anova postestimation — Postestimation tools for anova

Postestimation commands

The following postestimation commands are of special interest after `anova`:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dfbeta</code></td>
<td>DFBETA influence statistics</td>
</tr>
<tr>
<td><code>estat hettest</code></td>
<td>tests for heteroskedasticity</td>
</tr>
<tr>
<td><code>estat inttest</code></td>
<td>information matrix test</td>
</tr>
<tr>
<td><code>estat ovtest</code></td>
<td>Ramsey regression specification-error test for omitted variables</td>
</tr>
<tr>
<td><code>estat szroeter</code></td>
<td>Szroeter’s rank test for heteroskedasticity</td>
</tr>
<tr>
<td><code>estat vif</code></td>
<td>variance inflation factors for the independent variables</td>
</tr>
<tr>
<td><code>estat esize</code></td>
<td>η^2 and ω^2 effect sizes</td>
</tr>
<tr>
<td><code>rvfplot</code></td>
<td>residual-versus-fitted plot</td>
</tr>
<tr>
<td><code>avplot</code></td>
<td>added-variable plot</td>
</tr>
<tr>
<td><code>avplots</code></td>
<td>all added-variables plots in one image</td>
</tr>
<tr>
<td><code>cprplot</code></td>
<td>component-plus-residual plot</td>
</tr>
<tr>
<td><code>acprplot</code></td>
<td>augmented component-plus-residual plot</td>
</tr>
<tr>
<td><code>rvpplot</code></td>
<td>residual-versus-predictor plot</td>
</tr>
<tr>
<td><code>lvr2plot</code></td>
<td>leverage-versus-squared-residual plot</td>
</tr>
</tbody>
</table>
The following standard postestimation commands are also available:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>contrast</td>
<td>contrasts and ANOVA-style joint tests of estimates</td>
</tr>
<tr>
<td>estat ic</td>
<td>Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)</td>
</tr>
<tr>
<td>estat summarize</td>
<td>summary statistics for the estimation sample</td>
</tr>
<tr>
<td>estat vce</td>
<td>variance–covariance matrix of the estimators (VCE)</td>
</tr>
<tr>
<td>estimates</td>
<td>cataloging estimation results</td>
</tr>
<tr>
<td>forecast</td>
<td>dynamic forecasts and simulations</td>
</tr>
<tr>
<td>hausman</td>
<td>Hausman’s specification test</td>
</tr>
<tr>
<td>lincom</td>
<td>point estimates, standard errors, testing, and inference for linear</td>
</tr>
<tr>
<td></td>
<td>combinations of coefficients</td>
</tr>
<tr>
<td>linktest</td>
<td>link test for model specification</td>
</tr>
<tr>
<td>lrtest</td>
<td>likelihood-ratio test</td>
</tr>
<tr>
<td>margins</td>
<td>marginal means, predictive margins, marginal effects, and average marginal</td>
</tr>
<tr>
<td></td>
<td>effects</td>
</tr>
<tr>
<td>marginsplot</td>
<td>graph the results from margins (profile plots, interaction plots, etc.)</td>
</tr>
<tr>
<td>nlcom</td>
<td>point estimates, standard errors, testing, and inference for nonlinear</td>
</tr>
<tr>
<td></td>
<td>combinations of coefficients</td>
</tr>
<tr>
<td>predict</td>
<td>predictions, residuals, influence statistics, and other diagnostic measures</td>
</tr>
<tr>
<td>predictnl</td>
<td>point estimates, standard errors, testing, and inference for generalized</td>
</tr>
<tr>
<td></td>
<td>predictions</td>
</tr>
<tr>
<td>pwcompare</td>
<td>pairwise comparisons of estimates</td>
</tr>
<tr>
<td>suest</td>
<td>seemingly unrelated estimation</td>
</tr>
<tr>
<td>test</td>
<td>Wald tests of simple and composite linear hypotheses</td>
</tr>
<tr>
<td>testnl</td>
<td>Wald tests of nonlinear hypotheses</td>
</tr>
</tbody>
</table>

predict

predict after anova follows the same syntax as predict after regress and can provide predictions, residuals, standardized residuals, Studentized residuals, the standard error of the residuals, the standard error of the prediction, the diagonal elements of the projection (hat) matrix, and Cook’s D. See [R] regress postestimation for details.

margins

margins after anova follows the same syntax as margins after regress. See [R] regress postestimation for details.
test

Description for test

In addition to the standard syntax of test (see \texttt{[R] test}), test after anova has three additionally allowed syntaxes; see below. test performs Wald tests of expressions involving the coefficients of the underlying regression model. Simple and composite linear hypotheses are possible.

