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Title

Intro — Introduction to power, precision, and sample-size analysis

Description Also see

Description
Sample-size determination is important for planning a study. It helps allocate necessary resources

to the study. When a study uses hypothesis testing to make inference about parameters of interest,
power and sample-size (PSS) analysis is used to investigate the optimal allocation of study resources
to increase the likelihood of detecting the desired magnitude of the effect of interest. PSS analysis
estimates the sample size required to achieve the desired power of a test in a future study. When a
study uses confidence intervals (CIs) for inference, precision and sample-size (PrSS) analysis is used
to estimate the required sample size to achieve the desired precision of a CI in a future study.

This manual describes the power command that provides PSS analysis for hypothesis testing (see
[PSS-2] power) and the ciwidth command that provides PrSS analysis for CIs (see [PSS-3] ciwidth).
Users can provide a list of parameters and perform sensitivity analysis. The results can be displayed
in a table and in a graph; see [PSS-2] power, table and [PSS-2] power, graph for the power command
and [PSS-3] ciwidth, table and [PSS-3] ciwidth, graph for the ciwidth command. You can also add
your own methods to power ([PSS-2] power usermethod) and ciwidth ([PSS-3] ciwidth usermethod).

See [PSS-2] Intro (power) for a general introduction to PSS analysis and [PSS-3] Intro (ciwidth)
for PrSS analysis.

Sample-size calculations for group sequential designs can be performed with the gsdesign
command; see [ADAPT] GSD intro for a general introduction to group sequential designs, and see
[ADAPT] gs for an introduction to the gsdesign command.

Also see
[PSS-2] Intro (power) — Introduction to power and sample-size analysis for hypothesis tests

[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-3] Intro (ciwidth) — Introduction to precision and sample-size analysis for confidence intervals

[PSS-3] ciwidth — Precision and sample-size analysis for CIs

[PSS-5] Glossary
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Title

Intro (power) — Introduction to power and sample-size analysis for hypothesis tests

Description Remarks and examples References Also see

Description
Power and sample-size (PSS) analysis is essential for designing a statistical study that uses hypothesis

testing for inference. It investigates the optimal allocation of study resources to increase the likelihood
of the successful achievement of a study objective. PSS analysis provides an estimate of the sample
size required to achieve the desired power of a test in a future study.

For precision and sample-size analysis for confidence intervals, see [PSS-3] Intro (ciwidth).
For sample-size calculations for interim analyses in group sequential designs, see [ADAPT] GSD

intro.

Remarks and examples

Remarks are presented under the following headings:

Power and sample-size analysis
Hypothesis testing
Components of PSS analysis

Study design
Statistical method
Significance level
Power
Clinically meaningful difference and effect size
Sample size
One-sided test versus two-sided test
Another consideration: Dropout

Survival data
Sensitivity analysis
An example of PSS analysis in Stata
Video example

This entry describes statistical methodology for PSS analysis and terminology that will be used
throughout the manual. For a list of supported PSS methods and the description of the software,
see [PSS-2] power. To see an example of PSS analysis in Stata, see An example of PSS analysis in
Stata. For more information about PSS analysis, see Lachin (1981), Cohen (1988), Cohen (1992),
Wickramaratne (1995), Lenth (2001), Chow et al. (2018), Julious (2010), and Ryan (2013), to name
a few.

For precision and sample-size analysis for confidence intervals, see [PSS-3] Intro (ciwidth).
For sample-size calculations for interim analyses in group sequential designs, see [ADAPT] GSD

intro.
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Intro (power) — Introduction to power and sample-size analysis for hypothesis tests 5

Power and sample-size analysis

Power and sample-size (PSS) analysis is a key component in designing a statistical study that uses
hypothesis testing for inference. It investigates the optimal allocation of study resources to increase
the likelihood of the successful achievement of a study objective.

How many subjects do we need in a study to achieve its research objectives? A study with too
few subjects may have a low chance of detecting an important effect, and a study with too many
subjects may offer very little gain and will thus waste time and resources. What are the chances of
achieving the objectives of a study given available resources? Or what is the smallest effect that can
be detected in a study given available resources? PSS analysis helps answer all of these questions. In
what follows, when we refer to PSS analysis, we imply any of these goals.

We consider prospective PSS analysis (PSS analysis of a future study) as opposed to retrospective
PSS analysis (analysis of a study that has already happened).

In the context of PSS analysis, hypothesis testing is the inferential method used to evaluate research
objectives of a study. In this manual, we concentrate on the PSS analysis for hypothesis tests that
include one-sample and two-sample tests of means, variances, proportions, correlations, and more.
See [PSS-2] power for a full list of methods.

Before we discuss the components of PSS analysis, let us first revisit the basics of hypothesis
testing.

Hypothesis testing

Recall that the goal of hypothesis testing is to evaluate the validity of a hypothesis, a statement
about a population parameter of interest θ, a target parameter, based on a sample from the population.
For simplicity, we consider a simple hypothesis test comparing a population parameter θ with 0.
The two complementary hypotheses are considered: the null hypothesis H0: θ = 0, which typically
corresponds to the case of “no effect”, and the alternative hypothesis Ha: θ 6= 0, which typically
states that there is “an effect”. An effect can be a decrease in blood pressure after taking a new drug,
an increase in SAT scores after taking a class, an increase in crop yield after using a new fertilizer, a
decrease in the proportion of defective items after the installation of new equipment, and so on.

The data are collected to obtain evidence against the postulated null hypothesis in favor of the
alternative hypothesis, and hypothesis testing is used to evaluate the obtained data sample. The value
of a test statistic (a function of the sample that does not depend on any unknown parameters) obtained
from the collected sample is used to determine whether the null hypothesis can be rejected. If that
value belongs to a rejection or critical region (a set of sample values for which the null hypothesis will
be rejected) or, equivalently, falls above (or below) the critical values (the boundaries of the rejection
region), then the null is rejected. If that value belongs to an acceptance region (the complement of
the rejection region), then the null is not rejected. A critical region is determined by a hypothesis test.

A hypothesis test can make one of two types of errors: a type I error of incorrectly rejecting the
null hypothesis and a type II error of incorrectly accepting the null hypothesis. The probability of a
type I error is Pr(reject H0|H0 is true), and the probability of a type II error is commonly denoted
as β = Pr(fail to reject H0|H0 is false).

A power function is a function of θ defined as the probability that the observed sample belongs
to the rejection region of a test for a given parameter θ. A power function unifies the two error
probabilities. A good test has a power function close to 0 when the population parameter belongs
to the parameter’s null space (θ = 0 in our example) and close to 1 when the population parameter
belongs to the alternative space (θ 6= 0 in our example). In a search for a good test, it is impossible
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to minimize both error probabilities for a fixed sample size. Instead, the type-I-error probability is
fixed at a small level, and the best test is chosen based on the smallest type-II-error probability.

An upper bound for a type-I-error probability is a significance level, commonly denoted as α, a
value between 0 and 1 inclusively. Many tests achieve their significance level—that is, their type-I-error
probability equals α, Pr(reject H0|H0 is true) = α—for any parameter in the null space. For other
tests, α is only an upper bound; see example 6 in [PSS-2] power oneproportion for an example of a
test for which the nominal significance level is not achieved. In what follows, we will use the terms
“significance level” and “type-I-error probability” interchangeably, making the distinction between
them only when necessary.

Typically, researchers control the type I error by setting the significance level to a small value
such as 0.01 or 0.05. This is done to ensure that the chances of making a more serious error are
very small. With this in mind, the null hypothesis is usually formulated in a way to guard against
what a researcher considers to be the most costly or undesirable outcome. For example, if we were
to use hypothesis testing to determine whether a person is guilty of a crime, we would choose the
null hypothesis to correspond to the person being not guilty to minimize the chances of sending an
innocent person to prison.

The power of a test is the probability of correctly rejecting the null hypothesis when the null
hypothesis is false. Power is inversely related to the probability of a type II error as π = 1 − β =
Pr(reject H0|H0 is false). Minimizing the type-II-error probability is equivalent to maximizing power.
The notion of power is more commonly used in PSS analysis than is the notion of a type-II-error
probability. Typical values for power in PSS analysis are 0.8, 0.9, or higher depending on the study
objective.

Hypothesis tests are subdivided into one sided and two sided. A one-sided or directional test
asserts that the target parameter is large (an upper one-sided test H: θ > θ0) or small (H: θ ≤ θ0),
whereas a two-sided or nondirectional test asserts that the target parameter is either large or small
(H: θ 6= θ0). One-sided tests have higher power than two-sided tests. They should be used in place
of a two-sided test only if the effect in the direction opposite to the tested direction is irrelevant; see
One-sided test versus two-sided test below for details.

Another concept important for hypothesis testing is that of a p-value or observed level of significance.
P -value is a probability of obtaining a test statistic as extreme or more extreme as the one observed
in a sample assuming the null hypothesis is true. It can also be viewed as the smallest level of α
that leads to the rejection of the null hypothesis. For example, if the p-value is less than 0.05, a test
is considered to reject the null hypothesis at the 5% significance level.

For more information about hypothesis testing, see, for example, Casella and Berger (2002).

Next we review concepts specific to PSS analysis.

Components of PSS analysis

The general goal of PSS analysis is to help plan a study such that the chosen statistical method has
high power to detect an effect of interest if the effect exists. For example, PSS analysis is commonly
used to determine the size of the sample needed for the chosen statistical test to have adequate power
to detect an effect of a specified magnitude at a prespecified significance level given fixed values of
other study parameters. We will use the phrase “detect an effect” to generally mean that the collected
data will support the alternative hypothesis. For example, detecting an effect may be detecting that
the means of two groups differ, or that there is an association between the probability of a disease
and an exposure factor, or that there is a nonzero correlation between two measurements.
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The general goal of PSS analysis can be achieved in several ways. You can

• compute sample size directly given specified significance level, power, effect size, and other
study parameters;

• evaluate the power of a study for a range of sample sizes or effect sizes for a given significance
level and fixed values of other study parameters;

• evaluate the magnitudes of an effect that can be detected with reasonable power for specific
sample sizes given a significance level and other study parameters;

• evaluate the sensitivity of the power or sample-size requirements to various study parameters.

The main components of PSS analysis are

• study design;

• statistical method;

• significance level, α;

• power, 1− β;

• a magnitude of an effect of interest or clinically meaningful difference, often expressed as
an effect size, δ;

• sample size, N .

Below we describe each of the main components of PSS analysis in more detail.

Study design

A well-designed statistical study has a carefully chosen study design and a clearly specified
research objective that can be formulated as a statistical hypothesis. A study can be observational,
where subjects are followed in time, such as a cross-sectional study, or it can be experimental, where
subjects are assigned a certain procedure or treatment, such as a randomized, controlled clinical trial.
A study can involve one, two, or more samples. A study can be prospective, where the outcomes are
observed given the exposures, such as a cohort study, or it can be retrospective, where the exposures
are observed given the outcomes, such as a case–control study. A study can also use matching, where
subjects are grouped based on selected characteristics such as age or race. A common example of
matching is a paired study, consisting of pairs of observations that share selected characteristics.

Statistical method

A well-designed statistical study also has well-defined methods of analysis to be used to evaluate
the objective of interest. For example, a comparison of two independent populations may involve
an independent two-sample t test of means or a two-sample χ2 test of variances, and so on. PSS
computations are specific to the chosen statistical method and design. For example, the power of a
balanced- or equal-allocation design is typically higher than the power of the corresponding unbalanced
design.

Significance level

A significance level α is an upper bound for the probability of a type I error. With a slight abuse
of terminology and notation, we will use the terms “significance level” and “type-I-error probability”
interchangeably, and we will also use α to denote the probability of a type I error. When the two
are different, such as for tests with discrete sampling distributions of test statistics, we will make a
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distinction between them. In other words, unless stated otherwise, we will assume a size-α test, for
which Pr(rejectH0|H0 is true) = α for any θ in the null space, as opposed to a level-α test, for
which Pr(reject H0|H0 is true) ≤ α for any θ in the null space.

As we mentioned earlier, researchers typically set the significance level to a small value such as
0.01 or 0.05 to protect the null hypothesis, which usually represents a state for which an incorrect
decision is more costly.

Power is an increasing function of the significance level.

Power

The power of a test is the probability of correctly rejecting the null hypothesis when the null
hypothesis is false. That is, π = 1− β = Pr(reject H0|H0 is false). Increasing the power of a test
decreases the probability of a type II error, so a test with high power is preferred. Common choices
for power are 90% and 80%, depending on the study objective.

We consider prospective power, which is the power of a future study.

Clinically meaningful difference and effect size

Clinically meaningful difference and effect size represent the magnitude of an effect of interest.
In the context of PSS analysis, they represent the magnitude of the effect of interest to be detected by
a test with a specified power. They can be viewed as a measure of how far the alternative hypothesis
is from the null hypothesis. Their values typically represent the smallest effect that is of clinical
significance or the hypothesized population effect size.

The interpretation of “clinically meaningful” is determined by the researcher and will usually
vary from study to study. For example, in clinical trials, if no prior knowledge is available about
the performance of the considered clinical procedure, then a standardized effect size (adjusted for
standard deviation) between 0.25 and 0.5 may be considered clinically meaningful.

The definition of effect size is specific to the study design, analysis endpoint, and employed statistical
model and test. For example, for a comparison of two independent proportions, an effect size may
be defined as the difference between two proportions, the ratio of the two proportions, or the odds
ratio. Effect sizes also vary in magnitude across studies: a treatment effect of 1% corresponding to an
increase in mortality may be clinically meaningful, whereas a treatment effect of 10% corresponding
to a decrease in a circumference of an ankle affected by edema may be of little importance. Effect
size is usually defined in such a way that power is an increasing function of it (or its absolute value).

More generally, in PSS analysis, effect size summarizes the disparity between the alternative and null
sampling distributions (sampling distributions under the alternative hypothesis and the null hypothesis,
respectively) of a test statistic. The larger the overlap between the two distributions, the smaller the
effect size and the more difficult it is to reject the null hypothesis, and thus there is less power to
detect an effect.

For example, consider a z test for a comparison of a mean µ with 0 from a population with a
known standard deviation σ. The null hypothesis is H0 : µ = 0, and the alternative hypothesis is
Ha: µ 6= 0. The test statistic is a sample mean or sample average. It has a normal distribution with
mean 0 and standard deviation σ as its null sampling distribution, and it has a normal distribution
with mean µ different from 0 and standard deviation σ as its alternative sampling distribution. The
overlap between these distributions is determined by the mean difference µ − 0 = µ and standard
deviation σ. The larger µ or, more precisely, the larger its absolute value, the larger the difference
between the two populations, and thus the smaller the overlap and the higher the power to detect the
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differences µ. The larger the standard deviation σ, the more overlap between the two distributions
and the lower the power to detect the difference. Instead of being viewed as a function of µ and
σ, power can be viewed as a function of their combination expressed as the standardized difference
δ = (µ− 0)/σ. Then, the larger |δ|, the larger the power; the smaller |δ|, the smaller the power. The
effect size is then the standardized difference δ.

To read more about effect sizes in Stata, see [R] esize, although PSS analysis may sometimes use
different definitions of an effect size.

Sample size

Sample size is usually the main component of interest in PSS analysis. The sample size required to
successfully achieve the objective of a study is determined given a specified significance level, power,
effect size, and other study parameters. The larger the significance level, the smaller the sample size,
with everything else being equal. The higher the power, the larger the sample size. The larger the
effect size, the smaller the sample size.

When you compute sample size, the actual power (power corresponding to the obtained sample
size) will most likely be different from the power you requested because sample size is an integer.
In the computation, the resulting fractional sample size that corresponds to the requested power
is usually rounded to the nearest integer. To be conservative, the sample size is rounded up to
ensure that the actual power is at least as large as the requested power. For multiple-sample designs,
fractional sample sizes may arise when you specify sample size to compute power or effect size. For
example, to accommodate an odd total sample size of, say, 51 in a balanced two-sample design, each
individual sample size must be 25.5. To be conservative, sample sizes are rounded down on input.
The actual sample sizes in our example would be 25, 25, and 50. See Fractional sample sizes in
[PSS-4] Unbalanced designs for details about sample-size rounding.

For multiple samples, the allocation of subjects between groups also affects power. A balanced- or
equal-allocation design—a design with equal numbers of subjects in each sample or group—generally
has higher power than the corresponding unbalanced- or unequal-allocation design—a design with
different numbers of subjects in each sample or group.

One-sided test versus two-sided test

Among other things that affect power is whether the employed test is directional (upper or lower
one sided) or nondirectional (two sided). One-sided or one-tailed tests are more powerful than the
corresponding two-sided or two-tailed tests. It may be tempting to choose a one-sided test over a
two-sided test based on this fact. Despite having higher power, one-sided tests are generally not as
common as two-sided tests. The direction of the effect, whether the effect is larger or smaller than
a hypothesized value, is unknown in many applications, which requires the use of a two-sided test.
The use of a one-sided test in applications in which the direction of the effect may be known is
still controversial. The use of a one-sided test precludes the possibility of detecting an effect in the
opposite direction, which may be undesirable in some studies. You should exercise caution when you
decide to use a one-sided test because you will not be able to rule out the effect in the opposite
direction if one were to happen. The results from a two-sided test have stronger justification.
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Another consideration: Dropout

During the planning stage of a study, another important consideration is whether the data collection
effort may result in missing observations. In clinical studies, the common term for this is dropout,
when subjects fail to complete the study for reasons unrelated to study objectives.

If dropout is anticipated, its rate must be taken into consideration when determining the required
sample size or computing other parameters. For example, if subjects are anticipated to drop out from
a study with a rate of Rd, an ad hoc way to inflate the estimated sample size n is as follows:
nd = n/(1−Rd). Similarly, the input sample size must be adjusted as n = nd(1−Rd), where nd
is the anticipated sample size.

Survival data

The prominent feature of survival data is that the outcome is the time from an origin to the
occurrence of a given event (failure), often referred to as the analysis time. Analyses of such data
use the information from all subjects in a study, both those who experience an event by the end
of the study and those who do not. However, inference about the survival experience of subjects
is based on the event times and therefore depends on the number of events observed in a study.
Indeed, if none of the subjects fails in a study, then the survival rate cannot be estimated and survivor
functions of subjects from different groups cannot be compared. Therefore, power depends on the
number of events observed in a study and not directly on the number of subjects recruited to the
study. As a result, to obtain the estimate of the required number of subjects, the probability that a
subject experiences an event during the course of the study needs to be estimated in addition to the
required number of events. This distinguishes sample-size determination for survival studies from that
for other studies in which the endpoint is not measured as a time to failure.

All the above leads us to consider the following two types of survival studies. The first type (a
type I study) is a study in which all subjects experience an event by the end of the study (no censoring),
and the second type (a type II study) is a study that terminates after a fixed period regardless of
whether all subjects experienced an event by that time. For a type II study, subjects who did not
experience an event at the end of the study are known to be right-censored. For a type I study, when
all subjects fail by the end of the study, the estimate of the probability of a failure in a study is
one and the required number of subjects is equal to the required number of failures. For a type II
study, the probability of a failure needs to be estimated and therefore various aspects that affect this
probability (and usually do not come into play at the analysis stage) must be taken into account for
the computation of the sample size.

Under the assumption of random censoring (Lachin 2011, 431; Lawless 2003, 52; Chow and Liu
2014, 391), the type of censoring pattern is irrelevant to the analysis of survival data in which the
goal is to make inferences about the survival distribution of subjects. It becomes important, however,
for sample-size determination because the probability that a subject experiences an event in a study
depends on the censoring distribution. We consider the following two types of random censoring:
administrative censoring and loss to follow-up.

Under administrative censoring, a subject is known to have experienced either of the two outcomes
at the end of a study: survival or failure. The probability of a subject failing in a study depends on
the duration of the study. Often in practice, subjects may withdraw from a study, say, because of
severe side effects from a treatment or may be lost to follow-up because of moving to a different
location. Here the information about the outcome that subject would have experienced at the end of
the study had he completed the course of the study is unavailable, and the probability of experiencing
an event by the end of the study is affected by the process governing withdrawal of subjects from
the study. In the literature, this type of censoring is often referred to as subject loss to follow-up,
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subject withdrawal, or sometimes subject dropout (Freedman 1982, Machin and Campbell 2005).
Generally, great care must be taken when using this terminology because it may have slightly different
meanings in different contexts. power logrank and power cox apply a conservative adjustment to
the estimate of the sample size for withdrawal. power exponential assumes that losses to follow-up
are exponentially distributed.

Another important component of sample-size and power determination that affects the estimate of
the probability of a failure is the pattern of accrual of subjects into the study. The duration of a study
is often divided into two phases: an accrual phase, during which subjects are recruited to the study,
and a follow-up phase, during which subjects are followed up until the end of the study and no new
subjects enter the study. For a fixed-duration study, fast accrual increases the average analysis time
(average follow-up time) and increases the chance of a subject failing in a study, whereas slow accrual
decreases the average analysis time and consequently decreases this probability. power logrank and
power exponential provide facilities to account for uniform accrual, and for power exponential
only, truncated exponential accrual.

All sample-size formulas used by power’s survival methods rely on the proportional-hazards
assumption, that is, the assumption that the hazard ratio does not depend on time. See the documentation
entry of each subcommand for the additional assumptions imposed by the methods it uses. In the
case when the proportional-hazards assumption is suspect, or in the presence of other complexities
associated with the nature of the trial (for example, lagged effect of a treatment, more than two
treatment groups, clustered data) and with the behavior of participants (for example, noncompliance
of subjects with the assigned treatment, competing risks), one may consider obtaining required
sample size or power by simulation. Feiveson (2002) demonstrates an example of such simulation
for clustered survival data. Also see Royston (2012) and Crowther and Lambert (2012) for ways of
simulating complicated survival data. Barthel et al. (2006); Barthel, Royston, and Babiker (2005);
Royston and Babiker (2002); Barthel, Royston, and Parmar (2009); and Royston and Barthel (2010)
present sample-size and power computation for multiarm trials under more flexible design conditions.

Sensitivity analysis

Because of limited resources, it may not always be feasible to conduct a study under the original
ideal specification. In this case, you may vary study parameters to find an appropriate balance
between the desired detectable effect, sample size, available resources, and an objective of the study.
For example, a researcher may decide to increase the detectable effect size to decrease the required
sample size, or, rarely, to lower the desired power of the test. In some situations, it may not be
possible to reduce the required sample size, in which case more resources must be acquired before
the study can be conducted.

Power is a complicated function of all the components we described in the previous section—none
of the components can be viewed in isolation. For this reason, it is important to perform sensitivity
analysis, which investigates power for various specifications of study parameters, and refine the
sample-size requirements based on the findings prior to conducting a study. Tables of power values
(see [PSS-2] power, table) and graphs of power curves (see [PSS-2] power, graph) may be useful for
this purpose.

An example of PSS analysis in Stata

Consider a study of math scores from the SAT exam. Investigators would like to test whether a
new coaching program increases the average SAT math score by 20 points compared with the national
average in a given year of 514. They do not anticipate the standard deviation of the scores to be
larger than the national value of 117. Investigators are planning to test the differences between scores
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by using a one-sample t test. Prior to conducting the study, investigators would like to estimate the
sample size required to detect the anticipated difference by using a 5%-level two-sided test with 90%
power. We can use the power onemean command to estimate the sample size for this study; see
[PSS-2] power onemean for more examples.

Below we demonstrate PSS analysis of this example interactively, by typing the commands; see
[PSS-2] GUI (power) for point-and-click analysis of this example.

We specify the reference or null mean value of 514 and the comparison or alternative value of 534
as command arguments following the command name. The values of standard deviation and power
are specified in the corresponding sd() and power() options. power onemean assumes a 5%-level
two-sided test, so we do not need to specify any additional options.

. power onemean 514 534, sd(117) power(0.9)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = 0.1709

m0 = 514.0000
ma = 534.0000
sd = 117.0000

Estimated sample size:

N = 362

The estimated required sample size is 362.

Investigators do not have enough resources to enroll that many subjects. They would like to estimate
the power corresponding to a smaller sample of 300 subjects. To compute power, we replace the
power(0.9) option with the n(300) option in the above command.

. power onemean 514 534, sd(117) n(300)

Estimated power for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
N = 300

delta = 0.1709
m0 = 514.0000
ma = 534.0000
sd = 117.0000

Estimated power:

power = 0.8392

For a smaller sample of 300 subjects, the power decreases to 84%.

Investigators would also like to estimate the minimum detectable difference between the scores
given a sample of 300 subjects and a power of 90%. To compute the standardized difference between
the scores, or effect size, we specify both the power in the power() option and the sample size in
the n() option.
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. power onemean 514, sd(117) power(0.9) n(300)

Performing iteration ...

Estimated target mean for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0; ma > m0

Study parameters:

alpha = 0.0500
power = 0.9000

N = 300
m0 = 514.0000
sd = 117.0000

Estimated effect size and target mean:

delta = 0.1878
ma = 535.9671

The minimum detectable standardized difference given the requested power and sample size is 0.19,
which corresponds to an average math score of roughly 536 and a difference between the scores of
22.

Continuing their analysis, investigators want to assess the impact of different sample sizes and
score differences on power. They wish to estimate power for a range of alternative mean scores
between 530 and 550 with an increment of 5 and a range of sample sizes between 200 and 300 with
an increment of 10. They would like to see results on a graph.

We specify the range of alternative means as numlist (see [U] 11.1.8 numlist) in parentheses as
the second command argument. We specify the range of sample sizes as a numlist in the n() option.
We request a graph by specifying the graph option.

. power onemean 514 (535(5)550), sd(117) n(200(10)300) graph
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200 220 240 260 280 300
Sample size (N)

535
540
545
550

Alternative mean (µa)

Parameters: α = .05, µ0 = 514, σ = 117

t test
H0: µ = µ0  versus  Ha: µ ≠ µ0

Estimated power for a one-sample mean test

The default graph plots the estimated power on the y axis and the requested sample size on the x
axis. A separate curve is plotted for each of the specified alternative means. Power increases as the
sample size increases or as the alternative mean increases. For example, for a sample of 220 subjects
and an alternative mean of 535, the power is approximately 75%; and for an alternative mean of 550,
the power is nearly 1. For a sample of 300 and an alternative mean of 535, the power increases to
87%. Investigators may now determine a combination of an alternative mean and a sample size that
would satisfy their study objective and available resources.
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If desired, we can also display the estimated power values in a table by additionally specifying
the table option:

. power onemean 514 (530(5)550), sd(117) n(200(10)300) graph table
(output omitted )

The power command performs PSS analysis for a number of hypothesis tests for continuous, binary,
and survival outcomes; see [PSS-2] power and method-specific entries for more examples. Also, in
the absence of readily available PSS methods, consider performing PSS analysis by simulation; see, for
example, Huber (2019a), Feiveson (2002), and Hooper (2013) for examples of how you can do this
in Stata. You can also add your own methods to the power command as described in [PSS-2] power
usermethod; also see Huber (2019b).

Video example

A conceptual introduction to power and sample-size calculations
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Title

GUI (power) — Graphical user interface for power and sample-size analysis

Description Menu Remarks and examples Also see

Description
This entry describes the graphical user interface (GUI) for the power command. See [PSS-2] power

for a general introduction to the power command.

Menu
Statistics > Power, precision, and sample size

Remarks and examples
Remarks are presented under the following headings:

PSS Control Panel
Example using PSS Control Panel

PSS Control Panel

You can perform PSS analysis interactively by typing the power command or by using a point-
and-click GUI available via the PSS Control Panel.

The PSS Control Panel can be accessed by selecting Statistics > Power, precision, and sample
size from the Stata menu. It includes a tree-view organization of the PSS, PrSS, and group sequential
design methods.
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The left pane organizes the methods, and the right pane displays the methods corresponding to the
selection in the left pane. On the left, the methods are organized by the type of population parameter,
such as mean or proportion; the type of outcome, such as continuous or binary; the type of analysis,
such as hypothesis test or confidence interval; and the type of sample, such as one sample or two
samples. You click on one of the methods shown in the right pane to launch the dialog box for that
method.

By default, methods are organized by Population parameter. We can find the method we want
to use by looking for it in the right pane, or we can narrow down the type of method we are looking
for by selecting one of the expanded categories in the left pane.
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For example, if we are interested in means, we can click on Means within Population parameter
to see all methods for means in the right pane.

We can expand Means to further narrow down the choices by clicking on the symbol to the left of
Means.
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Or we can choose a method by the type of analysis by expanding Hypothesis test and selecting,
for example, t tests:
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We can also locate methods by searching the titles of methods. You specify the search string of
interest in the Filter box at the top right of the PSS Control Panel. For example, if we type “mean” in
the Filter box while keeping the focus on Hypothesis test, only test methods with a title containing
“mean” will be listed in the right pane.
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We can specify multiple words in the Filter box, and only methods with all the specified words
in their titles will appear. For example, if we type “two means”, only methods with the words “two”
and “means” in their titles will be shown:

The search is performed within the group of methods selected by the choice in the left pane. In the
above example, the search was done within Hypothesis test. When you search all methods, whether
you select Population parameter, Outcome, or Sample in the left pane, the same set of methods
appears in the right pane but in the order determined by the selected category.

Example using PSS Control Panel

In An example of PSS analysis in Stata in [PSS-2] Intro (power), we performed PSS analysis
interactively by typing commands. We replicate the analysis by using the PSS Control Panel and
dialog boxes.

We first launch the PSS Control Panel from the Statistics > Power, precision, and sample size
menu. We then narrow down to the desired dialog box by first choosing Sample in the left pane,
then choosing One sample within that, and then choosing Mean. In the right pane, we see methods
for testing the one-sample mean. We are interested in the Test comparing one mean to a reference
value.
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We invoke the dialog box by clicking on the corresponding method title in the right pane. The
following appears:
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Following the example from An example of PSS analysis in Stata in [PSS-2] Intro (power), we
now compute sample size. The first step is to choose which parameter to compute. The Compute
drop-down box specifies Sample size, so we leave it unchanged. The next step is to specify error
probabilities. The default significance level is already set to our desired value of 0.05, so we leave it
unchanged. We change power from the default value of 0.8 to 0.9. We then specify a null mean of
514, an alternative mean of 534, and a standard deviation of 117 in the Effect size group of options.
We leave everything else unchanged and click on the Submit button to obtain results.

The following command is displayed in the Results window and executed:

. power onemean 514 534, power(0.9) sd(117)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = 0.1709

m0 = 514.0000
ma = 534.0000
sd = 117.0000

Estimated sample size:

N = 362

We can verify that the command and results are exactly the same as what we specified in An example
of PSS analysis in Stata of [PSS-2] Intro (power).
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Continuing our PSS analysis, we now want to compute power for a sample of 300 subjects. We
return to the dialog box and select Power under Compute. The only thing we need to specify is the
sample size of 300:

The following command is issued after we click on the Submit button:

. power onemean 514 534, n(300) sd(117)

Estimated power for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
N = 300

delta = 0.1709
m0 = 514.0000
ma = 534.0000
sd = 117.0000

Estimated power:

power = 0.8392

To compute effect size, we select Effect size and target mean under Compute. All the
previously used values for power and sample size are preserved, so we do not need to specify
anything additional.
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We click on the Submit button and get the following:

. power onemean 514, power(0.9) n(300) sd(117)

Performing iteration ...

Estimated target mean for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0; ma > m0

Study parameters:

alpha = 0.0500
power = 0.9000

N = 300
m0 = 514.0000
sd = 117.0000

Estimated effect size and target mean:

delta = 0.1878
ma = 535.9671
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To produce the graph from An example of PSS analysis in Stata, we first select Power under
Compute. Then we specify the numlists for sample size and alternative mean in the respective edit
boxes:
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We also check the Graph the results box on the Graph tab:

We click on the Submit button and obtain the following command and graph:

. power onemean 514 (535(5)550), n(200(10)300) sd(117) graph
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Parameters: α = .05, µ0 = 514, σ = 117

t test
H0: µ = µ0  versus  Ha: µ ≠ µ0

Estimated power for a one-sample mean test
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Also see
[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] Intro (power) — Introduction to power and sample-size analysis for hypothesis tests

[PSS-5] Glossary
[ADAPT] GSD intro — Introduction to group sequential designs
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Description

The power command is useful for planning studies. It performs power and sample-size analysis for
studies that use hypothesis testing to form inferences about population parameters. You can compute
sample size given power and effect size, power given sample size and effect size, or the minimum
detectable effect size and the corresponding target parameter given power and sample size. You can
display results in a table ([PSS-2] power, table) and on a graph ([PSS-2] power, graph).

For precision and sample-size analysis for CIs, see [PSS-3] ciwidth.

Menu
Statistics > Power, precision, and sample size

Syntax
Compute sample size

power method . . .
[
, power(numlist) power options . . .

]
Compute power

power method . . . , n(numlist)
[

power options . . .
]

Compute effect size and target parameter

power method . . . , n(numlist) power(numlist)
[

power options . . .
]

29
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method Description

One sample

onemean One-sample mean test (one-sample t test)
oneproportion One-sample proportion test
onecorrelation One-sample correlation test
onevariance One-sample variance test

Two independent samples

twomeans Two-sample means test (two-sample t test)
twoproportions Two-sample proportions test
twocorrelations Two-sample correlations test
twovariances Two-sample variances test

Two paired samples

pairedmeans Paired-means test (paired t test)
pairedproportions Paired-proportions test (McNemar’s test)

Analysis of variance

oneway One-way ANOVA
twoway Two-way ANOVA
repeated Repeated-measures ANOVA

Linear regression

oneslope Slope test in a simple linear regression
rsquared R2 test in a multiple linear regression
pcorr Partial-correlation test in a multiple linear regression

Contingency tables

cmh Cochran–Mantel–Haenszel test (stratified 2× 2 tables)
mcc Matched case–control studies
trend Cochran–Armitage trend test (linear trend in J × 2 table)

Survival analysis

cox Cox proportional hazards model
exponential Two-sample exponential test
logrank Log-rank test

Cluster randomized design (CRD)

onemean, cluster One-sample mean test in a CRD
oneproportion, cluster One-sample proportion test in a CRD

twomeans, cluster Two-sample means test in a CRD
twoproportions, cluster Two-sample proportions test in a CRD

logrank, cluster Log-rank test in a CRD

User-defined methods

usermethod Add your own method to power
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power options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1), meaning

equal group sizes
compute(N1 | N2) solve for N1 given N2 or for N2 given N1

nfractional allow fractional sample sizes
direction(upper|lower) direction of the effect for effect-size determination; default is

direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value of the estimated parameter; default is
method specific

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

Options n1(), n2(), nratio(), and compute() are available only for two-independent-samples methods.
Iteration options are available only with computations requiring iteration.
collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.
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Options

� � �
Main �

alpha(numlist) sets the significance level of the test. The default is alpha(0.05).

power(numlist) sets the power of the test. The default is power(0.8). If beta() is specified, this
value is set to be 1− beta(). Only one of power() or beta() may be specified.

beta(numlist) sets the probability of a type II error of the test. The default is beta(0.2). If power()
is specified, this value is set to be 1−power(). Only one of beta() or power() may be specified.

n(numlist) specifies the total number of subjects in the study to be used for power or effect-size
determination. If n() is specified, the power is computed. If n() and power() or beta() are
specified, the minimum effect size that is likely to be detected in a study is computed.

n1(numlist) specifies the number of subjects in the control group to be used for power or effect-size
determination.

n2(numlist) specifies the number of subjects in the experimental group to be used for power or
effect-size determination.

nratio(numlist) specifies the sample-size ratio of the experimental group relative to the control
group, N2/N1, for two-sample tests. The default is nratio(1), meaning equal allocation between
the two groups.

compute(N1 | N2) requests that the power command compute one of the group sample sizes given
the other one, instead of the total sample size, for two-sample tests. To compute the control-group
sample size, you must specify compute(N1) and the experimental-group sample size in n2().
Alternatively, to compute the experimental-group sample size, you must specify compute(N2)
and the control-group sample size in n1().

nfractional specifies that fractional sample sizes be allowed. When this option is specified, fractional
sample sizes are used in the intermediate computations and are also displayed in the output.

Also see the description and the use of options n(), n1(), n2(), nratio(), and compute() for
two-sample tests in [PSS-4] Unbalanced designs.

direction(upper | lower) specifies the direction of the effect for effect-size determination. For most
methods, the default is direction(upper), which means that the postulated value of the parameter
is larger than the hypothesized value. For survival methods, the default is direction(lower),
which means that the postulated value is smaller than the hypothesized value.

onesided indicates a one-sided test. The default is two sided.

parallel requests that computations be performed in parallel over the lists of numbers specified for
at least two study parameters as command arguments, starred options allowing numlist, or both.
That is, when parallel is specified, the first computation uses the first value from each list of
numbers, the second computation uses the second value, and so on. If the specified number lists
are of different sizes, the last value in each of the shorter lists will be used in the remaining
computations. By default, results are computed over all combinations of the number lists.

For example, let a1 and a2 be the list of values for one study parameter, and let b1 and b2
be the list of values for another study parameter. By default, power will compute results for all
possible combinations of the two values in the two study parameters: (a1, b1), (a1, b2), (a2, b1),
and (a2, b2). If parallel is specified, power will compute results for only two combinations:
(a1, b1) and (a2, b2).
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� � �
Table �

notable, table, and table() control whether or not results are displayed in a tabular format.
table is implied if any number list contains more than one element. notable is implied with
graphical output—when either the graph or the graph() option is specified. table() is used to
produce custom tables. See [PSS-2] power, table for details.

saving(filename
[
, replace

]
) creates a Stata data file (.dta file) containing the table values

with variable names corresponding to the displayed columns. replace specifies that filename be
overwritten if it exists. saving() is only appropriate with tabular output.

� � �
Graph �

graph and graph() produce graphical output; see [PSS-2] power, graph for details.

The following options control an iteration procedure used by the power command for solving nonlinear
equations.

� � �
Iteration �

init(#) specifies an initial value for the estimated parameter. Each power method sets its own
default value. See the documentation entry of the method for details.

iterate(#) specifies the maximum number of iterations for the Newton method. The default is
iterate(500).

tolerance(#) specifies the tolerance used to determine whether successive parameter estimates have
converged. The default is tolerance(1e-12). See Convergence criteria in [M-5] solvenl( ) for
details.

ftolerance(#) specifies the tolerance used to determine whether the proposed solution of a
nonlinear equation is sufficiently close to 0 based on the squared Euclidean distance. The default
is ftolerance(1e-12). See Convergence criteria in [M-5] solvenl( ) for details.

log and nolog specify whether an iteration log is to be displayed. The iteration log is suppressed
by default. Only one of log, nolog, dots, or nodots may be specified.

dots and nodots specify whether a dot is to be displayed for each iteration. The iteration dots are
suppressed by default. Only one of dots, nodots, log, or nolog may be specified.

The following option is available with power but is not shown in the dialog box:

notitle prevents the command title from displaying.
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Remarks and examples
Remarks are presented under the following headings:

Using the power command
Specifying multiple values of study parameters

One-sample tests
Two-sample tests
Paired-sample tests
Analysis of variance models
Linear regression
Contingency tables
Survival analysis
Cluster randomized designs
Tables of results
Power curves
Add your own methods to power

This section describes how to perform power and sample-size analysis using the power command.
For a software-free introduction to power and sample-size analysis, see [PSS-2] Intro (power).

Using the power command

The power command computes sample size, power, or minimum detectable effect size and the
corresponding target parameter for various hypothesis tests. You can also add your own methods to
the power command as described in [PSS-2] power usermethod.

All computations are performed for a two-sided hypothesis test where, by default, the significance
level is set to 0.05. You may change the significance level by specifying the alpha() option. You
can specify the onesided option to request a one-sided test.

By default, the power command computes sample size for the default power of 0.8. You may
change the value of power by specifying the power() option. Instead of power, you can specify the
probability of a type II error in the beta() option.

To compute power, you must specify the sample size in the n() option.

To compute power or sample size, you must also specify a magnitude of the effect desired to
be detected by a hypothesis test. power’s methods provide several ways in which an effect can be
specified. For example, for a one-sample mean test, you can specify either the target mean or the
difference between the target mean and a reference mean; see [PSS-2] power onemean.

You can also compute the smallest magnitude of the effect or the minimum detectable effect size
(MDES) and the corresponding target parameter that can be detected by a hypothesis test given power
and sample size. To compute MDES, you must specify both the desired power in the power() option
or the probability of a type II error in the beta() option and the sample size in the n() option.
In addition to the effect size, power also reports the estimated value of the parameter of interest,
such as the mean under the alternative hypothesis for a one-sample test or the experimental-group
proportion for a two-sample test of independent proportions. By default, when the postulated value
is larger than the hypothesized value, the power command assumes an effect in the upper direction,
the direction(upper) option. You may request an estimate of the effect in the opposite, lower,
direction by specifying the direction(lower) option.

For hypothesis tests comparing two independent samples, you can compute one of the group sizes
given the other one instead of the total sample size. In this case, you must specify the label of the
group size you want to compute in the compute() option and the value of the other group size in
the respective n#() option. For example, if we wanted to find the size of the second group given the
size of the first group, we would specify the combination of options compute(N2) and n1(#).
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A balanced design is assumed by default for two-independent-samples hypothesis tests, but you
can request an unbalanced design. For example, you can specify the allocation ratio n2/n1 between
the two groups in the nratio() option or the individual group sizes in the n1() and n2() options.
See [PSS-4] Unbalanced designs for more details about various ways of specifying an unbalanced
design.

For sample-size determination, the reported integer sample sizes may not correspond exactly to
the specified power because of rounding. To obtain conservative results, the power command rounds
up the sample size to the nearest integer so that the corresponding power is at least as large as
the requested one. You can specify the nfractional option to obtain the corresponding fractional
sample size.

Some of power’s computations require iteration. The defaults chosen for the iteration procedure
should be sufficient for most situations. In a rare situation when you may want to modify the defaults,
the power command provides options to control the iteration procedure. The most commonly used
is the init() option for supplying an initial value of the estimated parameter. This option can be
useful in situations where the computations are sensitive to the initial values. If you are performing
computations for many combinations of various study parameters, you may consider reducing the
default maximum number of iterations of 500 in the iterate() option so that the command is
not spending time on calculations in difficult-to-compute regions of the parameter space. By default,
power suppresses the iteration log. If desired, you can specify the log option to display the iteration
log or the dots option to display iterations as dots to monitor the progress of the iteration procedure.

The power command can produce results for one study scenario or for multiple study scenarios when
multiple values of the parameters are specified; see Specifying multiple values of study parameters
below for details.

For a single result, power displays results as text. For multiple results or if the table option
is specified, power displays results in a table. You can also display multiple results on a graph by
specifying the graph option. Graphical output suppresses the table of the results; use the table option
to also see the tabular output. You can customize the default tables and graphs by specifying suboptions
within the respective options table() and graph(); see [PSS-2] power, table and [PSS-2] power,
graph for details.

You can also save the tabular output to a Stata dataset by using the saving() option.

Specifying multiple values of study parameters

The power command can produce results for one study scenario or for multiple study scenarios
when multiple values of the parameters are supplied to the supported options. The options that support
multiple values specified as a numlist are marked with a star in the syntax diagram.

For example, the n() option supports multiple values. You can specify multiple sample sizes as
individual values, n(100 150 200), or as a range of values, n(100(50)200); see [U] 11.1.8 numlist
for other specifications.

In addition to options, you may specify multiple values of command arguments, values specified
after the command name. For example, let #1 and #2 be the first and the second command arguments
in

. power twoproportions #1 #2, . . .

If we want to specify multiple values for the command arguments, we must enclose these values
in parentheses. For example,

. power twoproportions (0.1 0.2) (0.1 0.2 0.3 0.4), . . .
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or, more generally,

. power twoproportions (numlist) (numlist), . . .

When multiple values are specified in multiple options or for multiple command arguments, the
power command computes results for all possible combinations formed by the values from every
option and command argument. In some cases, you may want to compute results in parallel for
specific sets of values of the specified parameters. To request this, you can specify the parallel
option. If the specified number lists are of varying sizes, numlist with the maximum size determines
the number of final results produced by power. The last value from numlist of smaller sizes will be
used in the subsequent computations.

For example,

. power twoproportions (0.1 0.2) 0.4, n(100 200)

is equivalent to

. power twoproportions 0.1 0.4, n(100)

. power twoproportions 0.2 0.4, n(100)

. power twoproportions 0.1 0.4, n(200)

. power twoproportions 0.2 0.4, n(200)

When the parallel option is specified,

. power twoproportions (0.1 0.2) 0.4, n(100 200) parallel

is equivalent to

. power twoproportions 0.1 0.4, n(100)

. power twoproportions 0.2 0.4, n(200)

When the parallel option is specified and numlist is of different sizes, the last value of the
shorter numlist is used in the subsequent computations. For example,

. power twoproportions (0.1 0.2 0.3) 0.4, n(100 200) parallel

is equivalent to

. power twoproportions 0.1 0.4, n(100)

. power twoproportions 0.2 0.4, n(200)

. power twoproportions 0.3 0.4, n(200)

One-sample tests

The power command provides PSS computations for four one-sample tests. power onemean
performs PSS analysis for a one-sample mean test; power oneproportion performs PSS analysis
for a one-sample proportion test; power onecorrelation performs PSS analysis for a one-sample
correlation test; and power onevariance performs PSS analysis for a one-sample variance test.

power onemean provides PSS computations for a one-sample t test assuming known or unknown
population standard deviation. It also provides a way to adjust computations for a finite population
sample. See [PSS-2] power onemean.
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power oneproportion provides PSS computations for a test that compares one proportion with a
reference value. By default, the computations are based on a large-sample z test that uses the normal
approximation of the distribution of the test statistic. You may choose between two large-sample
tests: the score test or Wald test. You may also compute power for the small-sample binomial test
by specifying the test(binomial) option. See [PSS-2] power oneproportion.

power onecorrelation provides PSS computations for a test that compares one correlation with a
reference value. The computations are based on a Fisher’s z transformation of a correlation coefficient.
See [PSS-2] power onecorrelation.

power onevariance provides PSS computations for a test that compares one variance with a
reference value. The computations are based on a χ2 test of the ratio of the variance to its reference
value. You can perform computations in the variance or standard deviation metric. See [PSS-2] power
onevariance.

All one-sample methods compute sample size given power and target parameter, power given
sample size and target parameter, or MDES and the corresponding target parameter given power and
sample size.

For PSS determination, an effect may be supplied by specifying the null and alternative values of
the target parameter as command arguments #0 and #a:

. power onesample #0 #a, . . .

Instead of the alternative value #a, you can specify the ratio of the alternative value to the null
value in the ratio() option and the null value as #0 for power onevariance,

. power onevariance #0, ratio(#) . . .

or you can specify the difference between the alternative value and the null value in the diff()
option and the null value as #0 for other methods,

. power onesample #0, diff(#) . . .

For sample-size determination, the reported sample size is rounded up to the nearest integer. This
ensures that the corresponding actual power is at least as large as the specified power. You can specify
the nfractional option to obtain the corresponding fractional sample size, or you can recompute
the actual power using the reported rounded value; see Fractional sample sizes in [PSS-4] Unbalanced
designs for details.

Below we show a quick example of PSS analysis for a one-sample mean test. See entries of the
one-sample methods for more examples.

Example 1: PSS analysis for a one-sample mean test

A group of pediatricians would like to study the exposure of infants to television. The group
wants to investigate whether the average number of hours watched per day by infants between 3 and
12 months of age is greater than 2 hours. Before conducting a study, pediatricians would like to
determine how many infants they need to enroll in the study. The analysis will use the one-sample
t test to compare the mean of the obtained sample with the reference value. An earlier pilot study
reported an average of 2.5 hours watched per day with a standard deviation of 0.8. Pediatricians
would like to compute the sample size required to detect a mean of 2.5 using a two-sided test with
5% significance level and 80% power. Although pediatricians suspect that the effect is in the upper
direction—more than two hours watched on average—they prefer to obtain the required sample size
for a two-sided test instead of a one-sided test.



38 power — Power and sample-size analysis for hypothesis tests

We use power onemean to compute the required sample size. We specify the reference or null
value of 2 and the comparison or alternative value of 2.5 as command arguments. We also specify the
standard deviation of 0.8 in the sd() option. We omit the alpha(0.05) and power(0.8) options
because the desired values are the defaults for these options. The default test is two sided, so we do
not need to supply any additional information to the command.

. power onemean 2 2.5, sd(0.8)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.6250

m0 = 2.0000
ma = 2.5000
sd = 0.8000

Estimated sample size:

N = 23

All power commands have a similar output format. Information about the test and tested hypothesis is
displayed first. The input and implied values of the study parameters are displayed next under Study
parameters. The estimated parameters, such as the sample size in this example, are displayed last.

Pediatricians need to enroll 23 infants in the study to detect a standardized difference of 0.625
between the alternative mean of 2.5 and the null mean of 2 given a standard deviation of 0.8 using
a 5%-level two-sided one-sample t test with 80% power.

The pediatricians believe that they have resources to enroll more infants. They wish to compute
the power that corresponds to the sample size of 50. To compute the corresponding power, we specify
a sample size of 50 in the n() option:

. power onemean 2 2.5, sd(0.8) n(50)

Estimated power for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
N = 50

delta = 0.6250
m0 = 2.0000
ma = 2.5000
sd = 0.8000

Estimated power:

power = 0.9911

The power increases to 99% for a larger sample of 50 infants.

The pediatricians also want to find out what is the smallest mean difference they can detect with
the larger sample of 50 infants while keeping the power at 80%. They assume the effect to be in
the upper direction for this computation. To compute the minimum detectable difference, we specify
both the sample size in the n() option and the power in the power() option.
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. power onemean 2, sd(0.8) n(50) power(0.8)

Performing iteration ...

Estimated target mean for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0; ma > m0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 50
m0 = 2.0000
sd = 0.8000

Estimated effect size and target mean:

delta = 0.4042
ma = 2.3233

The smallest standardized difference that can be detected given the study parameters is about 0.4,
with a corresponding mean of 2.32.

Two-sample tests

The power command provides PSS computations for four two-sample tests. power twomeans
performs PSS analysis for a two-sample means test; power twoproportions performs PSS analysis
for a two-sample proportions test; power twocorrelations performs PSS analysis for a two-sample
correlations test; and power twovariances performs PSS analysis for a two-sample variances test.

power twomeans provides PSS computations for a two-sample means test that compares the means
of two independent populations. The computations provided assume known or unknown and equal or
unequal population standard deviations of the two groups. See [PSS-2] power twomeans.

power twoproportions provides PSS computations for a two-sample proportions test that compares
the proportions in two independent populations with binary outcomes. Three tests are supported: the
large-sample Pearson’s χ2 test, the large-sample likelihood-ratio test, and the small-sample Fisher’s
exact test. Several effect specifications are available. For example, you can specify the effect of
interest as a risk difference, or a relative risk, or an odds ratio. See [PSS-2] power twoproportions.

power twocorrelations provides PSS computations for a two-sample correlations test that
compares the correlation coefficients of two independent populations. The computations are based on
a Fisher’s z transformation of a correlation coefficient. See [PSS-2] power twocorrelations.

power twovariances provides PSS computations for a two-sample variances test that compares
the variances of two independent populations. The computations are based on an F test of the
ratio of variances. You can perform computations in the variance or standard deviation metric. See
[PSS-2] power twovariances.

Also see Survival analysis for power and sample-size analysis for a two-sample comparison of
survivor functions using the power logrank and power exponential commands.

All two-sample methods compute sample size given power and the control-group and experimental-
group values of the target parameter, power given sample size and the control-group and experimental-
group values of the target parameter, or MDES and the corresponding target value of the parameter
in the experimental group given power, sample size, and the control-group parameter value.

