `varname` to be changed.
Remarks and examples

Below is a series of examples illustrating how \texttt{bsample} is used with various sampling schemes.

- **Example 1: Bootstrap sampling**

 We have data on the characteristics of hospital patients and wish to draw a bootstrap sample of 200 patients. We type

 \begin{verbatim}
 . use https://www.stata-press.com/data/r16/bsample1
 . bsample 200
 . count
 200
 \end{verbatim}

- **Example 2: Stratified samples with equal sizes**

 Among the variables in our dataset is \texttt{female}, an indicator for the female patients. To get a bootstrap sample of 200 female patients and 200 male patients, we type

 \begin{verbatim}
 . use https://www.stata-press.com/data/r16/bsample1, clear
 . bsample 200, strata(female)
 . tabulate female
 \end{verbatim}

 \begin{verbatim}
 female
 Freq. Percent Cum.
 ------ -------- --------
 male 200 50.00 50.00
 female 200 50.00 100.00
 Total 400 100.00
 \end{verbatim}

- **Example 3: Stratified samples with unequal sizes**

 To sample 300 females and 200 males, we must generate a variable that is 300 for females and 200 for males and then use this variable in \texttt{exp} when we call \texttt{bsample}.

 \begin{verbatim}
 . use https://www.stata-press.com/data/r16/bsample1, clear
 . generate nsamp = cond(female,300,200)
 . bsample nsamp, strata(female)
 . tabulate female
 \end{verbatim}

 \begin{verbatim}
 female
 Freq. Percent Cum.
 ------ -------- --------
 male 200 40.00 40.00
 female 300 60.00 100.00
 Total 500 100.00
 \end{verbatim}
Example 4: Stratified samples with proportional sizes

Our original dataset has 2,392 males and 3,418 females.

```
use https://www.stata-press.com/data/r16/bsample1, clear
tabulate female
female | Freq.  Percent  Cum.  
--------|----------|---------|------
   male  |  2,392   | 41.17   | 41.17
 female |  3,418   | 58.83   | 100.00
        |  5,810   | 100.00  |
```

To sample 10% from females and males, we type

```
bsample round(0.1*_N), strata(female)
```

bsample requires that the specified size of the sample be an integer, so we use the `round()` function to obtain the nearest integer to 0.1×2392 and 0.1×3418. Our sample now has 239 males and 342 females:

```
.tabulate female
female | Freq.  Percent  Cum.  
--------|----------|---------|------
   male  |   239    | 41.14   | 41.14
 female |   342    | 58.86   | 100.00
        |   581    | 100.00  |
```

Example 5: Samples satisfying a condition

For a bootstrap sample of 200 female patients, we type

```
use https://www.stata-press.com/data/r16/bsample1, clear
bsample 200 if female
tabulate female
female | Freq.  Percent  Cum.  
--------|----------|---------|------
 female |   200    | 100.00  | 100.00
        |   200    | 100.00  |
```

Example 6: Generating frequency weights

To identify the sampled observations using frequency weights instead of dropping unsampled observations, we use the `weight()` option (we will need to supply it an existing variable name) and type

```
.use https://www.stata-press.com/data/r16/bsample1, clear
.set seed 1234
.generate fw =.
(5,810 missing values generated)
.bsample 200 if female, weight(fw)
.tabulate fw female
```

```
female       |       | Total
-------------|-------|--------
            | male  | female|
-------------|-------|--------
0            | 2,392 | 3,222  | 5,614
1            | 0     | 192    | 192
2            | 0     | 4      | 4
-------------|-------|--------|
Total        | 2,392 | 3,418  | 5,810
```

Note that \(192 \times 1 + 4 \times 2 = 200\).

Example 7: Oversampling observations

`bsample` requires the expression in `exp` to evaluate to a number that is less than or equal to the number of observations. To sample twice as many male and female patients as there are already in memory, we must expand the data before using `bsample`. For example,

```
.use https://www.stata-press.com/data/r16/bsample1, clear
.set seed 1234
.expand 2
(5,810 observations created)
.bsample, strata(female)
.tabulate female
```

```
female       | Freq. | Percent | Cum.
-------------|-------|---------|------
            |       |         |      
male         | 4,784 | 41.17   | 41.17
female       | 6,836 | 58.83   | 100.00
-------------|-------|---------|------|
Total        | 11,620| 100.00  |
```

Example 8: Stratified oversampling with unequal sizes

To sample twice as many female patients as male patients, we must expand the records for the female patients because there are less than twice as many of them as there are male patients, but first put the number of observed male patients in a local macro. After expanding the female records, we generate a variable that contains the number of observations to sample within the two groups.
Example 9: Oversampling of clusters