Menu for test

Statistics > Linear models and related > ANOVA/MANOVA > Test linear hypotheses after anova

Syntax for test

\begin{verbatim}
test, test(matname) [\texttt{mtest[opt]} \texttt{matvlc(matname)}] syntax a

test, showorder syntax b

test term [term ...] [/ term [term ...]] [, symbolic] syntax c
\end{verbatim}

syntax a test expression involving the coefficients of the underlying regression model; you provide information as a matrix
syntax b show underlying order of design matrix, which is useful when constructing \texttt{matname} argument of the test() option
syntax c test effects and show symbolic forms

Options for test

\texttt{test(matname)} is required with syntax a of test. The rows of \texttt{matname} specify linear combinations of the underlying design matrix of the ANOVA that are to be jointly tested. The columns correspond to the underlying design matrix (including the constant if it has not been suppressed). The column and row names of \texttt{matname} are ignored.

A listing of the constraints imposed by the test() option is presented before the table containing the tests. You should examine this table to verify that you have applied the linear combinations you desired. Typing test, showorder allows you to examine the ordering of the columns for the design matrix from the ANOVA.

\texttt{mtest[opt]} specifies that tests are performed for each condition separately. \texttt{opt} specifies the method for adjusting \texttt{p}-values for multiple testing. Valid values for \texttt{opt} are

- \texttt{bonferroni} Bonferroni’s method
- \texttt{holm} Holm’s method
- \texttt{sidak} Šidák’s method
- \texttt{noadj} no adjustment is to be made

Specifying \texttt{mtest} with no argument is equivalent to \texttt{mtest(noadjust)}.

\texttt{matvlc(matname)}, a programmer’s option, saves the variance–covariance matrix of the linear combinations involved in the suite of tests. For the test $Lb = c$, what is returned in \texttt{matname} is LVL', where V is the estimated variance–covariance matrix of b.
showorder causes test to list the definition of each column in the design matrix. showorder is not allowed with any other option.

symbolic requests the symbolic form of the test rather than the test statistic. When this option is specified with no terms (test, symbolic), the symbolic form of the estimable functions is displayed.

Remarks and examples

Remarks are presented under the following headings:

Testing effects
Obtaining symbolic forms
Testing coefficients and contrasts of margins
Video example

See examples 4, 7, 8, 13, 15, 16, and 17 in [R] anova for examples that use the margins command.

Testing effects

After fitting a model using anova, you can test for the significance of effects in the ANOVA table, as well as for effects that are not reported in the ANOVA table, by using the test or contrast command. You follow test or contrast by the list of effects that you wish to test. By default, these commands use the residual mean squared error in the denominator of the F ratio. You can specify other error terms by using the slash notation, just as you would with anova. See [R] contrast for details on this command.

Example 1: Testing effects

Recall our byssnosis example (example 8) in [R] anova:

```stata
. anova prob workplace smokes race workplace#smokes workplace#race smokes#race workplace#smokes#race [aweight=pop] (sum of wgt is 5.4190e+03)
Number of obs = 65  R-squared = 0.8300
Root MSE = .025902  Adj R-squared = 0.7948
```