To compute sample size or power, you can specify the magnitude of the effect of interest in
two ways: by directly specifying the alternative values of the target parameter in two groups or by
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specifying the control-group alternative value and the corresponding relation of the experimental-group
value to the control-group alternative value.

The two alternative values are specified as command arguments: the alternative value of the target
parameter in the control or reference group, #a1, and the alternative value of the target parameter in
the experimental or comparison group, #a2:

. power twosample #a1 #a2, . . .

The experimental-group alternative value, #a2, may be omitted if an option containing the relationship
between the two alternative values is specified. For example, for power twomeans and power
twocorrelations, such an option is diff(), and it specifies the difference between the experimental-
group and control-group alternative values:

. power twomeans #a1, diff(#) . . .

For power twovariances, such an option is ratio(), and it contains the ratio of the experimental-
group alternative value to the control-group value:

. power twovariances #a1, ratio(#) . . .

power twoproportions provides several alternative specifications in which a difference between
the two populations may be expressed. For example, you can express the “difference” as an odds
ratio of the experimental group to the control group,

. power twoproportions #a1, oratio(#) . . .

or as a relative risk,

. power twoproportions #a1, rrisk() . . .

In addition to the total sample size, two-sample methods provide a way to solve for one of the
group sizes when the other group size is fixed. This can be achieved by specifying the compute()
option. To compute the size of the first group, you must specify the compute(N1) option and the
size of the second group in the n2() option. To compute the size of the second group, you must
specify the compute(N2) option and the size of the first group in the n1() option.

To compute power, you can specify a total sample size in the n() option, group sample sizes in
the n1() and n2() options, or one of the group sample sizes and its ratio, n2/n1, in the nratio()
option; see [PSS-4] Unbalanced designs for more specifications.

Below we show a quick example of PSS analysis for a two-sample means test. See entries of the
two-sample methods for more examples.

Example 2: PSS analysis for a two-sample mean test

A pharmaceutical company would like to conduct a study to compare a new weight-loss drug with
an older drug. Investigators are planning to use a two-sample t test to compare the average weight loss
for the two drugs. The average weight loss of people taking the old drug for 3 months is 12 pounds,
with a standard deviation of 5.5 pounds. The new drug is expected to produce an average weight loss
of 16 pounds, with a standard deviation of 5 pounds for the same period of time. Investigators want
to find out how many subjects they need to recruit into the study to detect the specified difference
using a 5% level two-sided test with 90% power.

We use power twomeans to perform PSS analyses. We specify the control-group mean 12 and
the experimental-group mean 16 as command arguments after the command name. We specify the
respective standard deviations in the sd1() and sd2() options. The default power is set to 0.8, so
we specify power(0.9) to request 90% power.
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. power twomeans 12 16, sd1(5.5) sd2(5) power(0.9)

Performing iteration ...

Estimated sample sizes for a two-sample means test
Satterthwaite’s t test assuming unequal variances
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = 4.0000

m1 = 12.0000
m2 = 16.0000

sd1 = 5.5000
sd2 = 5.0000

Estimated sample sizes:

N = 76
N per group = 38

We need a sample of 76 subjects, 38 per group, to detect a difference of 4 between the control-group
mean of 12 and the experimental-group mean of 16 given the respective standard deviations of 5.5
and 5 with 90% power using a 5%-level two-sided two-sample means t test.

The default test is two sided. You may specify the onesided option to request a one-sided test.
The default design is also balanced; see [PSS-4] Unbalanced designs for examples of unbalanced
designs.

The investigators hope to keep the sample size under 60 and would like to compute the power
corresponding to this sample size. To compute the corresponding power, we specify the n(60) option
instead of the power() option:

. power twomeans 12 16, sd1(5.5) sd2(5) n(60)

Estimated power for a two-sample means test
Satterthwaite’s t test assuming unequal variances
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 60

N per group = 30
delta = 4.0000

m1 = 12.0000
m2 = 16.0000

sd1 = 5.5000
sd2 = 5.0000

Estimated power:

power = 0.8259

The power decreases to 83% for the smaller sample of 60 subjects.

To keep the power at 90%, the investigators want to compute the smallest difference between the
experimental-group mean and the control-group mean (in the upper direction) given the sample of 60
subjects. For this computation, we specify both options n(60) and power(0.9):
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. power twomeans 12, sd1(5.5) sd2(5) n(60) power(0.9)

Performing iteration ...

Estimated experimental-group mean for a two-sample means test
Satterthwaite’s t test assuming unequal variances
H0: m2 = m1 versus Ha: m2 != m1; m2 > m1

Study parameters:

alpha = 0.0500
power = 0.9000

N = 60
N per group = 30

m1 = 12.0000
sd1 = 5.5000
sd2 = 5.0000

Estimated effect size and experimental-group mean:

delta = 4.4744
m2 = 16.4744

The smallest detectable mean difference is 4.47, with a corresponding value of the experimental-group
mean of 16.47.

Paired-sample tests

The power command provides PSS computations for two tests of paired samples. power paired-
means performs PSS analysis for a two-sample paired-means test, and power pairedproportions
performs PSS analysis for a two-sample paired-proportions test.

power pairedmeans provides PSS computations for a two-sample paired t test assuming known
or unknown population standard deviation of the differences between paired observations. You can
specify standard deviations of each group and a correlation between paired observations, or you can
directly specify the standard deviation of the differences between observations. You can obtain results
for a nonzero null hypothesis of a difference between the two paired means. The command also
provides a way to adjust computations for a finite population sample. See [PSS-2] power pairedmeans.

power pairedproportions provides PSS computations for a two-sample paired-proportions
test that compares proportions in two paired (correlated) samples. The computations are based on
McNemar’s test of marginal homogeneity. You can specify either the discordant proportions or the
marginal proportions. A number of effect specifications are available. For example, you can specify
the effect of interest as a relative risk or an odds ratio. See [PSS-2] power pairedproportions.

Both paired methods compute sample size given power and target parameter, power given sample
size and target parameter, or MDES and the corresponding target parameter given power and sample
size.

For power and sample-size determination of power pairedmeans, an effect may be supplied
by specifying the alternative values of the two means, pretreatment and posttreatment, as command
arguments ma1 and ma2:

power pairedmeans ma1 ma2, . . .
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Instead of the alternative value ma2, you can specify the difference between the two alternative
values in the altdiff() option and the alternative pretreatment mean value ma1:

power pairedmeans ma1, altdiff() . . .

You may omit both alternative values and specify only the difference between them in the
altdiff() option:

power pairedmeans, altdiff() . . .

By default, the null value of the difference between the pretreatment and posttreatment means is
zero, but you may change it by specifying the nulldiff() option.

For PSS determination of power pairedproportions, there are a number of ways of specifying
an effect of interest; see Alternative ways of specifying effect in [PSS-2] power pairedproportions.
Two main specifications include the specification of discordant proportions and the specification of
marginal probabilities. Specifically, you can supply the information about the effect of interest as
discordant proportions p12 and p21,

power pairedproportions p12 p21, . . .

or as marginal proportions p1+ and p+1:

power pairedproportions p1+ p+1, corr(numlist) . . .

When you specify marginal proportions, you must also specify the correlation between paired
observations in the corr() option.

For sample-size determination, the reported sample size is rounded up to the nearest integer. This
ensures that the corresponding actual power is at least as large as the specified power. You can specify
the nfractional option to obtain the corresponding fractional sample size or you can recompute the
actual power using the reported rounded value; see Fractional sample sizes in [PSS-4] Unbalanced
designs for details.

Below we show a quick example of PSS analyses for a two-sample paired-means test. See
[PSS-2] power pairedmeans and [PSS-2] power pairedproportions for more examples.

Example 3: PSS analysis for a two-sample paired-means test

A forester would like to study the effects of a fertilizer treatment on heights of Virginia pine trees.
The trees are planted in pairs with only one of them receiving the fertilizer treatment. The average
height of untreated trees is 27.5 feet, with a standard deviation of 4.5 feet. The fertilizer treatment is
expected to increase the average height to 30 feet, with the same standard deviation of 4.5 feet. The
correlation between the paired tree heights is expected to be 0.4. The forester would like to know
how many pairs of pine trees need to be planted so that a 5%-level two-sided paired-means t test
detects the anticipated difference with 80% power.

We use power pairedmeans for power and sample-size analysis. We supply the alternative
pretreatment and posttreatment means of 27.5 and 30, respectively, as command arguments after the
command name. The standard deviations of the two groups are the same, so we specify their common
value in the sd() option. We specify the correlation of 0.4 in the corr() option. The default value
for power is 0.8 and for significance level is 0.05, so we omit the corresponding options power(0.8)
and alpha(0.05).
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. power pairedmeans 27.5 30, sd(4.5) corr(0.4)

Performing iteration ...

Estimated sample size for a two-sample paired-means test
Paired t test assuming sd1 = sd2 = sd
H0: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500 ma1 = 27.5000
power = 0.8000 ma2 = 30.0000
delta = 0.5072 sd = 4.5000

d0 = 0.0000 corr = 0.4000
da = 2.5000

sd_d = 4.9295

Estimated sample size:

N = 33

The forester needs 33 pairs of pine trees to run the experiment.

The forester has resources to plant more trees and would like to compute the power corresponding
to the larger sample. To compute power given sample size, we specify sample size in the n() option:

. power pairedmeans 27.5 30, sd(4.5) corr(0.4) n(50)

Estimated power for a two-sample paired-means test
Paired t test assuming sd1 = sd2 = sd
H0: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500 ma1 = 27.5000
N = 50 ma2 = 30.0000

delta = 0.5072 sd = 4.5000
d0 = 0.0000 corr = 0.4000
da = 2.5000

sd_d = 4.9295

Estimated power:

power = 0.9400

The power increases to 0.94.

The forester may also wish to know the smallest detectable difference between average tree heights
of the fertilized group and of the control group that can be detected with 80% power and sample size
of 50. To compute this value, we specify both options n(50) and power(0.8):

. power pairedmeans 27.5, sd(4.5) corr(0.4) n(50) power(0.8)

Performing iteration ...

Estimated target parameters for a two-sample paired-means test
Paired t test assuming sd1 = sd2 = sd
H0: d = d0 versus Ha: d != d0; da > d0

Study parameters:

alpha = 0.0500 ma1 = 27.5000
power = 0.8000 sd = 4.5000

N = 50 corr = 0.4000
d0 = 0.0000

sd_d = 4.9295

Estimated effect size and target parameters:

delta = 0.4042
da = 1.9924

ma2 = 29.4924
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The smallest detectable difference is 1.99, with a corresponding value of the average tree height for
the fertilized trees of 29.5.

Analysis of variance models

The power command provides PSS computations for three types of analyses of variance (ANOVA)
designs: one way, two way, and repeated measures. power oneway performs PSS analysis for a
one-way ANOVA. power twoway performs PSS analysis for a two-way ANOVA. power repeated
performs PSS analysis for a repeated-measures ANOVA.

power oneway provides PSS computations for a one-way ANOVA model. You can choose between
the overall F test of the equality of group means and a test of a mean contrast. You can either specify
group means or specify their variability in the computations. See [PSS-2] power oneway.

power twoway provides PSS computations for a two-way fixed-effects ANOVA model. You can
choose the overall F test of the main effect of a row factor, a column factor, or a row-by-column
interaction. You can either specify cell means or specify the variance explained by the tested effect.
See [PSS-2] power twoway.

power repeated provides PSS computations for one-way and two-way fixed-effects repeated-
measures ANOVA models. You can choose the overall F test of the main effect of a between-subjects
factor, a within-subject factor, or a between–within factor interaction. You can either specify cell
means or specify the variance explained by the tested effect. See [PSS-2] power repeated.

All methods compute sample size given power and effect size, power given sample size and effect
size, or effect size given power and sample size.

For power and sample-size determination of power oneway, an effect may be supplied by specifying
the alternative values of group means as command arguments ma1, ma2, ma3, and so on:

power oneway ma1 ma2

[
ma3 . . .

]
, . . .

Instead of the alternative group means, you can specify the variance of the group means in the
varmeans() option and the number of groups in the ngroups() option:

power oneway, ngroups() varmeans() . . .

For power and sample-size determination of power twoway and power repeated, an effect may
be supplied by specifying the alternative values of cell means as command arguments ma1,1, ma1,2,
and so on, in a matrix form:

power twoway ma1,1 ma1,2

[
. . .
]
\ ma2,1 ma2,2

[
. . .
]
, . . .

power repeated ma1,1 ma1,2

[
. . .
] [

\ ma2,1 ma2,2

[
. . .
] ]
, . . .

Instead of the alternative cell means, you can specify the variance of the tested effect in the
vareffect() option and the dimensions of the cell-means matrix: number of rows and columns for
power twoway and number of groups and repeated measures for power repeated:

power twoway, nrows() ncols() factor() vareffect() . . .

power repeated, ngroups() nrepeated() factor() vareffect() . . .

The means can also be supplied as a matrix at the command line. For example, suppose that we
have three groups.

power oneway ma1 ma2 ma3, . . .
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The above command would be equivalent to

matrix means = (ma1,ma2,ma3)

power oneway means, . . .

There are also other alternative specifications of an effect with these commands. See the specific
entry of each command.

For sample-size determination, the reported sample size is rounded up to the nearest integer. This
ensures that the corresponding actual power is at least as large as the specified power. You can specify
the nfractional option to obtain the corresponding fractional sample size, or you can recompute
the actual power using the reported rounded value; see Fractional sample sizes in [PSS-4] Unbalanced
designs for details.

Below we show a quick example of PSS analysis for a one-way ANOVA model. See [PSS-2] power
oneway, [PSS-2] power twoway, and [PSS-2] power repeated for more examples.

Example 4: PSS analysis for a one-way ANOVA model

Researchers would like to compare the effects of four drugs on systolic blood pressure. They
would like to use a one-way ANOVA model to test the equality of mean blood-pressure measurements
across four drugs. To conduct a study, the researchers need an estimate for the number of subjects to
be enrolled in a study. From a previous pilot study, the variance between group means was estimated
to be 57, and the error variance was estimated to be 115. The researchers would like to compute
the required sample size to detect the effect size of 0.7040 =

√
57/115 with 80% power using a

5%-level F test of the equality of means assuming a balanced design.

We use power oneway to compute the sample size. We specify the number of groups and the
estimates of variances in the corresponding options. The default value for power is 0.8 and for
significance level is 0.05, so we omit the corresponding options power(0.8) and alpha(0.05).

. power oneway, ngroups(4) varmeans(57) varerror(115)

Estimated sample size for one-way ANOVA
F test for group effect
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7040

N_g = 4
Var_m = 57.0000
Var_e = 115.0000

Estimated sample sizes:

N = 28
N per group = 7

The researchers need to recruit 28 subjects, 7 subjects per group, for this study.

Unfortunately, the researchers can afford to recruit only 20 subjects. They wish to compute the
power corresponding to this smaller sample size. To compute power, we additionally specify sample
size in the n() option:
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. power oneway, n(20) ngroups(4) varmeans(57) varerror(115)

Estimated power for one-way ANOVA
F test for group effect
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
N = 20

N per group = 5
delta = 0.7040

N_g = 4
Var_m = 57.0000
Var_e = 115.0000

Estimated power:

power = 0.6400

The power decreases to 0.64.

The researchers are not satisfied with such a low power. They now would like to compute the
smallest effect size and the corresponding variance of means that can be detected with the power of
80% and the sample size of 20. To compute effect size, we specify both power and sample size in
respective options:

. power oneway, n(20) power(0.8) ngroups(4) varerror(115)

Performing iteration ...

Estimated between-group variance for one-way ANOVA
F test for group effect
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 20
N per group = 5

N_g = 4
Var_e = 115.0000

Estimated effect size and between-group variance:

delta = 0.8353
Var_m = 80.2329

The smallest detectable effect size is 0.8353, with a corresponding value of the between-group variance
of 80.2329.

Linear regression
The power command provides PSS computations for a linear regression model. power oneslope

provides PSS computations for a slope test in a simple linear regression. power rsquared provides PSS
computations for an R2 test in a multiple linear regression. power pcorr provides PSS computations
for a partial-correlation test in a multiple linear regression.

power oneslope provides estimates of sample size, power, or target slope in a simple linear
regression. It supports multiple ways of specifying the effect size, which is defined as the difference
between the alternative and null values of the slope multiplied by the ratio of standard deviations of
the covariate to the error term. Instead of specifying the standard deviation of the error term using the
sderror() option, users can specify the standard deviation of the dependent variable in sdy() or the
correlation between the dependent variable and the covariate of interest in corr(). See [PSS-2] power
oneslope.
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power rsquared reports estimates of sample size, power, or target R2 in a multiple linear
regression using an R2 test. An R2 test is an F test of the coefficient of determination, R2, which
is used to test the significance of coefficients in a multiple linear regression. When the ncontrol()
option is not specified, the computation is based on a test of all coefficients in the model. When the
ncontrol() option is specified, the computation is based on a test of a subset of coefficients in the
full model against the reduced model. See [PSS-2] power rsquared.

power pcorr provides estimates of sample size, power, or target squared partial correlation for
a partial-correlation test in a multiple linear regression. power pcorr is an alternative to power
rsquared, ncontrol() for testing the significance of a subset of coefficients using a partial-
correlation test. See [PSS-2] power pcorr.

Below we show two examples of PSS analysis for a linear regression model.

Example 5: Sample size for the test of the slope in a simple linear regression model

Consider a hypothetical study for which the goal is to investigate the effect of average time spent
per day exercising on BMI, measured in kg/m2. The parameter of interest is the slope coefficient b,
which measures the effect of exercising on BMI. Our null hypothesis is H0: b = 0 versus a two-sided
alternative Ha: b 6= 0.

We wish to compute the sample size required to detect a drop in BMI of 0.1 kg/m2 per minute
of exercise, with 80% power using a 5%-level two-sided test. We assume a standard deviation of 10
minutes for time spent exercising in sdx() and 4.0 kg/m2 for BMI in sdy().

. power oneslope 0 -0.1, sdx(10) sdy(4)

Performing iteration ...

Estimated sample size for a linear regression slope test
t test
H0: b = b0 versus Ha: b != b0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.2582

b0 = 0.0000
ba = -0.1000

sdx = 10.0000
sderror = 3.8730

sdy = 4.0000

Estimated sample size:

N = 120

The required sample size is 120. See [PSS-2] power oneslope for details.

Example 6: Power of an R2 test in a multiple linear regression model

Consider a hypothetical study for which the goal is to investigate the effect of verbal aptitude and
extraversion on sales, controlling for age, education, and prior experience.

Suppose that all five variables—verbal aptitude, extraversion, age, education, and prior experience—
explain about 10% of the variance of the sales and that the three control variables—age, education,
and prior experience—explain about 6% of the variance of the sales. We want to compute the power of
detecting a 4% change in the R2 after adding the two tested variables, verbal aptitude and extraversion,
to the model, with 100 subjects at a 5% significance level:
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. power rsquared .06 .1, ntested(2) ncontrol(3) n(100)

Estimated power for multiple linear regression
F test for R2 testing subset of coefficients
H0: R2_F = R2_R versus Ha: R2_F != R2_R

Study parameters:

alpha = 0.0500
N = 100

delta = 0.0444
R2_R = 0.0600
R2_F = 0.1000

R2_diff = 0.0400
ncontrol = 3
ntested = 2

Estimated power:

power = 0.4431

The achieved power is about 44%. See [PSS-2] power rsquared for details.

Contingency tables

The power command provides PSS computations for three types of analyses of contingency tables.

power cmh performs PSS analysis for a Cochran–Mantel–Haenszel (CMH) test of association in
stratified 2× 2 tables. The command accommodates unbalanced stratum sizes and unbalanced group
sizes within each stratum. See [PSS-2] power cmh.

power mcc performs PSS analysis for a test of association between a risk factor and a disease in
1:M matched case–control studies. See [PSS-2] power mcc.

power trend performs PSS analysis for a test of a linear trend in a probability of response
in J × 2 tables, also known as a Cochran–Armitage test. It accommodates unbalanced designs and
unequally spaced exposure levels (doses). With equally spaced exposure levels, a continuity correction
is available. See [PSS-2] power trend.

All methods compute sample size given power and effect size and power given sample size and
effect size. power cmh and power mcc also compute effect size given power and sample size.

For sample-size determination, the reported sample sizes are rounded up to the nearest integer.
This ensures that the corresponding actual power is at least as large as the specified power. You
can specify the nfractional option to obtain the corresponding fractional sample sizes, or you
can recompute the actual power using the reported rounded values; see Fractional sample sizes in
[PSS-4] Unbalanced designs for details.

Below we show a quick example of PSS analysis for a Cochran–Armitage test by using power
trend; see [PSS-2] power trend for more examples.

Example 7: Sample size for a Cochran–Armitage trend test

Consider a study investigating the effectiveness of a new topical antibiotic for the treatment of
skin infections.

Suppose that in previous studies of the treatment, we observed the following proportions of
successfully treated cases at different doses. We may hypothesize that these represent the probability
of a successful treatment for each dose.
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Doses/day Proportion successes

1 0.80
2 0.85
3 0.90

We wish to determine the minimum sample size required for a clinical trial designed to detect a
dose–response trend with 80% power using a two-sided 5%-level Cochran–Armitage test.

To compute the required sample size, we specify the values 0.80, 0.85, and 0.90 as the alternative
success probabilities for each of the three doses after the command name. We omit the alpha(0.05)
and power(0.8) options because the specified values are their defaults.

. power trend .80 .85 .90
note: exposure levels are assumed to be equally spaced.

Performing iteration ...

Estimated sample size for a trend test
Cochran--Armitage trend test
H0: b = 0 versus Ha: b != 0; logit(p) = a + b*x

Study parameters:

alpha = 0.0500
power = 0.8000

N_g = 3
p1 = 0.8000
p2 = 0.8500
p3 = 0.9000

Estimated sample sizes:

N = 597
N per group = 199

A total sample of 597 individuals, 199 individuals per group, must be obtained to detect a linear trend
in probability of a successful treatment with 80% power using a two-sided 5%-level Cochran–Armitage
test.

Suppose that we can recruit only 300 subjects. We can check how such a reduction in sample size
affects the power. To compute power, we specify the alternative group probabilities, as before, and
the total sample size in the n() option.

. power trend .80 .85 .90, n(300)
note: exposure levels are assumed to be equally spaced.

Estimated power for a trend test
Cochran--Armitage trend test
H0: b = 0 versus Ha: b != 0; logit(p) = a + b*x

Study parameters:

alpha = 0.0500
N = 300

N per group = 100
N_g = 3
p1 = 0.8000
p2 = 0.8500
p3 = 0.9000

Estimated power:

power = 0.5082

With a sample of 300 subjects in this study, the power to detect a linear trend in probabilities decreases
dramatically from 0.8 to 0.5, which is unacceptably low for practical purposes.
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Survival analysis

The power command provides PSS computations for survival analysis comparing two survivor
functions using the log-rank test or the exponential test, as well as for more general survival analysis
investigating the effect of a single covariate in a Cox proportional hazards regression model, possibly
in the presence of other covariates. It provides the estimate of the number of events required to be
observed (or the expected number of events) in a study. The minimal effect size (minimal detectable
difference, expressed as the hazard ratio or the log hazard-ratio) may also be obtained for the log-rank
test and for the Wald test on a single coefficient from the Cox model.

power cox provides estimates of sample size, power, or the minimal detectable value of the
coefficient when an effect of a single covariate on subject survival is to be explored using Cox
proportional hazards regression. It is assumed that the effect is to be tested using the partial likelihood
from the Cox model (for example, score or Wald test) on the coefficient of the covariate of interest.
See [PSS-2] power cox.

power exponential reports estimates of sample size or power when the disparity in the two
exponential survivor functions is to be tested using the exponential test, the parametric test comparing
the two exponential hazard rates. In particular, we refer to the (exponential) hazard-difference test as
the exponential test for the difference between hazards and the (exponential) log hazard-ratio test as
the exponential test for the log of the hazard ratio or, equivalently, for the difference between log
hazards. See [PSS-2] power exponential.

power logrank reports estimates of sample size, power, or minimal detectable value of the hazard
ratio (or log hazard-ratio) in the case when the two survivor functions are to be compared using the
log-rank test. The only requirement about the distribution of the survivor functions is that the two
survivor functions must satisfy the proportional-hazards assumption. See [PSS-2] power logrank.

For sample-size and power computations, the default effect size corresponds to a value of the
hazard ratio of 0.5 and may be changed by specifying the hratio() option. The hazard ratio is
defined as a ratio of hazards of the experimental group to the control group (or the less favorable of
the two groups). Other ways of specifying the effect size are available, and these are particular to
each subcommand.

By default, all subcommands assume a type I study, that is, perform computations for uncensored
survival data. The censoring information may be taken into account by specifying the appropriate
arguments or options. See [PSS-2] power cox, [PSS-2] power logrank, and [PSS-2] power exponential
for details.

Example 8: Sample size for the test of the effect of a covariate in the Cox model

Consider a hypothetical study for which the goal is to investigate the effect of the expression of one
gene on subject survival with the Cox proportional hazards regression model. Suppose that the Wald
test is to be used to test the coefficient on the gene after fitting the Cox model. Gene expression values
measure the level of activity of the gene. Consider the scenario described in Simon, Radmacher, and
Dobbin (2002) in which the hazard ratio of 3 associated with a one-unit change in the log2 intensity
of a gene (or, respectively, with a twofold change in gene expression level) is desired to be detected
with 95% power using a two-sided, 0.001-level test. The estimate of the standard deviation of the
log2-intensity level of the gene over the entire set of samples is assumed to be 0.75.
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. power cox, hratio(3) sd(0.75) power(0.95) alpha(0.001)

Estimated sample size for Cox PH regression
Wald test
H0: beta1 = 0 versus Ha: beta1 != 0

Study parameters:

alpha = 0.0010
power = 0.9500
delta = 1.0986 (coefficient)

hratio = 3.0000
sd = 0.7500

Censoring:

Pr_E = 1.0000

Estimated number of events and sample size:

E = 36
N = 36

Provided that all subjects experience an event in this study, a total of 36 events is required to be
observed in the study to ensure the specified power.

See [PSS-2] power cox for more details.

Example 9: Sample size for two-sample test of exponential survivor functions

Consider an example from Lachin (2011, 490) of a study comparing two therapies, the combination
of a new therapy with the standard one versus the standard alone, in the treatment of lupus nephritis
patients. From previous studies, the survivor function of the control group treated with the standard
therapy was log linear with a constant yearly hazard rate of 0.3. The number of events (failures)
required to ensure 90% power to detect a 50% risk reduction, ∆ = 0.5, (or, respectively, the log
hazard-ratio of ln(0.5) = −0.6931) with a one-sided test at a 0.05 significance level was obtained
to be 72 under equal-group allocation. In the absence of censoring, Lachin (2011) determined that
a total of 72 subjects (36 per group) would have to be recruited to the study. To obtain this same
estimate with power exponential, we supply the control hazard rate 0.3 as an argument and
specify the power(0.9), onesided, and loghazard options to request 90% power, a one-sided
test, and sample-size determination for the exponential log hazard-ratio test (or test for the log-hazard
difference), respectively.

. power exponential 0.3, power(0.9) onesided loghazard
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, log hazard-ratio, conditional
H0: ln(HR) = 0 versus Ha: ln(HR) < 0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.6931 (log hazard-ratio)

Survival information:

h1 = 0.3000
h2 = 0.1500

hratio = 0.5000

Estimated sample sizes:

N = 72
N per group = 36
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Further, the study was planned to continue for 6 years with a recruitment period of 4 years.
Subjects who did not experience an event by the end of 6 years were censored. For this fixed-duration
study with uniform entry (recruitment), the estimate of the sample size increases from 72 to 128.
We specify the length of the accrual and the follow-up periods in the aperiod() and fperiod()
options, respectively. We also request to display the expected number of events by using the show
option.

. power exponential 0.3, power(0.9) onesided loghazard aperiod(4) fperiod(2) show
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, log hazard-ratio, conditional
H0: ln(HR) = 0 versus Ha: ln(HR) < 0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.6931 (log hazard-ratio)

Accrual and follow-up information:

duration = 6.0000
follow-up = 2.0000

accrual = 4.0000 (uniform)

Survival information:

h1 = 0.3000
h2 = 0.1500

hratio = 0.5000

Estimated expected number of events:

E|Ha = 72 E|H0 = 74
E1|Ha = 44 E1|H0 = 37
E2|Ha = 28 E2|H0 = 37

Estimated sample sizes:

N = 128
N per group = 64

Under the alternative hypothesis of Ha: ln(∆) = −0.6931, where ln(∆) denotes the log hazard-
ratio of the experimental group to the control group, we expect to observe 44 events in the control
group and 28 events in the experimental group. A total of 128 subjects (64 per group) is required to
be enrolled into the study to observe an expected total of 72 events under the alternative.

See [PSS-2] power exponential for more examples.

Example 10: Sample size for the log-rank test

Consider an example from Machin and Campbell (2005) of a study comparing two forms of surgical
resection for patients with gastric cancer. From a prestudy survey, the baseline 5-year survival rate was
expected to be 20% and an anticipated increase in survival in the experimental group expressed as a
hazard ratio of 0.6667 (corresponding to a 5-year survival rate of approximately 34%) was desired to
be detected with 90% power using a two-sided, 0.05 level, log-rank test under 1:1 randomization. To
obtain the estimate of the sample size for this study, we use power logrank with survival proportion
in the control group 0.2 supplied as an argument, the hratio(0.6667) option to request a hazard
ratio of 0.6667, and the power(0.9) option to request 90% power.
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. power logrank 0.2, hratio(0.6667) power(0.9)

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = 0.6667 (hazard ratio)

hratio = 0.6667

Censoring:

s1 = 0.2000
s2 = 0.3420

Pr_E = 0.7290

Estimated number of events and sample sizes:

E = 263
N = 362

N per group = 181

From the output, 263 events (failures) are required to be observed in this study to ensure 90%
power to detect a hazard ratio of 0.6667 by using the log-rank test. The respective estimate of the
total number of subjects required to observe 263 events in a 5-year study is 362 with 181 subjects
per surgical group. Our estimate, 181, of each group’s sample size is close to the manually computed
estimate of 180 from Machin and Campbell (2005). This is a fixed-duration study in which 20% of
subjects were expected to survive (be censored) by the end of the study.

See [PSS-2] power logrank for more detailed examples and other available methods of sample-size
computation for this type of analysis.

Cluster randomized designs

So far, all power analyses have assumed simple randomization of the subjects in the study. We
could instead have a cluster randomized design (CRD). In a CRD, groups of subjects or clusters are
randomized instead of individual subjects, so the sample size is determined by the number of clusters
and the cluster size. The sample-size determination thus consists of the determination of the number
of clusters given cluster size or the determination of cluster size given the number of clusters.

power supports CRDs with methods onemean, oneproportion, twomeans, twoproportions,
and logrank. To request computations for a CRD, you specify the cluster option, include the
number of clusters k() with one-sample methods and k1() or k2() with two-sample methods, or
include the cluster size m(), m1(), or m2(). In addition to power and effect size, all methods compute
the numbers of clusters given the cluster sizes or the cluster sizes given the numbers of clusters.
Two-sample methods can also compute the number of clusters or cluster size of one group given that
of the other group.

A CRD requires more subjects to obtain the same statistical power as the corresponding individual-
level design because the subjects within a cluster are correlated. Power and sample-size computations
in a CRD account for this intraclass correlation. All power, cluster methods use the default intraclass
correlation of 0.5, but you may change this by using the rho() option.

By default, all methods assume equal cluster sizes or equal numbers of subjects in each cluster.
In practice, cluster sizes often vary, in which case you may provide the coefficient of variation of the
cluster sizes in the cvcluster() option to account for varying cluster sizes.
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Below we show a short example of PSS analysis for power onemean for the one-sample case and
power twoproportions for the two-sample case. See [PSS-2] power onemean, cluster, [PSS-2] power
oneproportion, cluster, [PSS-2] power twomeans, cluster, [PSS-2] power twoproportions, cluster,
and [PSS-2] power logrank, cluster for more examples.

Example 11: Number of clusters for a one-sample mean test in a CRD, specifying cluster
size

Consider an example that studies the effectiveness of coaching programs in improving the verbal
part of SAT scores. Previous studies found that students retaking the SAT exams without any coaching
program improve their scores by 15 points on average with a standard deviation of about 40 points.
The population standard deviation is assumed to be 40. We assume that students are sampled from a
set of classes and that the scores of students from the same class are correlated. We plan on sampling
10 students from each class and assume that the intraclass correlation is 0.3.

A new coaching program claims to improve average SAT scores by 40 points. The changes in scores
are assumed to be approximately normally distributed. The parameter of interest in this example is
the mean change in the test scores. To test the claim, investigators wish to conduct another study and
compute the number of classes that is required to detect a mean change in scores of 40 points with
80% power using a 5%-level two-sided test:

. power onemean 15 40, m(10) sd(40) rho(0.3)

Performing iteration ...

Estimated number of clusters for a one-sample mean test
Cluster randomized design, z test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.3249

m0 = 15.0000
ma = 40.0000
sd = 40.0000

Cluster design:

M = 10
rho = 0.3000

Estimated number of clusters and sample size:

K = 8
N = 80

We find that 8 classes with 10 students per class, a total of 80 students, are required to detect a shift
of 40 points in average SAT scores given the standard deviation of 40 points with 80% power using
a 5%-level two-sided test. See [PSS-2] power onemean, cluster for more information.

Example 12: Numbers of clusters for a two-sample proportions test in a CRD, specifying
cluster sizes

Consider a study investigating the effectiveness of a program to promote after-school activities in
increasing the rate of students participating in the after-school club. Schools that are involved in the
study will be randomly assigned either to the experimental group that participates in the program or
to the control group that does not. A researcher plans to recruit 50 students from each school and
assumes an intraclass correlation of 0.2. The researcher wants to be able to detect an increase of 0.2
in the anticipated control-group rate of 0.4, which corresponds to the experimental-group rate of 0.6.
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To compute the number of schools in each group required to detect the desired rate with 80%
power using a 5%-level two-sided test, we type

. power twoproportions 0.4 0.6, m1(50) m2(50) rho(0.2)

Performing iteration ...

Estimated numbers of clusters for a two-sample proportions test
Cluster randomized design, Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000 (difference)

p1 = 0.4000
p2 = 0.6000

Cluster design:

M1 = 50
M2 = 50

rho = 0.2000

Estimated numbers of clusters and sample sizes:

K1 = 21
K2 = 21
N1 = 1,050
N2 = 1,050

We find that for 50 students, 21 schools per group, with a total of 1,050 students per group, are
required to detect a 0.2 difference in participation rates in the after-school club with 80% power using
a 5%-level two-sided test. See [PSS-2] power twoproportions, cluster for more information.

Tables of results
When power is used to perform computations for a single set of study parameters, the results can

be displayed either as text or in a table. The default is to display results as text:

. power onemean 0 0.2

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000

m0 = 0.0000
ma = 0.2000
sd = 1.0000

Estimated sample size:

N = 199
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You can specify the table option to display results in a table:

. power onemean 0 0.2, table

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

alpha power N delta m0 ma sd

.05 .8 199 .2 0 .2 1

For multiple sets of study parameters, when command arguments or options contain number lists,
the results are automatically displayed in a table:

. power onemean 0 (0.2 0.5)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

alpha power N delta m0 ma sd

.05 .8 199 .2 0 .2 1

.05 .8 34 .5 0 .5 1

In this example, we specified two values for the second argument.

Default tables can be modified by specifying the table() option. For example, we can change
the order in which the columns are displayed:

. power onemean 0 (0.2 0.5), table(alpha power N m0 ma sd delta)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

alpha power N m0 ma sd delta

.05 .8 199 0 .2 1 .2

.05 .8 34 0 .5 1 .5

Or we can change column labels:

. power onemean 0 (0.2 0.5), table(, labels(N "Sample size"))

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

alpha power Sample size delta m0 ma sd

.05 .8 199 .2 0 .2 1

.05 .8 34 .5 0 .5 1
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Or we can select which columns we want to display:

. power onemean 0 (0.2 0.5), table(alpha beta N m0 ma sd)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

alpha beta N m0 ma sd

.05 .2 199 0 .2 1

.05 .2 34 0 .5 1

For more examples, see [PSS-2] power, table.

Power curves
During the planning stage of a study, it is difficult to decide on a number of subjects to be enrolled

in a study on the basis of only one set of study parameters. It is common to investigate the effect of
various study scenarios on power. Power curves, or plots of estimated power versus one of the study
parameters, are commonly used for this purpose.

The power command provides the graph and graph() options to produce power curves.

More precisely, when graph is specified, the estimated parameter such as power or sample size
is plotted on the y axis, and the varying parameter is plotted on the x axis.

For example, we compute power and plot it as a function of sample size for a range of sample-size
values between 100 and 200 with a step size of 10:

. power onemean 0 0.2, n(100(10)200) graph
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Or we can compute sample size and plot it as a function of the alternative mean when the mean
ranges between 0.2 and 1 with a step size of 0.1:

. power onemean 0 (0.2(0.1)1), graph
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Or we can compute the alternative mean for a given power of 80% and a range of sample-size
values between 100 and 200 with a step size of 10, and plot it against the sample size:

. power onemean 0, n(100(10)200) power(0.8) graph
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The above graphs are the default graphs produced by power, graph. Similarly to tabular output,
you can customize graphical output by specifying the graph() option.

For example, we modify the look of the default graph by using the graph(nosimplelabels
legend(title(""))) option. nosimplelabels requests that the graph legend include the column
symbol and an equal sign; legend(title("")) requests that the legend not have a title.
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. power onemean 0 (0.2(0.1)1), sd(1 1.5) graph(nosimplelabels legend(title("")))
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By default, when a graph is produced, the tabular output is suppressed. You can specify the table
option if you also want to see results in a table.

For more examples, see [PSS-2] power, graph.

Add your own methods to power

The power command provides many built-in methods, but sometimes, you may want to compute
sample size or power yourself. For example, you may need to do this by simulation, or you may
want to use a method that is not available in any software package. power makes it easy for you to
add your own method. All you need to do is to write a program that computes sample size, power,
or effect size, and the power command will do the rest for you. It will deal with the support of
multiple values in options and with automatic generation of graphs and tables of results.

Suppose you want to add the method called mymethod to the power command. Just follow these
three steps:

1. Create a program that computes sample size, power, or effect size and follows power’s
naming convention: power cmd mymethod.

2. Store results following power’s simple naming conventions for results. For example, store
the value of power in r(power), the value of sample size in r(N), and so on.

3. Place your program power cmd mymethod where Stata can find it.

To show how easy this all is, let’s write a program to compute power for a one-sample z test given
sample size, standardized difference, and significance level. For simplicity, we assume a two-sided
test.
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We will call our new method myztest.

program power_cmd_myztest, rclass
version 18.0

// parse options
syntax , n(integer) /// sample size

STDDiff(real) /// standardized diff.
Alpha(string) /// significance level

// compute power
tempname power
scalar ‘power’ = normal(‘stddiff’*sqrt(‘n’) - ///

invnormal(1-‘alpha’/2))
// return results

return scalar power = ‘power’
return scalar N = ‘n’
return scalar alpha = ‘alpha’
return scalar stddiff = ‘stddiff’

end

The computation in this program takes only one line, but it could be as complicated as we like.
It could even involve simulation to compute the power.

With our program in hand, we can type

. power myztest, n(20) stddiff(1) alpha(.05)

power will find our program, supply it with the n(20), stddiff(1), and alpha(.05) options,
and use its returned results to produce

. power myztest, n(20) stddiff(1) alpha(.05)

Estimated power
Two-sided test

alpha power N

.05 .994 20

That was not too impressive. Our program did all the work.

What if we supplied power with a list of sample sizes?

. power myztest, n(10 15 20 25) stddiff(1)

Estimated power
Two-sided test

alpha power N

.05 .8854 10

.05 .9721 15

.05 .994 20

.05 .9988 25

power has taken our list of sample sizes and computed powers for all of them—even though our
program could only compute a single power!

Moreover, we can use power’s standard table() option to control exactly how that table looks;
see Table of results for more examples of tables. power also has hooks that let our program determine
how the columns are labeled and how the table appears.
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We can supply both sample sizes and significance levels and request a graph instead of a table:

. power myztest, n(10(1)20) alpha(.05 .10 .25) stddiff(1) graph
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We can even request that the graph show α on the x axis with separate plots for each sample size.

. power myztest, n(10(2)20) alpha(.05 .10 .25) stddiff(1) graph(xdim(alpha))
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All this may make it worth writing more complicated programs to compute power for more
complicated tests and comparisons.

See [PSS-2] power usermethod for more examples.
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Stored results
power stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
r(nratio) ratio of sample sizes, N2/N1
r(nratio a) actual ratio of sample sizes
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value of the estimated parameter
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) the name of the specified method
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Also see Stored results in the method-specific manual entries for the full list of stored results.

Methods and formulas
By default, the power command rounds sample sizes to integers and uses integer values in the

computations. To ensure conservative results, the command rounds down the input sample sizes and
rounds up the output sample sizes. See Fractional sample sizes in [PSS-4] Unbalanced designs for
details.

Some of power’s methods require iteration. For example, the sample size for a two-sided test
is usually solved iteratively from the two-sided power equation. Most methods use Mata function
solvenl() and its Newton’s method described in Newton-type methods in [M-5] solvenl( ) to solve a
nonlinear power equation. Other methods use a bisection method to find a root of a nonlinear power
equation.

See Methods and formulas in the method-specific manual entries for details.
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power usermethod — Add your own methods to the power command

Description Syntax Remarks and examples References
Also see

Description

The power command allows you to add your own methods to power and produce tables and
graphs of results automatically.

Syntax
Compute sample size

power usermethod . . .
[
, power(numlist) poweropts useropts

]
Compute power

power usermethod . . . , nspec
[

poweropts useropts
]

Compute effect size

power usermethod . . . , nspec power(numlist)
[

poweropts useropts
]

usermethod is the name of the method you would like to add to the power command. When naming
your power methods, you should follow the same convention as for naming the programs you
add to Stata—do not pick “nice” names that may later be used by Stata’s official methods. The
length of usermethod may not exceed 16 characters.

useropts are the options supported by your method usermethod.

nspec contains n(numlist) for a one-sample test or any of the sample-size options of poweropts such
as n1(numlist) and n2(numlist) for a two-sample test.

collect is allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples

Adding your own methods to power is easy. Suppose you want to add a method called mymethod
to power. Simply

1. write an r-class program called power cmd mymethod that computes power, sample size, or
effect size and follows power’s convention for naming common options and storing results;
and

2. place the program where Stata can find it.

You are done. You can now use mymethod within power like any other official power method.
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Remarks are presented under the following headings:

A quick example
Steps for adding a new method to the power command
Convention for naming options and storing results
Allowing multiple values in method-specific options
Customizing default tables

Setting supported columns
Modifying the default table columns
Modifying the look of the default table
Example continued

Customizing default graphs
Other settings
Handling parsing more efficiently
More examples: Adding two-sample methods
Initializer’s s() return settings

A quick example

Before we discuss the technical details in the following sections, let’s try an example. Let’s write
a program to compute power for a one-sample z test given sample size, standardized difference, and
significance level. For simplicity, we assume a two-sided test. We will call our new method myztest.

We create an ado-file called power cmd myztest.ado that contains the following Stata program:

// evaluator
program power_cmd_myztest, rclass

version 18.0
/* parse options */

syntax, n(integer) /// sample size
STDDiff(real) /// standardized difference
Alpha(string) /// significance level

/* compute power */
tempname power
scalar ‘power’ = normal(‘stddiff’*sqrt(‘n’) - invnormal(1-‘alpha’/2))
/* return results */
return scalar power = ‘power’
return scalar N = ‘n’
return scalar alpha = ‘alpha’
return scalar stddiff = ‘stddiff’
end

Our ado-program consists of three sections: the syntax command for parsing options, the power
computation, and stored or returned results. The three sections work as follows:

The power cmd myztest program has two of power’s common options, n() for sample
size and alpha() for significance level, and it has its own option, stddiff(), to specify
a standardized difference.

After the options are parsed, the power is computed and stored in a temporary scalar ‘power’.

Finally, the resulting power and other results are stored in return scalars. Following power’s
convention for naming commonly returned results, the computed power is stored in r(power),
the sample size in r(N), and the significance level in r(alpha). The program additionally
stores the standardized difference in r(stddiff).
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We can now use myztest within power as we would any other existing method of power:

. power myztest, alpha(0.05) n(10) stddiff(0.25)

Estimated power
Two-sided test

alpha power N

.05 .1211 10

We can compute results for multiple sample sizes by specifying multiple values in the n() option.
Note that our power cmd myztest program accepts only one value at a time in n(). When a numlist
is specified in the power command’s n() option, power automatically handles that numlist for us.

. power myztest, alpha(0.05) n(10 20) stddiff(0.25)

Estimated power
Two-sided test

alpha power N

.05 .1211 10

.05 .1999 20

We can also compute results for multiple sample sizes and significance levels without any additional
effort on our part:

. power myztest, alpha(0.01 0.05) n(10 20) stddiff(0.25)

Estimated power
Two-sided test

alpha power N

.01 .03711 10

.01 .07245 20

.05 .1211 10

.05 .1999 20
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We can even produce a graph by merely specifying the graph option:

. power myztest, alpha(0.01 0.05) n(10(10)100) stddiff(0.25) graph
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The above is just a simple example. Your program can be as complicated as you would like: you
can even use simulations to compute your results. You can also customize your tables and graphs
with a little extra effort.

Steps for adding a new method to the power command

Suppose you want to add your own method, usermethod, to the power command. Here is an
outline of the steps to follow:

1. Create the evaluator, an r-class program called power cmd usermethod and defined by the
ado-file power cmd usermethod.ado, that performs power and sample-size computations
and follows power’s convention for naming options and storing results.

2. Optionally, create an initializer, an s-class program called power cmd usermethod init
and defined by the ado-file power cmd usermethod init.ado, that specifies information
about table columns, options that may allow a numlist, and so on.

3. Optionally, create a parser, a program called power cmd usermethod parse and defined
by the ado-file power cmd usermethod parse.ado, that checks the syntax of user-specific
options, useropts.

4. Place all of your programs where Stata can find them.

You can now use your usermethod with power:

. power usermethod . . .

You may also use programs within power that are not defined by an ado-file (that is, they were
defined in a do-file or by hand).
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Convention for naming options and storing results

For the power command to automatically recognize its common options, you must ensure that you
follow power’s naming convention for these options in your program. For example, power specifies
the significance level in the alpha() option with minimum abbreviation of a(). You need to ensure
that you use the same option with the same abbreviation in your evaluator to specify the significance
level. The same applies to all of power’s common options described in [PSS-2] power.

You can specify additional method-specific options, but power will not know about them unless
you make it aware of them; see Allowing multiple values in method-specific options for details.

To produce tables and graphs of results, you must ensure that your evaluator follows power’s
convention for storing results. power’s commonly stored results are described in Stored results of
[PSS-2] power. For example, the value for power should be stored in the scalar r(power), the value
for a total sample size in the scalar r(N), the value for a significance level in r(alpha), and so on.

You can also store additional method-specific results, but power will not know about them unless
you make it aware of them; see Customizing default tables for details.

Allowing multiple values in method-specific options

By default, the power command accepts multiple values only within its common options. If you
want to allow multiple values in the method-specific options useropts, you need to let power know
about them. This is done via the initializer.

To allow the specification of multiple values, or a numlist, in method-specific options, you need to
list the names of the options with proper abbreviations in an s-class macro s(pss numopts) within
the power cmd usermethod init program.

Recall our earlier example in which we added the myztest method, calculating the power of a
two-sided one-sample z test, to power. We computed powers for multiple values of significance level
and sample size. What if we would also like to specify multiple values of standardized differences
in the stddiff() option of myztest? If we do this now, we will receive an error message,

. power myztest, alpha(0.05) n(10) stddiff(0.25 0.5)
option stddiff() invalid
r(198);

because the stddiff() option is not allowed to include numlist by the evaluator and is not
one of power’s common options. To make power recognize this option as one allowing numlist,
we need to specify this in the initializer. Following the guidelines, we create an ado-file called
power cmd myztest init.ado and specify the name of the stddiff() option (with the corre-
sponding abbreviation) in the s-class macro s(pss numopts) within the power cmd myztest init
program.

// initializer
program power_cmd_myztest_init, sclass

version 18.0
sreturn clear
sreturn local pss_numopts "STDDiff"

end
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We now can specify multiple standardized differences:

. power myztest, alpha(0.05) n(10) stddiff(0.25 0.5)

Estimated power
Two-sided test

alpha power N

.05 .1211 10

.05 .3524 10

Customizing default tables

The power command with user-defined methods always displays results in a table. By default, it
displays columns alpha, power or beta (whichever is specified), and N, which contain the significance
level, the power, and the sample size, respectively. See Setting supported columns and Modifying the
default table columns for details on how to customize the default table columns.

The default column labels are the column names, and the default formats are %7.4g for alpha
and power and %7.0gc for N. These and other settings controlling the look of the default table can
be changed as described in Modifying the look of the default table.

You can always use the table() option to customize your table. However, if you want to modify
how the table looks by default, you need to follow the steps described in the following sections:

Setting supported columns
Modifying the default table columns
Modifying the look of the default table
Example continued

Setting supported columns

The power command automatically supports a number of columns, such as alpha, beta, power,
N, etc. The supported columns are the columns that can be accessed within power’s options table()
and graph().

Most of the time, you will have additional columns, usercolnames, which you will want power to
support. To make power recognize the columns as supported columns, you must list the names of the
additional columns, usercolnames, in an s-class macro s(pss colnames) in the initializer. Columns
usercolnames will then be added to power’s list of supported columns. Columns usercolnames will
also be displayed in the default table unless s(pss tabcolnames) or s(pss alltabcolnames)
is set.

If you want to reset power’s list of supported columns, that is, to specify all the supported columns
manually, you should use the s(pss allcolnames) macro. The supported columns will then include
only the ones you listed in the macro. If you specify s(pss allcolnames), you must remember
to include power’s main columns N, power, and alpha in your list. Otherwise, you may not be
able to use some of power’s functionality, such as default graphs. If s(pss colnames) is specified
together with s(pss allcolnames), the former will be ignored. The specified supported columns
will be automatically displayed in the default table unless s(pss alltabcolnames) is set.

The values corresponding to the specified columns must be stored by the evaluator in r() scalars
with the same names as the column names. For example, the value for column alpha is stored in
r(alpha), the value for column power is stored in r(power), and the value for column N is stored
in r(N).
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Any column not listed in s(pss colnames) or s(pss allcolnames) will not be available
within the power command. For example, any reference to such a column within power’s options
table() and graph() will result in an error.

Modifying the default table columns

By default, power displays the specified supported columns. If you want to display only a sub-
set of those columns, you can use either s(pss tabcolnames) or s(pss alltabcolnames)
to specify the columns to be displayed. You specify additional columns to be displayed in
s(pss tabcolnames) and a complete list of the displayed columns in s(pss alltabcolnames).
If you specify s(pss tabcolnames), the displayed columns will include alpha, power, or beta
(whichever is specified with the command), N, and the additional columns you specified. If you specify
s(pss alltabcolnames), only the columns listed in this macro will be displayed. One situation
when you may want to do this is if you want to change the order in which the columns are displayed
by default. If you specify both macros, s(pss tabcolnames) will be ignored. You can specify only
the names of supported columns in these macros.

Modifying the look of the default table

The default table column labels are the column names. You can change this by specifying your
own column labels in the s(pss collabels) macro. The labels must be properly quoted if they
contain spaces or quotes. The labels must be specified for all columns listed in s(pss colnames)
or s(pss allcolnames).