For clustered data, sampling more clusters than are present in the original dataset requires more than just expanding the data. To illustrate, suppose we wanted a bootstrap sample of eight clusters from a dataset consisting of five clusters of observations.

```
. use https://www.stata-press.com/data/r16/bsample2, clear
. tabstat x, stat(n mean) by(group)
```

Summary for variables: x
by categories of: group

<table>
<thead>
<tr>
<th>group</th>
<th>N</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15</td>
<td>-.3073028</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>-.00984</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>.0810985</td>
</tr>
<tr>
<td>D</td>
<td>11</td>
<td>-.1989179</td>
</tr>
<tr>
<td>E</td>
<td>29</td>
<td>-.095203</td>
</tr>
<tr>
<td>Total</td>
<td>76</td>
<td>-.1153269</td>
</tr>
</tbody>
</table>

bsample will complain if we simply expand the dataset.

```
. use https://www.stata-press.com/data/r16/bsample2
. expand 3
(152 observations created)
. bsample 8, cluster(group)
```

`resample size must not be greater than number of clusters`
r(498);

Expanding the data will only partly solve the problem. We also need a new variable that uniquely identifies the copied clusters. We use the `expandcl` command to accomplish both these tasks; see [D] expandcl.
. use https://www.stata-press.com/data/r16/bsample2, clear
. set seed 1234
. expandcl 2, generate(expgroup) cluster(group)
 (76 observations created)
. tabstat x, stat(n mean) by(expgroup)
 Summary for variables: x
 by categories of: expgroup
 expgroup | N mean
 | | |
 ____ | ____ | ____ |
 | | |
 1 | 15 | -.3073028
 2 | 15 | -.3073028
 3 | 10 | -.00984
 4 | 10 | -.00984
 5 | 11 | .0810985
 6 | 11 | .0810985
 7 | 11 | -.1989179
 8 | 11 | -.1989179
 9 | 29 | -.095203
 10 | 29 | -.095203
 ____ | 152 | -.1153269

. generate fw = .
 (152 missing values generated)
. bsample 8, cluster(expgroup) weight(fw)
. tabulate fw group
 group
 fw | A B C D E Total
 | ___ ___ ___ ___ ___ ____
 0 | 15 10 22 11 58 116
 1 | 0 0 0 11 0 11
 2 | 15 0 0 0 0 15
 5 | 0 10 0 0 0 10
 ____ | 30 20 22 22 58 152

The results from tabulate on the generated frequency weight variable versus the original cluster ID (group) show us that the bootstrap sample contains one copy of cluster A, one copy of cluster B, two copies of cluster C, two copies of cluster D, and two copies of cluster E ($1 + 1 + 2 + 2 + 2 = 8$).

Example 10: Stratified oversampling of clusters

Suppose that we have a dataset containing two strata with five clusters in each stratum, but the cluster identifiers are not unique between the strata. To get a stratified bootstrap sample with eight clusters in each stratum, we first use expandcl to expand the data and get a new cluster ID variable. We use cluster(strid group) in the call to expandcl; this action will uniquely identify the $2 \times 5 = 10$ clusters across the strata.
. use https://www.stata-press.com/data/r16/bsample2, clear
. set seed 1234
. tabulate group strid

<table>
<thead>
<tr>
<th>group</th>
<th>strid 1</th>
<th>strid 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td>36</td>
<td>40</td>
<td>76</td>
</tr>
</tbody>
</table>

.expandcl 2, generate(expgroup) cluster(strid group)
(76 observations created)

Now we can use bsample with the expanded data, stratum ID variable, and new cluster ID variable.

. generate fw = .
(152 missing values generated)
. bsample 8, cluster(expgroup) str(strid) weight(fw)
. by strid, sort: tabulate fw group

<table>
<thead>
<tr>
<th>group</th>
<th>fw 1</th>
<th>fw 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>10</td>
<td>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>group</th>
<th>fw 1</th>
<th>fw 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>B</td>
<td>16</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>12</td>
<td>80</td>
</tr>
</tbody>
</table>

The results from by strid: tabulate on the generated frequency weight variable versus the original cluster ID (group) show us how many times each cluster was sampled for each stratum. For stratum 1, the bootstrap sample contains two copies of cluster A, one copy of cluster B, two copies of cluster C, one copy of cluster D, and two copies of cluster E (2 + 1 + 2 + 1 + 2 = 8). For stratum 2, the bootstrap sample contains one copy of cluster A, zero copies of cluster B, three copies of cluster C, one copy of cluster D, and three copies of cluster E (1 + 0 + 3 + 1 + 3 = 8).
References

Also see

[R] bootstrap — Bootstrap sampling and estimation
[R] bstat — Report bootstrap results
[R] simulate — Monte Carlo simulations
[D] sample — Draw random sample
[D] splitsample — Split data into random samples