<table>
<thead>
<tr>
<th>Source</th>
<th>Partial SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>.17364654</td>
<td>11</td>
<td>.01578605</td>
<td>23.53</td>
<td>0.0000</td>
</tr>
<tr>
<td>workplace</td>
<td>.09762518</td>
<td>2</td>
<td>.04881259</td>
<td>72.76</td>
<td>0.0000</td>
</tr>
<tr>
<td>smokes</td>
<td>.01303081</td>
<td>1</td>
<td>.01303081</td>
<td>19.42</td>
<td>0.0001</td>
</tr>
<tr>
<td>race</td>
<td>.00109472</td>
<td>1</td>
<td>.00109472</td>
<td>1.63</td>
<td>0.2070</td>
</tr>
<tr>
<td>workplace#smokes</td>
<td>.01969034</td>
<td>2</td>
<td>.00984517</td>
<td>14.67</td>
<td>0.0000</td>
</tr>
<tr>
<td>workplace#race</td>
<td>.00135252</td>
<td>2</td>
<td>.00067626</td>
<td>1.01</td>
<td>0.3718</td>
</tr>
<tr>
<td>smokes#race</td>
<td>.00166287</td>
<td>1</td>
<td>.00166287</td>
<td>2.48</td>
<td>0.1214</td>
</tr>
<tr>
<td>workplace#smokes#race</td>
<td>.00095084</td>
<td>2</td>
<td>.00047542</td>
<td>0.71</td>
<td>0.4969</td>
</tr>
<tr>
<td>Residual</td>
<td>.03555777</td>
<td>53</td>
<td>.0006709</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.2092043</td>
<td>64</td>
<td>.00326882</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We can easily obtain a test on a particular term from the ANOVA table. Here are two examples:

```
.test smokes
```

<table>
<thead>
<tr>
<th>Source</th>
<th>Partial SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>smokes</td>
<td>.01303081</td>
<td>1</td>
<td>.01303081</td>
<td>19.42</td>
<td>0.0001</td>
</tr>
<tr>
<td>Residual</td>
<td>.03555777</td>
<td>53</td>
<td>.0006709</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
.test smokes#race
```

<table>
<thead>
<tr>
<th>Source</th>
<th>Partial SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>smokes#race</td>
<td>.00166287</td>
<td>1</td>
<td>.00166287</td>
<td>2.48</td>
<td>0.1214</td>
</tr>
<tr>
<td>Residual</td>
<td>.03555777</td>
<td>53</td>
<td>.0006709</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Both of these tests use residual error by default and agree with the ANOVA table produced earlier.

We could have performed these same tests with **contrast**:

```
.contrast smokes
Contrasts of marginal linear predictions
Margins : asbalanced
```

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>F</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>smokes</td>
<td>1</td>
<td>19.42</td>
<td>0.0001</td>
</tr>
<tr>
<td>Denominator</td>
<td>53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
.contrast smokes#race
Contrasts of marginal linear predictions
Margins : asbalanced
```

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>F</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>smokes#race</td>
<td>1</td>
<td>2.48</td>
<td>0.1214</td>
</tr>
<tr>
<td>Denominator</td>
<td>53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technical note

After *anova*, you can use the ‘/’ syntax in **test** or **contrast** to perform tests with a variety of non-σ^2I error structures. However, in most unbalanced models, the mean squares are not independent and do not have equal expectations under the null hypothesis. Also, be warned that you assume responsibility for the validity of the test statistic.

Example 2: Testing effects with different error terms

We return to the nested ANOVA example (example 11) in [R] *anova*, where five brands of machinery were compared in an assembly line. We can obtain appropriate tests for the nested terms using **test**, even if we had run the *anova* command without initially indicating the proper error terms.
. use https://www.stata-press.com/data/r16/machine
(machine data)
. anova output machine / operator|machine /

Number of obs = 57 R-squared = 0.8661
Root MSE = 1.47089 Adj R-squared = 0.8077

<table>
<thead>
<tr>
<th>Source</th>
<th>Partial SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>545.82229</td>
<td>17</td>
<td>32.107193</td>
<td>14.84</td>
<td>0.0000</td>
</tr>
<tr>
<td>machine</td>
<td>430.98079</td>
<td>4</td>
<td>107.7452</td>
<td>13.82</td>
<td>0.0001</td>
</tr>
<tr>
<td>operator</td>
<td>machine</td>
<td>101.3538</td>
<td>13</td>
<td>7.7964465</td>
<td>3.60</td>
</tr>
<tr>
<td>operator</td>
<td>machine</td>
<td>101.3538</td>
<td>13</td>
<td>7.7964465</td>
<td>3.60</td>
</tr>
<tr>
<td>Residual</td>
<td>84.376658</td>
<td>39</td>
<td>2.1635041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>630.19895</td>
<td>56</td>
<td>11.253553</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this ANOVA table, machine is tested with residual error. With this particular nested design, the appropriate error term for testing machine is operator nested within machine, which is easily obtained from test.