The default column formats are %7.0gc for sample sizes and %7.4g for all other columns. You can
change this by specifying your own column formats in the s(pss colformats) macro. The formats
must be quoted and specified for all columns listed in s(pss colnames) or s(pss allcolnames).

The default column widths are the widths of the default formats plus one. You can specify your
own column widths in the s(pss colwidths) macro. The widths must be specified for all columns
listed in s(pss colnames) or s(pss allcolnames).

Example continued

Continuing our myztest example, we want to add a column containing the specified standardized
differences to the list of supported columns. The specified standardized difference is stored in
r(stddiff) in the myztest evaluator, so the name of our column is stddiff. We specify it in
s(pss colnames) in our initializer as follows:

// initializer
program drop power_cmd_myztest_init
program power_cmd_myztest_init, sclass

version 18.0
sreturn clear
sreturn local pss_numopts "STDDiff"
sreturn local pss_colnames "stddiff" // <-- new line

end
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We rerun our command now and see that the stddiff column is added to the default table:

. power myztest, alpha(0.05) n(10) stddiff(0.25)

Estimated power
Two-sided test

alpha power N stddiff

.05 .1211 10 .25

We can also change the default column label of the stddiff column to “Std. difference”. Note that
we can do this within power’s option table(), but if we want this label to show up automatically
in the default table, we should specify it in the initializer. We specify the column label in the
s(pss collabels) macro.

// initializer
program drop power_cmd_myztest_init
program power_cmd_myztest_init, sclass

version 18.0
sreturn clear
sreturn local pss_numopts "STDDiff"
sreturn local pss_colnames "stddiff"
sreturn local pss_collabels ‘""Std. difference""’ // <-- new line

end

The column containing standardized differences now has the new label

. power myztest, alpha(0.05) n(10) stddiff(0.25)

Estimated power
Two-sided test

alpha power N Std. difference

.05 .1211 10 .25

Customizing default graphs

By default, power plots the estimated power on the y axis and the specified sample size on the x axis
or the estimated sample size on the y axis and the specified power on the x axis. If s(pss target)
is specified, the estimated sample size is plotted against the specified target parameter. For effect-size
computation, the target parameter must be specified in s(pss target), and it is plotted on the x axis
against the specified sample size. See [PSS-2] power, graph for details about other default settings.

You can overwrite the default column labels displayed on the graph by specifying the
s(pss colgrlabels) macro. The specification of the graph labels is the same as the specification
of table column labels.

You can also overwrite the default symbols that are used to label the results on the graph by
specifying the new symbols in the macro s(pss colgrsymbols). The symbols must be specified
for all columns listed in s(pss colnames) or s(pss allcolnames).
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Other settings

When you add your own method to power, the effect-size parameter is not defined. You can define
it yourself by specifying the name of the column containing the values of the effect-size parameter in
the s(pss delta) macro. The effect-size parameter can then be accessed using the column name
delta and will be displayed in the default table as delta unless the s(pss notabdelta) macro
is set to notabdelta.

The target parameter is not set by power for newly added methods. You can set it yourself by
specifying the name of the column containing the values of the target parameter in the s(pss target)
macro. You must set this macro if you want to obtain default graphs for effect-size determination.
The target parameter can then be accessed using the column name target.

If the target parameter is set in the s(pss target) macro, you can also specify its label in
s(pss targetlabel). This label will be used in the title for the effect-size determination and as
the axis label for the graph column target.

If your method supports command arguments, the arguments specified directly following the method
name, you can specify their corresponding column names in the s(pss argnames) macro. You can
then refer to these arguments as arg1, arg2, and so on, when producing tables or graphs.

power usermethod uses the following generic titles: “Estimated sample size” for sample-size
determination, “Estimated power” for power determination, and “Estimated target parameter” for
effect-size determination. You can extend these titles to be more specific to your method by adding
text in the s(pss title) macro. For example, if s(pss title) contains “for my test”, the resulting
titles will be “Estimated sample size for my test”, “Estimated power for my test”, and “Estimated
target parameter for my test”. Also see s(pss targetlabel) for how to include a label for the
target parameter in the title.

power usermethod uses the following generic subtitles: “Two-sided test” for a two-sided test or
“One-sided test” for a one-sided test when the onesided option is specified. You can change the
default subtitle by specifying the s(pss subtitle) macro.

Optionally, power usermethod can display a hypothesis statement if macros s(pss hyp lhs)
and s(pss hyp rhs) are specified. s(pss hyp lhs) must contain the parameter of inter-
est, and s(pss hyp rhs) will typically contain the null or comparison value. For example, if
s(pss hyp lhs) contains beta1 and s(pss hyp rhs) contains 0, power usermethod will display

Ho: beta1 = 0 versus Ha: beta1 != 0

for a two-sided test and

Ho: beta1 = 0, one-sided alternative

for a one-sided test. The same hypotheses will appear on the graph, unless s(pss grhyp lhs) and
s(pss grhyp rhs) are specified. These macros are useful if you want to include parameters as sym-
bols on the graph. In our example, we could have defined s(pss grhyp lhs) as {&beta}{sub:1}
and s(pss grhyp rhs) as 0 to include “beta1” as the corresponding symbol on the graph; see
[G-4] text.

Handling parsing more efficiently

The power command checks its common options, but you are responsible for checking your method-
specific options, useropts, or their interaction with power’s common options. You can certainly do
this in your evaluator. However, the checks will then be performed each time your evaluator is called.
You can instead perform all of your checks once within the parser.
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Your parser may be an s-class command and may set any of the s() results typically specified
in the initializer. This may be useful, for example, for building the columns displayed in the default
table dynamically, depending on which options were specified. If all desired s() results are set in
the parser, you do not need an initializer.

More examples: Adding two-sample methods

All of our examples so far showed how to add a one-sample method to the power command. Here
we demonstrate how to add a two-sample method. (The support for multiple-sample methods is not
yet available.)

The steps for adding your own two-sample methods are the same as those for adding one-
sample methods, except you may need to set the s(pss samples) macro to contain twosample
in the initializer. If any of the two-sample options n1(), n2(), and nratio() are specified, power
automatically recognizes the method as a two-sample method. If these options are not used and you need
the method to be recognized as a two-sample method, you must set s(pss samples) to twosample.
If you do not want power to respect the two-sample options, you should set s(pss samples) to
onesample.

For illustration, let’s add a method comparing two independent proportions using a large-sample
χ2 test. (Note that this method is available in the official power twoproportions command.) For
simplicity, we will compute the power of a two-sided test. We will call our new method powertwoprop.

We write our evaluator and save it as power cmd powertwoprop.ado.

// evaluator
program power_cmd_powertwoprop, rclass

version 18.0
//parse command arguments and options
syntax anything(id="proportions"), ///

[ Alpha(real 0.05) /// significance level
n(string) /// total sample size
n1(string) n2(string) /// group sample sizes
NRATio(real 1) /// N2/N1
Power(string) ///

]
//parse specification of proportions
gettoken p1 rest : anything
gettoken p2 rest : rest
if (‘"‘p2’"’=="") {

di as err "Experimental-group proportion must be specified"
exit 198

}
if (‘"‘rest’"’!="") {

di as err "Only two proportions may be specified"
exit 198

}
//sample size must be specified to compute power
if (‘"‘n’‘n1’‘n2’"’=="") {

di as err "One of {bf:n()}, {bf:n1()}, or {bf:n2()} " ///
"is required to compute power"

exit 198
}
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//handle some sample-size specifications
if (‘"‘n’"’=="") {

tempname n
if (‘"‘n2’"’=="") {

tempname n2
scalar ‘n2’ = ceil(‘nratio’*‘n1’)

}
else if (‘"‘n1’"’=="") {

tempname n1
scalar ‘n1’ = ceil(‘n2’/‘nratio’)

}
scalar ‘n’ = ‘n1’+‘n2’
local nratio = ‘n2’/‘n1’

}
else {

if (‘"‘n1’"’!="") {
tempname n2
scalar ‘n2’ = ‘n’ - ‘n1’

}
else if (‘"‘n2’"’!="") {

tempname n1
scalar ‘n1’ = ‘n’ - ‘n2’

}
else {

tempname n1 n2
scalar ‘n1’ = ceil(‘n’/(1+‘nratio’))
scalar ‘n2’ = ‘n’-‘n1’

}
}

//compute power
tempname diff pbar sigma_D sigma_p crv power
scalar ‘diff’ = ‘p2’ - ‘p1’
scalar ‘pbar’ = (‘n1’*‘p1’+‘n2’*‘p2’)/‘n’
scalar ‘sigma_D’ = sqrt(‘p1’*(1-‘p1’)/‘n1’+‘p2’*(1-‘p2’)/‘n2’)
scalar ‘sigma_p’ = sqrt(‘pbar’*(1-‘pbar’)*(1/‘n1’+1/‘n2’))
scalar ‘crv’ = invnormal(1-‘alpha’/2)*‘sigma_p’
scalar ‘power’ = normal((‘diff’-‘crv’)/‘sigma_D’) ///

+ normal((-‘diff’-‘crv’)/‘sigma_D’)
//return results
return scalar alpha = ‘alpha’
return scalar power = ‘power’
return scalar N = ‘n’
return scalar N1 = ‘n1’
return scalar N2 = ‘n2’
return scalar nratio = ‘nratio’
return scalar p1 = ‘p1’
return scalar p2 = ‘p2’

end

We can now use powertwoprop with the power command. We specify the two proportions
following the command name and group sample sizes in the n1() and n2() options.

. power powertwoprop 0.1 0.3, n1(40) n2(60)

Estimated power
Two-sided test

alpha power N

.05 .6743 100
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As with one-sample methods, we can use an initializer (saved in
power cmd powertwoprop init.ado) to include additional columns in our default table.

// initializer
program power_cmd_powertwoprop_init, sclass

version 18.0
sreturn clear
sreturn local pss_colnames "N1 N2 nratio p1 p2"
sreturn local pss_samples "twosample"

end

. power powertwoprop 0.1 0.3, n1(40) n2(60)

Estimated power
Two-sided test

alpha power N N1 N2 nratio p1 p2

.05 .6743 100 40 60 1.5 .1 .3

Initializer’s s() return settings

The following s() results may be set by the initializer or parser:

Macros
s(pss samples) onesample for a one-sample test or twosample for a two-sample test
s(pss colnames) columns to be added to the default supported columns
s(pss allcolnames) all supported columns
s(pss tabcolnames) columns to be added to the default table
s(pss alltabcolnames) all columns to be displayed in the default table
s(pss collabels) labels for the specified columns
s(pss colformats) formats for the specified columns
s(pss colwidths) widths for the specified columns
s(pss colgrlabels) labels to be used to label columns on the graph
s(pss colgrsymbols) symbols to be used to label columns on the graph
s(pss delta) column name containing the effect-size parameter
s(pss target) column name containing the target parameter
s(pss targetlabel) label for the target parameter
s(pss argnames) column names containing command arguments
s(pss title) method-specific title
s(pss subtitle) subtitle
s(pss hyp lhs) left-hand-side parameter or value for the hypothesis
s(pss hyp rhs) right-hand-side parameter or value for the hypothesis
s(pss grhyp lhs) left-hand-side parameter or value for the hypothesis on the graph
s(pss grhyp rhs) right-hand-side parameter or value for the hypothesis on the graph
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Also see
[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] Intro (power) — Introduction to power and sample-size analysis for hypothesis tests

[PSS-5] Glossary
[ADAPT] gsdesign usermethod — Add your own methods to the gsdesign command
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power, graph — Graph results from the power command

Description Quick start Menu Syntax
Suboptions Remarks and examples Also see

Description
The graph() option of power specifies that results of the power command be graphed.

While there are many options for controlling the look of the graph, you will often merely need
to specify the graph option with your power command.

Quick start
Graph of sample-size estimates versus the specified list of power values

power onemean 0 0.5, power(0.6(0.1)0.9) graph

Graph of sample-size estimates versus probability of type II error
power onemean 0 0.5, power(0.6(0.1)0.9) graph(xdimension(beta))

Graph of power estimates versus the specified list of sample sizes
power onemean 0 0.5, n(10(10)50) graph

Add labels for distinct values on the y axis
power onemean 0 0.5, n(10(10)50) graph(yvalues)

Same as above, but display the power estimates with only three decimal points
power onemean 0 0.5, n(10(10)50) graph(yvalues ylabel(,format(%4.3f)))

Plots of power for each significance level
power twomeans 2.5 3, n(50(10)100) alpha(0.05 0.1) graph

Same as above, but produce a separate subgraph for each significance level
power twomeans 2.5 3, n(50(10)100) alpha(0.05 0.1) ///

graph(bydimension(alpha))

Plots of power for combinations of alternative means and significance levels
power twomeans 2.5 (3 3.5 4), n(50(10)100) alpha(0.05 0.1) graph

Same as above
power twomeans 2.5 (3 3.5 4), n(50(10)100) alpha(0.05 0.1) ///

graph(plotdimension(alpha m2))

Same as above, but use only alternative means as a plot dimension
power twomeans 2.5 (3 3.5 4), n(50(10)100) alpha(0.05 0.1) ///

graph(plotdimension(m2))

Same as above, but using significance levels as by() subgraphs
power twomeans 2.5 (3 3.5 4), n(50(10)100) alpha(0.05 0.1) ///

graph(bydimension(alpha))
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Same as above, but produce separate graphs for each significance level
power twomeans 2.5 (3 3.5 4), n(50(10)100) alpha(0.05 0.1) ///

graph(graphdimension(alpha))

Menu
Statistics > Power, precision, and sample size

Syntax

Produce default graph

power . . ., graph . . .

Graph power against sample size

power . . ., graph(y(power) x(N)) . . .

Graph sample size against target parameter

power . . ., graph(y(N) x(target)) . . .

Graph effect size against sample size

power . . ., graph(y(delta) x(N)) . . .

Produce other custom graphs[
power

]
. . ., graph(graphopts) . . .
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graphopts Description

Main

ydimension(dimlist
[
, dimopts

]
) use dimlist to define y axis

xdimension(dimlist
[
, dimopts

]
) use dimlist to define x axis

plotdimension(dimlist
[
, dimopts

]
) create plots for groups in dimlist

bydimension(dimlist
[
, dimopts

]
) create subgraphs for groups in dimlist

graphdimension(dimlist
[
, dimopts

]
) create graphs for groups in dimlist

horizontal swap x and y axes
schemegrid do not apply default x and y grid lines
name(name | stub

[
, replace

]
) name of graph, or stub if multiple graphs

Labels

yregular place regularly spaced ticks and labels on the y axis
xregular place regularly spaced ticks and labels on the x axis
yvalues place ticks and labels on the y axis for each distinct value
xvalues place ticks and labels on the x axis for each distinct value
collabels(colspec) change default labels for columns
nolabels label groups with their values, not their labels
allsimplelabels forgo column label and equal signs in all labels
nosimplelabels include column label and equal signs in all labels
eqseparator(string) replace equal sign separator with string
separator(string) separator for labels when multiple columns are specified

in a dimension
noseparator do not use a separator
format(% fmt) format for converting numeric values to labels

Plot

plotopts(plot options) affect rendition of all plots
plot#opts(plot options) affect rendition of #th plot
recast(plottype) plot all plots using plottype

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall, By

twoway options any options documented in [G-3] twoway options
byopts(byopts) how subgraphs are combined, labeled, etc.
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dimlist may contain any of the following columns:

column Description

alpha significance level
power power
beta type II error probability
N total number of subjects
N1 number of subjects in the control group
N2 number of subjects in the experimental group
nratio ratio of sample sizes, experimental to control
K number of clusters
K1 number of clusters in the control group
K2 number of clusters in the experimental group
kratio ratio of numbers of clusters, experimental to control
M cluster size
M1 cluster size in the control group
M2 cluster size in the experimental group
mratio ratio of cluster sizes, experimental to control
delta effect size
target target parameter
method columns columns specific to the method specified with power

colspec is

column "label"
[

column "label"
[
. . .
] ]

dimopts Description

labels(lablist) list of quoted strings to label each level of the dimension
elabels(elablist) list of enumerated labels
nolabels label groups with their values, not their labels
allsimplelabels forgo column name and equal signs in all labels
nosimplelabels include column name and equal signs in all labels
eqseparator(string) replace equal sign separator with string in the dimension
separator(string) separator for labels when multiple columns are specified

in the dimension
noseparator do not use a separator
format(% fmt) format for converting numeric values to labels

where lablist is defined as

"label"
[
"label"

[
. . .
] ]

elablist is defined as

# "label"
[

# "label"
[
. . .
] ]

and the #s are the levels of the dimension.
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plot options Description

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position
cline options change look of the line

Suboptions

The following are suboptions within the graph() option of the power command.

� � �
Main �

ydimension(), xdimension(), plotdimension(), bydimension(), and graphdimension()
specify the dimension to be used for the graph’s y axis, x axis, plots, by() subgraphs, and graphs.

The default dimensions are based on your analysis. The y dimension is power for power determina-
tion, sample size for sample-size determination, and target parameter for effect-size determination.
If there is only one column containing multiple values, this column is plotted on the x dimension.
Otherwise, the x dimension is sample size for power determination, target parameter for sample-size
determination, and sample size for effect-size determination. Other columns that contain multiple
values are used as plot dimensions. See Default graphs below for details. You may override the
defaults and explicitly control which columns are used on each dimension of the graph using these
dimension suboptions.

Each of these suboptions supports suboptions that control the labeling of the dimension—axis
labels for ydimension() and xdimension(), plot labels for plotdimension(), subgraph titles
for bydimension(), and graph titles for graphdimension().

For examples using the dimension suboptions, see Changing default graph dimensions below.

ydimension(dimlist
[
, dimopts

]
) specifies the columns for the y axis in dimlist and controls

the content of those labels with dimopts.

xdimension(dimlist
[
, dimopts

]
) specifies the columns for the x axis in dimlist and controls

the content of those labels with dimopts.

plotdimension(dimlist
[
, dimopts

]
) specifies in dimlist the columns whose levels determine

the plots and optionally specifies in dimopts the content of the plots’ labels.

bydimension(dimlist
[
, dimopts

]
) specifies in dimlist the columns whose levels determine

the by() subgraphs and optionally specifies in dimopts the content of the subgraphs’ titles.

graphdimension(dimlist
[
, dimopts

]
) specifies in dimlist the columns whose levels determine

the graphs and optionally specifies in dimopts the content of the graphs’ titles.

See the definition of columns in graph in [PSS-5] Glossary.

horizontal reverses the default x and y axes. By default, the values computed by power are plotted
on the y axis, and the x axis represents one of the other columns. Specifying horizontal swaps
the axes.

One common use is to put sample size on the x axis even when it is the value computed by power.
This suboption can also be useful with the long labels produced when the parallel option is
specified with power.

See Parallel plots below for an example of the horizontal suboption.
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schemegrid specifies that x and y grid lines not always be drawn on the power graph. Instead,
whether grid lines are drawn will be determined by the current scheme.

name(name | stub
[
, replace

]
) specifies the name of the graph or graphs. If the graphdimension()

suboption is specified, then the argument of name() is taken to be stub, and graphs named stub1,
stub2, . . . are created.

replace specifies that existing graphs of the same name may be replaced.

If name() is not specified, default names are used, and the graphs may be replaced by subsequent
power graphs or other graphing commands.

� � �
Labels �

All the suboptions listed under the Labels tab may be specified directly within the graph() option. All
of them except yregular, xregular, yvalues, and xvalues may be specified as dimopts within
ydimension(), xdimension(), plotdimension(), bydimension(), and graphdimension().
When suboptions are specified in one of the dimension options, only the labels for that dimension are
affected. When suboptions are specified outside the dimension options, all labels on all dimensions
are affected. Specifications within the dimension options take precedence.

yregular and yvalues specify how tick marks and labels are to be placed on the y axis.

yregular specifies that regularly spaced ticks and labels be placed on the y axis.

yvalues specifies that a tick and label be placed for each distinct value.

If neither is specified, an attempt is made to choose the most reasonable option based on your
results. Labeling may also be specified using the standard graph twoway axis labeling rules and
options.

xregular and xvalues do the same for tick marks and labels to be placed on the x axis.

collabels(colspec) specifies labels to be used on the graph for the specified columns. For example,
collabels(N "N") specifies that wherever the column N is used on a graph—axis label, plot
label, graph title, legend title, etc.—“N” be shown rather than the default label “Sample size”.

Multiple columns may be relabeled by typing, for example,

collabels(N "N" ma "Alternative mean")

and SMCL tags for Greek characters and other typesetting can be used by typing, for example,

collabels(alpha "{&alpha}" ma "{&mu}{sub:a}")

See the definition of columns in graph in [PSS-5] Glossary.

nolabels specifies that value labels not be used to construct graph labels and titles for the levels in
the dimension. By default, if a column in a dimension has value labels, those labels are used to
construct labels and titles for axis ticks, plots, subgraphs, and graphs.

allsimplelabels and nosimplelabels control whether a graph’s labels and titles include just
the values of the columns or also include column labels and equal signs. The default depends on
whether the dimension is an axis dimension or one of the plot, by, and graph dimensions. It also
depends on whether the values for the level of the dimension are labeled. An example of a simple
label is “alpha” or “.05” and of a nonsimple label is “alpha=.05”.

In power, graph simple labels are almost universally best for x and y axes and also best for
most plot labels. Labels with an equal sign are typically preferred for subgraph and graph titles.
These are the defaults used by power, graph. The allsimplelabels and nosimplelabels
suboptions let you override the default labeling.
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allsimplelabels specifies that all titles and labels use just the value or value label of the column.

nosimplelabels specifies that all titles and labels include dimname= before the value or value
label.

eqseparator(string) specifies a custom separator between column labels and values in labels. Use
string in place of the default equal sign. This option is for use with nosimplelabels.

separator(string) and noseparator control the separator between label sections when more than
one column is used to specify a dimension. The default separator is a comma followed by a space,
but no separator may be requested with noseparator, or the default may be changed to any
string with separator().

For example, if bydimension(a b) is specified, the subgraph labels in our graph legend might be
“a=1, b=1”, “a=1, b=2”, . . . . Specifying separator(:) would create labels “a=1:b=1”, “a=1:b=2”,
. . . .

format(% fmt) specifies how numeric values are to be formatted for display as axis labels, labels on
plots, and titles on subgraphs and graphs.

� � �
Plot �

plotopts(plot options) affects the rendition of all plots. The plot options can affect the size and
color of markers, whether and how the markers are labeled, and whether and how the points are
connected; see [G-3] marker options, [G-3] marker label options, and [G-3] cline options.

These settings may be overridden for specific plots by using the plot#opts() suboption.

plot#opts(plot options) affects the rendition of the #th plot. The plot options can affect the size
and color of markers, whether and how the markers are labeled, and whether and how the points
are connected; see [G-3] marker options, [G-3] marker label options, and [G-3] cline options.

recast(plottype) specifies that results be plotted using plottype. plottype may be scatter, line,
connected, area, bar, spike, dropline, or dot; see [G-2] graph twoway. When recast()
is specified, the plot-rendition options appropriate to the specified plottype may be used in lieu
of plot options. For details on those suboptions, follow the appropriate link from [G-2] graph
twoway.

You may specify recast() within a plotopts() or plot#opts() suboption. It is better, however,
to specify it as documented here, outside those suboptions. When it is specified outside those
suboptions, you have greater access to the plot-specific rendition suboptions of your specified
plottype.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

If multiple graphs are drawn by a single power command or if plot specifies plots with multiple
y variables, for example, scatter y1 y2 x, then the graph’s legend will not clearly identify all
the plots and will require customization using the legend() suboption; see [G-3] legend options.

� � �
Y axis, X axis, Titles, Legend, Overall, By �

twoway options are any of the options documented in [G-3] twoway options. These include options
for titling the graph (see [G-3] title options); for saving the graph to disk (see [G-3] saving option);
for controlling the labeling and look of the axes (see [G-3] axis options); for controlling the look,
contents, position, and organization of the legend (see [G-3] legend options); for adding lines
(see [G-3] added line options) and text (see [G-3] added text options); and for controlling other
aspects of the graph’s appearance (see [G-3] twoway options).
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The label() suboption of the legend() option has no effect on power, graph. Use the order()
suboption instead.

byopts(byopts) affects the appearance of the combined graph when bydimension() is specified or
when the default graph has subgraphs, including the overall graph title, the position of the legend,
and the organization of subgraphs. See [G-3] by option.

Remarks and examples

Remarks are presented under the following headings:

Using power, graph
Graph symbols
Default graphs
Changing default graph dimensions
Changing the look of graphs
Parallel plots

power, graph produces power curves and other graphical output from the power command.
Power graphs are useful for visualizing the results of sensitivity analysis, which investigates the effect
of varying study parameters on power, sample size, or other components of the study. The true values
of study parameters are usually unknown. Power and sample-size analysis uses best guesses for these
values. It is important to evaluate the sensitivity of the computed power or sample size to the chosen
values of study parameters. For example, to evaluate variability of power values, you can compute
powers for various ranges of values for the parameters of interest and display the resulting powers
in a table (see [PSS-2] power, table) or plot them on a graph.

Using power, graph

In most cases, you will probably be satisfied with the graphs that power produces by default when
you specify the graph option. For other cases, power, graph() offers many options for you to
produce the graph you desire.

Think of power, graph() as graphing the columns of power, table. One of the columns will
be placed on the x axis, another will be placed on the y axis, and, if you have more columns with
varying values, separate plots will be created for each. Similarly, we use the terms “column symbol”,
“column name”, and “column label” to refer to symbols, names, and labels that appear in tables when
tabular output is requested.

By default, power, graph plots the column corresponding to the estimated parameter on the y
axis: power, when power is computed; N (in most cases), when sample size is computed; and target,
when the target parameter is computed. When there is only one varying column, the x axis uses this
column by default. When there are multiple varying columns, the default x axis depends on what is
being computed.

In a cluster randomized design (CRD), the sample-size determination consists of the determination
of the number of clusters given cluster size or the determination of cluster size given the number
of clusters. Thus, when the number of clusters is computed, power, graph by default plots the
number of clusters, K, on the y axis for one-sample methods and the number of clusters in the
experimental group, K2, for two-sample methods. When the cluster size is computed, power, graph
plots the cluster size, M, for one-sample methods and the cluster size in the experimental group, M2,
for two-sample methods.
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If power is computed (power determination), the default x axis is either the sample size, if sample
size varies, or the target parameter, if the target parameter varies and sample size does not vary. If
neither the sample size nor the target parameter varies, the power is plotted against one of the other
varying parameters. In a CRD, the sample size varies whenever the number of clusters varies, the
cluster size varies, or both vary. The default x axis is then the number of clusters if the number of
clusters varies or it is the cluster size if the cluster size varies and the number of clusters does not.

If sample size is computed (sample-size determination), the default x axis is either the target
parameter, if the target parameter varies, or the power, if power varies and the target parameter does
not vary. If neither the target parameter nor the power varies, the sample size is plotted against one
of the other varying parameters. For a CRD, by “sample size” we mean either the number of clusters
or the cluster size, whichever one is computed.

If target parameter is computed (effect-size determination), the default x axis is either sample size,
if sample size varies, or power, if power varies and sample size does not vary. If neither sample size
nor power varies, the target parameter is plotted against one of the other varying parameters. For a
CRD, when sample size varies, the default x axis is the number of clusters if the number of clusters
varies or it is the cluster size if the cluster size varies and the number of clusters does not.

You can also plot the effect size delta instead of the target parameter target by specifying
the ydimension(delta) suboption within graph(); see example 4. The graphs of delta may not
reflect all the unique combinations of other study parameters, because effect size is not necessarily a
one-to-one function of the constituent study parameters.

power, graph() provides great flexibility for customizing graphical output. You can make minor
changes such as modifying the graph or axes titles or modifying the line color and style, or you can
completely redesign the graph by changing the axes and style of the graph. The Graph Editor can
also be used for additional customization; see [G-1] Graph Editor.

When you produce a graph, the table of results is suppressed. You can request that the table be
displayed in addition to the graph by specifying the table option with graph().

Graph symbols

Whenever space allows, such as on y and x axes, graphical output displays extended column labels,
which include column labels and column symbols in parentheses. In other cases, such as in legend
labels or by graph titles, graphical output includes only column (parameter) symbols for readability.

The following common symbols are used. See the documentation entry of the specified power
method for additional symbols specific to that method.
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Symbol Description

α significance level
β probability of a type II error
1− β power
N total sample size
N1 sample size of the control group
N2 sample size of the experimental group
N2/N1 ratio of sample sizes, experimental to control
K number of clusters
K1 number of clusters in the control group
K2 number of clusters in the experimental group
K2/K1 ratio of numbers of clusters, experimental to control
M cluster size
M1 cluster size of the control group
M2 cluster size of the experimental group
M2/M1 ratio of cluster sizes, experimental to control
δ effect size
method symbols symbols specific to the method specified with power

Default graphs

We start with a demonstration of several default power graphs and then show how you can produce
custom power graphs in the subsequent sections.

In what follows, we graph the results of power and sample-size analysis for a two-sided 5%-level
one-sample t test comparing the population mean with a hypothesized value; see [PSS-2] power
onemean.
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Example 1: Power curves

When we compute power given a range of sample sizes, power, graph plots power on the y axis
and sample size on the x axis.

. power onemean 0 1, n(10(2)40) graph
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Parameters: α = .05, δ = 1, µ0 = 0, µa = 1, σ = 1

t test
H0: µ = µ0  versus  Ha: µ ≠ µ0

Estimated power for a one-sample mean test

Figure 1.

As expected, power increases as sample size increases.

The default axis labels include column labels and column symbols in parentheses. The labels
can be changed as we show in example 6. The values of constant parameters are displayed in the
note titled “Parameters”: significance level α is 0.05, effect size δ (the standardized mean difference
(µa−µ0)/σ for a one-sample t test) is 1, null mean µ0 is 0, alternative mean µa is 1, and standard
deviation σ is 1.
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In addition to varying sample size, we may compute powers for different alternative values of the
mean.

. power onemean 0 (0.8 1), n(10(2)40) graph
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Estimated power for a one-sample mean test

Figure 2.

For a given sample size, the larger the alternative value, the higher the power.

power, graph displays two power curves corresponding to the specified alternative values on one
plot. The first curve is displayed in navy, and the second curve is displayed in maroon. The default
colors of the lines and, in general, the overall look of the graph are determined by the current graph
scheme. The scheme used here is stgcolor; see [G-2] set scheme for details. We also show how to
change the default look of the curves in example 7.

We can obtain power curves for varying values of several parameters. For example, below we
compute powers for varying values of alternative mean, sample size, and standard deviation.

. power onemean 0 (0.8 1), n(10(2)40) sd(1 1.5) graph
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Figure 3.

The larger the standard deviation, the lower the power. This can be seen more easily in figure 11 and
figure 21.
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power, graph plots a separate curve for each unique combination of the values of the alternative
mean and standard deviation on one plot. Alternatively, you can display curves on separate plots (by
graphs) or even on separate graphs; see example 5. Instead of the extended legend label, as displayed
in figure 2, the title of the legend now displays only column symbols because the legend contains
more than one column. For an alternative look of the legend, see figure 17.

If we specify only one sample size in the previous figure, the values of the alternative mean will
be plotted on the x axis. You can try this yourself if you would like.

Example 2: Sample-size curves

Instead of power curves, we can plot estimated sample sizes for a range of power values to get
an idea of how the requirement on sample size changes for powers of interest.

. power onemean 0 1, power(0.8(0.05)0.95) graph
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Figure 4.

The sample size increases as the power increases.

The look of this graph is the same as that of the graph in figure 1, except sample size is plotted
on the y axis and power is plotted on the x axis.
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We may want to investigate how other study parameters such as alternative mean and standard
deviation affect the sample-size requirement for given powers.

. power onemean 0 (0.3(0.1)1), power(0.8 0.9) sd(1 1.5) graph

0

50

100

150

200

250

S
am

pl
e 

si
ze

 (
N

)

.3 .4 .5 .6 .7 .8 .9 1
Alternative mean (µa)

.8, 1

.8, 1.5

.9, 1

.9, 1.5

1-β, σ

Parameters: α = .05, µ0 = 0

t test
H0: µ = µ0  versus  Ha: µ ≠ µ0

Estimated sample size for a one-sample mean test

Figure 5.

The larger the alternative mean, or more precisely, the larger the standardized difference between the
alternative and null means, the larger the required sample size.

When multiple study parameters each contain multiple values, as in the above figure, the default
x axis for sample-size curves is the target parameter (the alternative mean in our example), provided
that the target parameter varies. You can plot a different parameter on the x axis such as standard
deviation; see example 4 about how to change the default axes.

Let’s now see an example of computing the number of clusters in a CRD. Recall that in a CRD,
the sample-size determination consists of the determination of the number of clusters given cluster
size or the determination of cluster size given the number of clusters.



92 power, graph — Graph results from the power command

We want to plot the estimated number of clusters for a range of power values to get an idea of
how many clusters are required for the powers of interest. Suppose the cluster size is 5 (m(5)).

. power onemean 0 1, power(0.8(0.05)0.95) m(5) graph
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Figure 6.

The number of clusters increases as the power increases.

Example 3: “Effect-size” curves

What we mean by “effect-size” curves are curves with an effect of interest, which may or may
not be the actual effect size, plotted on the y axis. In fact, power, graph by default plots the target
parameter on the y axis.
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We can plot the alternative mean (the target parameter), or more precisely, the smallest value of
the alternative mean that can be detected using the considered t test, against the sample size for
specified values of power and default values of other study parameters.

. power onemean 0, power(0.8 0.9) n(10(2)40) graph
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Figure 7.

The larger the sample size and the smaller the power, the smaller the values of the alternative mean
that can be detected by the test. The default x axis is the sample size whenever the sample size varies.

If desired, you can plot the actual effect size instead of the target parameter on the y axis; see
example 4 for details.

Changing default graph dimensions

So far, we have demonstrated the graphs that power, graph produces by default. In this section,
we demonstrate how you can modify the default graphs.

We can use power, graph() to modify graphs by specifying suboptions to control the look of
the graph.

Example 4: Changing default graph axes

The default y axis corresponds to the computed study parameter—power for power determination,
sample size for sample-size determination, and target parameter for effect-size determination. You
would rarely need to change this dimension. One example when this may be useful is when you want
to plot the estimated probability of a type II error, β, instead of the estimated power.

Following figure 1, let’s plot the estimated probability of a type II error instead of power on the y
axis. We specify the name of the column to be displayed on the y axis, beta, in the ydimension()
suboption of power’s graph() option. We use the minimum abbreviation y() of the suboption.
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. power onemean 0 1, n(10(2)40) graph(y(beta))
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Figure 8.

The probability of a type II error decreases as the sample size increases. This is expected considering
the relationship between power, 1− β, and β.

In example 3, we plotted the minimum detectable values of the target parameter, alternative mean,
against sample size. Instead of the alternative mean, we can plot the corresponding effect size, delta.

. power onemean 0, power(0.8 0.9) n(10(2)40) graph(y(delta))
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Figure 9.

The effect size is now plotted on the y axis. The y values are the same as in figure 7 because the
effect size corresponds to the alternative mean when the null mean is 0 and the standard deviation
is 1. Note also that for a one-sample t test, the computed effect size is not affected by the specified
values of the null mean or standard deviation, so the effect-size curves will stay the same if you vary
these parameters.

When the ydimension() suboption is specified, the y axis is replaced with the specified column, and
the column corresponding to the default y axis is used as a plot dimension. When the ydimension()
suboption contains delta, the target column is omitted from the graph. When the ydimension()
suboption contains beta, the power column is omitted from the graph.
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In figure 2, by default, the power is plotted against varying values of the sample size, and a separate
curve is plotted for each of the varying values of the alternative mean. We can change the default
x axis by specifying the xdimension() suboption (abbreviated to x()) within power’s graph()
option.

. power onemean 0 (0.3(0.1)1), n(10 20 40) graph(x(ma))
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Figure 10.

The x axis now contains the values of the alternative mean, and a separate curve is now plotted for
each sample size.

When the xdimension() suboption is specified, the x axis is replaced with the specified column, and
the column corresponding to the default x axis is used as a plot dimension. When the xdimension()
suboption contains delta, the target column is omitted from the graph. When the xdimension()
suboption contains beta, the power column is omitted from the graph.

Example 5: By graphs and multiple graphs

Let’s return to figure 3 demonstrating multiple power curves on one graph. Suppose we want
to more easily see the impact of standard deviation on power given an alternative mean value.
We can produce a separate plot for each of the mean values by specifying the column ma in the
bydimension() suboption (abbreviated to by()) within power’s graph() option.
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. power onemean 0 (0.8 1), n(10(2)40) sd(1 1.5) graph(by(ma))
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Figure 11.

For examples of how to modify the look of a by graph, see example 8.

In the presence of many varying parameters, even by graphs may look crowded. In this case, you
may consider producing multiple by graphs. In the example above, suppose that we also want to vary
the significance level α. We add the alpha(0.05 0.1) option to the previous command.

. power onemean 0 (0.8 1), n(10(2)40) sd(1 1.5) alpha(0.05 0.1) graph(by(ma))
(output omitted )

The above command produces a graph containing two by graphs. Each by graph contains four curves
in which each corresponds to a unique combination of values of the standard deviation and significance
level. We leave this for you to verify.

This is a lot of information for a single graph to convey, so instead, we request that a separate
graph be produced for each of the significance levels by specifying the graphdimension(alpha)
suboption (abbreviated to graph()) within power’s graph() option.

. power onemean 0 (0.8 1), n(10(2)40) sd(1 1.5) alpha(0.05 0.1)
> graph(by(ma) graph(alpha))

.4

.6

.8

1

10 20 30 40 10 20 30 40

µa=.8 µa=1

1
1.5

Standard deviation (σ)

P
ow

er
 (

1-
β)

Sample size (N)
Parameters: µ0 = 0

t test
H0: µ = µ0  versus  Ha: µ ≠ µ0

α=.05

Estimated power for a one-sample mean test



power, graph — Graph results from the power command 97

.4

.6

.8

1

10 20 30 40 10 20 30 40

µa=.8 µa=1

1
1.5

Standard deviation (σ)

P
ow

er
 (

1-
β)

Sample size (N)
Parameters: µ0 = 0

t test
H0: µ = µ0  versus  Ha: µ ≠ µ0

α=.1

Estimated power for a one-sample mean test

Figure 12.

Changing the look of graphs

Example 6: Modifying axis labels

Reasonable defaults for axis labels are chosen based on your results. You can modify the defaults
by using any of power, graph()’s labeling suboptions or graph twoway’s axis label options; see
[G-3] axis label options.

For example, we can request that ticks and labels of the y and x axes be placed for each distinct
value instead of using equally spaced values as in figure 1.

. power onemean 0 1, n(10(2)20) graph(yvalues xvalues ylabel(, format(%4.3f)))
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Figure 13.
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In this example, we specified fewer sample sizes to obtain a more readable graph. To further improve
readability, we also changed the default format of the values on the y axis to show only three decimal
points by using ylabel(, format(%4.3f)).

We can use ylabel() and xlabel() to add text labels for some of the axis values. For example,
suppose that our budget is 30 subjects. We can use xlabel() to label the sample-size value of 30
as “Budgeted”.

. power onemean 0 1, n(10(2)40) graph(xlabel(30 "Budgeted", add))
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Figure 14.

We can use ytitle() and xtitle() to change the axis titles.

. power onemean 0 1, n(10(2)20) graph(ytitle("Power") xtitle("Sample size")
> title("Estimated power") subtitle("") note(""))
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Figure 15.

In addition to modifying the axis titles, we also shortened the default title and suppressed the default
subtitle and note.

You may find the collabels() suboption useful to override the default column labels. The
specified column labels will be used wherever the corresponding column is used on the graph.



power, graph — Graph results from the power command 99

For example, change the default labels of the power, sample-size, and alternative-mean columns
to, respectively, “Power”, “N”, and “Alternative mean” in figure 2 as follows:

. power onemean 0 (0.8 1), n(10(2)40)
> graph(collabels(N "N" power "Power" ma "Alternative mean"))
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Figure 16.

For overlaid plots, we may consider alternative labeling of the plotted curves in the legend by
using the nosimplelabels suboption (abbreviated to nosimple). We also suppress the legend title
and request that an equality sign with a space on each side be used as a separator.

. power onemean 0 (0.8 1), n(10(2)40)
> graph(nosimple legend(title("")) eqsep(" = "))
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Figure 17.
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Example 7: Plot options

We can use the plotopts() and plot#opts() suboptions within graph() to modify the default
look of the plotted lines. If there are multiple curves, the plotopts() suboption will apply changes
to all curves. Use the corresponding plot#opts() suboption to change the look of only the specific
#th curve.

Here are a few examples of using these suboptions.

. power onemean 0 (0.1(0.1)1), graph(plotopts(mlabel(N) mlabpos(1)))
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Figure 18.

We specified mlabel() within the plotopts() suboption to label each data point on the graph
with its corresponding sample-size value. mlabpos() was used to place the marker labels at the one
o’clock position.

For plots containing multiple curves such as in figure 3, the plotopts() suboption controls the
look of all curves. For example, we can change the marker symbol from the default solid circle to a
solid triangle.

. power onemean 0 (0.8 1), n(10(2)40) sd(1 1.5) graph(plotopts(msymbol(T)))
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Figure 19.
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To control the look of each curve, we can use multiple plot#opts() suboptions. For example,
we can request that the curves corresponding to the same standard deviation be plotted using the
same color:

. power onemean 0 (0.8 1), n(10(2)40) sd(1 1.5)
> graph(plot3opts(color(stblue)) plot4opts(color(stred)))
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Figure 20.

Example 8: Modifying the look of by-graphs

In figure 11, we created a by-graph, where each graph appeared tall and narrow because of
the legend on the right side. To allow extra width for the graphs, we could move the legend to
the bottom and place the labels in two columns by using the legend() option. Instead, we will
specify scheme(stcolor alt) within power’s graph() option to use a scheme that automates the
placement of the legend at the bottom.

. power onemean 0 (0.8 1), n(10(2)40) sd(1 1.5) graph(by(ma) scheme(stcolor_alt))
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Figure 21.
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The look of by graphs is further controlled by the byopts() suboption specified within power’s
graph() option.

For example, in figure 11, we can specify yrescale within the byopts() suboption to allow the
scales of the two by graphs to differ. We use the alternative means of 0.5 and 1 instead of 0.8 and 1
to demonstrate differences between scales.

. power onemean 0 (0.5 1), n(10(2)40) sd(1 1.5) graph(by(ma)
> scheme(stcolor_alt) byopts(yrescale))
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Figure 22.

We can use byopts() to change the overall graph title and subtitle.

. power onemean 0 (0.5 1), n(10(2)40) sd(1 1.5) graph(by(ma)
> scheme(stcolor_alt) byopts(yrescale title("Power vs sample size")
> subtitle("")))
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Figure 23.

Note that if you use title() and subtitle() outside byopts(), you will change the title and
subtitle of the individual by graphs and not the overall graph.



power, graph — Graph results from the power command 103

Parallel plots

Sometimes, you may be interested in comparing powers of parallel sets of parameters, that is,
parameters that vary in parallel instead of being nested. In this situation, the results represent a
collection of data points rather than a curve, and they are displayed on the graph as a scatterplot
without connecting points.

For such parallel plots, the default display of the results on the y axis may be cumbersome. A
more appealing look may be a graph that swaps the y and x axes, the horizontal graph. Such a look
may be achieved by specifying the horizontal suboption within graph().

. power onemean 0 (0.1(0.1)0.9), sd(1(0.1)1.9) parallel
> graph(x(ma sd) horizontal nosimple ytitle(""))
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Figure 24.

To improve the look of the horizontal graph, we specified the nosimplelabels suboption to request
that the labels on the y axis include the parameter symbol; we also suppressed the y-axis title.

Also see
[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] power, table — Produce table of results from the power command



Title

power, table — Produce table of results from the power command

Description Quick start Menu Syntax
Suboptions Remarks and examples Stored results Also see

Description
power, table displays results in a tabular format. table is implied if any of the power command’s

arguments or options contain more than one element. The table option is useful if you are producing
graphs and would like to see the table as well or if you are producing results one case at a time
using a loop and wish to display results in a table. The notable option suppresses table results; it
is implied with the graphical output of power, graph; see [PSS-2] power, graph.

Quick start
Sample size for a one-sample mean test in tabular format

power onemean 0.4 0.65, table

Same as above, but label the alpha column “Sig. level”
power onemean 0.4 0.65, table(, labels(alpha "Sig. level"))

Sample sizes for a two-sample means test in a table with only significance level, power, group sample
sizes, and null and alternative means

power twomeans 2 3, n(30(10)60) table(alpha power N1 N2 m1 m2)

Same as above, but display power estimates with only two decimal points
power twomeans 2 3, n(30(10)60) ///

table(alpha power N1 N2 m1 m2, formats(power "%3.2f"))

Menu
Statistics > Power, precision, and sample size

104
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Syntax

Produce default table

power . . ., table . . .

Suppress table

power . . ., notable . . .

Produce custom table

power . . ., table(
[

colspec
] [

, tableopts
]
) . . .

where colspec is

column
[
:label

] [
column

[
:label

] [
. . .
] ]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

tableopts Description

Table

add add columns to the default table
labels(labspec) change default labels for specified columns; default labels are column

names
widths(widthspec) change default column widths; default is specific to each column
formats(fmtspec) change default column formats; default is specific to each column
noformat do not use default column formats
separator(#) draw a horizontal separator line every # lines; default is separator(0),

meaning no separator lines
divider draw divider lines between columns
byrow display rows as computations are performed; seldom used

noheader suppress table header; seldom used
continue draw a continuation border in the table output; seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.
noheader and continue are not shown in the dialog box.



106 power, table — Produce table of results from the power command

column Description

alpha significance level
power power
beta type II error probability
N total number of subjects
N1 number of subjects in the control group
N2 number of subjects in the experimental group
nratio ratio of sample sizes, experimental to control
K number of clusters
K1 number of clusters in the control group
K2 number of clusters in the experimental group
kratio ratio of numbers of clusters, experimental to control
M cluster size
M1 cluster size in the control group
M2 cluster size in the experimental group
mratio ratio of cluster sizes, experimental to control
delta effect size
target target parameter
all display all supported columns

method columns columns specific to the method specified with power

By default, the following columns are displayed:
alpha and power are always displayed;
N is always displayed except for two-sample methods in a CRD;
N1 and N2 are displayed for two-sample methods except for a CRD;
kratio and mratio are available for two-sample methods in a CRD;
delta is displayed when defined by the method;
additional columns specific to each power method may be displayed.

Suboptions

The following are suboptions within the table() option of the power command.

� � �
Table �

add requests that the columns specified in colspec be added to the default table. The columns are
added to the end of the table.

labels(labspec) specifies the labels to be used in the table for the specified columns. labspec is

column "label"
[

column "label"
[
. . .
] ]

labels() takes precedence over the specification of column labels in colspec.

widths(widthspec) specifies column widths. The default values are the widths of the default column
formats plus one. If the noformat option is used, the default for each column is nine. The column
widths are adjusted to accommodate longer column labels and larger format widths. widthspec is
either a list of values including missing values (numlist) or

column #
[

column #
[
. . .
] ]
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For the value-list specification, the number of specified values may not exceed the number of
columns in the table. A missing value (.) may be specified for any column to indicate the default
width. If fewer widths are specified than the number of columns in the table, the last width specified
is used for the remaining columns.

The alternative column-list specification provides a way to change widths of specific columns.

formats(fmtspec) specifies column formats. The default is %7.0gc for integer-valued columns and
%7.4g for real-valued columns. fmtspec is either a string value-list of formats that may include
empty strings or a column list:

column "fmt"
[

column "fmt"
[
. . .
] ]

For the value-list specification, the number of specified values may not exceed the number of
columns in the table. An empty string ("") may be specified for any column to indicate the default
format. If fewer formats are specified than the number of columns in the table, the last format
specified is used for the remaining columns.

The alternative column-list specification provides a way to change formats of specific columns.

noformat requests that the default formats not be applied to the column values. If this suboption is
specified, the column values are based on the column width.

separator(#) specifies how often separator lines should be drawn between rows of the table. The
default is separator(0), meaning that no separator lines should be displayed.

divider specifies that divider lines be drawn between columns. The default is no dividers.

byrow specifies that table rows be displayed as computations are performed. By default, the table is
displayed after all computations are performed. This suboption may be useful when the computation
of each row of the table takes a long time.

The following suboptions are available but are not shown in the dialog box:

noheader prevents the table header from displaying. This suboption is useful when the command is
issued repeatedly, such as within a loop.

continue draws a continuation border at the bottom of the table. This suboption is useful when the
command is issued repeatedly, such as within a loop.

Remarks and examples
Remarks are presented under the following headings:

Using power, table
Default tables
Modifying default tables
Custom tables

power, table displays results from the power command in a table. This is useful for sensitivity
analysis, which investigates the effect of varying study parameters on power, sample size, or other
components of the study. The true values of study parameters are usually unknown. PSS analysis uses
best guesses for these values. It is important to evaluate the sensitivity of the computed power or
sample size to the chosen values of study parameters. For example, to evaluate variability of power
values, you can compute powers for various ranges of values for the parameters of interest and display
the resulting powers in a table or plot them on a graph (see [PSS-2] power, graph).
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Using power, table

If you specify the table option or include more than one element in command arguments or in
options allowing multiple values, the power command displays results in a tabular form. If desired,
you can suppress the table by specifying the notable option. The table option is useful if you are
producing graphical output or if you are producing results one case at a time, such as within a loop,
and wish to display results in a table; see example 4 below.

Each method specified with the power command has its own default table. Among the columns
that are always included in the default table are significance level (alpha), power (power), total
sample size (N)—except for two-sample methods in a cluster randomized design (CRD)—and effect
size (delta)—if effect size is defined by the method.

Depending on the method and study design, additional columns are also included by default.
One-sample methods in a CRD include the number of clusters (K) and cluster size (M). Two-sample
methods in an individual-level design include the sample sizes of the control and experimental groups
(N1 and N2). Two-sample methods in a CRD include the numbers of clusters of the control and
experimental groups (K1 and K2) and the cluster sizes of the two groups (M1 and M2).

You can build your own table by specifying the columns and, optionally, their labels in the table()
option. You can also add columns to the default table by specifying add within power’s table()
option. The columns are displayed in the order they are specified. Each method provides its own list
of supported columns; see the description of the table() option for each method. You can further
customize the table by specifying various suboptions within power’s table() option.

The default column labels are the column names. You can provide your own column labels in colspec
or by specifying table()’s suboption labels(). Labels containing spaces should be enclosed in
quotes, and labels containing quotes should be enclosed in compound quotes. The labels() suboption
is useful for changing the labels of existing columns; see example 2 below for details.

The default formats are %7.4g for real-valued columns and %7.0gc for integer-valued columns.
If the noformat suboption is specified, the default column widths are nine characters. You can
use formats() to change the default column formats and widths() to change the default column
widths. The formats() and widths() suboptions provide two alternative specifications, a value-list
specification or a column-list specification. The value-list specification accepts a list of values—strings
for formats and numbers for widths—corresponding to each column of the displayed table. Empty
strings ("") for formats and missing values (.) for widths are allowed and denote the default values. It
is an error to specify more values than the number of displayed columns. If fewer values are specified,
then the last value specified is used for the remaining columns. The column-list specification includes
a list of pairs containing a column name followed by the corresponding value of the format or width.
This specification is useful if you want to modify the formats or the widths of only selected columns.
For column labels or formats exceeding the default column width, the widths of the respective columns
are adjusted to accommodate the column labels and the specified formats.