. test machine / operator|machine

<table>
<thead>
<tr>
<th>Source</th>
<th>Partial SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>machine</td>
<td>430.98079</td>
<td>4</td>
<td>107.7452</td>
<td>13.82</td>
<td>0.0001</td>
</tr>
<tr>
<td>operator</td>
<td>machine</td>
<td>101.3538</td>
<td>13</td>
<td>7.7964465</td>
<td></td>
</tr>
</tbody>
</table>

This result from test matches what we obtained from our anova command.

Example 3: Pooling terms when testing effects

The other nested ANOVA example (example 12) in [R] anova was based on the sewage data. The ANOVA table is presented here again. As before, we will use abbreviations of variable names in typing the commands.
In practice, it is often beneficial to pool nonsignificant nested terms to increase the power of tests on remaining terms. One rule of thumb is to allow the pooling of a term whose p-value is larger than 0.25. In this sewage example, the p-value for the test of manager is 0.6166. This value indicates that the manager effect is negligible and might be ignored. Currently, solution is tested by manager|solution, which has only 2 degrees of freedom. If we pool the manager and facility terms and use this pooled estimate as the error term for solution, we would have a term with 6 degrees of freedom.

Below are two tests: a test of solution with the pooled manager and facility terms and a test of this pooled term by worker.

In the first test, we included two terms after the forward slash (m|s and f|m|s). test after anova allows multiple terms both before and after the slash. The terms before the slash are combined and are then tested by the combined terms that follow the slash (or residual error if no slash is present).
The \(p \)-value for \texttt{solution} using the pooled term is 0.0159. Originally, it was 0.0536. The increase in the power of the test is due to the increase in degrees of freedom for the pooled error term.

We can get identical results if we drop \texttt{manager} from the \texttt{anova} model. (This dataset has unique numbers for each facility so that there is no confusion of facilities when \texttt{manager} is dropped.)

\[
\text{anova particulate s / f|s / w|f|s /, dropemptycells}
\]

This output agrees with our earlier test results.

In the following example, two terms from the \texttt{anova} are jointly tested (pooled).

\textbf{Example 4: Obtaining overall significance of a term using contrast}

In \texttt{example 10} of \texttt{[R] anova}, we fit the model \texttt{anova drate region c.mage region#c.mage}. Now we use the \texttt{contrast} command to test for the overall significance of \texttt{region}.

\[
\text{contrast region region#c.mage, overall}
\]

The overall \(F \) statistic associated with the \texttt{region} and \texttt{region#c.mage} terms is 5.65, and it is significant at the 0.02\% level.

In the ANOVA output, the \texttt{region} term, by itself, had a sum of squares of 1166.15, which, based on 3 degrees of freedom, yielded an \(F \) statistic of 7.40 and a significance level of 0.0004. This is the same test that is reported by \texttt{contrast} in the row labeled \texttt{region}. Likewise, the test from the ANOVA output for the \texttt{region#c.mage} term is reproduced in the second row of the \texttt{contrast} output.
Obtaining symbolic forms

test can produce the symbolic form of the estimable functions and symbolic forms for particular tests.

Example 5: Symbolic form of the estimable functions

After fitting an ANOVA model, we type test, symbolic to obtain the symbolic form of the estimable functions. For instance, returning to our blood pressure data introduced in example 4 of [R] anova, let’s begin by reestimating systolic on drug, disease, and drug#disease:

```
. use https://www.stata-press.com/data/r16/systolic, clear
 (Systolic Blood Pressure Data)
. anova systolic drug disease drug#disease
```

<table>
<thead>
<tr>
<th>Source</th>
<th>Partial SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>4259.3385</td>
<td>11</td>
<td>387.21259</td>
<td>3.51</td>
<td>0.0013</td>
</tr>
<tr>
<td>drug</td>
<td>2997.4719</td>
<td>3</td>
<td>999.15729</td>
<td>9.05</td>
<td>0.0001</td>
</tr>
<tr>
<td>disease</td>
<td>415.87305</td>
<td>2</td>
<td>207.93652</td>
<td>1.88</td>
<td>0.1637</td>
</tr>
<tr>
<td>drug#disease</td>
<td>707.26626</td>
<td>6</td>
<td>117.87771</td>
<td>1.07</td>
<td>0.3958</td>
</tr>
<tr>
<td>Residual</td>
<td>5080.8167</td>
<td>46</td>
<td>110.45254</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9340.1552</td>
<td>57</td>
<td>163.86237</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To obtain the symbolic form of the estimable functions, type

```
. test, symbolic
```

```
drug
  1  -(r2+r3+r4-r0)
  2  r2
  3  r3
  4  r4
disease
  1  -(r6+r7-r0)
  2  r6
  3  r7
drug#disease
  1  1  -(r2+r3+r4+r6+r7-r12-r13-r15-r16-r18-r19-r0)
  1  2  r6  - (r12+r15+r18)
  1  3  r7  - (r13+r16+r19)
  2  1  r2  - (r12+r13)
  2  2  r12
  2  3  r13
  3  1  r3  - (r15+r16)
  3  2  r15
  3  3  r16
  4  1  r4  - (r18+r19)
  4  2  r18
  4  3  r19
_cons
  r0
```
Example 6: Symbolic form for a particular test