If you specify the noformat suboption, the default formats are ignored, and the format of a column
is determined by the column width: if the column width is #, the displayed format is %(# - 2).#g.
For example, if the column width is 9, the displayed format is %7.0g.

You may further customize the look of the table by using separator(#) to include separator lines
after every # lines and by using the divider suboption to include divider lines between columns.

The noheader and continue suboptions are useful when you are building your own table within
a loop; see example 4 in Custom tables.

In what follows, we demonstrate the default and custom tables of the results from power and
sample-size analysis for a two-sided 5%-level one-sample t test comparing the population mean with
a hypothesized value; see [PSS-2] power onemean.
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Default tables
If there is only one set of results, the power command displays those results as text. When the

power command has multiple sets of results, they are automatically displayed in a table. You can
also specify the table option at any time to request that results be displayed in a table.

The displayed columns are specific to the chosen method of analysis and to the options specified
with the command. The columns that always appear in the table include the significance level (alpha),
power (power), and total sample size (N). If the concept of effect size is defined for the chosen
method, the effect size (delta) is also displayed in the default table.

Example 1: Default tables from power onemean

Suppose we want to explore the requirements on the sample size for a one-sample mean comparison
test to detect means of different magnitudes. For simplicity, we consider only two target mean values,
1 and 2, and keep all other study parameters of power onemean at their default values: power at
80%, two-sided significance level at 0.05, and the estimate of the population standard deviation at 1.
We use a zero null value of the mean. See [PSS-2] power onemean for details.

. power onemean 0 (1 2)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

alpha power N delta m0 ma sd

.05 .8 10 1 0 1 1

.05 .8 5 2 0 2 1

As we mentioned earlier, the alpha, power, N, and delta columns are usually displayed in the
default table. The power onemean command additionally displays columns containing the null mean,
the alternative mean, and the standard deviation.

If we need to account for finite population, we can specify the fpc() option with power onemean.
The default table will contain an additional column, fpc.

. power onemean 0 (1 2), fpc(500)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

alpha power N delta m0 ma sd fpc

.05 .8 10 1 0 1 1 500

.05 .8 5 2 0 2 1 500
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If there is only one set of results, the power command displays those results as text. If desired,
you can request a table by specifying the table option.

. power onemean 0 1, table

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

alpha power N delta m0 ma sd

.05 .8 10 1 0 1 1

Modifying default tables

We can modify labels, widths, and formats of the default columns by specifying the corresponding
suboptions within the table() option. We can also add columns to the default table by using
table()’s suboption add.

Example 2: Modifying default tables from power onemean

We can change the default labels of all or selected columns by using the labels() suboption
within power’s table() option. For example, we can change the labels of the sample-size columns
and standard deviation columns of the first table in example 1 to “Sample size” and “Std. dev.”,
respectively.

. power onemean 0 (1 2), table(, labels(N "Sample size" sd "Std. dev."))

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

alpha power Sample size delta m0 ma Std. dev.

.05 .8 10 1 0 1 1

.05 .8 5 2 0 2 1

We can also change default column formats and widths by using the formats() and widths()
suboptions.

. power onemean 0 (1 2), n(5) table(, labels(N "Sample size" sd "Std. dev.")
> widths(N 14 sd 14) formats(power "%7.5f"))

Estimated power for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

alpha power Sample size delta m0 ma Std. dev.

.05 0.40139 5 1 0 1 1

.05 0.90888 5 2 0 2 1
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For this table, we switched from a sample-size determination to power determination by specifying
the n() option. We changed the default column widths of the sample-size columns and standard
deviation columns to 14. We also changed the default %7.4g format of the power column to %7.5f.

We can add columns to the default table by listing the names of the columns in the table()
option and specifying its suboption add.

. power onemean 0 (1 2), table(diff, add)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

alpha power N delta m0 ma sd diff

.05 .8 10 1 0 1 1 1

.05 .8 5 2 0 2 1 2

We added the column diff, which contains the difference between the alternative and hypothesized
values of the mean, to the default table produced by power onemean.

Custom tables
We can use the table() option to build custom tables, which contain the columns you want in the

order you want. You can also build a table within a foreach or forvalues loop as we demonstrate
in example 4 below. This is useful in the case when you want to obtain multiple sets of results over
parameters of the power command that do not allow the numlist specification.

Example 3: Producing custom tables

As an example of a custom table, we produce a table containing only four columns: significance
level, power, sample size, and effect size.

. power onemean 0 (1 2), table(alpha:"Significance level"
> power:Power N:"Sample size" delta:"Effect size", widths(. 15))

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

Significance level Power Sample size Effect size

.05 .8 10 1

.05 .8 5 2

To improve the look of the table, we also specified the widths(. 15) suboption to increase the
column widths of the last 3 columns to 15, leaving the width of the first column, the significance
level, at its default value.
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We can use the all qualifier to request that all table columns supported by the method be
displayed.

. power onemean 0 (1 2), table(_all)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

alpha power beta N delta m0 ma diff sd

.05 .8 .2 10 1 0 1 1 1

.05 .8 .2 5 2 0 2 2 1

Example 4: Building table using a loop

Some options of power commands may not allow the numlist specification. In this case, you
can build a table manually by using a loop such as foreach (see [P] foreach) or forvalues (see
[P] forvalues) loop. One way to do this is to write a program that loops over parameters of interest.
We demonstrate a program that loops over varying values of the alternative mean of power onemean.
You can easily adapt this program to meet your needs.

program dotable
args ma
numlist "‘ma’" // expand the numeric list in macro ma
local ma "‘r(numlist)’"
local nvals : list sizeof ma
local i 1
foreach val of local ma { // loop over numeric values in ma

if (‘i’==1) {
power onemean 0 ‘val’, table(, continue)

}
else if (‘i’<‘nvals’) {

power onemean 0 ‘val’, table(, noheader continue) notitle
}
else {

power onemean 0 ‘val’, table(, noheader) notitle
}
local ++i

}
end

The dotable program accepts one argument, ma, which may contain one or more numeric values of
the alternative mean specified as numlist. The program uses combinations of continue, noheader,
and notitle to display a table. The first call to power onemean requests that the table be displayed
without the bottom line by specifying the continue suboption within table(). The subsequent calls
(except the last) specify the continue suboption, the notitle option with power onemean, and
noheader within the table() option to request that neither the output before the table nor the table
header be displayed. The last call omits the continue suboption so that the bottom line is displayed.
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As a result, we obtain the following table:

. dotable "1(1)4"

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

alpha power N delta m0 ma sd

.05 .8 10 1 0 1 1

.05 .8 5 2 0 2 1

.05 .8 4 3 0 3 1

.05 .8 3 4 0 4 1

Stored results
power, table stores the following in r() in addition to other results stored by power:

Scalars
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise

Macros
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Also see
[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] power, graph — Graph results from the power command
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power onemean — Power analysis for a one-sample mean test

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power onemean computes sample size, power, or target mean for a one-sample mean test. By
default, it computes sample size for given power and the values of the mean parameters under the
null and alternative hypotheses. Alternatively, it can compute power for given sample size and values
of the null and alternative means or the target mean for given sample size, power, and the null mean.
For power and sample-size analysis in a cluster randomized design, see [PSS-2] power onemean,
cluster. Also see [PSS-2] power for a general introduction to the power command using hypothesis
tests.

For precision and sample-size analysis for a CI for a population mean, see [PSS-3] ciwidth onemean.

Quick start
Sample size for two-sided test of H0: µ = 10 versus Ha: µ 6= 10 with null mean m0 = 10, alternative

mean ma = 15, and standard deviation of 12 using default power of 0.8 and significance level
α = 0.05

power onemean 10 15, sd(12)

Same as above, but for a one-sided test with power of 0.9
power onemean 10 15, sd(12) power(.9) onesided

Same as above, but specified as m0 and difference ma −m0 = 5
power onemean 10, sd(12) power(.9) onesided diff(5)

Power for a sample size of 75
power onemean 10 15, sd(12) n(75)

Power for sample sizes of 50, 60, 70, and 80
power onemean 10 15, sd(12) n(50(10)80)

Same as above, but display results in a graph of power versus sample size
power onemean 10 15, sd(12) n(50(10)80) graph

Effect size and target mean for m0 = 10 with standard deviation of 4, for a sample size of 40, power
of 0.9, and α = 0.01

power onemean 10, sd(4) n(40) power(.9) alpha(.01)

114
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Menu
Statistics > Power, precision, and sample size

Syntax

Compute sample size

power onemean m0 ma

[
, power(numlist) options

]

Compute power

power onemean m0 ma , n(numlist)
[

options
]

Compute effect size and target mean

power onemean m0 , n(numlist) power(numlist)
[

options
]

where m0 is the null (hypothesized) mean or the value of the mean under the null hypothesis and
ma is the alternative (target) mean or the value of the mean under the alternative hypothesis. m0

and ma may each be specified either as one number or as a list of values in parentheses (see
[U] 11.1.8 numlist).
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗diff(numlist) difference between the alternative mean and the null mean,

ma −m0; specify instead of the alternative mean ma
∗sd(numlist) standard deviation; default is sd(1)

knownsd request computation assuming a known standard deviation;
default is to assume an unknown standard deviation

∗fpc(numlist) finite population correction (FPC) as a sampling rate or
as a population size

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value for sample size or mean;
default is to use normal approximation

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

cluster perform computations for a CRD;
see [PSS-2] power onemean, cluster

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
cluster and notitle do not appear in the dialog box.
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where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N number of subjects N
delta effect size δ
m0 null mean µ0

ma alternative mean µa
diff difference between the alternative and null means µa − µ0

sd standard deviation σ
fpc FPC as population size Npop

FPC as sampling rate γ
target target parameter; synonym for ma
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Columns diff and fpc are shown in the default table if specified.

Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS-2] power. The nfractional option is
allowed only for sample-size determination.

diff(numlist) specifies the difference between the alternative mean and the null mean, ma−m0. You
can specify either the alternative mean ma as a command argument or the difference between the
two means in diff(). If you specify diff(#), the alternative mean is computed as ma = m0 +
#. This option is not allowed with the effect-size determination.

sd(numlist) specifies the sample standard deviation or the population standard deviation. The default
is sd(1). By default, sd() specifies the sample standard deviation. If knownsd is specified, sd()
specifies the population standard deviation.

knownsd requests that the standard deviation be treated as known in the computation. By default, the
standard deviation is treated as unknown, and the computation is based on a t test, which uses a
Student’s t distribution as a sampling distribution of the test statistic. If knownsd is specified, the
computation is based on a z test, which uses a normal distribution as the sampling distribution of
the test statistic.

fpc(numlist) requests that a finite population correction be used in the computation. If fpc() has
values between 0 and 1, it is interpreted as a sampling rate, n/N , where N is the total number of
units in the population. When sample size n is specified, if fpc() has values greater than n, it is
interpreted as a population size, but it is an error to have values between 1 and n. For sample-size
determination, fpc() with a value greater than 1 is interpreted as a population size. It is an error
for fpc() to have a mixture of sampling rates and population sizes.
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direction(), onesided, parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value of the sample size for the sample-size determination or the initial
value of the mean for the effect-size determination. The default is to use a closed-form normal
approximation to compute an initial value of the sample size or mean.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following options are available with power onemean but are not shown in the dialog box:

cluster; see [PSS-2] power onemean, cluster.

notitle; see [PSS-2] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power onemean
Computing sample size
Computing power
Computing effect size and target mean
Performing hypothesis tests on mean
Video examples

This entry describes the power onemean command and the methodology for power and sample-size
analysis for a one-sample mean test. See [PSS-2] Intro (power) for a general introduction to power
and sample-size analysis, and see [PSS-2] power for a general introduction to the power command
using hypothesis tests. Also see [PSS-2] power onemean, cluster for power and sample-size analysis
in a cluster randomized design.

Introduction
There are many examples of studies where a researcher would like to compare an observed mean

with a hypothesized mean. A company that provides preparatory classes for a standardized exam
would like to see if the mean score of students who take its classes is higher than the national
average. A fitness center would like to know if its average clients’ weight loss is greater than zero
after six months. Or a government agency would like to know if a job training program results in
higher wages than the national average.

This entry describes power and sample-size analysis for the inference about the population mean
performed using hypothesis testing. Specifically, we consider the null hypothesis H0: µ = µ0 versus
the two-sided alternative hypothesis Ha: µ 6= µ0, the upper one-sided alternative Ha: µ > µ0, or the
lower one-sided alternative Ha: µ < µ0.
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The considered one-sample mean tests rely on the assumption that a random sample is normally
distributed or that the sample size is large. Different test statistics can be based on whether the variance
of the sampling process is known a priori. In the case of a known variance, the test statistic follows
a standard normal distribution under the null hypothesis, and the corresponding test is known as a
z test. In the case of an unknown variance, an estimate of the population variance is used to form a
test statistic, which follows a Student’s t distribution under the null hypothesis, and the corresponding
test is known as a t test.

The random sample is typically drawn from an infinite population. When the sample is drawn
from a population of a fixed size, sampling variability must be adjusted for a finite population size.

The power onemean command provides power and sample-size analysis for the comparison of a
mean with a reference value using a t test or a z test.

Using power onemean

power onemean computes sample size, power, or target mean for a one-sample mean test. All
computations are performed for a two-sided hypothesis test where, by default, the significance level
is set to 0.05. You may change the significance level by specifying the alpha() option. You can
specify the onesided option to request a one-sided test.

By default, all computations are based on a t test, which assumes an unknown standard deviation,
and use the default value of 1 as the estimate of the standard deviation. You may specify other values
for the standard deviation in the sd() option. For a known standard deviation, you can specify the
knownsd option to request a z test.

To compute sample size, you must specify the means under the null and alternative hypotheses,
m0 and ma, respectively, and, optionally, the power of the test in the power() option. The default
power is set to 0.8.

To compute power, you must specify the sample size in the n() option and the means under the
null and alternative hypotheses, m0 and ma, respectively.

Instead of the alternative mean, ma, you may specify the difference ma − m0 between the
alternative mean and the null mean in the diff() option when computing sample size or power.

To compute effect size, the standardized difference between the alternative and null means, and
the corresponding target mean, you must specify the sample size in the n() option, the power in the
power() option, the null mean m0, and, optionally, the direction of the effect. The direction is upper
by default, direction(upper), which means that the target mean is assumed to be larger than the
specified null mean value. This is also equivalent to the assumption of a positive effect size. You can
change the direction to lower, which means that the target mean is assumed to be smaller than the
specified null value, by specifying the direction(lower) option. This is equivalent to assuming a
negative effect size.

By default, the computed sample size is rounded up. You can specify the nfractional option
to see the corresponding fractional sample size; see Fractional sample sizes in [PSS-4] Unbalanced
designs for an example. The nfractional option is allowed only for sample-size determination.

Some of power onemean’s computations require iteration. For example, when the standard deviation
is unknown, computations use a noncentral Student’s t distribution. Its degrees of freedom depends
on the sample size, and the noncentrality parameter depends on the sample size and effect size.
Therefore, the sample-size and effect-size determinations require iteration. The default initial values
of the estimated parameters are obtained by using a closed-form normal approximation. They may
be changed by specifying the init() option. See [PSS-2] power for the descriptions of other options
that control the iteration procedure.
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All computations assume an infinite population. For a finite population, use the fpc() option
to specify a sampling rate or a population size. When this option is specified, a finite population
correction is applied to the population standard deviation. The correction factor depends on the sample
size; therefore, computing sample size for a finite population requires iteration even for a known
standard deviation. The initial value for the sample size is based on the corresponding sample size
assuming an infinite population.

In the following sections, we describe the use of power onemean accompanied by examples for
computing sample size, power, and target mean.

Computing sample size

To compute sample size, you must specify the means under the null and alternative hypotheses,
m0 and ma, respectively, and, optionally, the power of the test in the power() option. A default
power of 0.8 is assumed if power() is not specified.

Example 1: Sample size for a one-sample mean test

Consider an example from Tamhane and Dunlop (2000, 209) that discusses the effectiveness of
coaching programs in improving the verbal part of SAT scores. Previous studies found that students
retaking the SAT exams without any coaching program improve their scores by 15 points on average
with a standard deviation of about 40 points. A new coaching program claims to improve the SAT
scores by 40 points above the average. The changes in scores are assumed to be approximately
normally distributed. The parameter of interest in this example is the mean change in the test scores.
To test the claim, investigators wish to conduct another study and compute the sample size that is
required to detect a mean change in scores of 40 points with 80% power using a 5%-level two-sided
test. We assume that the true population standard deviation is unknown and use its estimate from
previous studies to compute the sample size:

. power onemean 15 40, sd(40)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.6250

m0 = 15.0000
ma = 40.0000
sd = 40.0000

Estimated sample size:

N = 23

We find that a sample of 23 subjects is required to detect a shift of 40 points in average SAT scores
given the standard deviation of 40 points with 80% power using a 5%-level two-sided test.

As we mentioned in Using power onemean and as is also indicated in the output, sample-size
computation requires iteration when the standard deviation is unknown. The iteration log is suppressed
by default, but you can display it by specifying the log option.
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Example 2: Specifying difference between means

Instead of the alternative mean change of 40 as in example 1, we can specify the difference of 25
between the mean changes in scores under the alternative and null hypotheses in the diff() option
and obtain the same results.

. power onemean 15, diff(25) sd(40)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.6250

m0 = 15.0000
ma = 40.0000

diff = 25.0000
sd = 40.0000

Estimated sample size:

N = 23

When we specify the diff() option, the difference between the alternative and null values is also
reported in the output.

Example 3: Known variance

If we know the population standard deviation, we can use the knownsd option to request a z test.

. power onemean 15 40, sd(40) knownsd

Performing iteration ...

Estimated sample size for a one-sample mean test
z test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.6250

m0 = 15.0000
ma = 40.0000
sd = 40.0000

Estimated sample size:

N = 21

The output now indicates that the computation is based on a z test instead of a t test. We find that
a smaller sample of 21 subjects is required to detect the same effect size as in example 1 when the
standard deviation is known.
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Computing power

To compute power, you must specify the sample size in the n() option and the means under the
null and alternative hypotheses, m0 and ma, respectively.

Example 4: Power of a one-sample mean test

Continuing with example 1, we will suppose that we are designing a new study and anticipate to
obtain a sample of 30 subjects. To compute the power corresponding to this sample size given the
study parameters from example 1, we specify the sample size of 30 in the n() option:

. power onemean 15 40, n(30) sd(40)

Estimated power for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
N = 30

delta = 0.6250
m0 = 15.0000
ma = 40.0000
sd = 40.0000

Estimated power:

power = 0.9112

With a larger sample size, the power of the test increases to about 91.12%.

Example 5: Multiple values of study parameters

To investigate the effect of a finite population size on power, we can specify a list of population
sizes in the fpc() option:

. power onemean 15 40, n(30) sd(40) fpc(100 500 1000)

Estimated power for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

alpha power N delta m0 ma sd fpc

.05 .9769 30 .625 15 40 40 100

.05 .9267 30 .625 15 40 40 500

.05 .919 30 .625 15 40 40 1000

As expected, when the population size increases, the power tends to get closer to that obtained by
assuming an infinite population size.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.
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Example 6: Reproducing published results from a text book

We can also reproduce the example from Tamhane and Dunlop (2000, 213–214). The authors
consider a one-sided test with a 0.132 significance level and a known standard deviation and compute
the power to be 95.3%. We can replicate their example by typing

. power onemean 15 40, n(20) sd(40) alpha(0.132) onesided knownsd

Estimated power for a one-sample mean test
z test
H0: m = m0 versus Ha: m > m0

Study parameters:

alpha = 0.1320
N = 20

delta = 0.6250
m0 = 15.0000
ma = 40.0000
sd = 40.0000

Estimated power:

power = 0.9533

Computing effect size and target mean

Effect size δ for a one-sample mean test is defined as the ratio of the difference between the
alternative and null values of the mean to the standard deviation, δ = (µa − µ0)/σ.

Sometimes, we may be interested in determining the smallest effect and the corresponding alternative
or target mean that yield a statistically significant result for prespecified sample size and power. In
this case, power, sample size, and null mean must be specified. In addition, you must also decide
on the direction of the effect: upper, which means µa > µ0, or lower, which means µa < µ0. The
direction may be specified in the direction() option; direction(upper) is the default.

Example 7: Minimum detectable value of the mean change in SAT scores

Continuing with example 4, we may also be interested to find the smallest mean change in SAT
scores that can be detected with a power of 80% given a sample of 30 subjects. To compute this,
we specify only the null value of 15 as the command argument and also specify the sample size
and power in the n(30) and power(0.8) options, respectively. We use the same value of 40 for the
standard deviation as in example 4.

. power onemean 15, n(30) power(0.8) sd(40)

Performing iteration ...

Estimated target mean for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0; ma > m0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 30
m0 = 15.0000
sd = 40.0000

Estimated effect size and target mean:

delta = 0.5292
ma = 36.1694
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The estimated smallest mean change in SAT scores is 36.17, which corresponds to the effect size of
0.53. Compared with example 1, for the same power of 80%, this example shows a smaller difference
between the mean SAT scores of the two programs for a larger sample of 30 subjects.

In the above, we assumed the effect to be in the upper direction. By symmetry, the effect size in
the lower direction will be −0.53, which can also be obtained by specifying direction(lower) in
the above example.

Performing hypothesis tests on mean

In this section, we briefly demonstrate the use of the ttest command for testing hypotheses about
means; see [R] ttest for details. Suppose we wish to test the hypothesis that the mean is different
from a reference value on the collected data. We can use the ttest command to do this. Below we
demonstrate the use of this command for the analysis of sat.dta.

Example 8: Testing for mean

Suppose that we wish to test whether the mean verbal SAT score is equal to 600. We use the
ttest command to do this as follows:

. use https://www.stata-press.com/data/r18/sat
(Fictional SAT data)

. ttest score == 600

One-sample t test

Variable Obs Mean Std. err. Std. dev. [95% conf. interval]

score 75 504.8 15.24616 132.0356 474.4214 535.1786

mean = mean(score) t = -6.2442
H0: mean = 600 Degrees of freedom = 74

Ha: mean < 600 Ha: mean != 600 Ha: mean > 600
Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000

We find statistical evidence to reject the null hypothesis of H0 : µSAT = 600 versus a two-sided
alternative Ha: µSAT 6= 600 at the 5% significance level; the p-value < 0.0000.

We use the estimates based on this study to perform a sample-size analysis we would have
conducted before the study.

. power onemean 600 505, sd(132)

Performing iteration ...

Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.7197

m0 = 600.0000
ma = 505.0000
sd = 132.0000

Estimated sample size:

N = 18
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We find that the sample size required to detect a mean score of 505 with 80% power using a 5%-level
two-sided test is only 18. The current sample contains 75 subjects, which would allow us to detect
a potentially smaller (in absolute value) difference between the alternative and null means.

Video examples

Sample-size calculation for comparing a sample mean to a reference value

Power calculation for comparing a sample mean to a reference value

Minimum detectable effect size for comparing a sample mean to a reference value

Stored results
power onemean stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) sample size
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(m0) mean under the null hypothesis
r(ma) mean under the alternative hypothesis
r(diff) difference between the alternative and null means
r(sd) standard deviation
r(knownsd) 1 if option knownsd is specified, 0 otherwise
r(fpc) finite population correction (if specified)
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample size or mean
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) onemean
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

https://www.youtube.com/watch?v=wZcUTJ_34ic&list=PLN5IskQdgXWmExGRjdy0s0VCdYnzGMZrT
https://www.youtube.com/watch?v=Fmb8yHBl-n0&list=PLN5IskQdgXWmExGRjdy0s0VCdYnzGMZrT
https://www.youtube.com/watch?v=Ulx_tlVBgqM&list=PLN5IskQdgXWmExGRjdy0s0VCdYnzGMZrT
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Methods and formulas
Let x1, . . . , xn be a sequence of n independent and identically distributed random variables drawn

from a normal population with mean µ and variance σ2. Let

x =
1

n

n∑
i=1

xi and s2 =
1

n− 1

n∑
i=1

(xi − x)2

denote the sample mean and the sample variance, respectively. Let µ0 and µa denote the null and
alternative values of the mean parameter, respectively.

A one-sample mean test involves testing the null hypothesis H0: µ = µ0 versus the two-sided
alternative hypothesis Ha : µ 6= µ0, the upper one-sided alternative Ha : µ > µ0, or the lower
one-sided alternative Ha: µ < µ0.

If the nfractional option is not specified, the computed sample size is rounded up.

The following formulas are based on Chow et al. (2018).

Methods and formulas are presented under the following headings:

Known standard deviation
Unknown standard deviation
Finite population size

Known standard deviation

In the case of a known standard deviation, the sampling distribution of the test statistic z =√
n(x−µ0)/σ under the null hypothesis follows the standard normal distribution, and the corresponding

test is known as a z test.

Let α be the significance level, β be the probability of a type II error, and z1−α and zβ be the
(1− α)th and the βth quantiles of the standard normal distribution.

The power π = 1− β is computed using

π =


Φ (
√
nδ − z1−α) for an upper one-sided test

Φ (−
√
nδ − z1−α) for a lower one-sided test

Φ
(√
nδ − z1−α/2

)
+ Φ

(
−
√
nδ − z1−α/2

)
for a two-sided test

(1)

where Φ(·) is the cdf of the standard normal distribution and δ = (µa − µ0)/σ is the effect size.

The sample size n for a one-sided test is computed by inverting a one-sided power equation from
(1):

n =

(
z1−α − zβ

δ

)2

(2)

Similarly, the absolute value of the effect size for a one-sided test is computed as follows:

|δ| = (z1−α − zβ)√
n

(3)

Note that the magnitude of the effect size is the same regardless of the direction of the test.
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The minimum detectable value of the mean for a one-sided test is computed as
µa = µ0 + (z1−α− zβ)σ/

√
n when µa > µ0 and as µa = µ0− (z1−α− zβ)σ/

√
n when µa < µ0.

Sample size and minimum detectable value of the mean for a two-sided test are computed
iteratively using the two-sided power equation from (1). The initial values are obtained from (2) and
(3), correspondingly, with α/2 in place of α.

Unknown standard deviation
In the case of an unknown standard deviation, an unbiased estimator s is used in place of σ in

the definition of a z test statistic. The sampling distribution of the test statistic t =
√
n(x− µ0)/s

under the null hypothesis follows a Student’s t distribution with n− 1 degrees of freedom, and the
corresponding test is known as a t test.

Let tn−1,α denote the αth quantile of a Student’s t distribution with n − 1 degrees of freedom.
Under the alternative hypothesis, the test statistic follows a noncentral Student’s t distribution, and
the power is computed using

π =


1− Tn−1,λ (tn−1,1−α) for an upper one-sided test
Tn−1,λ (−tn−1,1−α) for a lower one-sided test
1− Tn−1,λ

(
tn−1,1−α/2

)
+ Tn−1,λ

(
−tn−1,1−α/2

)
for a two-sided test

(4)

where Tn−1,λ (·) is the cumulative noncentral Student’s t distribution with a noncentrality parameter
λ =
√
nδ.

Sample size and minimum detectable value of the mean are obtained by iteratively solving nonlinear
equations in (4), for n and δ, respectively. The default initial values for the iterative procedure are
calculated from (2) and (3), respectively, assuming a normal distribution.

Finite population size

The above formulas assume that the random sample is drawn from an infinite population. In cases
when the size of the population is known, we need to make the following adjustment to the standard
deviation,

σfpc = σ

√(
1− n

N

)
where σfpc is the population standard deviation adjusted for finite population size. The correction
factor depends on the sample size; therefore, computing sample size in this case requires iteration.
The initial value for the sample size is based on the corresponding normal approximation with infinite
population size.

References
Chow, S.-C., J. Shao, H. Wang, and Y. Lokhnygina. 2018. Sample Size Calculations in Clinical Research. 3rd ed.

Boca Raton, FL: CRC Press.

Tamhane, A. C., and D. D. Dunlop. 2000. Statistics and Data Analysis: From Elementary to Intermediate. Upper
Saddle River, NJ: Prentice Hall.
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Also see
[PSS-2] power onemean, cluster — Power analysis for a one-sample mean test, CRD

[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] power, graph — Graph results from the power command

[PSS-2] power, table — Produce table of results from the power command

[PSS-3] ciwidth onemean — Precision analysis for a one-mean CI

[PSS-5] Glossary
[ADAPT] gsdesign onemean — Group sequential design for a one-sample mean test

[R] ttest — t tests (mean-comparison tests)



Title

power onemean, cluster — Power analysis for a one-sample mean test, CRD

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power onemean, cluster computes the number of clusters, cluster size, power, or target mean
for a one-sample mean test in a cluster randomized design (CRD). It computes the number of clusters
given cluster size, power, and the values of the null and alternative means. It also computes cluster size
given the number of clusters, power, and the values of the null and alternative means. Alternatively, it
computes power given the number of clusters, cluster size, and the values of the null and alternative
means, or it computes the target mean given the number of clusters, cluster size, power, and the null
mean. See [PSS-2] power onemean for a general discussion of power and sample-size analysis for
a one-sample mean test. Also see [PSS-2] power for a general introduction to the power command
using hypothesis tests.

Quick start
Compute number of clusters for two-sided test of H0: µ = 10 versus Ha: µ 6= 10 with null mean
m0 = 10, alternative mean ma = 15, standard deviation of 12, and cluster size of 5, using default
intraclass correlation of 0.5, power of 0.8, and significance level α = 0.05

power onemean 10 15, m(5) sd(12)

Same as above, but with an intraclass correlation of 0.2
power onemean 10 15, m(5) sd(12) rho(0.2)

Same as above, but the cluster size varies with a coefficient of variation of 0.6
power onemean 10 15, m(5) sd(12) rho(0.2) cvcluster(0.6)

Compute cluster size when 30 clusters are sampled
power onemean 10 15, k(30) sd(12)

Power for 30 clusters with cluster size of 5
power onemean 10 15, k(30) m(5) sd(12)

Same as above, but for 30, 35, 40, 45, and 50 clusters and display results in a graph of power versus
number of clusters

power onemean 10 15, k(30(5)50) m(5) sd(12) graph

Effect size and target mean for m0 = 10 with standard deviation of 4, for 8 clusters with cluster size
of 5, power of 0.9, and α = 0.01

power onemean 10, k(8) m(5) power(0.9) sd(4) alpha(0.01)

129
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Menu
Statistics > Power, precision, and sample size

Syntax

Compute number of clusters

power onemean m0 ma , { m(numlist) | n(numlist) cluster }
[

options
]

Compute cluster size

power onemean m0 ma , k(numlist)
[

options
]

Compute power

power onemean m0 ma , k(numlist) { m(numlist) | n(numlist) }
[

options
]

Compute effect size and target mean

power onemean m0 , k(numlist) { m(numlist) | n(numlist) } power(numlist)
[

options
]

where m0 is the null (hypothesized) mean or the value of the mean under the null hypothesis and
ma is the alternative (target) mean or the value of the mean under the alternative hypothesis. m0

and ma may each be specified either as one number or as a list of values in parentheses (see
[U] 11.1.8 numlist).
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options Description

Main

cluster perform computations for a CRD; implied by k() or m()
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗k(numlist) number of clusters
∗m(numlist) cluster size
∗n(numlist) number of observations
nfractional allow fractional number of clusters, cluster size, and sample size
∗diff(numlist) difference between the alternative mean and the null mean,

ma −m0; specify instead of the alternative mean ma
∗sd(numlist) standard deviation; default is sd(1)
∗rho(numlist) intraclass correlation; default is rho(0.5)
∗cvcluster(numlist) coefficient of variation for cluster sizes
direction(upper|lower) direction of the effect for effect-size determination; default is

direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value for number of clusters, cluster size, or mean
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.
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where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
K number of clusters K
M cluster size M
N number of observations N
delta effect size δ
m0 null mean µ0

ma alternative mean µa
diff difference between the alternative and null means µa − µ0

sd standard deviation σ
rho intraclass correlation ρ
CV cluster coefficient of variation for cluster sizes CVcl

target target parameter; synonym for ma
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Columns diff and CV cluster are shown in the default table if specified.

Options

� � �
Main �

cluster specifies that computations should be performed for a CRD. This option is implied when
either the k() or m() option is specified. It is required if the n() option is used to compute the
number of clusters.

alpha(), power(), beta(); see [PSS-2] power.

k(numlist) specifies the number of clusters. This option is required to compute the cluster size,
power, or effect size.

m(numlist) specifies the cluster size. This option or the n() option is required to compute the
number of clusters, power, or effect size. m() may contain noninteger values. In this case or if
the cvcluster() option is specified, m() represents the average cluster size.

n(numlist) specifies the number of observations. This option or the m() option is required to compute
the number of clusters, power, or effect size.

nfractional; see [PSS-2] power. The nfractional option is allowed when computing the number
of clusters and cluster size to display fractional (without rounding) values of the number of clusters,
cluster size, and sample size.

diff(), sd(); see [PSS-2] power onemean.

rho(numlist) specifies the intraclass correlation. The default is rho(0.5).
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cvcluster(numlist) specifies the coefficient of variation for cluster sizes. This option is used with
varying cluster sizes.

direction(), onesided, parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value for the number of clusters or cluster size for sample-size deter-
mination or the initial value for the mean for the effect-size determination. The default is to use
a closed-form normal approximation to compute an initial value for the estimated parameter.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power onemean, cluster but is not shown in the dialog box:

notitle; see [PSS-2] power.

Remarks and examples
Remarks are presented under the following headings:

Using power onemean, cluster
Computing number of clusters
Computing cluster size
Computing power
Computing effect size and target mean
Performing hypothesis tests on mean in a CRD

power onemean, cluster requests that computations for the power onemean command be done
for a CRD. In a CRD, groups of subjects or clusters are randomized instead of individual subjects,
so the sample size is determined by the number of clusters and the cluster size. The sample-size
determination thus consists of the determination of the number of clusters given cluster size or the
determination of cluster size given the number of clusters. For a general discussion of using power
onemean, see [PSS-2] power onemean. The discussion below is specific to the CRD.

Using power onemean, cluster

If you specify the cluster option, include k() to specify the number of clusters or include m()
to specify the cluster size, the power onemean command will perform computations for a one-sample
mean test in a CRD.

All computations are performed for a two-sided hypothesis test where, by default, the significance
level is set to 0.05. You may change the significance level by specifying the alpha() option. You
can specify the onesided option to request a one-sided test.
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To compute the number of clusters, you must specify the means under the null and alternative
hypotheses as command arguments m0 and ma, respectively, and specify the cluster size in the m()
option. Instead of specifying the m() option, you may specify the sample size in the n() option
and specify the cluster option, so that power onemean will perform its computation for a cluster
randomized design instead of the default individual-level design. You may also specify the power of
the test in the power() option.

To compute cluster size, you must specify the null mean m0, the alternative mean ma, and the
number of clusters in the k() option. You may also specify the power of the test in the power()
option.

To compute power, you must specify the number of clusters in the k() option, the cluster size in
the m() option or the sample size in the n() option, the null mean m0, and the alternative mean ma.

Instead of the alternative mean ma, you may specify the difference ma−m0 between the alternative
mean and the null mean in the diff() option when computing the number of clusters, cluster size,
or power.

The effect size δ is defined as the standardized difference between the alternative and null means.
In a CRD, the effect size δ is also adjusted for the cluster design; see Methods and formulas.

To compute effect size and the corresponding target mean, you must specify the number of clusters
in the k() option, the cluster size in the m() option or the sample size in the n() option, the power
in the power() option, and the null mean m0. You may also specify the direction of the effect in
the direction() option. The direction is upper by default, direction(upper); see Using power
onemean in [PSS-2] power onemean for other details.

The computations for a CRD are based on a z test that relies on (asymptotic) normality of the data
and assumes known standard deviation, which you may specify in the sd() option. Otherwise, the
default value of one is used.

All computations assume an intraclass correlation of 0.5. You can change this by specifying the
rho() option. Also, all clusters are assumed to be of the same size unless the coefficient of variation
for cluster sizes is specified in the cvcluster() option.

By default, the computed number of clusters, cluster size, and sample size is rounded up. However,
you can specify the nfractional option to see the corresponding fractional values; see Fractional
sample sizes in [PSS-4] Unbalanced designs for an example. If the cvcluster() option is specified
when computing cluster size, then cluster size represents the average cluster size and is thus not
rounded. When sample size is specified in the n() option, fractional cluster size may be reported to
accommodate the specified number of clusters and sample size.

Some of power onemean, cluster’s computations require iteration, such as to compute the
number of clusters for a two-sided test; see Methods and formulas for details and [PSS-2] power for
the descriptions of options that control the iteration procedure.

Computing number of clusters

To compute the number of clusters, you must specify the means under the null and alternative
hypotheses as command arguments m0 and ma, respectively, and specify the cluster size in the m()
option. Instead of specifying the m() option, you may specify the sample size in the n() option
and specify the cluster option, so that power onemean will perform its computation for a cluster
randomized design instead of the default individual-level design. You may also specify the power of
the test in the power() option.
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Example 1: Number of clusters for a one-sample mean test in a CRD, specifying cluster
size

Consider an example from Tamhane and Dunlop (2000, 209) that discusses the effectiveness of
coaching programs in improving the verbal part of SAT scores. Previous studies found that students
retaking the SAT exams without any coaching program improve their scores by 15 points on average
with a standard deviation of about 40 points. The population standard deviation is assumed to be 40.

Unlike Tamhane and Dunlop (2000, 209), we assume that students are sampled from a set of
classes and that the scores of students from the same class are correlated. We plan on sampling 10
students from each class and assume that the intraclass correlation is 0.3.

A new coaching program claims to improve average SAT scores by 40 points. The changes in scores
are assumed to be approximately normally distributed. The parameter of interest in this example is
the mean change in the test scores. To test the claim, investigators wish to conduct another study and
compute the number of classes that is required to detect a difference of 25 points when the mean
change in scores increases from 15 points to 40 points with 80% power using a 5%-level two-sided
test:

. power onemean 15 40, m(10) sd(40) rho(0.3)

Performing iteration ...

Estimated number of clusters for a one-sample mean test
Cluster randomized design, z test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.3249

m0 = 15.0000
ma = 40.0000
sd = 40.0000

Cluster design:

M = 10
rho = 0.3000

Estimated number of clusters and sample size:

K = 8
N = 80

We find that given 10 students per class, 8 classes and thus a total of 80 students are required to
detect a 25-point increase in the mean change in SAT scores given the standard deviation of 40 points
with 80% power using a 5%-level two-sided test. The effect size (delta) is calculated using the
given information about the null and alternative means, standard deviation, and cluster design; see
Methods and formulas.

Example 2: Number of clusters for a one-sample mean test in a CRD, with varying
cluster sizes

Instead of a constant number of students in each class as in example 1, we assume that the number
of students selected from each class will vary. Suppose that the average of the class sizes is 10 and
that the coefficient of variation for class sizes is 1.2. To account for varying cluster sizes, we specify
the coefficient of variation in the cvcluster() option.
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. power onemean 15 40, m(10) sd(40) rho(0.3) cvcluster(1.2)

Performing iteration ...

Estimated number of clusters for a one-sample mean test
Cluster randomized design, z test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2868

m0 = 15.0000
ma = 40.0000
sd = 40.0000

Cluster design:

Average M = 10.0000
rho = 0.3000

CV_cl = 1.2000

Estimated number of clusters and sample size:

K = 10
N = 100

The required number of classes is 10 and total number of subjects is 100. When we compare this
with the 8 classes required in example 1, we see that when the number of students per class varies,
we need more classes and thus more students to achieve the same power.

Example 3: Number of clusters for a one-sample mean test in a CRD, specifying sample
size

Suppose that for our study, we plan to recruit a total of 100 students, but we need to know the
required number of classes and how many students to recruit in each class. In this case, we specify
the n(100) option. Because neither the k() nor the m() option is specified, we also need to specify
the cluster option for power computations to be performed for a CRD.

. power onemean 15 40, cluster n(100) sd(40) rho(0.3)

Performing iteration ...

Estimated number of clusters for a one-sample mean test
Cluster randomized design, z test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2963

m0 = 15.0000
ma = 40.0000
sd = 40.0000

Cluster design:

N = 100
rho = 0.3000

Estimated number of clusters and cluster size:

K = 8
Average M = 12.5000
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To achieve the desired power, we need to recruit on average 12.5 students per class from 8 classes.
power onemean did not round the cluster size of 12.5 to meet our requirement that there is a total
of 100 students. In practice, you can decide to recruit 12 students from some classes and 13 from
other classes to have roughly constant class sizes.

Computing cluster size

To compute cluster size, you must specify the null mean m0, the alternative mean ma, and the
number of clusters in the k() option. You may also specify the power of the test in the power()
option.

Example 4: Cluster size for a one-sample mean test in a CRD

Continuing with example 1, suppose that we are designing a new study but we would like to select
12 classes, and we need to know how many students to recruit from each class. Given other study
parameters from example 1, we compute the required number of students by specifying 12 clusters
in the k() option.

. power onemean 15 40, k(12) sd(40) rho(0.3)

Performing iteration ...

Estimated cluster size for a one-sample mean test
Cluster randomized design, z test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.4941

m0 = 15.0000
ma = 40.0000
sd = 40.0000

Cluster design:

K = 12
rho = 0.3000

Estimated cluster size and sample size:

M = 3
N = 36

With 12 classes, we need to recruit 3 students per class for a total of 36 students.

Computing power

To compute power, you must specify the number of clusters in the k() option, the cluster size in
the m() option or the sample size in the n() option, the null mean m0, and the alternative mean ma.

Example 5: Power for a one-sample mean test in a CRD

Continuing with example 4, suppose that we can recruit 10 students from each of the 12 classes
and we want to compute power for this design. Given other study parameters from example 4, we
compute the power by specifying 12 clusters in the k() option and the cluster size of 10 in the m()
option:
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. power onemean 15 40, k(12) m(10) sd(40) rho(0.3)

Estimated power for a one-sample mean test
Cluster randomized design, z test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
delta = 0.3249

m0 = 15.0000
ma = 40.0000
sd = 40.0000

Cluster design:

K = 12
M = 10
N = 120

rho = 0.3000

Estimated power:

power = 0.9451

The computed power is about 95%.

Example 6: Multiple values of study parameters

To investigate the effect of the number of clusters on power, we can specify a list of numbers in
the k() option:

. power onemean 15 40, k(4(2)12) m(10) sd(40) rho(0.3) table(power K)

Estimated power for a one-sample mean test
Cluster randomized design, z test
H0: m = m0 versus Ha: m != m0

power K

.5379 4

.7112 6
.828 8

.9013 10

.9451 12

In this example, we also specified the table(power K) option to list the only two columns that
vary. As expected, as the number of clusters increases, the power tends to get closer to 1.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

Computing effect size and target mean

The effect size δ is defined as the standardized difference between the alternative and null means.
In a CRD, the effect size δ is also adjusted for the cluster design; see Methods and formulas.
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To compute effect size and the corresponding target mean, you must specify the number of clusters
in the k() option, the cluster size in the m() option or the sample size in the n() option, the power
in the power() option, and the null mean m0. You may also specify the direction of the effect in
the direction() option. The direction is upper by default, direction(upper); see Using power
onemean in [PSS-2] power onemean for other details.

Example 7: Effect size for a one-sample mean test in a CRD

Continuing with example 5, we may be interested in finding the minimum value of the mean that
can be detected with a sample of 12 classes and 10 students per class and 80% power. To compute
this, we specify the null value of 15 as the command argument and the required options k(12),
m(10), and power(0.8) and continue to use sd(40) and rho(0.3).

. power onemean 15, k(12) m(10) power(0.8) sd(40) rho(0.3)

Performing iteration ...

Estimated target mean for a one-sample mean test
Cluster randomized design, z test
H0: m = m0 versus Ha: m != m0; ma > m0

Study parameters:

alpha = 0.0500
power = 0.8000

m0 = 15.0000
sd = 40.0000

Cluster design:

K = 12
M = 10
N = 120

rho = 0.3000

Estimated effect size and target mean:

delta = 0.2557
ma = 34.6777

Given the null value of 15, the minimum detectable value of the mean is about 34.68, which
corresponds to an effect size of about 0.26. The computed target mean is smaller than the alternative
mean of 40 that was specified in previous examples. Because we use more classes here than the
number of classes computed in example 1, use larger cluster size than that computed in example 4,
and use lower power than that computed in example 5, we can detect a smaller effect size and thus
smaller target mean.

Performing hypothesis tests on mean in a CRD

There are different ways to account for a CRD or for clustered data when performing hypothesis
tests that compare the mean with a reference value. With large samples or when you know population
standard deviation and intraclass correlation, the simplest way is to use a z test that accounts for
clustered data.

In this section, we briefly demonstrate the ztest command for testing hypotheses about means
with clustered data; see [R] ztest for details. We will use the same sat.dta we used in Performing
hypothesis tests on mean in [PSS-2] power onemean. Here we consider that SAT scores of students
from the same class may be correlated.
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Example 8: Testing for mean with clustered data

As in example 8 of [PSS-2] power onemean, suppose that we want to test whether the mean verbal
SAT score is equal to 600 while accounting for the correlated scores within classes.

The ztest command provides the cluster() option to account for clustered data. In addition
to the cluster identifier in cluster(), we must specify the population standard deviation in sd()
and the population intraclass correlation in rho(). Suppose that the population standard deviation is
132 and the population intraclass correlation is 0.7.

. use https://www.stata-press.com/data/r18/sat
(Fictional SAT data)

. ztest score == 600, cluster(class) sd(132) rho(0.7)

One-sample z test Number of clusters = 15
Cluster variable: class Cluster size = 5

Intraclass corr. = 0.7000

Variable Obs Mean Std. err. Std. dev. [95% conf. interval]

score 75 504.8 29.71222 132 446.5651 563.0349

mean = mean(score) z = -3.2041
H0: mean = 600

Ha: mean < 600 Ha: mean != 600 Ha: mean > 600
Pr(Z < z) = 0.0007 Pr(|Z| > |z|) = 0.0014 Pr(Z > z) = 0.9993

There is statistical evidence that the mean verbal SAT score is different from 600 (two-sided p-value =
0.0014) and that it is actually smaller than 600 (lower one-sided p-value = 0.0007).

If we were to design another similar study based on the estimates from this study, we could
compute the required number of classes as follows:

. power onemean 600 505, sd(132) rho(0.7) m(5)

Performing iteration ...

Estimated number of clusters for a one-sample mean test
Cluster randomized design, z test
H0: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.3692

m0 = 600.0000
ma = 505.0000
sd = 132.0000

Cluster design:

M = 5
rho = 0.7000

Estimated number of clusters and sample size:

K = 12
N = 60

Given 5 students per class, we need 12 classes and a total of 60 students to detect the difference
between the null value of 600 and the alternative value of 505, assuming a standard deviation of 132
and an intraclass correlation of 0.7, with 80% power using a 5%-level two-sided test.

Compared with the required sample size of 18 students in example 8 of [PSS-2] power onemean,
a sample size of 60 students is needed here to detect the same mean difference when observations
are correlated.
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Stored results
power onemean, cluster stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(K) number of clusters
r(M) cluster size
r(N) number of subjects
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(m0) mean under the null hypothesis
r(ma) mean under the alternative hypothesis
r(diff) difference between the alternative and null means
r(sd) standard deviation
r(rho) intraclass correlation
r(CV cluster) coefficient of variation for cluster sizes
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for estimated parameter
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) onemean
r(design) CRD
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
For the computation in a CRD, we assume that the standard deviation is known; see Known standard

deviation under Methods and formulas in [PSS-2] power onemean for the common notation for a
one-sample mean test.

Methods and formulas are presented under the following headings:

Equal cluster sizes
Unequal cluster sizes
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Equal cluster sizes

In a CRD, let K be the number of clusters, M be the number of observations in each cluster, and
n be the total number of subjects, where n = MK. Let yij be the jth (j = 1, 2, . . . ,M ) observation
from the ith cluster (i = 1, 2, . . . ,K), which is assumed to follow a normal distribution with mean
µ and variance σ2. Let ρ be the intraclass correlation.

Let

y =
1

n

K∑
i=1

M∑
j=1

yij

be the observed mean. Let µ0 be the mean under the null hypothesis, and let DE be the design effect,

DE = 1 + ρ(M − 1)

The sampling distribution of the test statistic z =
√
n(y−µ0)/(σ

√
DE) under the null hypothesis

follows a standard normal distribution; see, for example, Ahn, Heo, and Zhang (2015). In a CRD, the
observed mean has a variance of σ2DE.

Let α be the significance level, β be the probability of a type II error, and z1−α and zβ be the
(1− α)th and the βth quantiles of the standard normal distribution.

The power π = 1− β is computed using

π =


Φ (
√
nδ − z1−α) for an upper one-sided test

Φ (−
√
nδ − z1−α) for a lower one-sided test

Φ
(√
nδ − z1−α/2

)
+ Φ

(
−
√
nδ − z1−α/2

)
for a two-sided test

(1)

where Φ(·) is the c.d.f. of the standard normal distribution and δ = (µa − µ0)/(σ
√

DE) is the effect
size.

Given the cluster size, the number of clusters K for a one-sided test is computed by inverting a
one-sided power equation from (1):

K =

(
z1−α − zβ
δ
√
M

)2

(2)

Given the number of clusters K, the cluster size M for a one-sided test is computed from (2),
after substituting for δ,

M =
1− ρ

K(µa−µ0)2

σ2(z1−α−zβ)2
− ρ

(3)

The absolute value of the effect size for a one-sided test is computed as follows:

|δ| = (z1−α − zβ)√
n

(4)

The minimum detectable value of the mean for a one-sided test is computed as
µa = µ0 + (z1−α − zβ)σ

√
DE/
√
n when µa > µ0 and as

µa = µ0 − (z1−α − zβ)σ
√

DE/
√
n when µa < µ0.

The number of clusters, cluster size, and minimum detectable value of the mean for a two-sided
test are computed iteratively using the two-sided power equation from (1). The initial values are
obtained from (2), (3), and (4), with α/2.
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Unequal cluster sizes

For unequal cluster sizes, we assume that the cluster sizes are independent and identically distributed
and are small relative to the number of clusters; see Ahn, Heo, and Zhang (2015) for details. Let
the coefficient of variation of the cluster sizes be CVcl. According to van Breukelen, Candel, and
Berger (2007) and Campbell and Walters (2014), to adjust for varying cluster sizes, define the relative
efficiency (RE) of unequal versus equal cluster sizes as

RE = 1− λ(1− λ)CV2
cl

where λ = ρM/(ρM + 1− ρ). With unequal cluster sizes, the effect size δ becomes

δ =
µa − µ0

σ
√

DE/RE
(5)

The number of clusters for a one-sided test is computed using (2) after substituting δ from (5).

The effect size for a one-sided test is computed using (4) and the minimum detectable value of
the mean is computed as
µa = µ0 + (z1−α − zβ)σ

√
DE/RE/

√
n when µa > µ0 and as

µa = µ0 − (z1−α − zβ)σ
√

DE/RE/
√
n when µa < µ0.

In all other cases, parameters are computed iteratively using the power equations in (1) with δ as
defined in (5).

References
Ahn, C., M. Heo, and S. Zhang. 2015. Sample Size Calculations for Clustered and Longitudinal Outcomes in Clinical

Research. Boca Raton, FL: CRC Press.

Campbell, M. J., and S. J. Walters. 2014. How to Design, Analyse and Report Cluster Randomised Trials in Medicine
and Health Related Research. Chichester, UK: Wiley.

Gallis, J. A., F. Li, H. Yu, and E. L. Turner. 2018. cvcrand and cptest: Commands for efficient design and analysis
of cluster randomized trials using constrained randomization and permutation tests. Stata Journal 18: 357–378.

Tamhane, A. C., and D. D. Dunlop. 2000. Statistics and Data Analysis: From Elementary to Intermediate. Upper
Saddle River, NJ: Prentice Hall.

van Breukelen, G. J. P., M. J. J. M. Candel, and M. P. F. Berger. 2007. Relative efficiency of unequal ver-
sus equal cluster sizes in cluster randomized and multicentre trials. Statistics in Medicine 26: 2589–2603.
https://doi.org/10.1002/sim.2740.

Also see
[PSS-2] power onemean — Power analysis for a one-sample mean test

[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] power, graph — Graph results from the power command

[PSS-2] power, table — Produce table of results from the power command

[PSS-5] Glossary
[R] ztest — z tests (mean-comparison tests, known variance)

http://www.stata-journal.com/article.html?article=st0526
http://www.stata-journal.com/article.html?article=st0526
https://doi.org/10.1002/sim.2740


Title

power twomeans — Power analysis for a two-sample means test

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power twomeans computes sample size, power, or the experimental-group mean for a two-sample
means test. By default, it computes sample size for the given power and the values of the control-group
and experimental-group means. Alternatively, it can compute power for given sample size and values
of the control-group and experimental-group means or the experimental-group mean for given sample
size, power, and the control-group mean. For power and sample-size analysis in a cluster randomized
design, see [PSS-2] power twomeans, cluster. Also see [PSS-2] power for a general introduction to
the power command using hypothesis tests.

For precision and sample-size analysis for a CI for the difference between two means from
independent samples, see [PSS-3] ciwidth twomeans.

Quick start
Sample size for a test of H0: µ1 = µ2 versus Ha: µ1 6= µ2 given alternative control-group mean
m1 = 8 and alternative experimental-group mean m2 = 12 with shared standard deviation of 9
using default power of 0.8 and significance level α = 0.05

power twomeans 8 12, sd(9)

Same as above, but for m2 equal to 10, 11, 12, 13, and 14
power twomeans 8 (10(1)14), sd(9)

Same as above, but display results in a graph of sample size versus m2

power twomeans 8 (10(1)14), sd(9) graph

Same as above, but specify different standard deviations s1 = 7 and s2 = 10
power twomeans 8 (10(1)14), sd1(7) sd2(10) graph

Sample size for one-sided test with power of 0.9
power twomeans 8 12, sd(9) power(.9) onesided

Same as above, specified as µ1 and difference between means m2 −m1 = 4
power twomeans 8, sd(9) power(.9) onesided diff(4)

Power for a total sample size of 74 with balanced group sizes
power twomeans 8 12, sd(9) n(74)

Same as above, but for sample sizes of 45 and 30 in groups 1 and 2, respectively
power twomeans 8 12, sd(9) n1(45) n2(30)

Effect size and target mean difference for a sample size of 200 with power of 0.8
power twomeans 8, sd(9) power(.8) n(200)

144
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Menu
Statistics > Power, precision, and sample size

Syntax

Compute sample size

power twomeans m1 m2

[
, power(numlist) options

]

Compute power

power twomeans m1 m2 , n(numlist)
[

options
]

Compute effect size and experimental-group mean

power twomeans m1 , n(numlist) power(numlist)
[

options
]

where m1 is the mean in the control (reference) group and m2 is the mean in the experimental
(comparison) group. m1 and m2 may each be specified either as one number or as a list of values
in parentheses (see [U] 11.1.8 numlist).



146 power twomeans — Power analysis for a two-sample means test

options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1), meaning

equal group sizes
compute(N1 | N2) solve for N1 given N2 or for N2 given N1

nfractional allow fractional sample sizes
∗diff(numlist) difference between the experimental-group mean and the

control-group mean, m2 −m1; specify instead of the
experimental-group mean m2

∗sd(numlist) common standard deviation of the control and the
experimental groups assuming equal standard deviations in
both groups; default is sd(1)

∗sd1(numlist) standard deviation of the control group; requires sd2()
∗sd2(numlist) standard deviation of the experimental group; requires sd1()

knownsds request computation assuming known standard deviations for
both groups; default is to assume unknown standard
deviations

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph
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Iteration

init(#) initial value for sample sizes or experimental-group mean
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

cluster perform computations for a CRD;
see [PSS-2] power twomeans, cluster

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
cluster and notitle do not appear in the dialog box.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N total number of subjects N
N1 number of subjects in the control group N1

N2 number of subjects in the experimental group N2

nratio ratio of sample sizes, experimental to control N2/N1

delta effect size δ
m1 control-group mean µ1

m2 experimental-group mean µ2

diff difference between the experimental-group mean and µ2 − µ1

the control-group mean
sd common standard deviation σ
sd1 control-group standard deviation σ1

sd2 experimental-group standard deviation σ2

target target parameter; synonym for m2
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Columns nratio, diff, sd, sd1, and sd2 are shown in the default table if the corresponding options are specified.
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Options

� � �
Main �

alpha(), power(), beta(), n(), n1(), n2(), nratio(), compute(), nfractional; see
[PSS-2] power.

diff(numlist) specifies the difference between the experimental-group mean and the control-group
mean, m2−m1. You can specify either the experimental-group mean m2 as a command argument
or the difference between the two means in diff(). If you specify diff(#), the experimental-
group mean is computed as m2 = m1 + #. This option is not allowed with the effect-size
determination.

sd(numlist) specifies the common standard deviation of the control and the experimental groups
assuming equal standard deviations in both groups. The default is sd(1).

sd1(numlist) specifies the standard deviation of the control group. If you specify sd1(), you must
also specify sd2().

sd2(numlist) specifies the standard deviation of the experimental group. If you specify sd2(), you
must also specify sd1().

knownsds requests that standard deviations of each group be treated as known in the computations.
By default, standard deviations are treated as unknown, and the computations are based on a
two-sample t test, which uses a Student’s t distribution as a sampling distribution of the test
statistic. If knownsds is specified, the computation is based on a two-sample z test, which uses
a normal distribution as the sampling distribution of the test statistic.

direction(), onesided, parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value for the estimated parameter. For sample-size determination, the
estimated parameter is either the control-group size n1 or, if compute(N2) is specified, the
experimental-group size n2. For the effect-size determination, the estimated parameter is the
experimental-group mean m2. The default initial values for a two-sided test are obtained as a
closed-form solution for the corresponding one-sided test with the significance level α/2. The
default initial values for the t test computations are based on the corresponding large-sample
normal approximation.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following options are available with power twomeans but are not shown in the dialog box:

cluster; see [PSS-2] power twomeans, cluster.

notitle; see [PSS-2] power.



power twomeans — Power analysis for a two-sample means test 149

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power twomeans
Computing sample size
Computing power
Computing effect size and experimental-group mean
Testing a hypothesis about two independent means

This entry describes the power twomeans command and the methodology for power and sample-
size analysis for a two-sample means test. See [PSS-2] Intro (power) for a general introduction to
power and sample-size analysis and [PSS-2] power for a general introduction to the power command
using hypothesis tests. Also see [PSS-2] power twomeans, cluster for power and sample-size analysis
in a cluster randomized design.

Introduction

The analysis of means is one of the most commonly used approaches in a wide variety of statistical
studies. Many applications lead to the study of two independent means, such as studies comparing
the average mileage of foreign and domestic cars, the average SAT scores obtained from two different
coaching classes, the average yields of a crop due to a certain fertilizer, and so on. The two populations
of interest are assumed to be independent.

This entry describes power and sample-size analysis for the inference about two population means
performed using hypothesis testing. Specifically, we consider the null hypothesis H0: µ2 = µ1 versus
the two-sided alternative hypothesis Ha: µ2 6= µ1, the upper one-sided alternative Ha: µ2 > µ1, or
the lower one-sided alternative Ha: µ2 < µ1.

The considered two-sample tests rely on the assumption that the two random samples are normally
distributed or that the sample size is large. Suppose that the two samples are normally distributed. If
variances of the considered populations are known a priori, the test statistic has a standard normal
distribution under the null hypothesis, and the corresponding test is referred to as a two-sample z test.
If variances of the two populations are not known, then the null sampling distribution of the test
statistic depends on whether the two variances are assumed to be equal. If the two variances are
assumed to be equal, the test statistic has an exact Student’s t distribution under the null hypothesis.
The corresponding test is referred to as a two-sample t test. If the two variances are not equal, then
the distribution can only be approximated by a Student’s t distribution; the degrees of freedom is
approximated using Satterthwaite’s method. We refer to this test as Satterthwaite’s t test. For a large
sample, the distribution of the test statistic is approximately normal, and the corresponding test is a
large-sample z test.

The power twomeans command provides power and sample-size analysis for the above tests.

Using power twomeans

power twomeans computes sample size, power, or experimental-group mean for a two-sample
means test. All computations are performed for a two-sided hypothesis test where, by default, the
significance level is set to 0.05. You may change the significance level by specifying the alpha()
option. You can specify the onesided option to request a one-sided test. By default, all computations
assume a balanced- or equal-allocation design; see [PSS-4] Unbalanced designs for a description of
how to specify an unbalanced design.
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By default, all computations are for a two-sample t test, which assumes equal and unknown
standard deviations. By default, the common standard deviation is set to one but may be changed by
specifying the sd() option. To specify different standard deviations, use the respective sd1() and
sd2() options. These options must be specified together and may not be used in combination with
sd(). When sd1() and sd2() are specified, the computations are based on Satterthwaite’s t test,
which assumes unequal and unknown standard deviations. If standard deviations are known, use the
knownsds option to request that computations be based on a two-sample z test.

To compute the total sample size, you must specify the control-group mean m1, the experimental-
group mean m2, and, optionally, the power of the test in the power() option. The default power is
set to 0.8.

Instead of the total sample size, you can compute one of the group sizes given the other one. To
compute the control-group sample size, you must specify the compute(N1) option and the sample
size of the experimental group in the n2() option. Likewise, to compute the experimental-group
sample size, you must specify the compute(N2) option and the sample size of the control group in
the n1() option.

To compute power, you must specify the total sample size in the n() option, the control-group
mean m1, and the experimental-group mean m2.

Instead of the experimental-group mean m2, you may specify the difference m2−m1 between the
experimental-group mean and the control-group mean in the diff() option when computing sample
size or power.

To compute effect size, the difference between the experimental-group mean and the null mean,
and the experimental-group mean, you must specify the total sample size in the n() option, the power
in the power() option, the control-group mean m1, and, optionally, the direction of the effect. The
direction is upper by default, direction(upper), which means that the experimental-group mean
is assumed to be larger than the specified control-group value. You can change the direction to be
lower, which means that the experimental-group mean is assumed to be smaller than the specified
control-group value, by specifying the direction(lower) option.

Instead of the total sample size n(), you can specify individual group sizes in n1() and n2(), or
specify one of the group sizes and nratio() when computing power or effect size. Also see Two
samples in [PSS-4] Unbalanced designs for more details.

In the following sections, we describe the use of power twomeans accompanied by examples for
computing sample size, power, and experimental-group mean.

Computing sample size

To compute sample size, you must specify the control-group mean m1, the experimental-group
mean m2, and, optionally, the power of the test in the power() option. A default power of 0.8 is
assumed if power() is not specified.

Example 1: Sample size for a two-sample means test

Consider a study investigating the effects of smoking on lung function of males. The response
variable is forced expiratory volume (FEV), measured in liters (L), where better lung function implies
higher values of FEV. We wish to test the null hypothesis H0: µ1 = µ2 versus a two-sided alternative
hypothesisHa: µ1 6= µ2, where µ1 and µ2 are the mean FEV for nonsmokers and smokers, respectively.

Suppose that the mean FEV from previous studies was reported to be 3 L for nonsmokers and
2.7 L for smokers. We are designing a new study and wish to find out how many subjects we need
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to enroll so that the power of a 5%-level two-sided test to detect the specified difference between
means is at least 80%. We assume equal numbers of subjects in each group and a common standard
deviation of 1.

. power twomeans 3 2.7

Performing iteration ...

Estimated sample sizes for a two-sample means test
t test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.3000

m1 = 3.0000
m2 = 2.7000
sd = 1.0000

Estimated sample sizes:

N = 352
N per group = 176

We need a total sample of 352 subjects, 176 per group, to detect the specified mean difference between
the smoking and nonsmoking groups with 80% power using a two-sided 5%-level test.

The default computation is for the case of equal and unknown standard deviations, as indicated
by the output. You can specify the knownsds option to request the computation assuming known
standard deviations.

Example 2: Sample size assuming unequal standard deviations

Instead of assuming equal standard deviations as in example 1, we use the estimates of the standard
deviations from previous studies as our hypothetical values. The standard deviation of FEV for the
nonsmoking group was reported to be 0.8 L and that for the smoking group was reported to be 0.7 L.
We specify standard deviations in the sd1() and sd2() options.

. power twomeans 3 2.7, sd1(0.8) sd2(0.7)

Performing iteration ...

Estimated sample sizes for a two-sample means test
Satterthwaite’s t test assuming unequal variances
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.3000

m1 = 3.0000
m2 = 2.7000

sd1 = 0.8000
sd2 = 0.7000

Estimated sample sizes:

N = 200
N per group = 100

The specified standard deviations are smaller than one, so we obtain a smaller required total sample
size of 200 compared with example 1.
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Example 3: Specifying difference between means

Instead of the mean FEV of 2.7 for the smoking group as in example 2, we can specify the
difference between the two means of 2.7− 3 = −0.3 in the diff() option.

. power twomeans 3, sd1(0.8) sd2(0.7) diff(-0.3)

Performing iteration ...

Estimated sample sizes for a two-sample means test
Satterthwaite’s t test assuming unequal variances
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.3000

m1 = 3.0000
m2 = 2.7000

diff = -0.3000
sd1 = 0.8000
sd2 = 0.7000

Estimated sample sizes:

N = 200
N per group = 100

We obtain the same results as in example 2. The difference between means is now also reported in
the output following the individual means.

Example 4: Computing one of the group sizes

Suppose we anticipate a sample of 120 nonsmoking subjects. We wish to compute the required
number of subjects in the smoking group, keeping all other study parameters as in example 2.
We specify the number of subjects in the nonsmoking group in the n1() option and specify the
compute(N2) option.

. power twomeans 3 2.7, sd1(0.8) sd2(0.7) n1(120) compute(N2)

Performing iteration ...

Estimated sample sizes for a two-sample means test
Satterthwaite’s t test assuming unequal variances
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.3000

m1 = 3.0000
m2 = 2.7000

sd1 = 0.8000
sd2 = 0.7000
N1 = 120

Estimated sample sizes:

N = 202
N2 = 82

We need a sample of 82 smoking subjects given a sample of 120 nonsmoking subjects.
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Example 5: Unbalanced design

By default, power twomeans computes sample size for a balanced- or equal-allocation design. If
we know the allocation ratio of subjects between the groups, we can compute the required sample
size for an unbalanced design by specifying the nratio() option.

Continuing with example 2, we will suppose that we anticipate to recruit twice as many smokers
than nonsmokers; that is, n2/n1 = 2. We specify the nratio(2) option to compute the required
sample size for the specified unbalanced design.

. power twomeans 3 2.7, sd1(0.8) sd2(0.7) nratio(2)

Performing iteration ...

Estimated sample sizes for a two-sample means test
Satterthwaite’s t test assuming unequal variances
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.3000

m1 = 3.0000
m2 = 2.7000

sd1 = 0.8000
sd2 = 0.7000

N2/N1 = 2.0000

Estimated sample sizes:

N = 237
N1 = 79
N2 = 158

We need a total sample size of 237 subjects, which is larger than the required total sample size for
the corresponding balanced design from example 2.

Also see Two samples in [PSS-4] Unbalanced designs for more examples of unbalanced designs
for two-sample tests.

Computing power

To compute power, you must specify the total sample size in the n() option, the control-group
mean m1, and the experimental-group mean m2.

Example 6: Power of a two-sample means test

Continuing with example 1, we will suppose that we have resources to enroll a total of only 250
subjects, assuming equal-sized groups. To compute the power corresponding to this sample size given
the study parameters from example 1, we specify the total sample size in n():
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. power twomeans 3 2.7, n(250)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 250

N per group = 125
delta = -0.3000

m1 = 3.0000
m2 = 2.7000
sd = 1.0000

Estimated power:

power = 0.6564

With a total sample of 250 subjects, we obtain a power of only 65.64%.

Example 7: Multiple values of study parameters

In this example, we assess the effect of varying the common standard deviation (assuming equal
standard deviations in both groups) of FEV on the power of our study.

Continuing with example 6, we compute powers for a range of common standard deviations
between 0.5 and 1.5 with the step size of 0.1. We specify the corresponding numlist in the sd()
option.

. power twomeans 3 2.7, sd(0.5(0.1)1.5) n(250)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

alpha power N N1 N2 delta m1 m2 sd

.05 .9972 250 125 125 -.3 3 2.7 .5

.05 .976 250 125 125 -.3 3 2.7 .6

.05 .9215 250 125 125 -.3 3 2.7 .7

.05 .8397 250 125 125 -.3 3 2.7 .8

.05 .747 250 125 125 -.3 3 2.7 .9

.05 .6564 250 125 125 -.3 3 2.7 1

.05 .5745 250 125 125 -.3 3 2.7 1.1

.05 .5036 250 125 125 -.3 3 2.7 1.2

.05 .4434 250 125 125 -.3 3 2.7 1.3

.05 .3928 250 125 125 -.3 3 2.7 1.4

.05 .3503 250 125 125 -.3 3 2.7 1.5

The power decreases from 99.7% to 35.0% as the common standard deviation increases from 0.5 to
1.5 L.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.
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Computing effect size and experimental-group mean

Effect size δ for a two-sample means test is defined as the difference between the experimental-group
mean and the control-group mean δ = µ2 − µ1.

Sometimes, we may be interested in determining the smallest effect and the corresponding
experimental-group mean that yield a statistically significant result for prespecified sample size and
power. In this case, power, sample size, and control-group mean must be specified. In addition,
you must also decide on the direction of the effect: upper, meaning m2 > m1, or lower, meaning
m2 < m1. The direction may be specified in the direction() option; direction(upper) is the
default.

Example 8: Minimum detectable change in the experimental-group mean

Continuing with example 6, we compute the smallest change in the mean of the smoking group
that can be detected given a total sample of 250 subjects and 80% power, assuming equal-group
allocation. To solve for the mean FEV of the smoking group, after the command name, we specify
the nonsmoking-group mean of 3, total sample size n(250), and power power(0.8).

Because our initial study was based on the hypothesis that FEV for the smoking group is lower
than that of the nonsmoking group, we specify the direction(lower) option to compute the
smoking-group mean that is lower than the specified nonsmoking-group mean.

. power twomeans 3, n(250) power(0.8) direction(lower)

Performing iteration ...

Estimated experimental-group mean for a two-sample means test
t test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1; m2 < m1

Study parameters:

alpha = 0.0500
power = 0.8000

N = 250
N per group = 125

m1 = 3.0000
sd = 1.0000

Estimated effect size and experimental-group mean:

delta = -0.3558
m2 = 2.6442

We find that the minimum detectable value of the effect size is −0.36, which corresponds to the
mean FEV of 2.64 for the smoking group.

Testing a hypothesis about two independent means

After data are collected, we can use the ttest command to test the equality of two independent
means using a t test; see [R] ttest for details. In this section, we demonstrate the use of ttesti,
the immediate form of the test command, which can be used to test a hypothesis using summary
statistics instead of the actual data values.
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Example 9: Two-sample t test

Consider an example from van Belle et al. (2004, 129), where newborn infants were divided into
two groups: a treatment group, where infants received daily “walking stimulus” for eight weeks, and
a control group, where no stimulus was provided. The goal of this study was to test whether receiving
the walking stimulus during stages of infancy induces the walking ability to develop sooner.

The average number of months before the infants started walking was recorded for both groups.
The authors provide estimates of the average of 10.125 months for the treatment group with estimated
standard deviation of 1.447 months and 12.35 months for the control group with estimated standard
deviation of 0.9618 months. The sample sizes for treatment and control groups were 6 and 5,
respectively. We supply these estimates to the ttesti command and use the unequal option to
perform a t test assuming unequal variances.

. ttesti 6 10.125 1.447 5 12.35 0.9618, unequal

Two-sample t test with unequal variances

Obs Mean Std. err. Std. dev. [95% conf. interval]

x 6 10.125 .5907353 1.447 8.606467 11.64353
y 5 12.35 .43013 .9618 11.15577 13.54423

Combined 11 11.13636 .501552 1.66346 10.01884 12.25389

diff -2.225 .7307394 -3.887894 -.562106

diff = mean(x) - mean(y) t = -3.0449
H0: diff = 0 Satterthwaite’s degrees of freedom = 8.66326

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0073 Pr(|T| > |t|) = 0.0145 Pr(T > t) = 0.9927

We reject the null hypothesis of H0: µC = µT against the two-sided alternative Ha: µC 6= µT at
the 5% significance level; the p-value = 0.0145.

We use the estimates of this study to perform a sample-size analysis we would have conducted
before a new study. In our analysis, we assume equal-group allocation.

. power twomeans 10.125 12.35, power(0.8) sd1(1.447) sd2(0.9618)

Performing iteration ...

Estimated sample sizes for a two-sample means test
Satterthwaite’s t test assuming unequal variances
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 2.2250

m1 = 10.1250
m2 = 12.3500

sd1 = 1.4470
sd2 = 0.9618

Estimated sample sizes:

N = 14
N per group = 7

We find that the sample size required to detect a difference of 2.225 (12.35− 10.125 = 2.225) given
the control-group standard deviation of 1.447 and the experimental-group standard deviation of 0.9618
using a 5%-level two-sided test is 7 in each group.
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Stored results
power twomeans stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
r(nratio) ratio of sample sizes, N2/N1
r(nratio a) actual ratio of sample sizes
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(m1) control-group mean
r(m2) experimental-group mean
r(diff) difference between the experimental- and control-group means
r(sd) common standard deviation of the control and experimental groups
r(sd1) standard deviation of the control group
r(sd2) standard deviation of the experimental group
r(knownsds) 1 if option knownsds is specified, 0 otherwise
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample sizes or experimental-group mean
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) twomeans
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
Consider two independent samples with n1 subjects in the control group and n2 subjects in the

experimental group. Let x11, . . . , x1n1
be a random sample of size n1 from a normal population with

mean µ1 and variance σ2
1 . Let x21, . . . , x2n2

be a random sample of size n2 from a normal population
with mean µ2 and variance σ2

2 . Let effect size δ be the difference between the experimental-group
mean and the control-group mean, δ = µ2 − µ1. The sample means and variances for the two
independent samples are
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x1 =
1

n1

n1∑
i=1

x1i and s2
1 =

1

n1 − 1

n1∑
i=1

(x1i − x1)2

x2 =
1

n2

n2∑
i=1

x2i and s2
2 =

1

n2 − 1

n2∑
i=1

(x2i − x2)2

where xj and s2
j are the respective sample means and sample variances of the two samples.

A two-sample means test involves testing the null hypothesis H0: µ2 = µ1 versus the two-sided
alternative hypothesis Ha : µ2 6= µ1, the upper one-sided alternative Ha : µ2 > µ1, or the lower
one-sided alternative Ha: µ2 < µ1.

The two-sample means test can be performed under four different assumptions: 1) population
variances are known and not equal; 2) population variances are known and equal; 3) population
variances are unknown and not equal; and 4) population variances are unknown and equal.

Let σD denote the standard deviation of the difference between the two sample means. The test
statistic of the form

TS =
(x2 − x1)− (µ2 − µ1)

σD
(1)

is used in each of the four cases described above. Each case, however, determines the functional form
of σD and the sampling distribution of the test statistic (1) under the null hypothesis.

Let R = n2/n1 denote the allocation ratio. Then n2 = R × n1 and power can be viewed as
a function of n1. Therefore, for sample-size determination, the control-group sample size n1 is
computed first. The experimental-group size n2 is then computed as R×n1, and the total sample size
is computed as n = n1 + n2. By default, sample sizes are rounded to integer values; see Fractional
sample sizes in [PSS-4] Unbalanced designs for details.

The following formulas are based on Armitage, Berry, and Matthews (2002); Chow et al. (2018);
and Dixon and Massey (1983).

Methods and formulas are presented under the following headings:
Known standard deviations
Unknown standard deviations

Unequal standard deviations
Equal standard deviations

Known standard deviations
Below we present formulas for the computations that assume unequal standard deviations. When

standard deviations are equal, the corresponding formulas are special cases of the formulas below
with σ1 = σ2 = σ.

When the standard deviations of the control and the experimental groups are known, the test
statistic in (1) is a z test statistic

z =
(x2 − x1)− (µ2 − µ1)√

σ2
1/n1 + σ2

2/n2

with σD =
√
σ2

1/n1 + σ2
2/n2. The sampling distribution of this test statistic under the null hypothesis

is standard normal. The corresponding test is referred to as a z test.
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Let α be the significance level, β be the probability of a type II error, and z1−α and zβ be the
(1− α)th and the βth quantiles of a standard normal distribution.

The power π = 1− β is computed using

π =


Φ
(

δ
σD
− z1−α

)
for an upper one-sided test

Φ
(
− δ
σD
− z1−α

)
for a lower one-sided test

Φ
(

δ
σD
− z1−α/2

)
+ Φ

(
− δ
σD
− z1−α/2

)
for a two-sided test

(2)

where Φ(·) is the cdf of a standard normal distribution.

For a one-sided test, the control-group sample size n1 is computed as follows:

n1 =

(
z1−α − zβ
µ2 − µ1

)2(
σ2

1 +
σ2

2

R

)
(3)

For a one-sided test, if one of the group sizes is known, the other one is computed using the
following formula. For example, to compute n1 given n2, we use the following formula:

n1 =
σ2

1(
µ2−µ1

z1−α−zβ

)2

− σ2
2

n2

(4)

For a two-sided test, sample sizes are computed by iteratively solving the two-sided power equation
in (2). The default initial values for the iterative procedure are calculated from the respective equations
(3) and (4), with α replaced with α/2.

The absolute value of the effect size for a one-sided test is obtained by inverting the corresponding
one-sided power equation in (2):

|δ| = σD(z1−α − zβ)

Note that the magnitude of the effect size is the same regardless of the direction of the test.

The experimental-group mean for a one-sided test is then computed as

µ2 =

{
µ1 + (z1−α − zβ)

√
σ2

1/n1 + σ2
2/n2 when µ2 > µ1

µ1 − (z1−α − zβ)
√
σ2

1/n1 + σ2
2/n2 when µ2 < µ1

For a two-sided test, the experimental-group mean is computed by iteratively solving the two-sided
power equation in (2) for µ2. The default initial value is obtained from the corresponding one-sided
computation with α/2.

Unknown standard deviations
When the standard deviations of the control group and the experimental group are unknown, the

test statistic in (1) is a t test statistic

t =
(x2 − x1)− (µ2 − µ1)

sD
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where sD is the estimated standard deviation of the sample mean difference. The sampling distribution
of this test statistic under the null hypothesis is (approximately) a Student’s t distribution with ν
degrees of freedom. Parameters ν and sD are defined below, separately for the case of equal and
unequal standard deviations.

Let tν,α denote the αth quantile of a Student’s t distribution with ν degrees of freedom. Under the
alternative hypothesis, the test statistic follows a noncentral Student’s t distribution with ν degrees
of freedom and noncentrality parameter λ.

The power is computed from the following equations:

π =


1− Tν,λ (tν,1−α) for an upper one-sided test
Tν,λ (−tν,1−α) for a lower one-sided test
1− Tν,λ

(
tν,1−α/2

)
+ Tν,λ

(
−tν,1−α/2

)
for a two-sided test

(5)

In the equations above, λ = |µ2 − µ1|/sD.

Sample sizes and the experimental-group mean are obtained by iteratively solving the nonlinear
equation (5) for n1, n2, and µ2, respectively. For sample-size and effect-size computations, the default
initial values for the iterative procedure are calculated using the corresponding formulas assuming
known standard deviations from the previous subsection.

Unequal standard deviations

In the case of unequal standard deviations,

sD =
√
s2

1/n1 + s2
2/n2

and the degrees of freedom ν of the test statistic is obtained by Satterthwaite’s formula:

ν =

(
s21
n1

+
s22
n2

)2

(s21/n1)2

n1−1 +
(s22/n2)2

n2−1

The sampling distribution of the test statistic under the null hypothesis is an approximate Student’s
t distribution. We refer to the corresponding test as Satterthwaite’s t test.

Equal standard deviations

In the case of equal standard deviations,

sD = sp
√

1/n1 + 1/n2

where sp =
{∑n1

i=1(x1i − x1)2 +
∑n2

i=1(x2i − x2)2
}
/(n1 +n2− 2) is the pooled-sample standard

deviation.

The degrees of freedom ν is
ν = n1 + n2 − 2

The sampling distribution of the test statistic under the null hypothesis is exactly a Student’s t
distribution. We refer to the corresponding test as a two-sample t test.
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power twomeans, cluster — Power analysis for a two-sample means test, CRD

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power twomeans, cluster computes group-specific numbers of clusters, group-specific cluster
sizes, power, or the experimental-group mean for a two-sample means test in a cluster randomized
design (CRD). It computes group-specific numbers of clusters given cluster sizes, power, and the
values of the control-group and experimental-group means. It also computes group-specific cluster
sizes given numbers of clusters, power, and the values of the control-group and experimental-group
means. Alternatively, it computes power given numbers of clusters, cluster sizes, and the values of
the control-group and experimental-group means, or it computes the experimental-group mean given
numbers of clusters, cluster sizes, power, and the control-group mean. See [PSS-2] power twomeans
for a general discussion of power and sample-size analysis for a two-sample means test. Also see
[PSS-2] power for a general introduction to the power command using hypothesis tests.

Quick start
Numbers of clusters for a test of H0: µ1 = µ2 versus Ha: µ1 6= µ2 given alternative control- and

experimental-group means m1 = 8 and m2 = 12 with common standard deviation of 9 and cluster
sizes of 5 using default intraclass correlation of 0.5, power of 0.8, and significance level α = 0.05

power twomeans 8 12, m1(5) m2(5) sd(9)

Same as above, but assume the intraclass correlation is 0.4
power twomeans 8 12, m1(5) m2(5) sd(9) rho(0.4)

Same as above, and assume that cluster sizes vary with an average of 5 and coefficient of variation
of 0.8

power twomeans 8 12, m1(5) m2(5) sd(9) rho(0.4) cvcluster(0.8)

Group-specific numbers of clusters using a ratio of experimental to control clusters of 0.5
power twomeans 8 12, m1(5) m2(5) kratio(0.5) sd(9)

Cluster sizes for a test of H0 : µ1 = µ2 versus Ha : µ1 6= µ2 given alternative control-group and
experimental-group means m1 = 1 and m2 = 1.5 for 60 equal-sized clusters in the control group
and 30 clusters in the experimental group using default intraclass correlation of 0.5, standard
deviation of 1, power of 0.8, and significance level α = 0.05

power twomeans 1 1.5, k1(60) k2(30)

Same as above, but compute experimental-group cluster size given the control-group cluster size of 5
power twomeans 1 1.5, k1(60) k2(30) m1(5) compute(M2)

Power for 20 clusters with cluster sizes of 5 in the control and experimental groups
power twomeans 1 1.5, k1(20) k2(20) m1(5) m2(5)

162
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Power for multiple numbers of clusters in the experimental group
power twomeans 1 1.5, k1(20) k2(20(5)50) m1(5) m2(5)

Same as above, and display results in a graph of power versus the number of clusters in the experimental
group

power twomeans 1 1.5, k1(20) k2(20(5)50) m1(5) m2(5) graph

Effect size and target experimental-group mean with power of 0.8
power twomeans 1, k1(20) k2(20) m1(5) m2(5) power(0.8)

Menu
Statistics > Power, precision, and sample size

Syntax
Compute numbers of clusters

power twomeans m1 m2 , {mspec | nspec cluster }
[

options
]

Compute cluster sizes

power twomeans m1 m2 , kspec
[

options
]

Compute power

power twomeans m1 m2 , kspec {mspec | nspec }
[

options
]

Compute effect size and experimental-group mean

power twomeans m1 , kspec {mspec | nspec } power(numlist)
[

options
]

where m1 is the mean in the control (reference) group and m2 is the mean in the experimental
(comparison) group. m1 and m2 may each be specified either as one number or as a list of values
in parentheses (see [U] 11.1.8 numlist).
kspec is one of

k1() k2()

k1()
[
kratio()

]
k2()

[
kratio()

]
mspec is one of

m1() m2()

m1()
[
mratio()

]
m2()

[
mratio()

]
nspec is one of

n1() n2()

n1()
[
nratio()

]
n2()

[
nratio()

]
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options Description

Main

cluster perform computations for a CRD; implied by k1(), k2(),
m1(), or m2()

∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗k1(numlist) number of clusters in the control group
∗k2(numlist) number of clusters in the experimental group
∗kratio(numlist) cluster ratio, K2/K1; default is kratio(1)
∗m1(numlist) cluster size of the control group
∗m2(numlist) cluster size of the experimental group
∗mratio(numlist) cluster-size ratio, M2/M1; default is mratio(1)
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) sample-size ratio, N2/N1; default is nratio(1)

compute(K1 | K2 | M1 | M2) solve for the number of clusters or cluster size in one group
given the other group

nfractional allow fractional numbers of clusters, cluster sizes, and
sample sizes

∗diff(numlist) difference between the experimental-group mean and the
control-group mean, m2 −m1; specify instead of the
experimental-group mean m2

∗sd(numlist) common standard deviation of the control and the
experimental groups assuming equal standard deviations in
both groups; default is sd(1)

∗sd1(numlist) standard deviation of the control group; requires sd2()
∗sd2(numlist) standard deviation of the experimental group; requires sd1()
∗rho(numlist) intraclass correlation; default is rho(0.5)
∗cvcluster(numlist) coefficient of variation for cluster sizes
direction(upper|lower) direction of the effect for effect-size determination; default is

direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph
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Iteration

init(#) initial value for numbers of clusters, cluster sizes, or
experimental-group mean

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).
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column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
K1 number of clusters in the control group K1

K2 number of clusters in the experimental group K2

kratio ratio of numbers of clusters, experimental to control K2/K1

M1 cluster size of the control group M1

M2 cluster size of the experimental group M2

mratio ratio of cluster sizes, experimental to control M2/M1

N total number of observations N
N1 number of observations in the control group N1

N2 number of observations in the experimental group N2

nratio ratio of sample sizes, experimental to control N2/N1

delta effect size δ
m1 control-group mean µ1

m2 experimental-group mean µ2

diff difference between the experimental-group mean and µ2 − µ1

the control-group mean
sd common standard deviation σ
sd1 control-group standard deviation σ1

sd2 experimental-group standard deviation σ2

rho intraclass correlation ρ
CV cluster coefficient of variation for cluster sizes CVcl

target target parameter; synonym for m2
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Column N is shown in the table if specified.
Columns N1 and N2 are shown in the default table if n1() or n2() is specified.
Columns nratio, diff, and CV cluster are shown in the default table if specified.

Options

� � �
Main �

cluster specifies that computations should be performed for a CRD. This option is implied when
the k1(), k2(), m1(), or m2() option is specified. cluster is required to compute the numbers
of clusters when nspec is used to specify sample sizes instead of mspec for cluster sizes.

alpha(), power(), beta(); see [PSS-2] power.

k1(numlist) specifies the number of clusters in the control group.

k2(numlist) specifies the number of clusters in the experimental group.

kratio(numlist) specifies the ratio of the numbers of clusters of the experimental group relative to
the control group, K2/K1. The default is kratio(1), meaning equal numbers of clusters in the
two groups.

m1(numlist) specifies the cluster size of the control group. m1() may contain noninteger values.
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m2(numlist) specifies the cluster size of the experimental group. m2() may contain noninteger values.

mratio(numlist) specifies the ratio of cluster sizes of the experimental group relative to the control
group, M2/M1. The default is mratio(1), meaning equal cluster sizes in the two groups.

n1(), n2(), nratio(); see [PSS-2] power.

compute(K1 | K2 | M1 | M2) solve for the number of clusters or cluster size of one group given the
other group.

nfractional; see [PSS-2] power. The nfractional option displays fractional (without rounding)
values of the numbers of clusters, cluster sizes, and sample sizes.

diff(), sd(), sd1(), sd2(); see [PSS-2] power twomeans.

rho(numlist) specifies the intraclass correlation. The default is rho(0.5).

cvcluster(numlist) specifies the coefficient of variation for cluster sizes. This option is used with
varying cluster sizes.

direction(), onesided, parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value for the numbers of clusters or cluster sizes for sample-size
determination or the initial value for the experimental-group mean for the effect-size determination.
The default is to use a closed-form normal approximation to compute an initial value for the
estimated parameter.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power twomeans, cluster but is not shown in the dialog
box:

notitle; see [PSS-2] power.

Remarks and examples

Remarks are presented under the following headings:

Using power twomeans, cluster
Computing numbers of clusters
Computing number of clusters in one group
Computing cluster sizes
Computing power
Computing effect size and experimental-group mean
Testing hypotheses about two means in a CRD
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power twomeans, cluster requests that computations for the power twomeans command be
done for a CRD. In a CRD, groups of subjects or clusters are randomized instead of individual subjects,
so the sample size is determined by the numbers of clusters and the cluster sizes. The sample-size
determination thus consists of the determination of the numbers of clusters given cluster sizes or the
determination of cluster sizes given the numbers of clusters. For a general discussion of using power
twomeans, see [PSS-2] power twomeans. The discussion below is specific to the CRD.

Using power twomeans, cluster

If you specify the cluster option, include k1() or k2() to specify the number of clusters
or include m1() or m2() to specify the cluster size, the power twomeans command will perform
computations for a two-sample means test in a CRD.

All computations are performed for a two-sided hypothesis test where, by default, the significance
level is set to 0.05. You may change the significance level by specifying the alpha() option. You
can specify the onesided option to request a one-sided test. By default, all computations assume
a balanced or equal-allocation design, meaning equal numbers of clusters and cluster sizes in both
groups; see [PSS-4] Unbalanced designs for a description of how to specify an unbalanced design.

To compute the number of clusters in both groups, you must provide cluster sizes for both groups.
There are multiple ways to supply cluster sizes, but the most common is to specify the cluster size of
the control group in the m1() option and the cluster size of the experimental group in the m2() option.
See mspec and nspec under Syntax for other specifications. When nspec is specified, the cluster
option is also required to request that power twomeans perform computations for a CRD. The number
of clusters is assumed to be equal in the two groups, but you can change this by specifying the ratio
of the numbers of clusters in the experimental to the control group in the kratio() option. Other
parameters are specified as described in Using power twomeans in [PSS-2] power twomeans.

To compute the cluster sizes in both groups, you must provide the numbers of clusters in both
groups. There are several ways to supply the numbers of clusters; see kspec under Syntax. The most
common is to specify the numbers of clusters in the control group and the experimental group in the
k1() and k2() options, respectively. Equal cluster sizes are assumed in the two groups, but you can
change this by specifying the ratio of the cluster sizes in the experimental to that of the control group
in the mratio() option. Other parameters are specified as described in Using power twomeans in
[PSS-2] power twomeans.

You can also compute the number of clusters or the cluster size in one of the groups given the
number of clusters or the cluster size in the other group by specifying the compute() option. For
example, to compute the number of clusters in the control group, you specify compute(K1) and
provide the number of clusters in the experimental group in k2(). Likewise, to compute the cluster
size in the control group, you specify compute(M1) and provide the cluster size of the experimental
group in m2(). You can compute the number of clusters or cluster size for the experimental group
in a similar manner.

The power and effect-size determination is the same as described in Using power twomeans in
[PSS-2] power twomeans, but the sample-size information is supplied as the numbers of clusters kspec
and either cluster sizes using mspec or, less commonly, sample sizes using nspec.

All computations assume an intraclass correlation of 0.5. You can change this by specifying the
rho() option. Also, all clusters are assumed to be of the same size unless the coefficient of variation
for cluster sizes is specified in the cvcluster() option.

By default, the computed numbers of clusters, cluster sizes, and sample sizes are rounded up.
However, you can specify the nfractional option to see the corresponding fractional values; see
Fractional sample sizes in [PSS-4] Unbalanced designs for an example. If the cvcluster() option is
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specified when computing cluster sizes, then cluster sizes represent average cluster sizes and are thus
not rounded. When sample sizes are specified using nspec, fractional cluster sizes may be reported
to accommodate the specified numbers of clusters and sample sizes.

Some of power twomeans, cluster’s computations require iteration, such as to compute the
numbers of clusters for a two-sided test; see Methods and formulas for details and [PSS-2] power for
the descriptions of options that control the iteration procedure.

Computing numbers of clusters

To compute the numbers of clusters in each group, you must either provide the cluster size for
each group using mspec or specify the cluster option and provide the sample sizes of both groups
using nspec. The most common method is to use mspec of m1() and m2(). In addition, the control-
and experimental-group means must be specified.

Example 1: Numbers of clusters for a two-sample means test in a CRD, specify cluster
sizes

Consider an example from Ahn, Heo, and Zhang (2015, 37) of a hypothetical cluster randomized
trial in which the goal is to assess the effect of a health promotion program on increasing the level
of physical activity measured in kcal/kg/day of individuals in church congregations. In this study,
the church congregation is the unit of randomization and the individual participant is the unit of
analysis. Churches will be randomly assigned either to the experimental group that participates in the
promotion program or to the control group. Investigators plan to recruit 20 church members from
each participating church and would like to detect a mean difference of 1.1 kcal/kg/day between
the experimental and control groups. From previous studies, the common standard deviation is
3.67 kcal/kg/day. The investigator assumes an intraclass correlation of 0.025.

To compute the numbers of churches required to detect a mean change in physical activity of
1.1 kcal/kg/day with 80% power using a 5%-level two-sided test, we type

. power twomeans 0 1.1, m1(20) m2(20) sd(3.67) rho(0.025)

Performing iteration ...

Estimated numbers of clusters for a two-sample means test
Cluster randomized design, z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.1000

m1 = 0.0000
m2 = 1.1000
sd = 3.6700

Cluster design:

M1 = 20
M2 = 20

rho = 0.0250

Estimated numbers of clusters and sample sizes:

K1 = 13
K2 = 13
N1 = 260
N2 = 260

We find that with 20 members per church, 13 churches and thus a total of 260 members per group
are required to detect a change of 1.1 kcal/kg/day in physical activity given the standard deviation of
3.67 kcal/kg/day with 80% power using a 5%-level two-sided test.
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For power twomeans, the actual value of the control-group mean does not change the results as
long as the difference between the means is fixed. In this example, we used the control-group mean
of 0.

Example 2: Numbers of clusters for a two-sample means test in a CRD, varying cluster
sizes

Instead of a constant number of members in each church as in example 1, we assume that the
numbers of members selected from each church vary. Suppose that the numbers of members selected
from each church have a mean of 20 and a standard deviation of 4 in both groups and thus have
a coefficient of variation of 0.2. To compute the numbers of clusters when cluster sizes vary, we
specify the coefficient of variation in the cvcluster() option.

. power twomeans 0 1.1, m1(20) m2(20) sd(3.67) rho(0.025) cvcluster(0.2)

Performing iteration ...

Estimated numbers of clusters for a two-sample means test
Cluster randomized design, z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.1000

m1 = 0.0000
m2 = 1.1000
sd = 3.6700

Cluster design:

Average M1 = 20.0000
Average M2 = 20.0000

rho = 0.0250
CV_cl = 0.2000

Estimated numbers of clusters and sample sizes:

K1 = 14
K2 = 14
N1 = 280
N2 = 280

The required number of churches in each group is 14, which is slightly larger than the required
number of churches of 13 in example 1. When the number of members selected from each church
varies, we need more churches to achieve the same power.

Example 3: Numbers of clusters for a two-sample means test in a CRD, specify sample
sizes

Suppose that for our study, we can recruit only 200 members per group because of limited funding.
We need to know the number of churches in each group and how many members to recruit in each
church. In this case, we specify the n1(200) and n2(200) options. Because none of the k1(), k2(),
m1(), or m2() options are specified, we also need to specify the cluster option so that computations
are performed for a CRD instead of the conventional individual-level design.
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. power twomeans 0 1.1, cluster n1(200) n2(200) sd(3.67) rho(0.025)

Performing iteration ...

Estimated numbers of clusters for a two-sample means test
Cluster randomized design, z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.1000

m1 = 0.0000
m2 = 1.1000
sd = 3.6700

Cluster design:

N1 = 200
N2 = 200

rho = 0.0250

Estimated numbers of clusters and cluster sizes:

K1 = 30
K2 = 30

Average M1 = 6.6667
Average M2 = 6.6667

To achieve the desired power, we need to recruit about 6.67 members on average per church from 30
churches to each of the control and experimental groups. power twomeans, cluster did not round
the cluster sizes of 6.67 to meet our required total of 200 members per group. In practice, you can
either decide to recruit 6 members from some churches and 7 from other churches to have roughly
constant cluster sizes or decide to change the total number of members you want to recruit.

Computing number of clusters in one group

To compute the number of clusters in one of the groups, you must specify the compute() option
and the number of clusters in the other group. For example, to compute the number of clusters in the
experimental group, you must specify the compute(K2) option and provide the number of clusters
in the control group in the k1() option. Similarly, you can compute the number of clusters for the
control group. In addition, you must provide cluster sizes of both groups using mspec or sample sizes
of both groups using nspec and the control- and experimental-group means.

Example 4: Number of clusters in the experimental group for a two-sample means test
in a CRD

Continuing with example 1, suppose that we are designing a new study and we are planning to
recruit 25 churches for the control group. We want to know the minimum number of churches we
need to recruit to the experimental group. Given other study parameters from example 1, we compute
the number of churches in the experimental group by specifying the compute(K2) option and the
number of clusters in the control group of 25 in the k1() option.
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. power twomeans 0 1.1, compute(K2) k1(25) m1(20) m2(20) sd(3.67) rho(0.025)

Performing iteration ...

Estimated experimental-group number of clusters for a two-sample means test
Cluster randomized design, z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.1000

m1 = 0.0000
m2 = 1.1000
sd = 3.6700

Cluster design:

K1 = 25
M1 = 20
M2 = 20
N1 = 500

rho = 0.0250

Estimated number of clusters and sample size:

K2 = 9
N2 = 180

With 25 churches in the control group, we need to recruit 9 churches for the experimental group.

Computing cluster sizes

To compute cluster sizes in both groups, you must provide the numbers of clusters in both groups
by using kspec. The most common method is to specify the numbers of clusters in the control
and experimental groups in the k1() and k2() options, respectively. In addition, the control- and
experimental-group means must be specified.

Example 5: Cluster sizes for a two-sample means test in a CRD

Continuing with example 1, suppose that we are designing a new study and we are planning to
recruit 30 churches with 15 churches in each group. Given other study parameters from example 1,
we compute the numbers of members to recruit from each church by specifying 15 clusters in the
k1() and k2() options.
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. power twomeans 0 1.1, k1(15) k2(15) sd(3.67) rho(0.025)

Performing iteration ...

Estimated cluster sizes for a two-sample means test
Cluster randomized design, z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.1000

m1 = 0.0000
m2 = 1.1000
sd = 3.6700

Cluster design:

K1 = 15
K2 = 15

rho = 0.0250

Estimated cluster sizes and sample sizes:

M1 = 17
M2 = 17
N1 = 255
N2 = 255

With 15 churches per group, we need to recruit 17 members per church for a total of 255 members
per group.

Computing power

To compute power in a CRD, you supply the sample-size information as the numbers of clusters
by using kspec along with either the cluster sizes by using mspec or, less commonly, the sample sizes
by using nspec. The most common method is to specify the k1(), k2(), m1(), and m2() options.
In addition, the control- and experimental-group means must be specified.

Example 6: Power for a two-sample means test in a CRD

Continuing with example 1, suppose that we can recruit 20 members from each of 30 churches
(15 churches per group) and we want to compute power for this design. Given other study parameters
from example 1, we compute the power by specifying 15 in the k1() and k2() options and the
cluster size of 20 in the m1() and m2() options:
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. power twomeans 0 1.1, k1(15) k2(15) m1(20) m2(20) sd(3.67) rho(0.025)

Estimated power for a two-sample means test
Cluster randomized design, z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
delta = 1.1000

m1 = 0.0000
m2 = 1.1000
sd = 3.6700

Cluster design:

K1 = 15
K2 = 15
M1 = 20
M2 = 20
N1 = 300
N2 = 300

rho = 0.0250

Estimated power:

power = 0.8560

The computed power is about 86%.

Example 7: Multiple values of study parameters

To investigate the effect of the number of clusters in the experimental group on power, we can
specify a list of numbers of clusters in the k2() option:

. power twomeans 0 1.1, k1(15) k2(5(10)45) m1(20) m2(20) sd(3.67) rho(0.025)
> table(power K2)

Estimated power for a two-sample means test
Cluster randomized design, z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

power K2

.5704 5
.856 15

.9221 25
.947 35

.9592 45

In this example, we also specified the table(power K2) option to list the only two columns that
vary. As expected, as the number of clusters in the experimental group increases, the power tends to
get closer to 1.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.
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Computing effect size and experimental-group mean

Effect size δ for a two-sample means test is defined as the difference between the experimental-
group mean and the control-group mean, δ = µ2 − µ1. To compute effect size in a CRD, you supply
the sample-size information as the numbers of clusters by using kspec along with either the cluster
sizes by using mspec or, less commonly, the sample sizes by using nspec. The most common method
is to specify the k1(), k2(), m1(), and m2() options. In addition, power and control-group mean
must be specified. You must also decide on the direction of the effect, which is specified in the
direction() option. For the default, upper, meaning m2 > m1, power twomeans, cluster uses
direction(upper). For lower, meaning m2 < m1, specify direction(lower).

Example 8: Effect size for a two-sample means test in a CRD

Continuing with example 6, we may also be interested in finding the minimum value of the
difference in physical activity level between the two groups that can be detected with a sample
of 15 churches per group, 20 members per church, and 80% power. To compute this, we specify
the control-group mean of 0 as the command argument and the required options k1(15), k2(15),
m1(20), m2(20), and power(0.8) and continue to use sd(3.67) and rho(0.025).

. power twomeans 0, k1(15) k2(15) m1(20) m2(20) power(0.8) sd(3.67) rho(0.025)

Performing iteration ...

Estimated experimental-group mean for a two-sample means test
Cluster randomized design, z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1; m2 > m1

Study parameters:

alpha = 0.0500
power = 0.8000

m1 = 0.0000
sd = 3.6700

Cluster design:

K1 = 15
K2 = 15
M1 = 20
M2 = 20
N1 = 300
N2 = 300

rho = 0.0250

Estimated effect size and experimental-group mean:

delta = 1.0196
m2 = 1.0196

Given 15 churches per group with 20 members per church and 80% power, the minimum detectable
value of the difference in the physical activity level is about 1.02.

Testing hypotheses about two means in a CRD

There are different ways to account for a CRD or for clustered data when performing hypothesis tests
that compare means in two groups. With large samples or when you know the intraclass correlation
and group-specific population standard deviations, the simplest way is to use a z test that accounts
for clustered data; see [R] ztest for details. More commonly, two-level models such as those fit by
mixed (see [ME] mixed) are used because they also allow adjusting for covariates.
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In this section, we briefly demonstrate the ztest command for comparing means of two groups
with clustered data.

Example 9: Two-sample means test with clustered data

Consider example 6 in [R] ztest that compared the means of (log) BMI in two groups of patients
with type-2 diabetes from a randomized controlled trial of patient-centered care of diabetes in general
practice. The two groups included the comparison group that provided patients with routine care and
an intervention group that provided patients with patient-centered care; see example 6 in [R] ztest for
details. We replicate the analysis from that example below.