To obtain the symbolic form for a particular test, we type `test term [term ...], symbolic`. For instance, the symbolic form for the test of the main effect of `drug` is

```
. test drug, symbolic
  drug
    1  -(r2+r3+r4)
    2  r2
    3  r3
    4  r4
  disease
    1  0
    2  0
    3  0
  drug#disease
    1  1  -(1/3 (r2+r3+r4))
    1  2  -(1/3 (r2+r3+r4))
    1  3  -(1/3 (r2+r3+r4))
    2  1  1/3 r2
    2  2  1/3 r2
    2  3  1/3 r2
    3  1  1/3 r3
    3  2  1/3 r3
    3  3  1/3 r3
    4  1  1/3 r4
    4  2  1/3 r4
    4  3  1/3 r4
  _cons
    0
```

If we omit the `symbolic` option, we instead see the result of the test:

```
. test drug

<table>
<thead>
<tr>
<th>Source</th>
<th>Partial SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Prob&gt;F</th>
</tr>
</thead>
<tbody>
<tr>
<td>drug</td>
<td>2997.4719</td>
<td>3</td>
<td>999.15729</td>
<td>9.05</td>
<td>0.0001</td>
</tr>
<tr>
<td>Residual</td>
<td>5080.8167</td>
<td>46</td>
<td>110.45254</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Testing coefficients and contrasts of margins

The `test` command allows you to perform tests directly on the coefficients of the underlying regression model. For instance, the coefficient on the third `drug` and the second `disease` is referred to as `3.drug#2.disease`. This could also be written as `i3.drug#i2.disease`, or `_b[3.drug#2.disease]`, or even `_coef[i3.drug#i2.disease]`; see [U] 13.5 Accessing coefficients and standard errors.

Example 7: Testing linear combinations of coefficients

Let’s begin by testing whether the coefficient on the third `drug` is equal to the coefficient on the fourth in our blood pressure data. We have already fit the model `anova systolic drug##disease` (equivalent to `anova systolic drug disease drug#disease`), and you can see the results of that estimation in example 5. Even though we have performed many tasks since we fit the model, Stata still remembers, and we can perform tests at any time.
. test 3.drug = 4.drug
(1) 3.drug - 4.drug = 0
 F(1, 46) = 0.13
 Prob > F = 0.7234

We find that the two coefficients are not significantly different, at least at any significance level smaller than 73%.

For more complex tests, the *contrast* command often provides a more concise way to specify the test we are interested in and prevents us from having to write the tests in terms of the regression coefficients. With *contrast*, we instead specify our tests in terms of differences in the marginal means for the levels of a particular factor. For example, if we want to compare the third and fourth drugs, we can test the difference in the mean impact on systolic blood pressure separately for each disease using the @ operator. We also use the reverse adjacent operator, ar., to compare the fourth level of drug with the previous level.

. contrast ar4.drug@disease
Contrasts of marginal linear predictions
Margins : asbalanced

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>F</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>drug@disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4 vs 3) 1</td>
<td>1</td>
<td>0.13</td>
<td>0.7234</td>
</tr>
<tr>
<td>(4 vs 3) 2</td>
<td>1</td>
<td>1.76</td>
<td>0.1917</td>
</tr>
<tr>
<td>(4 vs 3) 3</td>
<td>1</td>
<td>0.65</td>
<td>0.4230</td>
</tr>
<tr>
<td>Joint</td>
<td>3</td>
<td>0.85</td>
<td>0.4761</td>
</tr>
<tr>
<td>Denominator</td>
<td>46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

None of the individual contrasts shows significant differences between the third drug and the fourth drug. Likewise, the overall F statistic is 0.85, which is hardly significant. We cannot reject the hypothesis that the third drug has the same effect as the fourth drug.

Technical note

Alternatively, we could have specified these tests based on the coefficients of the underlying regression model using the *test* command. We would have needed to perform tests on the coefficients for drug and for the coefficients on drug interacted with disease in order to test for differences in the means mentioned above. To do this, we start with our previous *test* command:

```
. test 3.drug = 4.drug
```

Notice that the F statistic for this test is equivalent to the test labeled (4 vs 3) 1 in the *contrast* output. Let’s now add the constraint that the coefficient on the third drug interacted with the third disease is equal to the coefficient on the fourth drug, again interacted with the third disease. We do that by typing the new constraint and adding the *accumulate* option:
. test 3.drug#3.disease = 4.drug#3.disease, accumulate
(1) 3.drug - 4.drug = 0
(2) 3.drug#3.disease - 4.drug#3.disease = 0
 F(2, 46) = 0.39
 Prob > F = 0.6791

So far, our test includes the equality of the two drug coefficients, along with the equality of the two drug coefficients when interacted with the third disease. Now we add two more equations, one for each of the remaining two diseases:

. test 3.drug#2.disease = 4.drug#2.disease, accumulate
(1) 3.drug - 4.drug = 0
(2) 3.drug#3.disease - 4.drug#3.disease = 0
(3) 3.drug#2.disease - 4.drug#2.disease = 0
 F(3, 46) = 0.85
 Prob > F = 0.4761

. test 3.drug#1.disease = 4.drug#1.disease, accumulate
(1) 3.drug - 4.drug = 0
(2) 3.drug#3.disease - 4.drug#3.disease = 0
(3) 3.drug#2.disease - 4.drug#2.disease = 0
(4) 3o.drug#1b.disease - 4o.drug#1b.disease = 0
 Constraint 4 dropped
 F(3, 46) = 0.85
 Prob > F = 0.4761

The overall F statistic reproduces the one from the joint test in the contrast output.

You may notice that we also got the message “Constraint 4 dropped”. For the technically inclined, this constraint was unnecessary, given the normalization of the model. If we specify all the constraints involved in our test or use contrast, we need not worry about the normalization because Stata handles this automatically.

The test() option of test provides another alternative for testing coefficients. Instead of spelling out each coefficient involved in the test, a matrix representing the test provides the needed information. test, showorder shows the order of the terms in the ANOVA corresponding to the order of the columns for the matrix argument of test().

Example 8: Another way to test linear combinations of coefficients

We repeat the last test of example 7 above with the test() option. First, we view the definition and order of the columns underlying the ANOVA performed on the systolic data.
. test, showorder

Order of columns in the design matrix
1: (drug==1)
2: (drug==2)
3: (drug==3)
4: (drug==4)
5: (disease==1)
6: (disease==2)
7: (disease==3)
8: (drug==1)*(disease==1)
9: (drug==1)*(disease==2)
10: (drug==1)*(disease==3)
11: (drug==2)*(disease==1)
12: (drug==2)*(disease==2)
13: (drug==2)*(disease==3)
14: (drug==3)*(disease==1)
15: (drug==3)*(disease==2)
16: (drug==3)*(disease==3)
17: (drug==4)*(disease==1)
18: (drug==4)*(disease==2)
19: (drug==4)*(disease==3)
20: _cons

Columns 1–4 correspond to the four levels of drug. Columns 5–7 correspond to the three levels of disease. Columns 8–19 correspond to the interaction of drug and disease. The last column corresponds to _cons, the constant in the model.

We construct the matrix dr3vs4 with the same four constraints as the last test shown in example 7 and then use the test(dr3vs4) option to perform the test.

. matrix dr3vs4 = (0,0,1,-1, 0, 0, 0, 0, 0 \\ 0,0,0, 0, 0,0,0, 0,0,0,0,0,0,0,1, 0, 0,-1, 0, 0 \\ 0,0,0, 0, 0,0,0, 0,0,0,0,0,0,0,1,0, 0, 0,0, 0, 0, 0, 0) \\
. test, test(dr3vs4)
(1) 3.drug - 4.drug = 0
(2) 3.drug#3.disease - 4.drug#3.disease = 0
(3) 3.drug#2.disease - 4.drug#2.disease = 0
(4) 3o.drug#1b.disease - 4o.drug#1b.disease = 0
Constraint 4 dropped
F(3, 46) = 0.85
Prob > F = 0.4761

Here the effort involved with spelling out the coefficients is similar to that of constructing a matrix and using it in the test() option. When the test involving coefficients is more complicated, the test() option may be more convenient than specifying the coefficients directly in test. However, as previously demonstrated, contrast may provide an even simpler method for testing the same hypothesis.

After fitting an ANOVA model, various contrasts (1-degree-of-freedom tests comparing different levels of a categorical variable) are often of interest. contrast can perform each 1-degree-of-freedom test in addition to the combined test, even in cases in which the contrasts do not correspond to one of the contrast operators.
Example 9: Testing particular contrasts of interest

Rencher and Schaalje (2008) illustrate 1-degree-of-freedom contrasts for an ANOVA comparing the net weight of cans filled by five machines (labeled A–E). The data were originally obtained from Ostle and Mensing (1975). Rencher and Schaalje use a cell-means ANOVA model approach for this problem. We could do the same by using the noconstant option of anova; see [R] anova. Instead, we obtain the same results by using the standard overparameterized ANOVA approach (that is, we keep the constant in the model).

```
. use https://www.stata-press.com/data/r16/canfill
   (Can Fill Data)
. list, sepby(machine)
    +----------+------------------+
    | machine | weight  |
    |---------|---------|
    | 1.      | 11.95   |
    | 2.      | 12.00   |
    | 3.      | 12.25   |
    | 4.      | 12.10   |
    | 5.      | 12.18   |
    | 6.      | 12.11   |
    | 7.      | 12.16   |
    | 8.      | 12.15   |
    | 9.      | 12.08   |
    | 10.     | 12.25   |
    | 11.     | 12.30   |
    | 12.     | 12.10   |
    | 13.     | 12.10   |
    | 14.     | 12.04   |
    | 15.     | 12.02   |
    | 16.     | 12.02   |
    +----------+------------------+
```

```
. anova weight machine
    Number of obs = 16      R-squared = 0.4123
    Root MSE = .087758   Adj R-squared = 0.1986
                  Source |     Partial SS   df   MS        F    Prob>F
    -----------+----------------+-+------------------+
        Model  |   .05942699     4  .01485675   1.93    0.1757
     machine  |   .05942699     4  .01485675   1.93    0.1757
   Residual  |   .0847167      11  .00770152
    -----------+----------------+-+------------------+
           Total  |  .14414369     15  .00960958
    -----------+----------------+-+------------------+
```

The four 1-degree-of-freedom tests of interest among the five machines are A and D versus B, C, and E; B and E versus C; A versus D; and B versus E. We can specify these tests as user-defined contrasts by placing the corresponding contrast coefficients into positions related to the five levels of machine as described in User-defined contrasts of [R] contrast.
. contrast {machine 3 -2 -2 3 -2}
> {machine 0 1 -2 0 1}
> {machine 1 0 0 -1 0}
> {machine 0 1 0 0 -1}, noeffects

Contrasts of marginal linear predictions
Margins : asbalanced

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>F</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>machine (1)</td>
<td>1</td>
<td>0.75</td>
<td>0.4055</td>
</tr>
<tr>
<td>(2)</td>
<td>1</td>
<td>0.31</td>
<td>0.5916</td>
</tr>
<tr>
<td>(3)</td>
<td>1</td>
<td>4.47</td>
<td>0.0582</td>
</tr>
<tr>
<td>(4)</td>
<td>1</td>
<td>1.73</td>
<td>0.2150</td>
</tr>
<tr>
<td>Joint</td>
<td>4</td>
<td>1.93</td>
<td>0.1757</td>
</tr>
<tr>
<td>Denominator</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

contrast produces a 1-degree-of-freedom test for each of the specified contrasts as well as a joint test. We included the noeffects option so that the table displaying the values of the individual contrasts with their confidence intervals was suppressed.

The significance values above are not adjusted for multiple comparisons. We could have produced the Bonferroni-adjusted significance values by using the mcompare(bonferroni) option.

. contrast {machine 3 -2 -2 3 -2}
> {machine 0 1 -2 0 1}
> {machine 1 0 0 -1 0}
> {machine 0 1 0 0 -1}, mcompare(bonferroni) noeffects

Contrasts of marginal linear predictions
Margins : asbalanced

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>F</th>
<th>P>F</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>machine (1)</td>
<td>1</td>
<td>0.75</td>
<td>0.4055</td>
<td>1.0000</td>
</tr>
<tr>
<td>(2)</td>
<td>1</td>
<td>0.31</td>
<td>0.5916</td>
<td>1.0000</td>
</tr>
<tr>
<td>(3)</td>
<td>1</td>
<td>4.47</td>
<td>0.0582</td>
<td>0.2329</td>
</tr>
<tr>
<td>(4)</td>
<td>1</td>
<td>1.73</td>
<td>0.2150</td>
<td>0.8601</td>