For clustered data, ztest requires that we specify the cluster identifier in the cluster() option
and population intraclass correlation in the rho() option. We must also specify a common population
standard deviation or group-specific population standard deviations in the respective options. We
specify a common population standard deviation in the sd() option.

. use https://www.stata-press.com/data/r18/dcfd_trial
(BMI data from Diabetes Care from Diagnosis trial (Kinmonth et al., 1998))

. ztest lbmi, by(group) cluster(practice) rho(0.028) sd(0.35)

Two-sample z test
Cluster variable: practice

Group: Control Group: Interv.
Number of clusters = 20 Number of clusters = 18
Avg. cluster size = 5.10 Avg. cluster size = 7.67
CV cluster size = 0.5330 CV cluster size = 0.5126
Intraclass corr. = 0.0280 Intraclass corr. = 0.0280

Group Obs Mean Std. err. Std. dev. [95% conf. interval]

Control 102 2.62954 .0372502 .35 2.556531 2.702549
Interv. 138 2.749023 .0332182 .35 2.683916 2.81413

diff -.1194831 .0499102 -.2173054 -.0216608

diff = mean(Control) - mean(Interv.) z = -2.3940
H0: diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(Z < z) = 0.0083 Pr(|Z| > |z|) = 0.0167 Pr(Z > z) = 0.9917

There is statistical evidence to reject the null hypothesis that the two group means are the same at
the 5% significance level.

Suppose that we want to use the results of this study to design another study that compares the
two types of care of diabetes in the same population. Specifically, we want to compute the required
number of clusters given the average cluster sizes of 5.1 and 7.67 in two groups, the intraclass
correlation of 0.028, and the coefficient of variation of cluster sizes of 0.53, as shown in the output
above. The coefficients of variation of cluster sizes are slightly different between the two groups—we
use the larger value with power twomeans. We also use the observed mean estimates of 2.6 and 2.75
in the computation.
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. power twomeans 2.6 2.75, m1(5.1) m2(7.67) cvcluster(0.53) rho(0.028) sd(0.35)

Performing iteration ...

Estimated numbers of clusters for a two-sample means test
Cluster randomized design, z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.1500

m1 = 2.6000
m2 = 2.7500
sd = 0.3500

Cluster design:

Average M1 = 5.1000
Average M2 = 7.6700

rho = 0.0280
CV_cl = 0.5300

Estimated numbers of clusters and sample sizes:

K1 = 17
K2 = 17
N1 = 87
N2 = 131

The required number of clusters for each group is 17. Given varying cluster sizes, we need to have
a total of 87 patients in the control group and a total of 131 patients in the intervention group.

Stored results
power twomeans, cluster stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(K1) number of clusters in the control group
r(K2) number of clusters in the experimental group
r(kratio) ratio of numbers of clusters, K2/K1
r(M1) cluster size of the control group
r(M2) cluster size of the experimental group
r(mratio) ratio of cluster sizes, M2/M1
r(N) total sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
r(nratio) ratio of sample sizes, N2/N1
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(m1) control-group mean
r(m2) experimental-group mean
r(diff) difference between the experimental- and control-group means
r(sd) common standard deviation of the control and experimental groups
r(sd1) standard deviation of the control group
r(sd2) standard deviation of the experimental group
r(rho) intraclass correlation
r(CV cluster) coefficient of variation for cluster sizes
r(separator) number of lines between separator lines in the table



178 power twomeans, cluster — Power analysis for a two-sample means test, CRD

r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for estimated parameter
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) twomeans
r(design) CRD
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
For the computation in a CRD, we assume the standard deviations of the two groups are known.

See Known standard deviations under Methods and formulas in [PSS-2] power twomeans for the
common notation for a two-sample means test.

Methods and formulas are presented under the following headings:

Introduction
Equal cluster sizes
Unequal cluster sizes

Introduction

In a CRD, let K1 and K2 be the numbers of clusters in the control and experimental groups,
respectively, and M1 and M2 be the cluster sizes of the control and experimental groups, respectively.
We have n1 = K1M1 and n2 = K2M2. Let Rk be the ratio of the numbers of clusters, K2/K1,
and Rm be the ratio of the cluster sizes, M2/M1. Let ρ be the intraclass correlation coefficient and
DE1 and DE2 be the design effect in the control and experimental groups, with

DE1 = 1 + ρ(M1 − 1) and DE2 = 1 + ρ(M2 − 1)

Similarly to the discussion for the two-sample means test in the individual-level design, the test
statistic is

TS =
(x2 − x1)− (µ2 − µ1)

σD

where x1 and x2 are the sample means of the two groups and σD is the standard deviation of the
mean difference. The sampling distribution of the test statistic TS under the null hypothesis follows
a standard normal distribution; see, for example, Ahn, Heo, and Zhang (2015).
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The power π = 1− β is computed using

π =


Φ
(

δ
σD
− z1−α

)
for an upper one-sided test

Φ
(
− δ
σD
− z1−α

)
for a lower one-sided test

Φ
(

δ
σD
− z1−α/2

)
+ Φ

(
− δ
σD
− z1−α/2

)
for a two-sided test

(1)

where Φ(·) is the c.d.f. of a standard normal distribution, δ = µ2 − µ1, and σD is defined in the
subsequent sections.

Equal cluster sizes

When the cluster sizes are equal, the standard deviation of the mean difference σD in (1) is
computed as

σD =
√
σ2

1DE1/n1 + σ2
2DE2/n2

where σ2
1 and σ2

2 are group-specific variances.

Given the cluster sizes M1 and M2 and the ratio of the numbers of clusters Rk, the numbers of
clusters K1 and K2 for a one-sided test are computed as follows. K1 is computed by inverting a
one-sided power equation from (1)

K1 =

(
z1−α − zβ
µ2 − µ1

)2(
σ2

1DE1

M1
+
σ2

2DE2

M2Rk

)
(2)

Then, K2 is computed using K2 = RkK1.

For a one-sided test, to compute the number of clusters in one group given that of the other
one—for example, to compute K1 given K2—we use the following formula:

K1 =
σ2

1DE1/M1

(µ2 − µ1)2/(z1−α − zβ)2 − σ2
2DE2/K2M2

(3)

Similarly, we can compute K2 given K1.

Given the numbers of clusters K1 and K2 and the cluster-size ratio Rm, the cluster sizes M1 and
M2 for a one-sided test are computed as follows. M1 is computed as

M1 =
(1− ρ)(σ2

1/K1 + σ2
2/K2Rm)

(µ2 − µ1)2/(z1−α − zβ)2 − ρ(σ2
1/K1 + σ2

2/K2)
(4)

and M2 = RmM1.

For a one-sided test, to compute the cluster size in one group given that of the other one—for
example, to compute M1 given M2—we use the following formula:

M1 =
(1− ρ)(σ2

1/K1)

(µ2 − µ1)2/(z1−α − zβ)2 − σ2
2DE2/K2M2 − ρσ2

1/K1
(5)

Similarly, we can compute M2 given M1.
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The absolute value of the effect size for a one-sided test is computed as follows:

|δ| = σD(z1−α − zβ) (6)

Note that the magnitude of the effect size is the same regardless of the direction of the test.

The experimental-group mean for a one-sided test is then computed as

µ2 =

{
µ1 + (z1−α − zβ)

√
σ2

1DE1/n1 + σ2
2DE2/n2 when µ2 > µ1

µ1 − (z1−α − zβ)
√
σ2

1DE1/n1 + σ2
2DE2/n2 when µ2 < µ1

(7)

The numbers of clusters, cluster sizes, and minimum detectable value of the experimental-group
mean for a two-sided test are computed iteratively using the two-sided power equation from (1). The
initial values are obtained from the corresponding one-sided equations [(2) through (6)] with α/2.

Unequal cluster sizes

For unequal cluster sizes, we assume that the cluster sizes are independent and identically distributed
and are small relative to the number of clusters; see Ahn, Heo, and Zhang (2015) for details. Let
the coefficient of variation of the cluster sizes be CVcl. According to van Breukelen, Candel, and
Berger (2007) and Campbell and Walters (2014), to adjust for varying cluster sizes, define the relative
efficiency (RE) of unequal versus equal cluster sizes as

REi = 1− λi(1− λi)CV2
cl

where λi = ρMi/(ρMi+1−ρ), where i = 1 corresponds to the control group and i = 2 corresponds
to the experimental group. Under unequal cluster sizes, the standard deviation of the mean difference
σD becomes

σD =

√
σ2

1DE1

n1RE1
+
σ2

2DE1

n2RE2
(8)

By substituting σD in (1) and replacing σ2
1DE1 and σ2

2DE2 with σ2
1DE1/RE1 and σ2

2DE2/RE2 in (2),
(3), and (7), we can obtain the formulas for computing the numbers of clusters and experimental-group
mean for a one-sided test. In all other cases, parameters are computed iteratively using the power
equations (1) with σD as defined in (8).
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Also see
[PSS-2] power twomeans — Power analysis for a two-sample means test

[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] power, graph — Graph results from the power command

[PSS-2] power, table — Produce table of results from the power command

[PSS-5] Glossary
[ME] mixed — Multilevel mixed-effects linear regression

[R] ztest — z tests (mean-comparison tests, known variance)
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power pairedmeans — Power analysis for a two-sample paired-means test

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power pairedmeans computes sample size, power, or target mean difference for a two-sample
paired-means test. By default, it computes sample size for given power and the values of the null
and alternative mean differences. Alternatively, it can compute power for given sample size and the
values of the null and alternative mean differences or the target mean difference for given sample
size, power, and the null mean difference. Also see [PSS-2] power for a general introduction to the
power command using hypothesis tests.

For precision and sample-size analysis for a CI for the difference between two means from paired
samples, see [PSS-3] ciwidth pairedmeans.

Quick start
Sample size for a test of H0: µ2 − µ1 = d = 0 versus Ha: d 6= 0 given alternative pretreatment

mean ma1 = 73 and alternative posttreatment mean ma2 = 57 with standard deviation of the
differences σd = 36 using default power of 0.8 and significance level α = 0.05

power pairedmeans 73 57, sddiff(36)

Same as above, specified using the difference between means of −16
power pairedmeans, altdiff(-16) sddiff(36)

Same as above, but instead of standard deviation of the differences, specify correlation between paired
observations of 0.5 with pretreatment standard deviation of 29 and posttreatment standard deviation
of 40

power pairedmeans 73 57, corr(.5) sd1(29) sd2(40)

For differences in means of −20, −18, −16, −14, −12, and −10
power pairedmeans, altdiff(-20(2)-10) sddiff(36)

Power for a sample size of 23
power pairedmeans 73 57, sddiff(36) n(23)

Effect size and target mean difference for sample sizes 20, 30, and 40 with power of 0.85
power pairedmeans 73, sddiff(36) power(.85) n(20(10)40)

Same as above, but display results as a graph of target mean difference versus sample size
power pairedmeans 73, sddiff(36) power(.85) n(20(10)40) graph

182
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Menu
Statistics > Power, precision, and sample size

Syntax

Compute sample size

power pairedmeans ma1 ma2 , corrspec
[
power(numlist) options

]

Compute power

power pairedmeans ma1 ma2 , corrspec n(numlist)
[

options
]

Compute effect size and target mean difference

power pairedmeans
[
ma1

]
, corrspec n(numlist) power(numlist)

[
options

]

where corrspec is one of

sddiff()

corr()
[
sd()

]
corr()

[
sd1() sd2()

]
ma1 is the alternative pretreatment mean or the pretreatment mean under the alternative hypothesis,

and ma2 is the alternative posttreatment mean or the value of the posttreatment mean under the
alternative hypothesis. ma1 and ma2 may each be specified either as one number or as a list of
values in parentheses (see [U] 11.1.8 numlist).
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗nulldiff(numlist) null difference, the difference between the posttreatment mean

and the pretreatment mean under the null hypothesis;
default is nulldiff(0)

∗altdiff(numlist) alternative difference da = ma2 −ma1, the difference between
the posttreatment mean and the pretreatment mean under the
alternative hypothesis

∗sddiff(numlist) standard deviation σd of the differences; may not be combined
with corr()

∗corr(numlist) correlation between paired observations; required unless
sddiff() is specified

∗sd(numlist) common standard deviation; default is sd(1) and
requires corr()

∗sd1(numlist) standard deviation of the pretreatment group; requires corr()
∗sd2(numlist) standard deviation of the posttreatment group; requires corr()

knownsd request computation assuming a known standard deviation σd;
default is to assume an unknown standard deviation

∗fpc(numlist) finite population correction (FPC) as a sampling rate or
population size

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph
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Iteration

init(#) initial value for sample size or mean difference; default is to
use normal approximation

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N number of subjects N
delta effect size δ
d0 null mean difference d0

da alternative mean difference da
ma1 alternative pretreatment mean µa1

ma2 alternative posttreatment mean µa2

sd d standard deviation of the differences σd
sd common standard deviation σ
sd1 standard deviation of the pretreatment group σ1

sd2 standard deviation of the posttreatment group σ2

corr correlation between paired observations ρ
fpc FPC as a population size Npop

FPC as a sampling rate γ
target target parameter; synonym for da
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Columns ma1, ma2, sd, sd1, sd2, corr, and fpc are shown in the default table if specified.
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Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS-2] power. The nfractional option is
allowed only for sample-size determination.

nulldiff(numlist) specifies the difference between the posttreatment mean and the pretreatment
mean under the null hypothesis. The default is nulldiff(0), which means that the pretreatment
mean equals the posttreatment mean under the null hypothesis.

altdiff(numlist) specifies the alternative difference da = ma2 −ma1, the difference between the
posttreatment mean and the pretreatment mean under the alternative hypothesis. This option is the
alternative to specifying the alternative means ma1 and ma2. If ma1 is specified in combination
with altdiff(#), then ma2 = # +ma1.

sddiff(numlist) specifies the standard deviation σd of the differences. Either sddiff() or corr()
must be specified.

corr(numlist) specifies the correlation between paired, pretreatment and posttreatment, observations.
This option along with sd1() and sd2() or sd() is used to compute the standard deviation of
the differences unless that standard deviation is supplied directly in the sddiff() option. Either
corr() or sddiff() must be specified.

sd(numlist) specifies the common standard deviation of the pretreatment and posttreatment groups.
Specifying sd(#) implies that both sd1() and sd2() are equal to #. Options corr() and sd()
are used to compute the standard deviation of the differences unless that standard deviation is
supplied directly with the sddiff() option. The default is sd(1).

sd1(numlist) specifies the standard deviation of the pretreatment group. Options corr(), sd1(),
and sd2() are used to compute the standard deviation of the differences unless that standard
deviation is supplied directly with the sddiff() option.

sd2(numlist) specifies the standard deviation of the posttreatment group. Options corr(), sd1(),
and sd2() are used to compute the standard deviation of the differences unless that standard
deviation is supplied directly with the sddiff() option.

knownsd requests that the standard deviation of the differences σd be treated as known in the
computations. By default, the standard deviation is treated as unknown, and the computations are
based on a paired t test, which uses a Student’s t distribution as a sampling distribution of the
test statistic. If knownsd is specified, the computation is based on a paired z test, which uses a
normal distribution as the sampling distribution of the test statistic.

fpc(numlist) requests that a finite population correction be used in the computation. If fpc() has
values between 0 and 1, it is interpreted as a sampling rate, n/N , where N is the total number of
units in the population. When sample size n is specified, if fpc() has values greater than n, it is
interpreted as a population size, but it is an error to have values between 1 and n. For sample-size
determination, fpc() with a value greater than 1 is interpreted as a population size. It is an error
for fpc() to have a mixture of sampling rates and population sizes.

direction(), onesided, parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.
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� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value of the sample size for the sample-size determination or the initial
value of the mean difference for the effect-size determination. The default is to use a closed-form
normal approximation to compute an initial value of the sample size or mean difference.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power pairedmeans but is not shown in the dialog box:

notitle; see [PSS-2] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power pairedmeans
Computing sample size
Computing power
Computing effect size and target mean difference
Testing a hypothesis about two correlated means
Video examples

This entry describes the power pairedmeans command and the methodology for power and
sample-size analysis for a two-sample paired-means test. See [PSS-2] Intro (power) for a general
introduction to power and sample-size analysis and [PSS-2] power for a general introduction to the
power command using hypothesis tests.

Introduction
The analysis of paired means is commonly used in settings such as repeated-measures designs with

before and after measurements on the same individual or cross-sectional studies of paired measurements
from twins. For example, a company might initiate a voluntary exercise program and would like to
test that the average weight loss of participants from beginning to six months is greater than zero. Or
a school district might design an intensive remedial program for students with low math scores and
would like to know if the students’ math scores improve from the pretest to the posttest. For paired
data, the inference is made on the mean difference accounting for the dependence between the two
groups.

This entry describes power and sample-size analysis for the inference about the population mean
difference performed using hypothesis testing. Specifically, we consider the null hypothesisH0: d = d0

versus the two-sided alternative hypothesis Ha: d 6= d0, the upper one-sided alternative Ha: d > d0,
or the lower one-sided alternative Ha: d < d0. The parameter d is the mean difference between the
posttreatment mean µ2 and pretreatment mean µ1.

A two-sample paired-means test assumes that the two correlated samples are drawn from two normal
populations or that the sample size is large. When the population variances are known, the sampling
distribution of the test statistic under the null hypothesis is standard normal, and the corresponding
test is known as a paired z test. If the population variances are unknown, the sampling distribution
of the test statistic under the null hypothesis is Student’s t, and the corresponding test is known as a
paired t test.
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The random sample is typically drawn from an infinite population. When the sample is drawn
from a population of a fixed size, sampling variability must be adjusted for a finite population size.

The power pairedmeans command provides power and sample-size analysis for the comparison
of two correlated means using a paired t test or a paired z test.

Using power pairedmeans

power pairedmeans computes sample size, power, or target mean difference for a two-sample
paired-means test. All computations are performed for a two-sided hypothesis test where, by default,
the significance level is set to 0.05. You may change the significance level by specifying the alpha()
option. You can specify the onesided option to request a one-sided test.

By default, all computations are based on a paired t test, which assumes an unknown standard
deviation of the differences. For a known standard deviation, you can specify the knownsd option to
request a paired z test.

For all computations, you must specify either the standard deviation of the differences in the
sddiff() option or the correlation between the paired observations in the corr() option. If you
specify the corr() option, then individual standard deviations of the pretreatment and posttreatment
groups may also be specified in the respective sd1() and sd2() options. By default, their values
are set to 1. When the two standard deviations are equal, you may specify the common standard
deviation in the sd() option instead of specifying them individually.

To compute sample size, you must specify the pretreatment and posttreatment means under the
alternative hypothesis, ma1 and ma2, respectively, and, optionally, the power of the test in the
power() option. The default power is set to 0.8.

To compute power, you must specify the sample size in the n() option and the pretreatment and
posttreatment means under the alternative hypothesis, ma1 and ma2, respectively.

Instead of the alternative means ma1 and ma2, you can specify the difference ma2−ma1 between
the alternative posttreatment mean and the alternative pretreatment mean in the altdiff() option
when computing sample size or power.

By default, the difference between the posttreatment mean and the pretreatment mean under the
null hypothesis is set to zero. You may specify other values in the nulldiff() option.

To compute effect size, the standardized difference between the alternative and null mean differences,
and target mean difference, you must specify the sample size in the n() option, the power in the
power() option, and, optionally, the direction of the effect. The direction is upper by default,
direction(upper), which means that the target mean difference is assumed to be larger than the
specified null value. This is also equivalent to the assumption of a positive effect size. You can change
the direction to be lower, which means that the target mean difference is assumed to be smaller than
the specified null value, by specifying the direction(lower) option. This is equivalent to assuming
a negative effect size.

By default, the computed sample size is rounded up. You can specify the nfractional option
to see the corresponding fractional sample size; see Fractional sample sizes in [PSS-4] Unbalanced
designs for an example. The nfractional option is allowed only for sample-size determination.

Some of power pairedmeans’s computations require iteration. For example, when the standard
deviation of the differences is unknown, computations use a noncentral Student’s t distribution. Its
degrees of freedom depends on the sample size, and the noncentrality parameter depends on the
sample size and effect size. Therefore, the sample-size and effect-size determinations require iteration.
The default initial values of the estimated parameters are obtained by using a closed-form normal
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approximation. They may be changed by specifying the init() option. See [PSS-2] power for the
descriptions of other options that control the iteration procedure.

All computations assume an infinite population. For a finite population, use the fpc() option
to specify a sampling rate or a population size. When this option is specified, a finite population
correction is applied to the standard deviation of the differences. The correction factor depends on
the sample size; therefore, computing sample size in this case requires iteration. The initial value for
sample-size determination in this case is based on the corresponding normal approximation with a
finite population size.

In the following sections, we describe the use of power pairedmeans accompanied by examples
for computing sample size, power, and target mean difference.

Computing sample size

To compute sample size, you must specify the pretreatment and posttreatment means under the
alternative hypothesis, ma1 and ma2, respectively, or the difference between them in altdiff()
and, optionally, the power of the test in the power() option. A default power of 0.8 is assumed if
power() is not specified.

Example 1: Sample size for a two-sample paired-means test

Consider a study of low birthweight (LBW) infants as in Howell (2002, 186). The variable of
interest is the Bayley mental development index (MDI) of infants when they are 6-, 12-, and 24-months
old. Previous research suggested that the MDI scores for LBW children might decline significantly
between 6 and 24 months of age. Suppose we would like to conduct a similar study where the null
hypothesis of interest is no difference between 6-month and 24-month MDI scores, H0: d = 0, and
the two-sided alternative is Ha: d 6= 0, implying the existence of a difference.

In this example, we use the estimates from Howell (2002, 193) as our study parameters. The mean
MDI score of a 6-month group was estimated to be 111. We want to obtain the minimum sample size
that is required to detect the mean MDI score of 106.71 in a 24-month group with a power of 80%
using a 5%-level two-sided test. The standard deviation of the differences was previously estimated
to be 16.04. To compute the sample size, we specify the alternative means after the command name
and standard deviation of the differences in sddiff().
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. power pairedmeans 111 106.71, sddiff(16.04)

Performing iteration ...

Estimated sample size for a two-sample paired-means test
Paired t test
H0: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500 ma1 = 111.0000
power = 0.8000 ma2 = 106.7100
delta = -0.2675

d0 = 0.0000
da = -4.2900

sd_d = 16.0400

Estimated sample size:

N = 112

As we mentioned in the previous section, sample-size determination requires iteration in the case of
an unknown standard deviation. By default, power pairedmeans suppresses the iteration log, which
may be displayed by specifying the log option.

A sample of 112 subjects is required for the test to detect the resulting difference of −4.29 with
a power of 80%.

Study parameters are divided into two columns. The parameters that are always displayed are
listed in the first column, and the parameters that are displayed only if they are specified are listed
in the second column.

In this example, we specified optional command arguments containing the alternative pretreatment
mean ma1 and the alternative posttreatment mean ma2. Because these arguments are optional, they
are listed in the second column.

Example 2: Specifying mean differences

Instead of the individual alternative means, we can specify their difference, 106.71−111 = −4.29,
in the altdiff() option.

. power pairedmeans, altdiff(-4.29) sddiff(16.04)

Performing iteration ...

Estimated sample size for a two-sample paired-means test
Paired t test
H0: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.2675

d0 = 0.0000
da = -4.2900

sd_d = 16.0400

Estimated sample size:

N = 112

We obtain the same results as in example 1.
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Example 3: Specifying individual standard deviations

Howell (2002) also reported the group-specific standard deviations: 13.85 in the 6-month group
and 12.95 in the 24-month group. Using the values of individual standard deviations and the standard
deviation of the differences from the previous example, we obtain the correlation between the 6-month
group and the 24-month group to be (13.852 + 12.952 − 16.042)/(2× 13.85× 12.95) = 0.285. To
compute the sample size, we specify the group-specific standard deviations in sd1() and sd2() and
the correlation in corr().

. power pairedmeans 111 106.71, corr(0.285) sd1(13.85) sd2(12.95)

Performing iteration ...

Estimated sample size for a two-sample paired-means test
Paired t test
H0: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500 ma1 = 111.0000
power = 0.8000 ma2 = 106.7100
delta = -0.2675 sd1 = 13.8500

d0 = 0.0000 sd2 = 12.9500
da = -4.2900 corr = 0.2850

sd_d = 16.0403

Estimated sample size:

N = 112

We obtain the same sample size as in example 1.

The correlation and standard deviations are reported in the second column.

Example 4: Specifying common standard deviation

If standard deviations in both groups are equal, we may specify the common standard deviation
in option sd(). As a demonstration, we use the average of the individual standard deviations
(13.85 + 12.95)/2 = 13.4 as our common standard deviation.

. power pairedmeans 111 106.71, corr(0.285) sd(13.4)

Performing iteration ...

Estimated sample size for a two-sample paired-means test
Paired t test assuming sd1 = sd2 = sd
H0: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500 ma1 = 111.0000
power = 0.8000 ma2 = 106.7100
delta = -0.2677 sd = 13.4000

d0 = 0.0000 corr = 0.2850
da = -4.2900

sd_d = 16.0241

Estimated sample size:

N = 112

The resulting standard deviation of the differences of 16.0241 is close to our earlier estimate of 16.04,
so the computed sample size is the same as the sample size in example 1.
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Example 5: Nonzero null

In all the previous examples, we assumed that the difference between the 6-month and 24-
month means is zero under the null hypothesis. For a nonzero null hypothesis, you can specify the
corresponding null value in the nulldiff() option.

Continuing with example 2, we will suppose that we are testing the nonzero null hypothesis of
H0: d = d0 = −1. We compute the sample size as follows:

. power pairedmeans, nulldiff(-1) altdiff(-4.29) sddiff(16.04)

Performing iteration ...

Estimated sample size for a two-sample paired-means test
Paired t test
H0: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.2051

d0 = -1.0000
da = -4.2900

sd_d = 16.0400

Estimated sample size:

N = 189

Compared with example 2, the absolute value of the effect size delta decreases to 0.2051, and thus
a larger sample of 189 subjects is required to detect this smaller effect.

Computing power

To compute power, you must specify the sample size in the n() option and the pretreatment and
posttreatment means under the alternative hypothesis, ma1 and ma2, respectively, or the difference
between them in the altdiff() option.

Example 6: Power of a two-sample paired-means test

Continuing with example 1, we will suppose that because of limited resources, we anticipate to
obtain a sample of only 100 subjects. To compute power, we specify the sample size in the n()
option:

. power pairedmeans 111 106.71, n(100) sddiff(16.04)

Estimated power for a two-sample paired-means test
Paired t test
H0: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500 ma1 = 111.0000
N = 100 ma2 = 106.7100

delta = -0.2675
d0 = 0.0000
da = -4.2900

sd_d = 16.0400

Estimated power:

power = 0.7545

Compared with example 1, the power decreases to 75.45%.
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Example 7: Known standard deviation

In the case of a known standard deviation σd, you can specify the knownsd option to request
a paired z test. Using the same study parameters as in example 6, we can compute the power as
follows:

. power pairedmeans 111 106.71, n(100) sddiff(16.04) knownsd

Estimated power for a two-sample paired-means test
Paired z test
H0: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500 ma1 = 111.0000
N = 100 ma2 = 106.7100

delta = -0.2675
d0 = 0.0000
da = -4.2900

sd_d = 16.0400

Estimated power:

power = 0.7626

The power of 76.26% of a paired z test is close to the power of 75.45% of a paired t test obtained
in example 6.

Example 8: Multiple values of study parameters

Continuing with example 3, we will suppose that we would like to assess the effect of varying
correlation on the power of our study. The standard deviation of the MDI scores for infants aged 6
months is 13.85 and that for infants aged 24 months is 12.95, which are obtained from Howell (2002,
193). We believe the data on pairs to be positively correlated because we expect a 6-month-old infant
with a high score to have a high score at 24 months of age as well. We specify a range of correlations
between 0.1 and 0.9 with the step size of 0.1 in the corr() option:

. power pairedmeans 111 106.71, n(100) sd1(13.85) sd2(12.95) corr(0.1(0.1)0.9)
> table(alpha N power corr sd_d delta)

Estimated power for a two-sample paired-means test
Paired t test
H0: d = d0 versus Ha: d != d0

alpha N power corr sd_d delta

.05 100 .656 .1 17.99 -.2385

.05 100 .7069 .2 16.96 -.2529

.05 100 .7632 .3 15.87 -.2703

.05 100 .8239 .4 14.7 -.2919

.05 100 .8859 .5 13.42 -.3196

.05 100 .9425 .6 12.01 -.3571

.05 100 .983 .7 10.41 -.412

.05 100 .9988 .8 8.518 -.5037

.05 100 1 .9 6.057 -.7083

As the correlation increases, the power also increases. This is because the standard deviation of the
differences is negatively related to correlation when the correlation is positive. As the correlation
increases, the standard deviation of the differences decreases, thus resulting in higher power. Likewise,
the opposite is true when the correlation is negative.
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For multiple values of parameters, the results are automatically displayed in a table. In the above,
we use the table() option to build a custom table. For more examples of tables, see [PSS-2] power,
table. If you wish to produce a power plot, see [PSS-2] power, graph.

Computing effect size and target mean difference

Effect size δ for a two-sample paired-means test is defined as a standardized difference between
the alternative mean difference da and the null mean difference d0, δ = (da − d0)/σd.

Sometimes, we may be interested in determining the smallest effect and the corresponding mean
difference that yield a statistically significant result for prespecified sample size and power. In this
case, power, sample size, and the alternative pretreatment mean must be specified. By default, the null
mean difference is set to 0. In addition, you must also decide on the direction of the effect: upper,
meaning da > d0, or lower, meaning da < d0. The direction may be specified in the direction()
option; direction(upper) is the default.

Example 9: Minimum detectable value of the effect size

Continuing with example 6, we may be interested to find the minimum effect size with a power
of 80% given a sample of 100 subjects. To compute the smallest effect size and the corresponding
target mean difference, we specify the sample size n(100), power power(0.8), and the standard
deviation of the differences sddiff(16.04):

. power pairedmeans 111, n(100) power(0.8) sddiff(16.04)

Performing iteration ...

Estimated target parameters for a two-sample paired-means test
Paired t test
H0: d = d0 versus Ha: d != d0; da > d0

Study parameters:

alpha = 0.0500 ma1 = 111.0000
power = 0.8000

N = 100
d0 = 0.0000

sd_d = 16.0400

Estimated effect size and target parameters:

delta = 0.2829
da = 4.5379

ma2 = 115.5379

The smallest detectable value of the effect size is 0.28, which corresponds to the alternative mean
difference of 4.54. Compared with example 1, for the same power of 80%, the target mean difference
increased to 4.54 when the sample size was reduced to 100 subjects.

Testing a hypothesis about two correlated means

In this section, we demonstrate the use of the ttest command for testing hypotheses about paired
means. Suppose we wish to test the hypothesis that the means of the paired samples are the same.
We can use the ttest command to do this. We demonstrate the use of this command using the
fictional bpwide dataset; see [R] ttest for details.
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Example 10: Testing means from paired data

Suppose that we have a sample of 120 patients. We are interested in investigating whether a certain
drug induces a change in the systolic blood pressure. We record blood pressures for each patient
before and after the drug is administered. In this case, each patient serves as his or her own control.
We wish to test whether the mean difference between the posttreatment and pretreatment systolic
blood pressures are significantly different from zero.

. use https://www.stata-press.com/data/r18/bpwide
(Fictional blood-pressure data)

. ttest bp_before == bp_after

Paired t test

Variable Obs Mean Std. err. Std. dev. [95% conf. interval]

bp_bef~e 120 156.45 1.039746 11.38985 154.3912 158.5088
bp_after 120 151.3583 1.294234 14.17762 148.7956 153.921

diff 120 5.091667 1.525736 16.7136 2.070557 8.112776

mean(diff) = mean(bp_before - bp_after) t = 3.3372
H0: mean(diff) = 0 Degrees of freedom = 119

Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(T < t) = 0.9994 Pr(|T| > |t|) = 0.0011 Pr(T > t) = 0.0006

We find statistical evidence to reject the null hypothesis of H0: d = 0 versus the two-sided alternative
Ha: d 6= 0 at the 5% significance level; the p-value = 0.0011.

We use the estimates of this study to perform a sample-size analysis we would have conducted
before the study.

. power pairedmeans, altdiff(5.09) sddiff(16.71)

Performing iteration ...

Estimated sample size for a two-sample paired-means test
Paired t test
H0: d = d0 versus Ha: d != d0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.3046

d0 = 0.0000
da = 5.0900

sd_d = 16.7100

Estimated sample size:

N = 87

We find that the sample size required to detect a mean difference of 5.09 for given standard deviation
of the differences of 16.71 with 80% power using a 5%-level two-sided test is 87.
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Video examples
Sample-size calculation for comparing sample means from two paired samples

Power calculation for comparing sample means from two paired samples

Minimum detectable effect size for comparing sample means from two paired samples

Stored results
power pairedmeans stores the following in r():
Scalars

r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) sample size
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(d0) difference between the posttreatment and pretreatment means under the null hypothesis
r(da) difference between the posttreatment and pretreatment means under the alternative hypothesis
r(ma1) pretreatment mean under the alternative hypothesis
r(ma2) posttreatment mean under the alternative hypothesis
r(corr) correlation between paired observations
r(sd d) standard deviation of the differences
r(sd1) standard deviation of the pretreatment group
r(sd2) standard deviation of the posttreatment group
r(sd) common standard deviation
r(knownsd) 1 if option knownsd is specified, 0 otherwise
r(fpc) finite population correction
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample size or target mean difference
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) pairedmeans
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
Consider a sequence of n paired observations denoted by Xij for i = 1, . . . , n and groups j = 1, 2.

Individual observation corresponds to the pair (Xi1, Xi2), and inference is made on the differences
within the pairs. Let d = µ2 − µ1 denote the mean difference, where µj is the population mean of
group j, and Di = Xi2 − Xi1 denote the difference between individual observations. Let d0 and
da denote the null and alternative values of the mean difference d. Let d =

∑n
i=1Di/n denote the

sample mean difference.

https://www.youtube.com/watch?v=41Hmat-5MX8
https://www.youtube.com/watch?v=RCox1fE8rQw
https://www.youtube.com/watch?v=zmIevk4VBY8
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Unlike a two-sample means test where we consider two independent samples, a paired-means
test allows the two groups to be dependent. As a result, the standard deviation of the differences is
given by σd =

√
σ2

1 + σ2
2 − 2ρσ1σ2, where σ1 and σ2 are the pretreatment and posttreatment group

standard deviations, respectively, and ρ is the correlation between the paired measurements.

Power, sample-size, and effect-size determination for a paired-means test is analogous to a one-
sample mean test where the sample of differences Di’s is treated as a single sample. See Methods
and formulas in [PSS-2] power onemean.

Also see Armitage, Berry, and Matthews (2002); Dixon and Massey (1983); and Chow et al.
(2018) for more details.
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Also see
[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] power repeated — Power analysis for repeated-measures analysis of variance

[PSS-2] power, graph — Graph results from the power command

[PSS-2] power, table — Produce table of results from the power command

[PSS-3] ciwidth pairedmeans — Precision analysis for a paired-means-difference CI

[PSS-5] Glossary
[R] ttest — t tests (mean-comparison tests)
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power oneproportion — Power analysis for a one-sample proportion test

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power oneproportion computes sample size, power, or target proportion for a one-sample
proportion test. By default, it computes sample size for given power and the values of the proportion
parameters under the null and alternative hypotheses. Alternatively, it can compute power for given
sample size and values of the null and alternative proportions or the target proportion for given sample
size, power, and the null proportion. For power and sample-size analysis in a cluster randomized
design, see [PSS-2] power oneproportion, cluster. Also see [PSS-2] power for a general introduction
to the power command using hypothesis tests.

Quick start
Sample size for a test of H0: π = 0.2 versus Ha: π 6= 0.2 with null proportion p0 = 0.2, alternative

proportion pa = 0.1, default power of 0.8, and significance level α = 0.05
power oneproportion .2 .1

Same as above, but for pa equal to 0.05, 0.075, 0.1, 0.125, and 0.15
power oneproportion .2 (.05(.025).15)

Same as above, but display results as a graph of sample size versus alternative proportion
power oneproportion .2 (.05(.025).15), graph

Sample size for one-sided test with power of 0.9
power oneproportion .2 .1, power(.9) onesided

Sample size for a Wald test instead of the default score test
power oneproportion .2 .1, test(wald)

Power for a sample size of 120
power oneproportion .2 .1, n(120)

Same as above, but for sample sizes of 110, 120, 130, and 140
power oneproportion .2 .1, n(110(10)140)

Effect size and target proportion for p0 = 0.3, sample size of 75, and power of 0.8
power oneproportion .3, n(75) power(.8)

Menu
Statistics > Power, precision, and sample size

198
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Syntax

Compute sample size

power oneproportion p0 pa
[
, power(numlist) options

]

Compute power

power oneproportion p0 pa , n(numlist)
[

options
]

Compute effect size and target proportion

power oneproportion p0 , n(numlist) power(numlist)
[

options
]

where p0 is the null (hypothesized) proportion or the value of the proportion under the null hypothesis
and pa is the alternative (target) proportion or the value of the proportion under the alternative
hypothesis. p0 and pa may each be specified either as one number or as a list of values in
parentheses (see [U] 11.1.8 numlist).
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options Description

test(test) specify the type of test; default is test(score)

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗diff(numlist) difference between the alternative proportion and the null

proportion, pa − p0; specify instead of the
alternative proportion pa

critvalues show critical values for the binomial test
continuity apply continuity correction to the normal approximation

of the discrete distribution
direction(upper|lower) direction of the effect for effect-size determination; default is

direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value for sample size or proportion
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

cluster perform computations for a CRD;
see [PSS-2] power oneproportion, cluster

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
cluster and notitle do not appear in the dialog box.
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test Description

score score test; the default
wald Wald test
binomial binomial test

test() does not appear in the dialog box. The dialog box selected is determined by the test() specification.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
alpha a observed significance level αa
power power 1− β
beta type II error probability β
N number of subjects N
delta effect size δ
p0 null proportion p0

pa alternative proportion pa
diff difference between the alternative and null pa − p0

proportions
C l lower critical value Cl
C u upper critical value Cu
target target parameter; synonym for pa
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Column diff is shown in the default table if specified.
Columns alpha a, C l, and C u are available when the test(binomial) option is specified.
Columns C l and C u are shown in the default table, if the critvalues option is specified.

Options

test(test) specifies the type of the test for power and sample-size computations. test is one of
score, wald, or binomial.

score requests computations for the score test. This is the default test.

wald requests computations for the Wald test. This corresponds to computations using the value
of the alternative proportion instead of the default null proportion in the formula for the standard
error of the estimator of the proportion.

binomial requests computations for the binomial test. The computation using the binomial
distribution is not available for sample-size and effect-size determinations; see example 7 for
details. Iteration options are not allowed with this test.
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� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS-2] power. The nfractional option is
allowed only for sample-size determination.

diff(numlist) specifies the difference between the alternative proportion and the null proportion,
pa−p0. You can specify either the alternative proportion pa as a command argument or the difference
between the two proportions in diff(). If you specify diff(#), the alternative proportion is
computed as pa = p0 + #. This option is not allowed with the effect-size determination.

critvalues requests that the critical values be reported when the computation is based on the
binomial distribution.

continuity requests that continuity correction be applied to the normal approximation of the discrete
distribution. continuity cannot be specified with test(binomial).

direction(), onesided, parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value of the sample size for the sample-size determination or the initial
value of the proportion for the effect-size determination.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following options are available with power oneproportion but are not shown in the dialog
box:

cluster; see [PSS-2] power oneproportion, cluster.

notitle; see [PSS-2] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power oneproportion
Computing sample size
Computing power
Computing effect size and target proportion
Performing hypothesis tests on proportion
Video examples

This entry describes the power oneproportion command and the methodology for power and
sample-size analysis for a one-sample proportion test. See [PSS-2] Intro (power) for a general
introduction to power and sample-size analysis and [PSS-2] power for a general introduction to the
power command using hypothesis tests. Also see [PSS-2] power oneproportion, cluster for power
and sample-size analysis in a cluster randomized design.
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Introduction
There are many examples of studies where a researcher would like to compare an observed

proportion with a hypothesized proportion. A political campaign might like to know if the proportion
of a country’s population that supports a new legislative initiative is greater than 50%. A veterinary
drug manufacturer might test a new topical treatment to kill fleas on dogs. It would like to know the
sample size necessary to demonstrate that the treatment is effective in ridding at least 80% of the test
dogs of fleas. The Nevada Gaming Control Board might test a Las Vegas casino’s slot machines to
verify that it meets the statutory minimum payout percentage of 75%. The board would like to know
the number of “pulls” necessary to reject the one-sided null hypothesis that the payout percentage is
less than 75%.

The analysis of proportions is carried out in experiments or observational studies where the response
variable is binary. Each observation is an outcome from a Bernoulli trial with a fixed probability p
of observing an event of interest in a population. Hypothesis testing of binomial outcomes relies on
a set of assumptions: 1) Bernoulli outcome is observed a fixed number of times; 2) the probability p
is fixed across all trials; and 3) individual trials are independent.

This entry describes power and sample-size analysis for the inference about the population proportion
performed using hypothesis testing. Specifically, we consider the null hypothesis H0: p = p0 versus
the two-sided alternative hypothesis Ha: p 6= p0, the upper one-sided alternative Ha: p > p0, or the
lower one-sided alternative Ha: p < p0.

Two common hypothesis tests for a one-sample proportion are the small-sample binomial test and
the asymptotic (large-sample) normal test. The binomial test is based on the binomial distribution,
the exact sampling distribution, of the test statistic and is commonly known as an “exact binomial”
test. The asymptotic normal test is based on the large-sample normal approximation of the sampling
distribution of the test statistic and is often referred to as a z test.

power oneproportion provides power and sample-size analysis for both the binomial and a
large-sample z test of a one-sample proportion.

Using power oneproportion

power oneproportion computes sample size, power, or target proportion for a one-sample
proportion test. All computations are performed for a two-sided hypothesis test where, by default, the
significance level is set to 0.05. You may change the significance level by specifying the alpha()
option. You can specify the onesided option to request a one-sided test.

power oneproportion performs power analysis for three different tests, which can be specified
within the test() option. The default is a large-sample score test (test(score)), which approximates
the sampling distribution of the test statistic by the standard normal distribution. You may instead
request computations based on a large-sample Wald test by specifying the test(wald) option.
For power determination, you can also request the small-sample binomial test by specifying the
test(binomial) option. The binomial test is not available for the sample-size and effect-size
determinations; see example 7 for details.

To compute sample size, you must specify the proportions under the null and alternative hypotheses,
p0 and pa, respectively, and, optionally, the power of the test in the power() option. The default
power is set to 0.8.

To compute power, you must specify the sample size in the n() option and the proportions under
the null and alternative hypotheses, p0 and pa, respectively.
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Instead of the alternative proportion pa, you may specify the difference pa − p0 between the
alternative proportion and the null proportion in the diff() option when computing sample size or
power.

To compute effect size, the difference between the alternative and null proportions, and target
proportion, you must specify the sample size in the n() option, the power in the power() option,
the null proportion p0, and, optionally, the direction of the effect. The direction is upper by default,
direction(upper), which means that the target proportion is assumed to be larger than the specified
null value. You can change the direction to lower, which means that the target proportion is assumed
to be smaller than the specified null value, by specifying the direction(lower) option.

By default, the computed sample size is rounded up. You can specify the nfractional option
to see the corresponding fractional sample size; see Fractional sample sizes in [PSS-4] Unbalanced
designs for an example. The nfractional option is allowed only for sample-size determination.

Some of power oneproportion’s computations require iteration. For example, for a large-sample
z test, sample size for a two-sided test is obtained by iteratively solving a nonlinear power equation.
The default initial value for the sample size for the iteration procedure is obtained using a closed-form
one-sided formula. If desired, it may be changed by specifying the init() option. See [PSS-2] power
for the descriptions of other options that control the iteration procedure.

In the following sections, we describe the use of power oneproportion accompanied with
examples for computing sample size, power, and target proportion.

Computing sample size

To compute sample size, you must specify the proportions under the null and alternative hypotheses,
p0 and pa, respectively, and, optionally, the power of the test in the power() option. A default power
of 0.8 is assumed if power() is not specified.

Example 1: Sample size for a one-sample proportion test

Consider a study of osteoporosis in postmenopausal women from Chow et al. (2018, 45). The
term “osteoporosis” refers to the decrease in bone mass that is most prevalent in postmenopausal
women. Females diagnosed with osteoporosis have vertebral bone density more than 10% below the
average bone density of women with similar demographic characteristics such as age, height, weight,
and race.

The World Health Organization (WHO) defines osteoporosis as having the bone density value that
is smaller than 2.5 standard deviations below the peak bone mass levels in young women. Suppose
investigators wish to assess the effect of a new treatment on increasing the bone density for women
diagnosed with osteoporosis. The treatment is deemed successful if a subject’s bone density improves
by more than one standard deviation of her measured bone density.

Suppose that previous studies have reported a response rate of 30% for women with increased
bone density after treatment. Investigators expect the new treatment to generate a higher response
rate of roughly 50%. The goal is to obtain the minimum required sample size to detect an alternative
proportion of 0.5 using the test of H0 : p = 0.3 versus Ha : p 6= 0.3 with 80% power and 5%
significance level. To compute sample size, we specify the null and alternative proportions after the
command name:
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. power oneproportion 0.3 0.5

Performing iteration ...

Estimated sample size for a one-sample proportion test
Score z test
H0: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000

p0 = 0.3000
pa = 0.5000

Estimated sample size:

N = 44

We find that at least 44 subjects are needed to detect a change in proportion from 0.3 to 0.5 with
80% power using a 5%-level two-sided test.

Example 2: Specifying the difference between proportions

Instead of the alternative proportion, we can specify the difference of 0.05− 0.03 = 0.2 between
the alternative proportion and the null proportion in the diff() option and obtain the same results:

. power oneproportion 0.3, diff(0.2)

Performing iteration ...

Estimated sample size for a one-sample proportion test
Score z test
H0: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000

p0 = 0.3000
pa = 0.5000

diff = 0.2000

Estimated sample size:

N = 44

The difference between proportions is now also displayed in the output.

Example 3: Wald test

The default computation is based on a score test and thus uses the null proportion as the estimate
of the true proportion in the formula for the standard error. We can request the computation based
on a Wald test by specifying the test(wald) option. In this case, the alternative proportion will be
used as an estimate of the true proportion in the formula for the standard error.
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. power oneproportion 0.3 0.5, test(wald)

Performing iteration ...

Estimated sample size for a one-sample proportion test
Wald z test
H0: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000

p0 = 0.3000
pa = 0.5000

Estimated sample size:

N = 50

We find that the required sample size increases to 50 subjects.

Computing power

To compute power, you must specify the sample size in the n() option and the proportions under
the null and alternative hypotheses, p0 and pa, respectively.

Example 4: Power of a one-sample proportion test

Continuing with example 1, we will suppose that we are designing a new study and anticipate to
obtain a sample of 30 subjects. To compute the power corresponding to this sample size given the
study parameters from example 1, we specify the sample size of 30 in the n() option:

. power oneproportion 0.3 0.5, n(30)

Estimated power for a one-sample proportion test
Score z test
H0: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500
N = 30

delta = 0.2000
p0 = 0.3000
pa = 0.5000

Estimated power:

power = 0.6534

As expected, with a smaller sample size, we achieve a lower power (only 65.34%).
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Example 5: Multiple values of study parameters

To see the effect of sample size on power, we can specify a range of sample sizes in the n()
option.

. power oneproportion 0.3 0.5, n(40(1)50)

Estimated power for a one-sample proportion test
Score z test
H0: p = p0 versus Ha: p != p0

alpha power N delta p0 pa

.05 .7684 40 .2 .3 .5

.05 .7778 41 .2 .3 .5

.05 .787 42 .2 .3 .5

.05 .7958 43 .2 .3 .5

.05 .8043 44 .2 .3 .5

.05 .8124 45 .2 .3 .5

.05 .8203 46 .2 .3 .5

.05 .8279 47 .2 .3 .5

.05 .8352 48 .2 .3 .5

.05 .8422 49 .2 .3 .5

.05 .849 50 .2 .3 .5

As expected, power is an increasing function of the sample size.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

Example 6: Sign test

We can use power oneproportion to perform power and sample-size analysis for a nonparametric
sign test comparing the median of a sample with a reference value. The sign test for comparing a
median is simply a test of a binomial proportion with the reference (null) value of 0.5, H0: p = 0.5.

For example, consider a study similar to the one described in example 1. Suppose we want to test
whether the median bone density exceeds a threshold value in a population of females who received
a certain treatment. This is equivalent to testing whether the proportion p of bone-density values
exceeding the threshold is greater than 0.5, that is, H0: p = 0.5 versus Ha: p > 0.5. Suppose that
from previous studies such proportion was estimated to be 0.7. We anticipate to enroll 30 subjects
and would like to compute the corresponding power of an upper one-sided small-sample binomial
test to detect the change in proportion from 0.5 to 0.7.
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. power oneproportion 0.5 0.7, n(30) test(binomial) onesided

Estimated power for a one-sample proportion test
Binomial test
H0: p = p0 versus Ha: p > p0

Study parameters:

alpha = 0.0500
N = 30

delta = 0.2000
p0 = 0.5000
pa = 0.7000

Estimated power and alpha:

power = 0.7304
actual alpha = 0.0494

For a sample size of 30 subjects, we obtain a power of 73% to detect the difference of 0.2 between
the alternative and null values. In addition to power, power oneproportion also displays the actual
(observed) significance level, which is 0.0494 in our example and is very close to the specified
significance level of 0.05.

When the sampling distribution of the test statistic is discrete such as for the binomial test, the
specified nominal significance level may not be possible to precisely achieve, because the space
of the observed significance levels is discrete. As such, power oneproportion also displays the
observed significance level given the specified sample size, power, and other study parameters. Also
see example 7.

Example 7: Saw-toothed power function

In example 6, we briefly described one issue arising with power and sample-size analysis for the
binomial test. The observed significance levels are discrete because the binomial sampling distribution
of the test statistic is discrete. Another related issue arising because of the discrete nature of the
sampling distribution is the nonmonotonic relationship between power and sample size—as the sample
size increases, the corresponding power may not necessarily increase. The power function may have
a so-called saw-toothed shape (Chernick and Liu 2002), where it increases initially, then drops, then
increases again, and so on. See figure 1 below for an example.