</tr>
<tr>
<td>Joint</td>
<td>4</td>
<td>1.93</td>
<td>0.1757</td>
<td></td>
</tr>
<tr>
<td>Denominator</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Bonferroni-adjusted p-values are reported for tests on individual contrasts only.

Example 10: Linear and quadratic contrasts

Here there are two factors, A and B, each with three levels. The levels are quantitative so that linear and quadratic contrasts are of interest.
We can use the \texttt{p.} contrast operator to obtain the 1-degree-of-freedom tests for the linear and quadratic effects of \(A \) and \(B \).

\begin{verbatim}
Contrasts of marginal linear predictions
Margins : asbalanced

<table>
<thead>
<tr>
<th>df</th>
<th>F</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(linear)</td>
<td>1</td>
<td>212.65</td>
</tr>
<tr>
<td>(quadratic)</td>
<td>1</td>
<td>70.88</td>
</tr>
<tr>
<td>Joint</td>
<td>2</td>
<td>141.77</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(linear)</td>
<td>1</td>
<td>26.17</td>
</tr>
<tr>
<td>(quadratic)</td>
<td>1</td>
<td>27.51</td>
</tr>
<tr>
<td>Joint</td>
<td>2</td>
<td>26.84</td>
</tr>
<tr>
<td>Denominator</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>
\end{verbatim}

All the above tests appear to be significant. In addition to presenting the 1-degree-of-freedom tests, the combined tests for \(A \) and \(B \) are produced and agree with the original ANOVA results.

Now we explore the interaction between \(A \) and \(B \).

\begin{verbatim}
. contrast p.A#p1.B, noeffects
Contrasts of marginal linear predictions
Margins : asbalanced

<table>
<thead>
<tr>
<th>df</th>
<th>F</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A#B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(linear) (linear)</td>
<td>1</td>
<td>17.71</td>
</tr>
<tr>
<td>(quadratic) (linear)</td>
<td>1</td>
<td>0.07</td>
</tr>
<tr>
<td>Joint</td>
<td>2</td>
<td>8.89</td>
</tr>
<tr>
<td>Denominator</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>
\end{verbatim}

The 2-degrees-of-freedom test of the interaction of \(A \) with the linear components of \(B \) is significant at the 0.0011 level. But, when we examine the two 1-degree-of-freedom tests that compose this result,
the significance is due to the linear A by linear B contrast (significance level of 0.0003). A significance value of 0.7893 for the quadratic A by linear B indicates that this factor is not significant for these data.

```
. contrast p.A#p2.B, noeffects
Contrasts of marginal linear predictions
Margins : asbalanced
```

<table>
<thead>
<tr>
<th>A#B</th>
<th>df</th>
<th>F</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>(linear) (quadratic)</td>
<td>1</td>
<td>2.80</td>
<td>0.1058</td>
</tr>
<tr>
<td>(quadratic) (quadratic)</td>
<td>1</td>
<td>2.94</td>
<td>0.0979</td>
</tr>
<tr>
<td>Joint</td>
<td>2</td>
<td>2.87</td>
<td>0.0741</td>
</tr>
<tr>
<td>Denominator</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The test of A with the quadratic components of B does not fall below the 0.05 significance level.

Video example

Introduction to contrasts in Stata: One-way ANOVA

References

Also see

[R] anova — Analysis of variance and covariance

[R] regress postestimation — Postestimation tools for regress

[R] regress postestimation diagnostic plots — Postestimation plots for regress

[U] 20 Estimation and postestimation commands