To demonstrate the issue, we return to example 5 and plot powers for a range of sample size
values between 45 and 60. We specify the graph() option to produce a graph and the table()
option to produce a table; see [PSS-2] power, graph and [PSS-2] power, table for more details about
the graphical and tabular outputs from power. Within graph(), we request that the reference line be
plotted on the y axis at a power of 0.8 and that the data points bee labeled with the corresponding
sample sizes. Within table(), we specify the formats() suboption to display only three digits after
the decimal point for the power and alpha a columns. We also specify the critvalues option to
display columns containing critical values in the table.
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. power oneprop 0.3 0.5, n(45(1)60) test(binomial) critvalues
> table(, formats(alpha_a "%7.3f" power "%7.3f"))
> graph(yline(0.8) plotopts(mlabel(N)))

Estimated power for a one-sample proportion test
Binomial test
H0: p = p0 versus Ha: p != p0

alpha alpha_a power N delta p0 pa C_l C_u

.05 0.034 0.724 45 .2 .3 .5 7 21

.05 0.035 0.769 46 .2 .3 .5 7 21

.05 0.037 0.809 47 .2 .3 .5 7 21

.05 0.026 0.765 48 .2 .3 .5 7 22

.05 0.042 0.804 49 .2 .3 .5 8 22

.05 0.031 0.760 50 .2 .3 .5 8 23

.05 0.031 0.799 51 .2 .3 .5 8 23

.05 0.033 0.834 52 .2 .3 .5 8 23

.05 0.037 0.795 53 .2 .3 .5 9 24

.05 0.037 0.830 54 .2 .3 .5 9 24

.05 0.038 0.860 55 .2 .3 .5 9 24

.05 0.028 0.825 56 .2 .3 .5 9 25

.05 0.043 0.855 57 .2 .3 .5 10 25

.05 0.044 0.881 58 .2 .3 .5 10 25

.05 0.032 0.851 59 .2 .3 .5 10 26

.05 0.033 0.877 60 .2 .3 .5 10 26

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

.7

.75

.8

.85

.9

P
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 (
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β)

45 50 55 60
Sample size (N)

Parameters: α = .05, δ = .2, p0 = .3, pa = .5

Binomial test
H0: p = p0  versus  Ha: p ≠ p0

Estimated power for a one-sample proportion test

Figure 1. Saw-toothed power function

The power is not a monotonic function of the sample size. Also from the table, we can see that all
the observed significance levels are smaller than the specified level of 0.05.

To better understand what is going on, we will walk through the steps of power determination.
First, the critical values are determined as the minimum value Cl and the maximum value Cu between
0 and n that satisfy the following inequalities,

Pr(X ≤ Cl|p = p0) ≤ α/2 and Pr(X ≥ Cu|p = p0) ≤ α/2
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where the number of successes X has a binomial distribution with the total number of trials n and a
probability of a success in a single trial p, X ∼ Bin(n, p). The power is then computed as the sum
of the above two probabilities with p = pa.

For example, let’s compute the power for the first row of the table. The sample size is 45, the lower
critical value is 7, and the upper critical value is 21. We use the probability functions binomial()
and binomialtail() to compute the respective lower- and upper-tailed probabilities of the binomial
distribution.

. di "Lower tail: " binomial(45,7,0.3)
Lower tail: .0208653

. di "Upper tail: " binomialtail(45,21,0.3)
Upper tail: .01352273

. di "Obs. level: " binomial(45,7,0.3) + binomialtail(45,21,0.3)
Obs. level: .03438804

. di "Power: " binomial(45,7,0.5) + binomialtail(45,21,0.5)
Power: .7242594

Each of the tails is less than 0.025 (α/2 = 0.05/2 = 0.025). The observed significance level and
power match the results from the first row of the table.

Now let’s increase the lower critical value by one, Cl = 8, and decrease the upper critical value
by one, Cu = 20:

. di "Lower tail: " binomial(45,8,0.3)
Lower tail: .04711667

. di "Upper tail: " binomialtail(45,20,0.3)
Upper tail: .02834511

Each of the tail probabilities now exceeds 0.025. If we could use values between 7 and 8 and between
20 and 21, we could match the tails exactly to 0.025, and then the monotonicity of the power function
would be preserved. This is impossible for the binomial distribution (or any discrete distribution)
because the number of successes must be integers.

Because of the saw-toothed nature of the power curve, obtaining an optimal sample size becomes
tricky. If we wish to have power of 80%, then from the above table and graph, we see that potential
sample sizes are 47, 49, 52, 54, and so on. One may be tempted to choose the smallest sample
size for which the power is at least 80%. This, however, would not guarantee that the power is at
least 80% for any larger sample size. Instead, Chernick and Liu (2002) suggest selecting the smallest
sample size after which the troughs of the power curve do not go below the desired power. Following
this recommendation in our example, we would pick a sample size of 54, which corresponds to the
observed significance level of 0.037 and power of 0.83.

In the above, we showed the power curve for the sample sizes between 45 and 60. It may be a
good idea to also look at the power plot for larger sample sizes to verify that the power continues to
increase and does not drop below the desired power level.

Computing effect size and target proportion

In an analysis of a one-sample proportion, the effect size δ is often defined as the difference
between the alternative proportion and the null proportion, δ = pa − p0.

Sometimes, we may be interested in determining the smallest effect and the corresponding alternative
or target proportion that yield a statistically significant result for prespecified sample size and power.
In this case, power, sample size, and null proportion must be specified. In addition, you must also
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decide on the direction of the effect: upper, meaning pa > p0, or lower, meaning pa < p0. The
direction may be specified in the direction() option; direction(upper) is the default.

Example 8: Minimum detectable value of the proportion

Continuing with example 4, we may also be interested to find the minimum value of the proportion
that can be detected with a power of 80% given a sample of 30 subjects. To compute this, after the
command name, we specify the null proportion of 0.3, sample size n(30), and power power(0.8):

. power oneproportion 0.3, n(30) power(0.8)

Performing iteration ...

Estimated target proportion for a one-sample proportion test
Score z test
H0: p = p0 versus Ha: p != p0; pa > p0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 30
p0 = 0.3000

Estimated effect size and target proportion:

delta = 0.2406
pa = 0.5406

The smallest detectable value of the proportion is 0.54.

In the above, we assumed the effect to be in the upper direction, pa > p0. We can obtain the
results in the lower direction by specifying the direction(lower) option.

Performing hypothesis tests on proportion

In this section, we briefly demonstrate how you can test hypotheses about proportions; see [R] prtest
and [R] bitest for details. Suppose we wish to test the hypothesis that the proportion is different from
a reference value on the collected data. We can use the prtest command or the bitest command
to do this.

Example 9: Testing for proportion

We use lbw.dta, which contains data on birthweights of infants from a sample of 189 females.
One of the variables in the dataset is variable ui, which records the presence or absence of uterine
irritability. Although the real objective of this study is different, suppose we wish to test the null
hypothesis that the proportion of women in a sample who experience uterine irritability is equal to
0.20. We can use the prtest command to perform a large-sample test of a single proportion.
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. use https://www.stata-press.com/data/r18/lbw
(Hosmer & Lemeshow data)

. prtest ui==0.2

One-sample test of proportion Number of obs = 189

Variable Mean Std. err. [95% conf. interval]

ui .1481481 .0258404 .0975019 .1987944

p = proportion(ui) z = -1.7821
H0: p = 0.2

Ha: p < 0.2 Ha: p != 0.2 Ha: p > 0.2
Pr(Z < z) = 0.0374 Pr(|Z| > |z|) = 0.0747 Pr(Z > z) = 0.9626

We do not have statistical evidence to reject the null hypothesis of H0: p = 0.2 versus a two-sided
alternative Ha: p 6= 0.2 at least at the 5% significance level; the p-value = 0.0747 > 0.05.

If our true objective were to study uterine irritability in the population of females, we would have
performed the corresponding power and sample-size analysis before collecting the data. For example,
using the estimates of lbw.dta, we can use power oneproportion to compute the required sample
size for a 5%-level two-sided large-sample z test to detect the change in proportion from the reference
value of 0.2 to approximately 0.148 with a power of, say, 80%:

. power oneproportion 0.2 0.148

Performing iteration ...

Estimated sample size for a one-sample proportion test
Score z test
H0: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.0520

p0 = 0.2000
pa = 0.1480

Estimated sample size:

N = 434

We find that we need 434 subjects, many more than the current sample of 189, to detect the specified
change in proportions.

Video examples

Sample-size calculation for comparing a sample proportion to a reference value

Power calculation for comparing a sample proportion to a reference value

Minimum detectable effect size for comparing a sample proportion to a reference value using Stata

https://www.youtube.com/watch?v=SMl0BTSpC3Q&list=UUVk4G4nEtBS4tLOyHqustDA
https://www.youtube.com/watch?v=178LFlzwJlI&list=UUVk4G4nEtBS4tLOyHqustDA
https://www.youtube.com/watch?v=i2r-OgXP4gY&list=UUVk4G4nEtBS4tLOyHqustDA
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Stored results
power oneproportion stores the following in r():
Scalars

r(alpha) significance level
r(alpha a) actual significance level of the binomial method
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) sample size
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(p0) proportion under the null hypothesis
r(pa) proportion under the alternative hypothesis
r(diff) difference between the alternative and null proportions
r(C l) lower critical value of the binomial distribution
r(C u) upper critical value of the binomial distribution
r(continuity) 1 if continuity correction is used, 0 otherwise
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample size or proportion
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) oneproportion
r(test) score, wald, or binomial
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
Let x1, . . . , xn be a sequence of n independent and identically distributed Bernoulli random

variates. Let xi = 1 denote a success and xi = 0 denote a failure. Let P (xi = 1) = p denote the
probability of a success in the population. Each individual observation is a Bernoulli trial with a
success probability p, which implies that the sum X =

∑n
i=1 xi has a binomial distribution with

mean np and standard deviation
√
np(1− p). Let

p̂ =
1

n

n∑
i=1

xi and se(p̂) =

√
p̂(1− p̂)

n

denote the sample proportion and its standard error, respectively. Let p0 and pa denote the null and
alternative values of the proportion parameter, respectively.

A one-sample proportion test involves testing the null hypothesis H0: p = p0 versus the two-sided
alternative hypothesis Ha: p 6= p0, the upper one-sided alternative Ha: p > p0, or the lower one-sided
alternative Ha: p < p0.
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If the nfractional option is not specified, the computed sample size is rounded up.

The following formulas are based on Chow et al. (2018).

Methods and formulas are presented under the following headings:

Large-sample normal approximation
Binomial test

Large-sample normal approximation

For a large sample, the distribution of the sample proportion p̂ may be approximated by the normal
distribution with mean p and variance p(1− p)/n. Two test statistics are considered: the score test
statistic z = (p̂− p0)/

√
p0(1− p0)/n and the Wald test statistic z = (p̂− p0)/

√
p̂(1− p̂)/n. The

score test statistic uses the null value of the proportion to construct the standard error, which leads
to its sampling distribution being closer to the standard normal distribution than if the Wald statistic
were used (Agresti [2013, 13]).

Letα be the significance level, β be the probability of a type II error, and z1−α and zβ be the (1−α)th
and the βth quantiles of the standard normal distribution. Also let η =

√
{p0(1− p0)}/{pa(1− pa)}.

The power π = 1− β of the score z test is computed using

π =



Φ

(√
n(pa−p0)−c√
pa(1−pa)

− z1−αη

)
upper one sided

Φ

(
−
√
n(pa−p0)−c√
pa(1−pa)

− z1−αη

)
lower one sided

Φ

(√
n(pa−p0)−c√
pa(1−pa)

− z1−α/2η

)
+ Φ

(
−
√
n(pa−p0)−c√
pa(1−pa)

− z1−α/2η

)
two sided

(1)

where Φ(·) is the cdf of the standard normal distribution, and c is the normal-approximation continuity
correction: c = 1/(2

√
n) if the continuity option is specified, and c = 0 otherwise.

The power of the Wald z test can be obtained from (1) by replacing the term p0(1 − p0) in η
with pa(1− pa) so that η = 1.

The sample size n for a one-sided test is computed using

n =

{
z1−α

√
p0(1− p0) + z1−β

√
pa(1− pa)

δ

}2

If the continuity option is specified, the sample size nc for a one-sided test is computed as

nc =
n

4

(
1 +

√
1 +

2

n|pa − p0|

)2

where n is the sample size computed without the correction (Fleiss, Levin, and Paik 2003; Levin and
Chen 1999).

The sample size for a two-sided test and minimum detectable value of the proportion are computed
iteratively using the corresponding power equation from (1).
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Binomial test
Power of the binomial test is computed using the binomial (exact) sampling distribution of the

test statistic. Consider a one-sided test given by

H0: p = p0 versus Ha: p > p0

Let X denote the number of successes in the sample. The null hypothesis is rejected if X is
greater than a critical value k such that the resulting p-value is less than or equal to the significance
level α.

The p-value for testing the above one-sided hypothesis can be obtained from the following equation:

P (X ≥ k;n, p0) =

n∑
i=k

(
n

i

)
pi0(1− p0)n−i

The p-value for testing the two-sided hypothesis Ha: p 6= p0 is given by

2×min {P (X ≥ k;n, p0), P (X ≤ k;n, p0)}

For a one-sided test, the power of the test is computed from the following nonlinear equation:

π = 1− β =

n∑
k=0

(
n

k

)
pka(1− pa)n−kI {P (X ≥ k;n, p0) ≤ α}

Power for a two-sided test can be obtained by replacing the indicator function above with
I [2×min {P (X ≥ k;n, p0), P (X ≤ k;n, p0)} ≤ α].

The computational details may be found in Krishnamoorthy and Peng (2007).
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Also see
[PSS-2] power oneproportion, cluster — Power analysis for a one-sample proportion test, CRD

[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] power, graph — Graph results from the power command

[PSS-2] power, table — Produce table of results from the power command

[PSS-5] Glossary
[ADAPT] gsdesign oneproportion — Group sequential design for a one-sample proportion test

[R] bitest — Binomial probability test

[R] prtest — Tests of proportions
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power oneproportion, cluster — Power analysis for a one-sample proportion test, CRD

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power oneproportion, cluster computes the number of clusters, cluster size, power, or target
proportion for a one-sample proportion test in a cluster randomized design (CRD). It computes the
number of clusters given cluster size, power, and the values of the null and alternative proportions.
It also computes cluster size given the number of clusters, power, and the values of the null and
alternative proportions. Alternatively, it computes power given the number of clusters, cluster size,
and the values of the null and alternative proportions, or it computes the target proportion given the
number of clusters, cluster size, power, and the null proportion. See [PSS-2] power oneproportion
for a general discussion of power and sample-size analysis for a one-sample proportion test. Also see
[PSS-2] power for a general introduction to the power command using hypothesis tests.

Quick start
Compute number of clusters for two-sided test of H0 : π = 0.2 versus Ha : π 6= 0.2 with null

proportion p0 = 0.2, alternative proportion pa = 0.1, and cluster size of 5, using default intraclass
correlation of 0.5, power of 0.8, and significance level α = 0.05

power oneproportion 0.2 0.1, m(5)

Same as above, but with an intraclass correlation of 0.7
power oneproportion 0.2 0.1, m(5) rho(0.7)

Same as above, but the cluster size varies with a coefficient of variation of 0.6
power oneproportion 0.2 0.1, m(5) rho(0.7) cvcluster(0.6)

Compute cluster size when 52 clusters are sampled:
power oneproportion 0.2 0.1, k(52)

Power for 52 clusters with cluster size of 5
power oneproportion 0.2 0.1, k(52) m(5)

Power for 20, 30, 40, and 50 clusters
power oneproportion 0.2 0.1, k(20(10)50) m(5)

Same as above, but display results in a graph of power versus number of clusters
power oneproportion 0.2 0.1, k(20(10)50) m(5) graph

Effect size and target proportion for p0 = 0.2 with 40 clusters of size 5, power of 0.9, and α = 0.01,
and default direction upper

power oneproportion 0.2, k(40) m(5) power(0.9) alpha(0.01)

217



218 power oneproportion, cluster — Power analysis for a one-sample proportion test, CRD

Menu
Statistics > Power, precision, and sample size

Syntax

Compute number of clusters

power oneproportion p0 pa , { m(numlist) | n(numlist) cluster }
[

options
]

Compute cluster size

power oneproportion p0 pa , k(numlist)
[

options
]

Compute power

power oneproportion p0 pa , k(numlist) { m(numlist) | n(numlist) }
[

options
]

Compute effect size and target proportion

power oneproportion p0 , k(numlist) { m(numlist) | n(numlist) } power(numlist)[
options

]

where p0 is the null (hypothesized) proportion or the value of the proportion under the null hypothesis
and pa is the alternative (target) proportion or the value of the proportion under the alternative
hypothesis. p0 and pa may each be specified either as one number or as a list of values in
parentheses (see [U] 11.1.8 numlist).
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options Description

Main

cluster perform computations for a CRD; implied by k() or m()
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗k(numlist) number of clusters
∗m(numlist) cluster size
∗n(numlist) number of observations
nfractional allow fractional number of clusters, cluster size, and sample size
∗diff(numlist) difference between the alternative proportion and the null

proportion, pa − p0; specify instead of the
alternative proportion pa

∗rho(numlist) intraclass correlation; default is rho(0.5)
∗cvcluster(numlist) coefficient of variation for cluster sizes
direction(upper|lower) direction of the effect for effect-size determination; default is

direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value for number of clusters, cluster size, or proportion
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.
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where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
K number of clusters K
M cluster size M
N number of observations N
delta effect size δ
p0 null proportion p0

pa alternative proportion pa
diff difference between the alternative and null pa − p0

proportions
rho intraclass correlation ρ
CV cluster coefficient of variation for cluster sizes CVcl

target target parameter; synonym for pa
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Columns diff and CV cluster are shown in the default table if specified.

Options

� � �
Main �

cluster specifies that computations should be performed for a CRD. This option is implied when
either the k() or m() option is specified. It is required if the n() option is used to compute the
number of clusters.

alpha(), power(), beta(); see [PSS-2] power.

k(numlist) specifies the number of clusters. This option is required to compute the cluster size,
power, or effect size.

m(numlist) specifies the cluster size. This option or the n() option is required to compute the
number of clusters, power, or effect size. m() may contain noninteger values. In this case or if
the cvcluster() option is specified, m() represents the average cluster size.

n(numlist) specifies the number of observations. This option or the m() option is required to compute
the number of clusters, power, or effect size.

nfractional; see [PSS-2] power. The nfractional option is allowed when computing the number
of clusters and cluster size to display fractional (without rounding) values of the number of clusters,
cluster size, and sample size.
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diff(numlist) specifies the difference between the alternative proportion and the null proportion,
pa−p0. You can specify either the alternative proportion pa as a command argument or the difference
between the two proportions in diff(). If you specify diff(#), the alternative proportion is
computed as pa = p0 + #. This option is not allowed with the effect-size determination.

rho(numlist) specifies the intraclass correlation. The default is rho(0.5).

cvcluster(numlist) specifies the coefficient of variation for cluster sizes. This option is used with
varying cluster sizes.

direction(), onesided, parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value for the number of clusters or cluster size for sample-size deter-
mination or the initial value for the proportion for the effect-size determination. The default is to
use a closed-form normal approximation to compute an initial value for the estimated parameter.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power oneproportion, cluster but is not shown in the
dialog box:

notitle; see [PSS-2] power.

Remarks and examples
Remarks are presented under the following headings:

Using power oneproportion, cluster
Computing number of clusters
Computing cluster size
Computing power
Computing effect size and target proportion
Performing hypothesis tests on proportion in a CRD

power oneproportion, cluster requests that computations for the power oneproportion
command be done for a CRD. In a CRD, groups of subjects or clusters are randomized instead of
individual subjects, so the sample size is determined by the number of clusters and the cluster size.
The sample-size determination thus consists of the determination of the number of clusters given
cluster size or the determination of cluster size given the number of clusters. For a general discussion
of using power oneproportion, see [PSS-2] power oneproportion. The discussion below is specific
to the CRD.
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Using power oneproportion, cluster

If you specify the cluster option, include k() to specify the number of clusters or include m()
to specify the cluster size, the power oneproportion command will perform computations for a
one-sample proportion test in a CRD. The computations for a CRD are based on the large-sample Wald
z test.

All computations are performed for a two-sided hypothesis test where, by default, the significance
level is set to 0.05. You may change the significance level by specifying the alpha() option. You
can specify the onesided option to request a one-sided test.

To compute the number of clusters, you must specify the proportions under the null and alternative
hypotheses as command arguments p0 and pa, respectively, and specify the cluster size in the m()
option. Instead of specifying the m() option, you may specify the sample size in the n() option
and specify the cluster option, so that power onemean will perform its computation for a cluster
randomized design instead of the default individual-level design. You may also specify the power of
the test in the power() option.

To compute cluster size, you must specify the null proportion p0, the alternative proportion pa,
and the number of clusters in the k() option. You may also specify the power of the test in the
power() option.

To compute power, you must specify the number of clusters in the k() option, the cluster size
in the m() option or the sample size in the n() option, the null proportion p0, and the alternative
proportion pa.

Instead of the alternative proportion pa, you may specify the difference pa − p0 between the
alternative proportion and the null proportion in the diff() option when computing sample size or
power.

The effect size δ is defined as the difference between the alternative and null proportions. In a
CRD, the effect size δ is also adjusted for the cluster design; see Methods and formulas.

To compute effect size and the corresponding target proportion, you must specify the number of
clusters in the k() option, the cluster size in the m() option or the sample size in the n() option,
the power in the power() option, and the null proportion p0. You may also specify the direction of
the effect in the direction() option. The direction is upper by default, direction(upper); see
Using power oneproportion in [PSS-2] power oneproportion for other details.

All computations assume an intraclass correlation of 0.5. You can change this by specifying the
rho() option. Also, all clusters are assumed to be of the same size unless the coefficient of variation
for cluster sizes is specified in the cvcluster() option.

By default, the computed number of clusters, cluster size, and sample size is rounded up. However,
you can specify the nfractional option to see the corresponding fractional values; see Fractional
sample sizes in [PSS-4] Unbalanced designs for an example. If the cvcluster() option is specified
when computing cluster size, then cluster size represents the average cluster size and is thus not
rounded. When sample size is specified in the n() option, fractional cluster size may be reported to
accommodate the specified number of clusters and sample size.

Some of power oneproportion, cluster’s computations require iteration, such as to compute
the number of clusters for a two-sided test; see Methods and formulas for details and [PSS-2] power
for the descriptions of options that control the iteration procedure.



power oneproportion, cluster — Power analysis for a one-sample proportion test, CRD 223

Computing number of clusters

To compute the number of clusters, you must specify the proportions under the null and alternative
hypotheses as command arguments p0 and pa, respectively, and specify the cluster size in the m()
option. Instead of specifying the m() option, you may specify the sample size in the n() option
and specify the cluster option, so that power onemean will perform its computation for a cluster
randomized design instead of the default individual-level design. You may also specify the power of
the test in the power() option.

Example 1: Number of clusters for a one-sample proportion test in a CRD, specifying
cluster size

Ahn, Heo, and Zhang (2015, 33) demonstrate sample-size computations for a clustered binary
outcome by using the data from Hujoel, Moulton, and Loesche (1990) as pilot data. The data recorded
positive test results from an enzymatic diagnostic test (EDT) of a specific (target) infection. There
were 29 subjects in the study, and each subject had multiple infected sites, as determined by a gold
standard test, which were then retested for the presence of the target infection using the EDT. The
number of infected sites varied among subjects with an average of 4.897 sites, and observations within
a subject were correlated with an intraclass correlation of 0.2. Ahn, Heo, and Zhang (2015) used these
estimates to compute the required number of clusters for a new study to test whether the proportion
of infected sites detected by the EDT is 0.6, H0 : p = 0.6, against the alternative Ha : p = 0.7.
We demonstrate how to use power oneproportion, cluster to compute the required number of
clusters.

For simplicity, we assume a constant cluster size across subjects and use an integer cluster size of
5. To detect a proportion of 0.7 against the reference value of 0.6 with 80% power using a 5%-level
two-sided test, we type

. power oneproportion 0.6 0.7, m(5) rho(0.2)

Performing iteration ...

Estimated number of clusters for a one-sample proportion test
Cluster randomized design, Wald z test
H0: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.1000

p0 = 0.6000
pa = 0.7000

Cluster design:

M = 5
rho = 0.2000

Estimated number of clusters and sample size:

K = 60
N = 300

We find that given 5 sites per subject, 60 subjects and thus a total of 300 infected sites are required
to detect a proportion of 0.7 for the infection of interest against a reference proportion of 0.6 with
80% power using a 5%-level two-sided test. The effect size (delta) is calculated as the difference
between the alternative and null proportions.
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Example 2: Number of clusters for a one-sample proportion test in a CRD, with varying
cluster sizes

Unlike the simplified case in example 1, in a practical study, the number of infected sites per
subject may vary. We use the average number of infected sites of 4.897 and a coefficient of variation
of 0.25. To account for varying cluster sizes, we specify m(4.897) and cvcluster(0.25).

. power oneproportion 0.6 0.7, m(4.897) rho(0.2) cvcluster(0.25)

Performing iteration ...

Estimated number of clusters for a one-sample proportion test
Cluster randomized design, Wald z test
H0: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.1000

p0 = 0.6000
pa = 0.7000

Cluster design:

Average M = 4.8970
rho = 0.2000

CV_cl = 0.2500

Estimated number of clusters and sample size:

K = 61
N = 299

We now need 61 subjects for a total of 299 sites to achieve the same power.

Computing cluster size

To compute cluster size, you must specify the null proportion p0, the alternative proportion pa,
and the number of clusters in the k() option. You may also specify the power of the test in the
power() option.

Example 3: Cluster size for a one-sample proportion test in a CRD

Continuing with example 1, suppose that we are designing a new study and would like to recruit
80 subjects in the study. We would like to get an idea of how many infected sites we need to achieve
80% power. Given the study parameters from example 1, we compute the number of infected sites
by specifying 80 clusters in the k() option.
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. power oneproportion 0.6 0.7, k(80) rho(0.2)

Performing iteration ...

Estimated cluster size for a one-sample proportion test
Cluster randomized design, Wald z test
H0: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.1000

p0 = 0.6000
pa = 0.7000

Cluster design:

K = 80
rho = 0.2000

Estimated cluster size and sample size:

M = 3
N = 240

To achieve the desired power with 80 subjects, we will need to observe 3 sites per subject.

Computing power

To compute power, you must specify the number of clusters in the k() option, the cluster size
in the m() option or the sample size in the n() option, the null proportion p0, and the alternative
proportion pa.

Example 4: Power for a one-sample proportion test in a CRD

Continuing with example 1, suppose that we have 80 subjects and each subject has 5 infected
sites. Given the study parameters from example 1, we compute the power by specifying 80 clusters
in the k() option and cluster size of 5 in the m() option:

. power oneproportion 0.6 0.7, k(80) m(5) rho(0.2)

Estimated power for a one-sample proportion test
Cluster randomized design, Wald z test
H0: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500
delta = 0.1000

p0 = 0.6000
pa = 0.7000

Cluster design:

K = 80
M = 5
N = 400

rho = 0.2000

Estimated power:

power = 0.9020

The computed power is about 90%.
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Example 5: Multiple values of study parameters

To investigate the effect of the number of clusters on power, we can specify a list of numbers in
the k() option:

. power oneproportion 0.6 0.7, k(20(20)100) m(5) rho(0.2)

Estimated power for a one-sample proportion test
Cluster randomized design, Wald z test
H0: p = p0 versus Ha: p != p0

alpha power K M N delta p0 pa rho

.05 .3696 20 5 100 .1 .6 .7 .2

.05 .6332 40 5 200 .1 .6 .7 .2

.05 .8043 60 5 300 .1 .6 .7 .2

.05 .902 80 5 400 .1 .6 .7 .2

.05 .9532 100 5 500 .1 .6 .7 .2

As expected, as the number of clusters increases, the power tends to get closer to 1.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

Computing effect size and target proportion

The effect size δ is defined as the difference between the alternative and null proportions. In a
CRD, the effect size δ is also adjusted for the cluster design; see Methods and formulas.

To compute effect size and the corresponding target proportion, you must specify the number of
clusters in the k() option, the cluster size in the m() option or the sample size in the n() option,
the power in the power() option, and the null proportion p0. You may also specify the direction of
the effect in the direction() option. The direction is upper by default, direction(upper); see
Using power oneproportion in [PSS-2] power oneproportion for other details.

Example 6: Effect size for a one-sample proportion test in a CRD

Continuing with example 4, we may also be interested in finding the minimum value of the
proportion that can be detected with a sample of 80 subjects, 5 infected sites per subject, and 80%
power. To compute this, we specify the null value of 0.6 as the command argument and the required
options k(80), m(5), and power(0.8) and continue to use rho(0.2).
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. power oneproportion 0.6, k(80) m(5) power(0.8) rho(0.2)

Performing iteration ...

Estimated target proportion for a one-sample proportion test
Cluster randomized design, Wald z test
H0: p = p0 versus Ha: p != p0; pa > p0

Study parameters:

alpha = 0.0500
power = 0.8000

p0 = 0.6000

Cluster design:

K = 80
M = 5
N = 400

rho = 0.2000

Estimated effect size and target proportion:

delta = 0.0871
pa = 0.6871

Given the null value of 0.6, the minimum detectable value of the proportion is about 0.69, which is
slightly smaller than the alternative proportion of 0.7 used in previous examples, because here we use
more subjects than, for instance, in example 1, more sites per subject than in example 3, and lower
power than in example 4.

Performing hypothesis tests on proportion in a CRD

power oneproportion, cluster performs PSS computations based on a large-sample test of
proportion that accounts for a CRD or for clustered data. We can perform this test by using prtest,
cluster(); see [R] prtest. In this section, we briefly demonstrate how to test the hypothesis that
the proportion is different from a reference value on the collected clustered data by using prtest.

Example 7: Testing for proportion with clustered data

Ahn, Heo, and Zhang (2015, 33) report the data from Hujoel, Moulton, and Loesche (1990) on
positive test results from the EDT; see example 1 for details about the study. Let’s use prtest to test
the null hypothesis H0: p = 0.6.

For clustered data, prtest requires that we specify the cluster identifier in the cluster() option
and population intraclass correlation in the rho() option. We use the intraclass correlation of 0.2 as
in Ahn, Heo, and Zhang (2015, 33).
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. use https://www.stata-press.com/data/r18/infection
(Target infections detected by EDT (Hujoel, Moulton, and Loesche 1990))

. prtest infection == 0.6, cluster(subject) rho(0.2)

One-sample test of proportion Number of obs = 142
Cluster variable: subject Number of clusters = 29

Avg. cluster size = 4.90
CV cluster size = 0.2419
Intraclass corr. = 0.2000

Variable Mean Std. err. [95% conf. interval]

infection .6619718 .0537974 .5565308 .7674129

p = proportion(infection) z = 1.1123
H0: p = 0.6

Ha: p < 0.6 Ha: p != 0.6 Ha: p > 0.6
Pr(Z < z) = 0.8670 Pr(|Z| > |z|) = 0.2660 Pr(Z > z) = 0.1330

We do not find any statistical evidence to reject the null hypothesis of H0: p = 0.6.

Suppose that we want to design a new similar study and use the estimates from this study to
compute the required number of clusters. We are interested in detecting the alternative value of, say,
0.66 with 80% power for a 5%-level two-sided test. To compute the required number of clusters, we
use the average cluster size of 4.9 as observed in this study.

. power oneproportion 0.6 0.66, m(4.9) rho(0.2)

Performing iteration ...

Estimated number of clusters for a one-sample proportion test
Cluster randomized design, Wald z test
H0: p = p0 versus Ha: p != p0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.0600

p0 = 0.6000
pa = 0.6600

Cluster design:

Average M = 4.9000
rho = 0.2000

Estimated number of clusters and sample size:

K = 178
N = 873

We need 178 subjects to detect the 0.06 difference between the alternative and null proportions, given
the null proportion of 0.6, with 80% power using a 5%-level two-sided test.
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Stored results
power oneproportion, cluster stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(K) number of clusters
r(M) cluster size
r(N) number of subjects
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(p0) proportion under the null hypothesis
r(pa) proportion under the alternative hypothesis
r(diff) difference between the alternative and null proportions
r(rho) intraclass correlation
r(CV cluster) coefficient of variation for cluster sizes
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for estimated parameter
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) oneproportion
r(design) CRD
r(test) wald
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
The computation for a CRD is based on the Wald test under the large-sample normal approximation,

adjusted for the cluster design; see Large-sample normal approximation under Methods and formulas
in [PSS-2] power oneproportion for the common notation for a one-sample proportion test.

Methods and formulas are presented under the following headings:

Equal cluster sizes
Unequal cluster sizes
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Equal cluster sizes

In a CRD, let K be the number of clusters, M be the number of observations in each cluster, and
n be the total number of subjects, where n = MK. Let xij be the outcome of a Bernoulli trial of
the jth (j = 1, 2, . . . ,M ) observation from the ith cluster (i = 1, 2, . . . ,K). Let ρ be the intraclass
correlation and DE be the design effect defined as

DE = 1 + ρ(M − 1)

Let P (xij = 1) = p denote the probability of a success in the population. Each individual
observation is a Bernoulli trial with a success probability p. Let

p̂ =
1

n

K∑
i=1

M∑
j=1

xij and se(p̂) =

√
p̂(1− p̂)DE

n

denote the sample proportion and its standard error, respectively. Let p0 and pa denote the respective
null and alternative values of the proportion parameters.

For a large sample, the distribution of the sample proportion p̂ may be approximated by the
normal distribution with proportion p and variance p(1 − p)DE/n. The Wald test statistic z =

(p̂− p0)/
√
p̂(1− p̂)DE/n under the null hypothesis follows a standard normal distribution; see, for

example, Ahn, Heo, and Zhang (2015).

Let α be the significance level, β be the probability of a type II error, and z1−α and zβ be the
(1− α)th and the βth quantiles of the standard normal distribution. Let

pstd =
(pa − p0)√
pa(1− pa)DE

(1)

The power π = 1− β is computed using

π =


Φ (
√
npstd − z1−α) for an upper one-sided test

Φ (−
√
npstd − z1−α) for a lower one-sided test

Φ
(√
npstd − z1−α/2

)
+ Φ

(
−
√
npstd − z1−α/2

)
for a two-sided test

(2)

where Φ(·) is the c.d.f. of the standard normal distribution.

Given the cluster size M , the number of clusters K for a one-sided test is computed by inverting
a one-sided power equation from (2),

K =

(
z1−α − zβ
pstd

√
M

)2

(3)

Given the sample size n, the number of clusters K for a one-sided test is computed as

K =
n (pa − p0)

2

ρpa(1− pa) (z1−α − zβ)
2 −

1

ρ
+ 1 (4)

Given the number of clusters K, the cluster size M for a one-sided test is computed by solving
(2), after substituting pstd from (1),
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M =
1− ρ

K(pa−p0)2

pa(1−pa)(z1−α−zβ)2
− ρ

(5)

The number of clusters and cluster size for a two-sided test are computed iteratively using the
two-sided power equation from (2). The initial values are obtained from (3), (4), and (5), with α/2.

The minimum detectable value of the proportion is computed iteratively using the corresponding
power equation from (2).

Unequal cluster sizes

For unequal cluster sizes, we assume that the cluster sizes are independent and identically distributed
and are small relative to the number of clusters; see Ahn, Heo, and Zhang (2015) for details. Let
the coefficient of variation of the cluster sizes be CVcl. According to van Breukelen, Candel, and
Berger (2007) and Campbell and Walters (2014), to adjust for varying cluster sizes, define the relative
efficiency (RE) of unequal versus equal cluster sizes as

RE = 1− λ(1− λ)CV2
cl

where λ = ρM/(ρM + 1− ρ). With unequal cluster sizes, pstd becomes

pstd =
(pa − p0)√

pa(1− pa)DE/RE
(6)

With pstd as defined in (6), we can obtain the formula for computing the number of clusters given
cluster size for a one-sided test using (3). In all other cases, parameters are computed iteratively using
the power equations in (2) with pstd from (6).
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Description

power twoproportions computes sample size, power, or the experimental-group proportion for
a two-sample proportions test. By default, it computes sample size for given power and the values of
the control-group and experimental-group proportions. Alternatively, it can compute power for given
sample size and values of the control-group and experimental-group proportions or the experimental-
group proportion for given sample size, power, and the control-group proportion. For power and
sample-size analysis in a cluster randomized design, see [PSS-2] power twoproportions, cluster. Also
see [PSS-2] power for a general introduction to the power command using hypothesis tests.

Quick start
Sample size for a test of H0: π1 = π2 versus Ha: π1 6= π2 given alternative control-group proportion
p1 = 0.8, alternative experimental-group proportion p2 = 0.65 with default power of 0.8 and
significance level α = 0.05

power twoproportions .8 .65

Same as above, but specified as p1 and difference between proportions p2 − p1 = −0.15
power twoproportions .8, diff(-.15)

Same as above, but specified as p1 = 0.8 and ratio p2/p1 = 0.8125
power twoproportions .8, ratio(.8125)

Same as above, but specified as p1 = 0.8 and odds ratio {p2/(1− p2)}/{p1/(1− p1)} = 0.464
power twoproportions .8, oratio(.464)

Power for sample sizes of 50 and 80 in groups 1 and 2, respectively
power twoproportions 0.8 0.65, n1(50) n2(80)

Power for total sample sizes of 150, 170, 190, 210, and 230
power twoproportions .8 .65, n(150(20)230)

Same as above, but display results in a graph of power versus sample size
power twoproportions .8 .65, n(150(20)230) graph

Same as above, but with difference equal to 0.1, 0.15, and 0.2
power twoproportions .65, n(150(20)200) graph diff(.1(.05).2)

Display results in a table showing total sample size, difference, and power
power twoproportions .65, n(150(20)200) table(N diff power) ///

diff(.1(.05).2)

Effect size and target p2 for p1 = 0.6 with sample size of 200, power of 0.8, and α = 0.01
power twoproportions .6, n(200) power(.8) alpha(.01)

232
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Menu
Statistics > Power, precision, and sample size

Syntax

Compute sample size

power twoproportions p1 p2

[
, power(numlist) options

]

Compute power

power twoproportions p1 p2 , n(numlist)
[

options
]

Compute effect size and experimental-group proportion

power twoproportions p1 , n(numlist) power(numlist)
[

options
]

where p1 is the proportion in the control (reference) group and p2 is the proportion in the experimental
(comparison) group. p1 and p2 may each be specified either as one number or as a list of values
in parentheses (see [U] 11.1.8 numlist).
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options Description

test(test) specify the type of test; default is test(chi2)

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1), meaning

equal group sizes
compute(N1 | N2) solve for N1 given N2 or for N2 given N1

nfractional allow fractional sample sizes
∗diff(numlist) difference between the experimental-group and

control-group proportions, p2 − p1; specify instead of the
experimental-group proportion p2

∗ratio(numlist) ratio of the experimental-group proportion to the
control-group proportion, p2/p1; specify instead of the
experimental-group proportion p2

∗rdiff(numlist) risk difference, p2 − p1; synonym for diff()
∗rrisk(numlist) relative risk, p2/p1; synonym for ratio()
∗oratio(numlist) odds ratio, {p2(1− p1)}/{p1(1− p2)}
effect(effect) specify the type of effect to display; default is

effect(diff)

continuity apply continuity correction to the normal approximation
of the discrete distribution

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph
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Iteration

init(#) initial value for sample sizes or experimental-group proportion
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

cluster perform computations for a CRD;
see [PSS-2] power twoproportions, cluster

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
cluster and notitle do not appear in the dialog box.

test Description

chi2 Pearson’s χ2 test; the default
lrchi2 likelihood-ratio test
fisher Fisher–Irwin’s exact conditional test

test() does not appear in the dialog box. The dialog box selected is determined by the test() specification.

effect Description

diff difference between proportions, p2 − p1; the default
ratio ratio of proportions, p2/p1

rdiff risk difference, p2 − p1

rrisk relative risk, p2/p1

oratio odds ratio, {p2(1− p1)}/{p1(1− p2)}

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).
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column Description Symbol

alpha significance level α
alpha a observed significance level αa
power power 1− β
beta type II error probability β
N total number of subjects N
N1 number of subjects in the control group N1

N2 number of subjects in the experimental group N2

nratio ratio of sample sizes, experimental to control N2/N1

delta effect size δ
p1 control-group proportion p1

p2 experimental-group proportion p2

diff difference between the experimental-group proportion p2 − p1

and the control-group proportion
ratio ratio of the experimental-group proportion to p2/p1

the control-group proportion
rdiff risk difference p2 − p1

rrisk relative risk p2/p1

oratio odds ratio θ
target target parameter; synonym for p2
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Column alpha a is available when the test(fisher) option is specified.
Columns nratio, diff, ratio, rdiff, rrisk, and oratio are shown in the default table if specified.

Options

test(test) specifies the type of the test for power and sample-size computations. test is one of chi2,
lrchi2, or fisher.

chi2 requests computations for the Pearson’s χ2 test. This is the default test.

lrchi2 requests computations for the likelihood-ratio test.

fisher requests computations for Fisher–Irwin’s exact conditional test. Iteration options are not
allowed with this test.

� � �
Main �

alpha(), power(), beta(), n(), n1(), n2(), nratio(), compute(), nfractional; see
[PSS-2] power.

diff(numlist) specifies the difference between the experimental-group proportion and the control-
group proportion, p2 − p1. You can specify either the experimental-group proportion p2 as a
command argument or the difference between the two proportions in diff(). If you specify
diff(#), the experimental-group proportion is computed as p2 = p1 + #. This option is not
allowed with the effect-size determination and may not be combined with ratio(), rdiff(),
rrisk(), or oratio().

ratio(numlist) specifies the ratio of the experimental-group proportion to the control-group proportion,
p2/p1. You can specify either the experimental-group proportion p2 as a command argument or
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the ratio of the two proportions in ratio(). If you specify ratio(#), the experimental-group
proportion is computed as p2 = p1×#. This option is not allowed with the effect-size determination
and may not be combined with diff(), rdiff(), rrisk(), or oratio().

rdiff(numlist) specifies the risk difference p2 − p1. This is a synonym for the diff() option,
except the results are labeled as risk differences. This option is not allowed with the effect-size
determination and may not be combined with diff(), ratio(), rrisk(), or oratio().

rrisk(numlist) specifies the relative risk or risk ratio p2 − p1. This is a synonym for the ratio()
option, except the results are labeled as relative risks. This option is not allowed with the effect-size
determination and may not be combined with diff(), ratio(), rdiff(), or oratio().

oratio(numlist) specifies the odds ratio {p2(1 − p1)}/{p1(1 − p2)}. You can specify ei-
ther the experimental-group proportion p2 as a command argument or the odds ratio in
oratio(). If you specify oratio(#), the experimental-group proportion is computed as
p2 = 1/{1 + (1− p1)/(p1 × #)}. This option is not allowed with the effect-size determination
and may not be combined with diff(), ratio(), rdiff(), or rrisk().

effect(effect) specifies the type of the effect size to be reported in the output as delta. effect is
one of diff, ratio, rdiff, rrisk, or oratio. By default, the effect size delta is the difference
between proportions. If diff(), ratio(), rdiff(), rrisk(), or oratio() is specified, the
effect size delta will contain the effect corresponding to the specified option. For example, if
oratio() is specified, delta will contain the odds ratio.

continuity requests that continuity correction be applied to the normal approximation of the discrete
distribution. continuity cannot be specified with test(fisher) or test(lrchi2).

direction(), onesided, parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value for the estimated parameter. For sample-size determination, the
estimated parameter is either the control-group size n1 or, if compute(N2) is specified, the
experimental-group size n2. For the effect-size determination, the estimated parameter is the
experimental-group proportion p2. The default initial values for sample sizes for a two-sided test
are based on the corresponding one-sided large-sample z test with the significance level α/2. The
default initial value for the experimental-group proportion is computed using the bisection method.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following options are available with power twoproportions but are not shown in the dialog
box:

cluster; see [PSS-2] power twoproportions, cluster.

notitle; see [PSS-2] power.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power twoproportions

Alternative ways of specifying effect
Computing sample size
Computing power
Computing effect size and experimental-group proportion
Testing a hypothesis about two independent proportions
Video examples

This entry describes the power twoproportions command and the methodology for power
and sample-size analysis for a two-sample proportions test. See [PSS-2] Intro (power) for a general
introduction to power and sample-size analysis and [PSS-2] power for a general introduction to the
power command using hypothesis tests. Also see [PSS-2] power twoproportions, cluster for power
and sample-size analysis in a cluster randomized design.

Introduction
The comparison of two independent proportions arises in studies involving two independent

binomial populations. There are many examples of studies where a researcher would like to compare
two independent proportions. A pediatrician might be interested in the relationship between low
birthweight and the mothers’ use of a particular drug during pregnancy. He or she would like to
test the null hypothesis that there is no difference in the proportion of low-birthweight babies for
mothers who took the drug and mothers who did not. A drug manufacturer may want to test the
developed new topical treatment for a foot fungus by testing the null hypothesis that the proportion
of successfully treated patients is the same in the treatment and placebo groups.

Hypothesis testing of binomial outcomes relies on a set of assumptions: 1) a Bernoulli outcome
is observed a fixed number of times; 2) the probability p of observing an event of interest in one
trial is fixed across all trials; and 3) individual trials are independent. Each of the two populations
must conform to the assumptions of a binomial distribution.

This entry describes power and sample-size analysis for the inference about two population
proportions performed using hypothesis testing. Specifically, we consider the null hypothesis H0 :
p2 = p1 versus the two-sided alternative hypothesis Ha: p2 6= p1, the upper one-sided alternative
Ha: p2 > p1, or the lower one-sided alternative Ha: p2 < p1.

The large-sample Pearson’s χ2 and likelihood-ratio tests are commonly used to test hypotheses
about two independent proportions. The test of Fisher (1935) and Irwin (1935) is commonly used to
compare the two proportions in small samples.

The power twoproportions command provides power and sample-size analysis for these three
tests. For Fisher’s exact test, the direct computation is available only for the power of the test.
Estimates of the sample size and effect size for Fisher’s exact test are difficult to compute directly
because of the discrete nature of the sampling distribution of the test statistic. They can, however, be
obtained indirectly on the basis of the power computation; see example 8 for details.
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Using power twoproportions

power twoproportions computes sample size, power, or experimental-group proportion for a
two-sample proportions test. All computations are performed for a two-sided hypothesis test where,
by default, the significance level is set to 0.05. You may change the significance level by specifying
the alpha() option. You can specify the onesided option to request a one-sided test. By default,
all computations assume a balanced or equal-allocation design; see [PSS-4] Unbalanced designs for
a description of how to specify an unbalanced design.

power twoproportions performs power analysis for three different tests, which can be specified
within the test() option. The default is Pearson’s χ2 test (test(chi2)), which approximates
the sampling distribution of the test statistic by the standard normal distribution. You may instead
request computations based on the likelihood-ratio test by specifying the test(lrchi2) option.
To request Fisher’s exact conditional test based on the hypergeometric distribution, you can specify
test(fisher). The fisher method is not available for computing sample size or effect size; see
example 8 for details.

To compute the total sample size, you must specify the control-group proportion p1, the experimental-
group proportion p2, and, optionally, the power of the test in the power() option. The default power
is set to 0.8.

Instead of the total sample size, you can compute one of the group sizes given the other one. To
compute the control-group sample size, you must specify the compute(N1) option and the sample
size of the experimental group in the n2() option. Likewise, to compute the experimental-group
sample size, you must specify the compute(N2) option and the sample size of the control group in
the n1() option.

To compute power, you must specify the total sample size in the n() option, the control-group
proportion p1, and the experimental-group proportion p2.

Instead of the experimental-group proportion p2, you can specify other alternative measures of
effect when computing sample size or power; see Alternative ways of specifying effect below.

To compute effect size and the experimental-group proportion, you must specify the total sample
size in the n() option, the power in the power() option, the control-group proportion p1, and
optionally, the direction of the effect. The direction is upper by default, direction(upper), which
means that the experimental-group proportion is assumed to be larger than the specified control-group
value. You can change the direction to be lower, which means that the experimental-group proportion
is assumed to be smaller than the specified control-group value, by specifying the direction(lower)
option.

There are multiple definitions of the effect size for a two-sample proportions test. The effect()
option specifies what definition power twoproportions should use when reporting the effect size,
which is labeled as delta in the output of the power command. The available definitions are the
difference between the experimental-group proportion and the control-group proportion (diff), the ratio
of the experimental-group proportion to the control-group proportion (ratio), the risk difference p2−p1

(rdiff), the relative risk p2/p1 (rrisk), and the odds ratio {p2(1− p1)}/{p1(1− p2)} (oratio).
When effect() is specified, the effect size delta contains the estimate of the corresponding effect
and is labeled accordingly. By default, delta corresponds to the difference between proportions. If
any of the options diff(), ratio(), rdiff(), rrisk(), or oratio() are specified and effect()
is not specified, delta will contain the effect size corresponding to the specified option.

Instead of the total sample size n(), you can specify individual group sizes in n1() and n2(), or
specify one of the group sizes and nratio() when computing power or effect size. Also see Two
samples in [PSS-4] Unbalanced designs for more details.
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Alternative ways of specifying effect

As we mentioned above, power twoproportions provides a number of ways to specify the
disparity between the control-group and experimental-group proportions for sample-size and power
determinations.

You can specify the control-group proportion p1 and the experimental-group proportion p2 directly,
after the command name:

power twoproportions p1 p2 , . . .

For this specification, the default effect size delta displayed by the power command is the
difference p2 − p1 between the proportions. You can use the effect() option to request another
type of effect. For example, if you specify effect(oratio),

power twoproportions p1 p2 , effect(oratio) . . .

the effect size delta will correspond to the odds ratio.

Alternatively, you can specify the control-group proportion p1 and one of the options diff(),
ratio(), rdiff(), rrisk(), or oratio(). For these specifications, the effect size delta will
contain the effect corresponding to the option. If desired, you can change this by specifying the
effect() option.

Specify difference p2 − p1 between the two proportions:

power twoproportions p1 , diff(numlist) . . .

Specify risk difference p2 − p1:

power twoproportions p1 , rdiff(numlist) . . .

Specify ratio p2/p1 of the two proportions:

power twoproportions p1 , ratio(numlist) . . .

Specify relative risk or risk ratio p2/p1:

power twoproportions p1 , rrisk(numlist) . . .

Specify odds ratio {p2(1− p1)}/{p1(1− p2)}:

power twoproportions p1 , oratio(numlist) . . .

In the following sections, we describe the use of power twoproportions accompanied by
examples for computing sample size, power, and experimental-group proportions.

Computing sample size

To compute sample size, you must specify the control-group proportion p1, the experimental-group
proportion p2, and, optionally, the power of the test in the power() option. A default power of 0.8
is assumed if power() is not specified.

Example 1: Sample size for a two-sample proportions test

Consider a study investigating the effectiveness of aspirin in reducing the mortality rate due to
myocardial infarction (heart attacks). Let pA denote the proportion of deaths for aspirin users in the
population and pN denote the corresponding proportion for nonusers. We are interested in testing the
null hypothesis H0: pA − pN = 0 against the two-sided alternative hypothesis Ha: pA − pN 6= 0.
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Previous studies indicate that the proportion of deaths due to heart attacks is 0.015 for nonusers
and 0.001 for users. Investigators wish to determine the minimum sample size required to detect an
absolute difference of |0.001− 0.015| = 0.014 with 80% power using a two-sided 5%-level test.

To compute the required sample size, we specify the values 0.015 and 0.001 as the control-
and experimental-group proportions after the command name. We omit options alpha(0.05) and
power(0.8) because the specified values are their defaults.

. power twoproportions 0.015 0.001

Performing iteration ...

Estimated sample sizes for a two-sample proportions test
Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.0140 (difference)

p1 = 0.0150
p2 = 0.0010

Estimated sample sizes:

N = 1,270
N per group = 635

A total sample of 1,270 individuals, 635 individuals per group, must be obtained to detect an absolute
difference of 0.014 between proportions of aspirin users and nonusers with 80% power using a
two-sided 5%-level Pearson’s χ2 test.

Example 2: Alternative ways of specifying effect

The displayed effect size delta in example 1 is the difference between the experimental-group
proportion and the control-group proportion. We can redefine the effect size to be, for example, the
odds ratio by specifying the effect() option.

. power twoproportions 0.015 0.001, effect(oratio)

Performing iteration ...

Estimated sample sizes for a two-sample proportions test
Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.0657 (odds ratio)

p1 = 0.0150
p2 = 0.0010

Estimated sample sizes:

N = 1,270
N per group = 635

The effect size delta now contains the estimated odds ratio and is labeled correspondingly.

Instead of the estimate of the proportion in the experimental group, we may have an estimate
of the odds ratio {p2(1 − p1)}/{p1(1 − p2)}. For example, the estimate of the odds ratio in this
example is 0.0657. We can specify the value of the odds ratio in the oratio() option instead of
specifying the experimental-group proportion 0.001:
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. power twoproportions 0.015, oratio(0.0657)

Performing iteration ...

Estimated sample sizes for a two-sample proportions test
Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.0657 (odds ratio)

p1 = 0.0150
p2 = 0.0010

odds ratio = 0.0657

Estimated sample sizes:

N = 1,270
N per group = 635

The results are identical to the prior results. The estimate of the odds ratio is now displayed in the
output, and the effect size delta now corresponds to the odds ratio.

We can also specify the following measures as input parameters: difference between proportions
in the diff() option, risk difference in the rdiff() option, ratio of the proportions in the ratio()
option, or relative risk in the rrisk() option.

Example 3: Likelihood-ratio test

Instead of the Pearson’s χ2 test as in example 1, we can compute sample size for the likelihood-ratio
test by specifying the test(lrchi2) option.

. power twoproportions 0.015 0.001, test(lrchi2)

Performing iteration ...

Estimated sample sizes for a two-sample proportions test
Likelihood-ratio test
H0: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.0140 (difference)

p1 = 0.0150
p2 = 0.0010

Estimated sample sizes:

N = 1,062
N per group = 531

The required total sample size of 1,062 is smaller than that for the Pearson’s χ2 test.

Example 4: Computing one of the group sizes

Suppose we anticipate a sample of 600 aspirin users and wish to compute the required number
of nonusers given the study parameters from example 1. We specify the number of aspirin users in
n2(), and we also include compute(N1):
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. power twoproportions 0.015 0.001, n2(600) compute(N1)

Performing iteration ...

Estimated sample sizes for a two-sample proportions test
Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.0140 (difference)

p1 = 0.0150
p2 = 0.0010
N2 = 600

Estimated sample sizes:

N = 1,317
N1 = 717

We require a sample of 717 nonusers given 600 aspirin users for a total of 1,317 subjects. The total
number of subjects is larger for this unbalanced design compared with the corresponding balanced
design in example 1.

Example 5: Unbalanced design

By default, power twoproportions computes sample size for a balanced or equal-allocation
design. If we know the allocation ratio of subjects between the groups, we can compute the required
sample size for an unbalanced design by specifying the nratio() option.

Continuing with example 1, we will suppose that we anticipate to recruit twice as many aspirin
users as nonusers; that is, n2/n1 = 2. We specify the nratio(2) option to compute the required
sample size for the specified unbalanced design.

. power twoproportions 0.015 0.001, nratio(2)

Performing iteration ...

Estimated sample sizes for a two-sample proportions test
Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.0140 (difference)

p1 = 0.0150
p2 = 0.0010

N2/N1 = 2.0000

Estimated sample sizes:

N = 1,236
N1 = 412
N2 = 824

We need a total sample size of 1,236 subjects.

Also see Two samples in [PSS-4] Unbalanced designs for more examples of unbalanced designs
for two-sample tests.
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Computing power

To compute power, you must specify the total sample size in the n() option, the control-group
proportion p1, and the experimental-group proportion p2.

Example 6: Power of a two-sample proportions test

Continuing with example 1, we will suppose that we anticipate a sample of only 1,100 subjects.
To compute the power corresponding to this sample size given the study parameters from example
1, we specify the sample size in n():

. power twoproportions 0.015 0.001, n(1100)

Estimated power for a two-sample proportions test
Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
N = 1,100

N per group = 550
delta = -0.0140 (difference)

p1 = 0.0150
p2 = 0.0010

Estimated power:

power = 0.7416

With a smaller sample of 1,100 subjects, we obtain a lower power of 74% compared with example 1.

Example 7: Multiple values of study parameters

In this example, we would like to assess the effect of varying the proportion of aspirin users on the
power of our study. Suppose that the total sample size is 1,100 with equal allocation between groups,
and the value of the proportion in the nonusing group is 0.015. We specify a range of proportions for
aspirin users from 0.001 to 0.009 with a step size of 0.001 as numlist in parentheses as the second
argument of the command:

. power twoproportions 0.015 (0.001(0.001)0.009), n(1100)

Estimated power for a two-sample proportions test
Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1

alpha power N N1 N2 delta p1 p2

.05 .7416 1,100 550 550 -.014 .015 .001

.05 .6515 1,100 550 550 -.013 .015 .002

.05 .5586 1,100 550 550 -.012 .015 .003

.05 .4683 1,100 550 550 -.011 .015 .004

.05 .3846 1,100 550 550 -.01 .015 .005

.05 .3102 1,100 550 550 -.009 .015 .006

.05 .2462 1,100 550 550 -.008 .015 .007

.05 .1928 1,100 550 550 -.007 .015 .008

.05 .1497 1,100 550 550 -.006 .015 .009
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From the table, the power decreases from 74% to 15% as the proportion of deaths for aspirin users
increases from 0.001 to 0.009 or the absolute value of the effect size (measured as the difference
between the proportion of deaths for aspirin users and that for nonusers) decreases from 0.014 to
0.006.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

Example 8: Saw-toothed power function

We can also compute power for the small-sample Fisher’s exact conditional test. The sampling
distribution of the test statistic for this test is discrete. As such, Fisher’s exact test shares the same
issues arising with power and sample-size analysis as described in detail for the binomial one-sample
proportion test in example 7 of [PSS-2] power oneproportion. In particular, the power function of
Fisher’s exact test has a saw-toothed shape as a function of the sample size. Here, we demonstrate the
saw-toothed shape of the power function and refer you to example 7 of [PSS-2] power oneproportion
for details.

Let’s plot powers of the Fisher’s exact test for a range of experimental-group sizes between 50
and 65 given the control-group proportion of 0.6, the experimental-group proportion of 0.25, and
the control-group size of 25. We specify the graph() option to produce a graph and the table()
option to produce a table; see [PSS-2] power, graph and [PSS-2] power, table for more details about
the graphical and tabular outputs from power. Within graph(), we specify options to request that
the reference line be plotted on the y axis at a power of 0.8 and that the data points be labeled with
the corresponding sample sizes. Within table(), we specify the formats() option to display only
three digits after the decimal point for the power and alpha a columns.

. power twoproportions 0.6 0.25, test(fisher) n1(25) n2(50(1)65)
> graph(yline(0.8) plotopts(mlabel(N)))
> table(, formats(alpha_a "%7.3f" power "%7.3f"))

Estimated power for a two-sample proportions test
Fisher’s exact test
H0: p2 = p1 versus Ha: p2 != p1

alpha alpha_a power N N1 N2 delta p1 p2

.05 0.027 0.771 75 25 50 -.35 .6 .25

.05 0.030 0.793 76 25 51 -.35 .6 .25

.05 0.028 0.786 77 25 52 -.35 .6 .25

.05 0.027 0.782 78 25 53 -.35 .6 .25

.05 0.030 0.804 79 25 54 -.35 .6 .25

.05 0.029 0.793 80 25 55 -.35 .6 .25

.05 0.028 0.786 81 25 56 -.35 .6 .25

.05 0.030 0.814 82 25 57 -.35 .6 .25

.05 0.028 0.802 83 25 58 -.35 .6 .25

.05 0.029 0.797 84 25 59 -.35 .6 .25

.05 0.029 0.823 85 25 60 -.35 .6 .25

.05 0.028 0.813 86 25 61 -.35 .6 .25

.05 0.029 0.807 87 25 62 -.35 .6 .25

.05 0.029 0.819 88 25 63 -.35 .6 .25

.05 0.029 0.821 89 25 64 -.35 .6 .25

.05 0.027 0.816 90 25 65 -.35 .6 .25
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50

51

52

53

54

55

56

57

58

59

60

61

62

63
64

65

.77

.78

.79

.8

.81

.82

P
ow

er
 (

1-
β)

50 55 60 65
Experimental-group sample size (N2)

Parameters: α = .05, N1 = 25, δ = -.35, p1 = .6, p2 = .25

Fisher's exact test
H0: p2 = p1  versus  Ha: p2 ≠ p1

Estimated power for a two-sample proportions test

Figure 1. Saw-toothed power function

The power is not a monotonic function of the sample size. Also from the table, we see that all the
observed significance levels are smaller than the specified level of 0.05.

Because of the saw-toothed nature of the power curve, obtaining an optimal sample size becomes
tricky. For example, if we wish to have power of 80%, then from the above table and graph, we see
that potential experimental-group sample sizes are 54, 57, 58, 60, and so on. One may be tempted
to choose the smallest sample size for which the power is at least 80%. This, however, would not
guarantee that the power is at least 80% for any larger sample size. Instead, Chernick and Liu (2002)
suggest selecting the smallest sample size after which the troughs of the power curve do not go below
the desired power. Following this recommendation in our example, we would pick a sample size of
60, which corresponds to the observed significance level of 0.028 and power of 0.823.

Computing effect size and experimental-group proportion

There are multiple definitions of the effect size for a two-sample proportions test. By default, effect
size δ is defined as the difference between the experimental-group proportion and the control-group
proportion, δ = p2 − p1, also known as a risk difference. Other available measures of the effect size
are the ratio of the experimental-group proportion to the control-group proportion δ = p2/p1, also
known as a relative risk or risk ratio, and the odds ratio δ = {p2(1− p1)}/{p1(1− p2)}.

Sometimes, we may be interested in determining the smallest effect and the corresponding
experimental-group proportion that yield a statistically significant result for prespecified sample size
and power. In this case, power, sample size, and control-group proportion must be specified. In
addition, you must also decide on the direction of the effect: upper, meaning p2 > p1, or lower,
meaning p2 < p1. The direction may be specified in the direction() option; direction(upper)
is the default.

The underlying computations solve the corresponding power equation for the value of the
experimental-group proportion given power, sample size, and other study parameters. The effect
size is then computed from the specified control-group proportion and the computed experimental-
group proportion using the corresponding functional relationship. The difference between proportions
is reported by default, but you can request other measures by specifying the effect() option.
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Example 9: Minimum detectable change in the experimental-group proportion

Continuing with example 6, we will compute the smallest change in the proportion of deaths for
aspirin users less than that for nonusers that can be detected given a total sample of 1,100 individuals
and 80% power. To solve for the proportion of aspirin users in the experimental group, after the
command name, we specify the control group (nonaspirin users), proportion of 0.015, total sample
size n(1100), and power power(0.8):

. power twoproportions 0.015, n(1100) power(0.8) direction(lower)

Performing iteration ...

Estimated experimental-group proportion for a two-sample proportions test
Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1; p2 < p1

Study parameters:

alpha = 0.0500
power = 0.8000

N = 1,100
N per group = 550

p1 = 0.0150

Estimated effect size and experimental-group proportion:

delta = -0.0147 (difference)
p2 = 0.0003

We find that given the proportion of nonusers of 0.015, the smallest (in absolute value) difference
between proportions that can be detected in this study is −0.0147, which corresponds to the proportion
of aspirin users of 0.0003.

Although the difference between proportions is reported by default, we can request that another
risk measure be reported by specifying the effect() option. For example, we can request that the
odds ratio be reported instead:

. power twoproportions 0.015, n(1100) power(0.8) direction(lower) effect(oratio)

Performing iteration ...

Estimated experimental-group proportion for a two-sample proportions test
Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1; p2 < p1

Study parameters:

alpha = 0.0500
power = 0.8000

N = 1,100
N per group = 550

p1 = 0.0150

Estimated effect size and experimental-group proportion:

delta = 0.0195 (odds ratio)
p2 = 0.0003

The corresponding value of the odds ratio in this example is 0.0195.

In these examples, we computed the experimental-group proportion assuming a lower direction,
p2 < p1, which required you to specify the direction(lower) option. By default, experimental-
group proportion is computed for an upper direction, meaning that the proportion is greater than the
specified value of the control-group proportion.
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Testing a hypothesis about two independent proportions

After the initial planning, we collect data and wish to test the hypothesis that the proportions
from two independent populations are the same. We can use the prtest command to perform such
hypothesis tests; see [R] prtest for details.

Example 10: Two-sample proportions test

Consider a 2 × 3 contingency table provided in table 2.1 of Agresti (2013, 38). The table is
obtained from a report by the Physicians’ Health Study Research Group at Harvard Medical School
that investigated the relationship between aspirin use and heart attacks.

The report presents summary data on fatal and nonfatal heart attacks. In the current example, we
combine these two groups into a single group representing the total cases with heart attacks for aspirin
users and nonusers. The estimated proportion of heart attacks in the control group, nonaspirin users,
is 189/11034 = 0.0171 and in the experimental group, aspirin users, is 104/11037 = 0.0094.

. prtesti 11034 0.0171 11037 0.0094

Two-sample test of proportions x: Number of obs = 11034
y: Number of obs = 11037

Mean Std. err. z P>|z| [95% conf. interval]

x .0171 .0012342 .014681 .019519
y .0094 .0009185 .0075997 .0112003

diff .0077 .0015385 .0046846 .0107154
under H0: .0015393 5.00 0.000

diff = prop(x) - prop(y) z = 5.0023
H0: diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(Z < z) = 1.0000 Pr(|Z| > |z|) = 0.0000 Pr(Z > z) = 0.0000

Let pA and pN denote the proportions of heart attacks in the population for aspirin users and
nonusers, respectively. From the above results, we find a statistically significant evidence to reject the
null hypothesis H0: pA = pN versus a two-sided alternative Ha: pA 6= pN at the 5% significance
level; the p-value is very small.

We use the parameters of this study to perform a sample-size analysis we would have conducted
before the study.

. power twoproportions 0.0171 0.0094

Performing iteration ...

Estimated sample sizes for a two-sample proportions test
Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.0077 (difference)

p1 = 0.0171
p2 = 0.0094

Estimated sample sizes:

N = 6,922
N per group = 3,461
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We find that for Pearson’s χ2 test, a total sample size of 6,922, assuming a balanced design, is required
to detect the difference between the control-group proportion of 0.0171 and the experimental-group
proportion of 0.0094 with 80% power using a 5%-level two-sided test.

Video examples
How to calculate sample size for two independent proportions

How to calculate power for two independent proportions

How to calculate minimum detectable effect size for two independent proportions

Stored results
power twoproportions stores the following in r():
Scalars

r(alpha) significance level
r(alpha a) actual significance level of the Fisher’s exact test
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
r(nratio) ratio of sample sizes, N2/N1
r(nratio a) actual ratio of sample sizes
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(p1) control-group proportion
r(p2) experimental-group proportion
r(diff) difference between the experimental- and control-group proportions
r(ratio) ratio of the experimental-group proportion to the control-group proportion
r(rdiff) risk difference
r(rrisk) relative risk
r(oratio) odds ratio
r(continuity) 1 if continuity correction is used, 0 otherwise
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample sizes or experimental-group proportion
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) twoproportions
r(test) chi2, lrchi2, or fisher
r(effect) specified effect: diff, ratio, etc.
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

https://www.youtube.com/watch?v=QyZf8H3uQ2c
https://www.youtube.com/watch?v=4fNjMqbK19o
https://www.youtube.com/watch?v=E6F5PAOKoK4
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Methods and formulas
Consider two independent samples of sizes n1 and n2. Let x11, . . . , x1n1 be a random sample from

a binomial distribution with the success probability p1. We refer to this sample as a control group.
Let x21, . . . , x2n2

be a random sample from a binomial distribution with the success probability p2,
the experimental group. Let xij = 1 denote a success and xij = 0 denote a failure. The two samples
are assumed to be independent.

The sample proportions and their respective standard errors are

p̂1 =
1

n1

n1∑
i=1

x1i and se(p̂1) =

√
p̂1(1− p̂1)

n1

p̂2 =
1

n2

n2∑
i=1

x2i and se(p̂2) =

√
p̂2(1− p̂2)

n2

A two-sample proportions test involves testing the null hypothesis H0: p2 = p1 versus the two-
sided alternative hypothesis Ha: p2 6= p1, the upper one-sided alternative Ha: p2 > p1, or the lower
one-sided alternative Ha: p2 < p1.

Let R = n2/n1 denote the allocation ratio. Then n2 = R × n1 and power can be viewed as
a function of n1. Therefore, for sample-size determination, the control-group sample size n1 is
computed first. The experimental-group size n2 is then computed as R×n1, and the total sample size
is computed as n = n1 + n2. By default, sample sizes are rounded to integer values; see Fractional
sample sizes in [PSS-4] Unbalanced designs for details.

The formulas below are based on Fleiss, Levin, and Paik (2003) and Agresti (2013).

Methods and formulas are presented under the following headings:

Effect size
Pearson’s χ2 test
Likelihood-ratio test
Fisher’s exact conditional test

Effect size

The measures of risk or effect size can be defined in a number of ways for the two-sample proportions
test. By default, the effect size is the difference between the experimental-group proportion and the
control-group proportion. Other available risk measures include risk difference, risk ratio or relative
risk, and odds ratio.

By default or when effect(diff) or effect(rdiff) is specified, the effect size is computed
as

δ = p2 − p1

When effect(ratio) or effect(rrisk) is specified, the effect size is computed as

δ = p2/p1
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When effect(oratio) is specified, the effect size is computed as

δ = θ = {p2(1− p1)}/{p1(1− p2)}

If diff(), rdiff(), ratio(), rrisk(), or oratio() is specified, the value of the experimental-
group proportion p2 is computed using the corresponding formula from above.

Pearson’s χ2 test

For a large sample size, a binomial process can be approximated by a normal distribution. The
asymptotic sampling distribution of the test statistic

z =
(p̂2 − p̂1)− (p2 − p1)√
p̂(1− p̂)

(
1
n1

+ 1
n2

)
is standard normal, where p = (n1p1 + n2p2)/(n1 + n2) is the pooled proportion and p̂ is its
estimator. The square of this statistic, z2, has an approximate χ2 distribution with one degree of
freedom, and the corresponding test is known as Pearson’s χ2 test.

Let α be the significance level, β be the probability of a type II error, and z1−α and zβ be the
(1− α)th and the βth quantiles of the standard normal distribution.

Let σD =
√
p1(1− p1)/n1 + p2(1− p2)/n2 be the standard deviation of the difference between

proportions and σp =
√
p(1− p) (1/n1 + 1/n2) be the pooled standard deviation.

The power π = 1− β is computed using

π =


Φ
{

(p2−p1)−c−z1−ασp
σD

}
for an upper one-sided test

Φ
{
−(p2−p1)−c−z1−ασp

σD

}
for a lower one-sided test

Φ
{

(p2−p1)−c−z1−α/2σp
σD

}
+ Φ

{
−(p2−p1)−c−z1−α/2σp

σD

}
for a two-sided test

(1)

where Φ(·) is the cdf of the standard normal distribution, and c is the normal-approximation continuity
correction. For equal sample sizes, n1 = n2 = n/2, the continuity correction is expressed as c = 2/n
(Levin and Chen 1999).

For a one-sided test, given the allocation ratio R = n2/n1, the total sample size n is computed
by inverting the corresponding power equation in (1),

n =

{
z1−α

√
p(1− p)− zβ

√
w2p1(1− p1) + w1p2(1− p2)

}2

w1w2 (p2 − p1)
2 (2)

where w1 = 1/(1 +R) and w2 = R/(1 +R). Then n1 and n2 are computed as n1 = n/(1 +R)
and n2 = R × n1, respectively. If the continuity option is specified, the sample size nc for a
one-sided test is computed as

nc =
n

4

(
1 +

√
1 +

2

nw1w2|p2 − p1|

)2
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where n is the sample size computed without the correction. For unequal sample sizes, the continuity
correction generalizes to c = 1/(2nw1w2) (Fleiss, Levin, and Paik 2003).

For a two-sided test, the sample size is computed by iteratively solving the two-sided power
equation in (1). The initial values for the two-sided computations are obtained from (2) with the
significance level α/2.

If one of the group sizes is known, the other one is computed by iteratively solving the corresponding
power equation in (1). The initial values are obtained from (2) by assuming that R = 1.

The experimental-group proportion p2 is computed by iteratively solving the corresponding power
equations in (1). The default initial values are obtained by using a bisection method.

Likelihood-ratio test
Let q1 = 1−p1, q2 = 1−p2, and q = 1−p = 1−(n1p1 +n2p2)/(n1 +n2). The likelihood-ratio

test statistic is given by

G =

√
2n

{
n1p1

n
ln
(
p1

p

)
+
n1q1

n
ln
(
q1

q

)
+
n2p2

n
ln
(
p2

p

)
+
n2q2

n
ln
(
q2

q

)}
The power π = 1− β is computed using

π =


Φ (G− z1−α) for an upper one-sided test
Φ (−G− z1−α) for a lower one-sided test
Φ
(
G− z1−α/2

)
+ Φ

(
−G− z1−α/2

)
for a two-sided test

(3)

For a one-sided test, given the allocation ratio R, the total sample size n is computed by inverting
the corresponding power equation in (3),

n =
(z1−α − zβ)

2

2
{
w1p1 ln

(
p1
p

)
+ w1q1 ln

(
q1
q

)
+ w2p2 ln

(
p2
p

)
+ w2q2 ln

(
q2
q

)} (4)

where w1 = 1/(1 +R) and w2 = R/(1 +R). Then n1 and n2 are computed as n1 = n/(1 +R)
and n2 = R× n1, respectively.

For a two-sided test, the sample size is computed by iteratively solving the two-sided power
equation in (3). The initial values for the two-sided computations are obtained from equation (4) with
the significance level α/2.

If one of the group sizes is known, the other one is computed by iteratively solving the corresponding
power equation in (3). The initial values are obtained from (4) by assuming that R = 1.

The experimental-group proportion p2 is computed by iteratively solving the corresponding power
equations in (3). The default initial values are obtained by using a bisection method.
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Fisher’s exact conditional test
Power computation for Fisher’s exact test is based on Casagrande, Pike, and Smith (1978). We

present formulas from the original paper with a slight change in notation: we use p̃1 and p̃2 in place
of p1 and p2 and η in place of θ. The change in notation is to avoid confusion between our use of
group proportions p1 and p2 and their use in the paper—compared with our definitions, the roles of
p1 and p2 in the paper are reversed in the definitions of the hypotheses and other measures such as
the odds ratio. In our definitions, p̃1 = p2 is the proportion in the experimental group, p̃2 = p1 is
the proportion in the control group, and η = 1/θ. Also we denote ñ1 = n2 to be the sample size of
the experimental group and ñ2 = n1 to be the sample size of the control group.

Let k be the number of successes in the experimental group, and let m be the total number of
successes in both groups. The conditional distribution of k is given by

p(k|m, η) =

(
ñ1

k

)(
ñ2

m−k
)
ηk∑

i

(
ñ1

i

)(
ñ2

m−i
)
ηi

where η = {p̃1(1 − p̃2)}/{p̃2(1 − p̃1)}, and the range of i is given by L = max(0,m − ñ2) to
U = min(ñ1,m).

Assume an upper one-sided test given by

H0: p̃1 = p̃2 versus Ha: p̃1 > p̃2 (5)

The hypothesis (5) in terms of η can be expressed as follows:

H0: η = 1 versus Ha: η > 1

Let ku be the critical value of k such that the following inequalities are satisfied:

U∑
i=ku

p(i|m, η = 1) ≤ α and
U∑

i=ku−1

p(i|m, η = 1) > α (6)

The conditional power is

β(η|m) =

U∑
i=ku

p(i|m, η)

For a lower one-sided hypothesis Ha : p̃1 < p̃2, the corresponding hypothesis in terms of η is
given by

H0: η = 1 versus Ha: η < 1

The conditional power in this case is

β(η|m) =

kl∑
i=L

p(i|m, η)
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where kl is the critical value of k such that the following inequalities are satisfied:

kl∑
i=L

p(i|m, η = 1) ≤ α and
kl+1∑
i=L

p(i|m, η = 1) > α (7)

For a two-sided test, the critical values kl and ku are calculated using the inequalities (6) and (7)
with α/2, respectively.

Finally, the unconditional power is calculated as

β(η) =
∑
j

β(η|j)P (j)

where j takes the value from 0 to n, and

P (j) =

U∑
i=L

(
ñ1

i

)
p̃1
i(1− p̃1)ñ1−i

(
ñ2

j − i

)
p̃2
j−i(1− p̃2)ñ2−j+i

where L = max(0, j − ñ2) and U = min(ñ1, j).
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power twoproportions, cluster — Power analysis for a two-sample proportions test, CRD

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power twoproportions, cluster computes group-specific numbers of clusters, group-specific
cluster sizes, power, or the experimental-group proportion for a two-sample proportions test in a
cluster randomized design (CRD). It computes group-specific numbers of clusters given cluster sizes,
power, and the values of the control-group and experimental-group proportions. It also computes
group-specific cluster sizes given numbers of clusters, power, and the values of the control-group and
experimental-group proportions. Alternatively, it computes power given numbers of clusters, cluster
sizes, and the values of the control-group and experimental-group proportions, or it computes the
experimental-group proportion given numbers of clusters, cluster sizes, power, and the control-group
proportion. See [PSS-2] power twoproportions for a general discussion of power and sample-size
analysis for a two-sample proportions test. Also see [PSS-2] power for a general introduction to the
power command using hypothesis tests.

Quick start
Number of clusters for a test of H0: π1 = π2 versus Ha: π1 6= π2 given alternative control- and

experimental-group proportions p1 = 0.8 and p2 = 0.6 with common cluster size of 5 using default
intraclass correlation of 0.5, power of 0.8, and significance level α = 0.05

power twoproportions 0.8 0.6, m1(5) m2(5)

Same as above, but assume the intraclass correlation is 0.4
power twoproportions 0.8 0.6, m1(5) m2(5) rho(0.4)

Same as above, but with an average cluster size of 5 and a coefficient of variation of 0.1
power twoproportions 0.8 0.6, m1(5) m2(5) rho(0.4) cvcluster(0.1)

Group-specific numbers of clusters where the ratio of experimental to control group clusters is 0.5
power twoproportions 0.8 0.6, m1(5) m2(5) rho(0.4) kratio(0.5)

Cluster sizes for a test of H0 : π1 = π2 versus Ha : π1 6= π2 given alternative control- and
experimental-group proportions p1 = 0.4 and p2 = 0.2 for 60 clusters in the control group and
40 clusters in the experimental group using default intraclass correlation of 0.5, power of 0.8, and
significance level α = 0.05

power twoproportions 0.4 0.2, k1(60) k2(40)

Same as above, but compute experimental-group cluster size given the control-group cluster size of 10
power twoproportions 0.4 0.2, k1(60) k2(40) m1(10) compute(M2)

Power given control-group proportion p1 = 0.1, experimental-group proportion p2 = 0.2, and 20
clusters with cluster sizes of 5 in the control and experimental groups

power twoproportions 0.1 0.2, k1(20) k2(20) m1(5) m2(5)

255
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Power for multiple numbers of clusters in the experimental group
power twoproportions 0.1 0.2, k1(20) k2(20(5)50) m1(5) m2(5)

Same as above, but display results in a graph of power versus the number of clusters in the experimental
group

power twoproportions 0.1 0.2, k1(20) k2(20(5)50) m1(5) m2(5) graph

Effect size and experimental-group proportion with power of 0.8
power twoproportions 0.1, k1(20) k2(20) m1(5) m2(5) power(0.8)

Menu
Statistics > Power, precision, and sample size

Syntax

Compute numbers of clusters

power twoproportions p1 p2 , {mspec | nspec cluster}
[

options
]

Compute cluster sizes

power twoproportions p1 p2 , kspec
[

options
]

Compute power

power twoproportions p1 p2 , kspec {mspec | nspec }
[

options
]

Compute effect size and experimental-group proportion

power twoproportions p1 , kspec {mspec | nspec } power(numlist)
[

options
]

where p1 is the proportion in the control (reference) group and p2 is the proportion in the experimental
(comparison) group. p1 and p2 may each be specified either as one number or as a list of values
in parentheses (see [U] 11.1.8 numlist).
kspec is one of

k1() k2()

k1()
[
kratio()

]
k2()

[
kratio()

]
mspec is one of

m1() m2()

m1()
[
mratio()

]
m2()

[
mratio()

]
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nspec is one of

n1() n2()

n1()
[
nratio()

]
n2()

[
nratio()

]

options Description

Main

cluster perform computations for a CRD; implied by k1(), k2(),
m1(), or m2()

∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗k1(numlist) number of clusters in the control group
∗k2(numlist) number of clusters in the experimental group
∗kratio(numlist) cluster ratio, K2/K1; default is kratio(1)
∗m1(numlist) cluster size of the control group
∗m2(numlist) cluster size of the experimental group
∗mratio(numlist) cluster-size ratio, M2/M1; default is mratio(1)
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) sample-size ratio, N2/N1; default is nratio(1)

compute(K1 | K2 | M1 | M2) solve for the number of clusters or cluster size in one group
given the other group

nfractional allow fractional numbers of clusters, cluster sizes, and
sample sizes

∗diff(numlist) difference between the experimental-group and
control-group proportions, p2 − p1; specify instead of the
experimental-group proportion p2

∗ratio(numlist) ratio of the experimental-group proportion to the
control-group proportion, p2/p1; specify instead of the
experimental-group proportion p2

∗rdiff(numlist) risk difference, p2 − p1; synonym for diff()
∗rrisk(numlist) relative risk, p2/p1; synonym for ratio()
∗oratio(numlist) odds ratio, {p2(1− p1)}/{p1(1− p2)}
effect(effect) specify the type of effect to display; default is

effect(diff)
∗rho(numlist) intraclass correlation; default is rho(0.5)
∗cvcluster(numlist) coefficient of variation for cluster sizes
direction(upper|lower) direction of the effect for effect-size determination; default is

direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)
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Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value for numbers of clusters, cluster sizes, or
experimental-group proportion

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.

effect Description

diff difference between proportions, p2 − p1; the default
ratio ratio of proportions, p2/p1

rdiff risk difference, p2 − p1

rrisk relative risk, p2/p1

oratio odds ratio, {p2(1− p1)}/{p1(1− p2)}

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).
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column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
K1 number of clusters in the control group K1

K2 number of clusters in the experimental group K2

kratio ratio of numbers of clusters, experimental to control K2/K1

M1 cluster size of the control group M1

M2 cluster size of the experimental group M2

mratio ratio of cluster sizes, experimental to control M2/M1

N total number of observations N
N1 number of observations in the control group N1

N2 number of observations in the experimental group N2

nratio ratio of sample sizes, experimental to control N2/N1

delta effect size δ
p1 control-group proportion p1

p2 experimental-group proportion p2

diff difference between the experimental-group proportion p2 − p1

and the control-group proportion
ratio ratio of the experimental-group proportion to p2/p1

the control-group proportion
rdiff risk difference p2 − p1

rrisk relative risk p2/p1

oratio odds ratio θ
rho intraclass correlation ρ
CV cluster coefficient of variation for cluster sizes CVcl

target target parameter; synonym for p2
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Column N is shown in the table if specified.
Columns N1 and N2 are shown in the default table if n1() or n2() is specified.
Columns nratio, diff, ratio, rdiff, rrisk, oratio, and CV cluster are shown in the default table if specified.

Options

� � �
Main �

cluster specifies that computations should be performed for a CRD. This option is implied when
the k1(), k2(), m1(), or m2() option is specified. cluster is required to compute the numbers
of clusters when nspec is used to specify sample sizes instead of mspec for cluster sizes.

alpha(), power(), beta(); see [PSS-2] power.

k1(numlist) specifies the number of clusters in the control group.

k2(numlist) specifies the number of clusters in the experimental group.

kratio(numlist) specifies the ratio of the numbers of clusters of the experimental group relative to
the control group, K2/K1. The default is kratio(1), meaning equal numbers of clusters in the
two groups.
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m1(numlist) specifies the cluster size of the control group. m1() may contain noninteger values.

m2(numlist) specifies the cluster size of the experimental group. m2() may contain noninteger values.

mratio(numlist) specifies the ratio of cluster sizes of the experimental group relative to the control
group, M2/M1. The default is mratio(1), meaning equal cluster sizes in the two groups.

n1(), n2(), nratio(); see [PSS-2] power.

compute(K1 | K2 | M1 | M2) solve for the number of clusters or cluster size of one group given the
other group.

nfractional; see [PSS-2] power. The nfractional option displays fractional (without rounding)
values of the numbers of clusters, cluster sizes, and sample sizes.

diff(), ratio(), rdiff(), rrisk(), oratio(), effect(); see [PSS-2] power twoproportions.

rho(numlist) specifies the intraclass correlation. The default is rho(0.5).

cvcluster(numlist) specifies the coefficient of variation for cluster sizes. This option is used with
varying cluster sizes.

direction(), onesided, parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value for the numbers of clusters or cluster sizes for sample-size determi-
nation or the initial value for the experimental-group proportion for the effect-size determination.
The default is to use a closed-form normal approximation to compute an initial value for the
estimated parameter.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power twoproportions, cluster but is not shown in the
dialog box:

notitle; see [PSS-2] power.
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Remarks and examples
Remarks are presented under the following headings:

Using power twoproportions, cluster
Computing numbers of clusters
Computing number of clusters in one group
Computing cluster sizes
Computing power
Computing effect size and experimental-group proportion
Testing hypotheses about two proportions in a CRD

power twoproportions, cluster requests that computations for the power twoproportions
command be done for a CRD. In a CRD, groups of subjects or clusters are randomized instead of
individual subjects, so the sample size is determined by the numbers of clusters and the cluster
sizes. The sample-size determination thus consists of the determination of the numbers of clusters
given cluster sizes or the determination of cluster sizes given the numbers of clusters. For a general
discussion of using power twoproportions, see [PSS-2] power twoproportions. The discussion
below is specific to the CRD.

Using power twoproportions, cluster

If you specify the cluster option, include k1() or k2() to specify the number of clusters or
include m1() or m2() to specify the cluster size, the power twoproportions command will perform
computations for a two-sample proportions test in a CRD. The computations for a CRD are based on
the large-sample Pearson’s χ2 test.

All computations are performed for a two-sided hypothesis test where, by default, the significance
level is set to 0.05. You may change the significance level by specifying the alpha() option. You
can specify the onesided option to request a one-sided test. By default, all computations assume
a balanced or equal-allocation design, meaning equal numbers of clusters and cluster sizes in both
groups; see [PSS-4] Unbalanced designs for a description of how to specify an unbalanced design.

To compute the number of clusters in both groups, you must provide cluster sizes for both groups.
There are multiple ways to supply cluster sizes, but the most common is to specify the cluster
size of the control group in the m1() option and the cluster size of the experimental group in the
m2() option. See mspec and nspec under Syntax for other specifications. When nspec is specified,
the cluster option is also required to request that power twoproportions perform computations
for a CRD. The number of clusters is assumed to be equal in the two groups, but you can change
this by specifying the ratio of the numbers of clusters in the experimental to the control group in
the kratio() option. Other parameters are specified as described in Using power twoproportions in
[PSS-2] power twoproportions.

To compute the cluster sizes in both groups, you must provide the numbers of clusters in both
groups. There are several ways to supply the numbers of clusters; see kspec under Syntax. The most
common is to specify the numbers of clusters in the control group and the experimental group in the
k1() and k2() options, respectively. Equal cluster sizes are assumed in the two groups, but you can
change this by specifying the ratio of the cluster sizes in the experimental to that of the control group
in the mratio() option. Other parameters are specified as described in Using power twoproportions
in [PSS-2] power twoproportions.

You can also compute the number of clusters or the cluster size in one of the groups given the
number of clusters or the cluster size in the other group by specifying the compute() option. For
example, to compute the number of clusters in the control group, you specify compute(K1) and
provide the number of clusters in the experimental group in k2(). Likewise, to compute the cluster
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size in the control group, you specify compute(M1) and provide the cluster size of the experimental
group in m2(). You can compute the number of clusters or cluster size for the experimental group
in a similar manner.

Instead of the experimental-group proportion p2, you can specify other alternative measures of
effect when computing numbers of clusters, cluster sizes, or power; see Alternative ways of specifying
effect in [PSS-2] power twoproportions.

The power and effect-size determination is the same as described in Using power twoproportions
in [PSS-2] power twoproportions, but the sample-size information is supplied as the numbers of
clusters kspec and either cluster sizes using mspec or, less commonly, sample sizes using nspec.

All computations assume an intraclass correlation of 0.5. You can change this by specifying the
rho() option. Also, all clusters are assumed to be of the same size unless the coefficient of variation
for cluster sizes is specified in the cvcluster() option.

By default, the computed numbers of clusters, cluster sizes, and sample sizes are rounded up.
However, you can specify the nfractional option to see the corresponding fractional values; see
Fractional sample sizes in [PSS-4] Unbalanced designs for an example. If the cvcluster() option is
specified when computing cluster sizes, then cluster sizes represent average cluster sizes and are thus
not rounded. When sample sizes are specified using nspec, fractional cluster sizes may be reported
to accommodate the specified numbers of clusters and sample sizes.

Some of power twoproportions, cluster’s computations require iteration, such as to compute
the numbers of clusters for a two-sided test; see Methods and formulas for details and [PSS-2] power
for the descriptions of options that control the iteration procedure.

Computing numbers of clusters

To compute the numbers of clusters in each group, you must either provide the cluster size for
each group using mspec or specify the cluster option and provide the sample sizes of both groups
using nspec. The most common method is to use mspec of m1() and m2(). In addition, the control-
and experimental-group proportions must be specified.

Example 1: Numbers of clusters for a two-sample proportions test in a CRD, specify
cluster sizes

Consider a study investigating the effectiveness of a program to promote after-school activities in
increasing the rate of students participating in the after-school club. Schools that are involved in the
study will be randomly assigned either to the experimental group that participates in the program or
to the control group that does not. A researcher plans to recruit 50 students from each school and
assumes an intraclass correlation of 0.2. The researcher wants to be able to detect an increase of 0.2
in the anticipated control-group rate of 0.4, which corresponds to the experimental-group rate of 0.6.

To compute the number of schools in each group required to detect the desired rate with 80%
power using a 5%-level two-sided test, we type
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. power twoproportions 0.4 0.6, m1(50) m2(50) rho(0.2)

Performing iteration ...

Estimated numbers of clusters for a two-sample proportions test
Cluster randomized design, Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000 (difference)

p1 = 0.4000
p2 = 0.6000

Cluster design:

M1 = 50
M2 = 50

rho = 0.2000

Estimated numbers of clusters and sample sizes:

K1 = 21
K2 = 21
N1 = 1,050
N2 = 1,050

We find that for 50 students per school, 21 schools per group and thus a total of 1,050 students per
group are required to detect a 0.2 difference, from 0.4 to 0.6, in participation rates in the after-school
club with 80% power using a 5%-level two-sided test.

Example 2: Numbers of clusters for a two-sample proportions test in a CRD, specify
sample sizes

Suppose that for our study, we can recruit only 1,000 students per group because of limited funding.
We need to know the number of schools in each group and how many students to recruit from each
school. In this case, we specify the n1(1000) and n2(1000) options. Because none of the k1(),
k2(), m1(), or m2() options are specified, we also need to specify the cluster option to request
the test for a CRD instead of the conventional individual-level design.

. power twoproportions 0.4 0.6, cluster n1(1000) n2(1000) rho(0.2)

Performing iteration ...

Estimated numbers of clusters for a two-sample proportions test
Cluster randomized design, Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000 (difference)

p1 = 0.4000
p2 = 0.6000

Cluster design:

N1 = 1,000
N2 = 1,000

rho = 0.2000

Estimated numbers of clusters and cluster sizes:

K1 = 22
K2 = 22

Average M1 = 45.4545
Average M2 = 45.4545



264 power twoproportions, cluster — Power analysis for a two-sample proportions test, CRD

To achieve the desired power, we need to recruit an average of about 45 students per school from 22
schools for each of the control and experimental groups. power twoproportions, cluster did not
round the cluster sizes of 45.45 to meet our required total of 1,000 students per group. In practice,
you can decide to recruit 45 members from some schools and 46 from other schools to have roughly
constant cluster sizes or decide to change the total number of students you want to recruit.

Computing number of clusters in one group

To compute the number of clusters in one of the groups, you must specify the compute() option
and the number of clusters in the other group. For example, to compute the number of clusters in the
experimental group, you must specify the compute(K2) option and provide the number of clusters
in the control group in the k1() option. Similarly, you can compute the number of clusters for the
control group. In addition, you must provide cluster sizes mspec or sample sizes nspec of both groups
and the control- and experimental-group proportions.

Example 3: Number of clusters in the experimental group for a two-sample proportions
test in a CRD

Continuing with example 1, suppose that we are designing a new study and we are planning to
recruit 30 schools for the control group. We want to know the minimum number of schools we need
to recruit to the experimental group. Given other study parameters from example 1, we compute the
number of schools in the experimental group by specifying the compute(K2) option and the number
of clusters in the control group of 30 in the k1() option:

. power twoproportions 0.4 0.6, compute(K2) k1(30) m1(50) m2(50) rho(0.2)

Performing iteration ...

Estimated treatment-group number of clusters for a two-sample proportions test
Cluster randomized design, Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000 (difference)

p1 = 0.4000
p2 = 0.6000

Cluster design:

K1 = 30
M1 = 50
M2 = 50
N1 = 1,500

rho = 0.2000

Estimated number of clusters and sample size:

K2 = 17
N2 = 850

With 30 schools in the control group, we need to recruit 17 schools for the experimental group.
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Computing cluster sizes

To compute cluster sizes in both groups, you must provide the numbers of clusters in both groups
by using kspec. The most common method is to specify the numbers of clusters in the control
and experimental groups in the k1() and k2() options, respectively. In addition, the control- and
experimental-group proportions must be specified.

Example 4: Cluster sizes for a two-sample proportions test in a CRD

Continuing with example 1, suppose that we are designing a new study and we are planning to
recruit 40 schools, with 20 schools in each group. Given other study parameters from example 1, we
compute the number of students to recruit from each school by specifying 20 clusters in the k1()
and k2() options:

. power twoproportions 0.4 0.6, k1(20) k2(20) rho(0.2)

Performing iteration ...

Estimated cluster sizes for a two-sample proportions test
Cluster randomized design, Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000 (difference)

p1 = 0.4000
p2 = 0.6000

Cluster design:

K1 = 20
K2 = 20

rho = 0.2000

Estimated cluster sizes and sample sizes:

M1 = 127
M2 = 127
N1 = 2,540
N2 = 2,540

With 20 schools per group, we need to recruit 127 students per school for a total of 2,540 students
per group.

Computing power

To compute power in a CRD, you supply the sample-size information as the numbers of clusters
by using kspec along with either the cluster sizes by using mspec or, less commonly, the sample sizes
by using nspec. The most common method is to specify the k1(), k2(), m1(), and m2() options.
In addition, the control- and experimental-group proportions must be specified.

Example 5: Power for a two-sample proportions test in a CRD

Continuing with example 1, suppose that we can recruit 50 students from each of 40 schools (20
schools per group) and we want to compute power for this design. Given other study parameters from
example 1, we compute the power by specifying 20 clusters in the k1() and k2() options and the
cluster size of 50 in the m1() and m2() options:
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. power twoproportions 0.4 0.6, k1(20) k2(20) m1(50) m2(50) rho(0.2)

Estimated power for a two-sample proportions test
Cluster randomized design, Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
delta = 0.2000 (difference)

p1 = 0.4000
p2 = 0.6000

Cluster design:

K1 = 20
K2 = 20
M1 = 50
M2 = 50
N1 = 1,000
N2 = 1,000

rho = 0.2000

Estimated power:

power = 0.7815

The computed power is about 78%.

Example 6: Multiple values of study parameters

To investigate the effect of the number of clusters in the experimental group on power, we can
specify a list of numbers in the k2() option:

. power twoproportions 0.4 0.6, k1(20) k2(5(10)45) m1(50) m2(50) rho(0.2)
> table(power K2)

Estimated power for a two-sample proportions test
Cluster randomized design, Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1

power K2

.4095 5

.7164 15

.8233 25

.8721 35

.8987 45

In this example, we also specified the table(power K2) option to list the only two columns that
vary. As expected, as the number of clusters increases, the power tends to get closer to 1.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.
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Computing effect size and experimental-group proportion

There are multiple definitions of the effect size for a two-sample proportions test; see Computing
effect size and experimental-group proportion in [PSS-2] power twoproportions for details. To compute
effect size in a CRD, you supply the sample-size information as the numbers of clusters by using
kspec along with either the cluster sizes by using mspec or, less commonly, the sample sizes by using
nspec. The most common method is to specify the k1(), k2(), m1(), and m2() options. In addition,
power and control-group proportion must be specified. You must also decide on the direction of the
effect, which is specified in the direction() option. For the default, upper, meaning p2 > p1,
power twoproportions, cluster uses direction(upper). For lower, meaning p2 < p1, specify
direction(lower).

Example 7: Effect size for a two-sample proportions test in a CRD

Continuing with example 5, we may also be interested in finding the minimum value of the
participation rate in the after-school club that can be detected with a sample of 20 schools per
group, 50 students per school, and 80% power. To compute this, we specify the control-group rate
of 0.4 as the command argument and the required options k1(20), k2(20), m1(50), m2(50), and
power(0.8) and continue to use rho(0.2).

. power twoproportions 0.4, k1(20) k2(20) m1(50) m2(50) power(0.8) rho(0.2)

Performing iteration ...

Estimated experimental-group proportion for a two-sample proportions test
Cluster randomized design, Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1; p2 > p1

Study parameters:

alpha = 0.0500
power = 0.8000

p1 = 0.4000

Cluster design:

K1 = 20
K2 = 20
M1 = 50
M2 = 50
N1 = 1,000
N2 = 1,000

rho = 0.2000

Estimated effect size and experimental-group proportion:

delta = 0.2046 (difference)
p2 = 0.6046

Given the proportion of 0.4 in the control group, the smallest (in absolute value) difference that can
be detected is about 0.2, corresponding to a proportion of about 0.6 in the experimental group.

Testing hypotheses about two proportions in a CRD

There are different ways to account for a CRD or for clustered data when performing hypothesis tests
that compare proportions in two groups. With large samples or when you know intraclass correlation,
the simplest way is to use a large-sample test that accounts for clustered data; see [R] prtest for
details. More commonly, two-level binary models such as melogit are used because they also allow
adjusting for covariates.
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In this section, we briefly demonstrate the prtest command for comparing proportions of two
groups with clustered data.

Example 8: Two-sample proportions test with clustered data

Consider example 4 from [R] prtest that compared the proportions of bacterial pneumonia episodes
in the two groups of infants from 18 clusters in each group. Each group received a different
type of vaccine: the control group received a meningococcal C conjugate vaccine (MnCC) and the
experimental group received the seven-valent pneumococcal conjugate vaccince (PnCRM7). The two
groups are identified by the vaccine variable, and the pneumonia variable records 1 if an infant
had at least one bacterial pneumonia episode and 0 otherwise. See example 4 in [R] prtest for other
details. We replicate the analysis from that example below.

For clustered data, prtest requires that we specify the cluster identifier in the cluster() option
and population intraclass correlation in the rho() option.

. use https://www.stata-press.com/data/r18/pneumoniacrt
(Bacterial pneumonia episodes data from CRT (Hayes and Moulton 2009))

. prtest pneumonia, by(vaccine) cluster(cluster) rho(0.02)

Two-sample test of proportions
Cluster variable: cluster

Group: MnCC Group: PnCRM7
Number of obs = 238 Number of obs = 211
Number of clusters = 18 Number of clusters = 18
Avg. cluster size = 13.22 Avg. cluster size = 11.72
CV cluster size = 0.9605 CV cluster size = 0.7976
Intraclass corr. = 0.0200 Intraclass corr. = 0.0200

Group Mean Std. err. z P>|z| [95% conf. interval]

MnCC .2226891 .0329017 .1582029 .2871753
PnCRM7 .1658768 .0299027 .1072686 .224485

diff .0568123 .04446 -.0303278 .1439524
under H0: .0447641 1.27 0.204

diff = prop(MnCC) - prop(PnCRM7) z = 1.2691
H0: diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(Z < z) = 0.8978 Pr(|Z| > |z|) = 0.2044 Pr(Z > z) = 0.1022

We do not have statistical evidence to reject the null hypothesis that the two group proportions are
the same.

Suppose that we want to use the results of this study to design another study that compares the two
vaccines in the same population. Specifically, we want to compute the required number of clusters
given the average cluster sizes of 13.22 and 11.72 in the two groups, the intraclass correlation of 0.02,
and the coefficient of variation of cluster sizes of 0.96, as shown in the output above. The coefficients
of variation of cluster sizes are slightly different between the two groups, so we use the larger value
to obtain conservative results from power twoproportions, which assumes a common coefficient
of variation of cluster sizes. We also use the observed proportion estimates of 0.22 and 0.17 in the
computation.
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. power twoproportions 0.22 0.17, m1(13.22) m2(11.72) rho(0.02) cvcluster(0.96)

Performing iteration ...

Estimated numbers of clusters for a two-sample proportions test
Cluster randomized design, Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.0500 (difference)

p1 = 0.2200
p2 = 0.1700

Cluster design:

Average M1 = 13.2200
Average M2 = 11.7200

rho = 0.0200
CV_cl = 0.9600

Estimated numbers of clusters and sample sizes:

K1 = 115
K2 = 115
N1 = 1,521
N2 = 1,348

The required number of clusters for each group is 115. Given varying cluster sizes, we need to have
a total of 1,521 infants in the control group and a total of 1,348 infants in the experimental group.

The observed difference of roughly 0.05 between the two proportions may be too small for the
purpose of PSS computations. Suppose that we want to use a larger difference (in absolute value), for
example, from 0.22 to 0.1, between the two proportions.

. power twoproportions 0.22 0.1, m1(13.22) m2(11.72) rho(0.02) cvcluster(0.96)

Performing iteration ...

Estimated numbers of clusters for a two-sample proportions test
Cluster randomized design, Pearson’s chi-squared test
H0: p2 = p1 versus Ha: p2 != p1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.1200 (difference)

p1 = 0.2200
p2 = 0.1000

Cluster design:

Average M1 = 13.2200
Average M2 = 11.7200

rho = 0.0200
CV_cl = 0.9600

Estimated numbers of clusters and sample sizes:

K1 = 17
K2 = 17
N1 = 225
N2 = 200

In this case, we need only 17 clusters and a total of 225 and 200 infants in the control and experimental
groups, respectively.
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Stored results
power twoproportions, cluster stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(K1) number of clusters in the control group
r(K2) number of clusters in the experimental group
r(kratio) ratio of numbers of clusters, K2/K1
r(M1) cluster size of the control group
r(M2) cluster size of the experimental group
r(mratio) ratio of cluster sizes, M2/M1
r(N) total sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
r(nratio) ratio of sample sizes, N2/N1
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(p1) control-group proportion
r(p2) experimental-group proportion
r(diff) difference between the experimental- and control-group proportions
r(ratio) ratio of the experimental-group proportion to the control-group proportion
r(rdiff) risk difference
r(rrisk) relative risk
r(oratio) odds ratio
r(rho) intraclass correlation
r(CV cluster) coefficient of variation for cluster sizes
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for estimated parameter
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) twoproportions
r(design) CRD
r(test) chi2
r(effect) specified effect: diff, ratio, etc.
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
The computation in a CRD is based on the Pearson’s χ2 test under the large-sample normal

approximation, adjusted by the cluster design; see Pearson’s χ2 test under Methods and formulas in
[PSS-2] power twoproportions for the common notation for a two-sample proportions test.
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In a CRD, let K1 and K2 be the numbers of clusters in the control and experimental groups,
respectively, and M1 and M2 be the cluster sizes of the control and experimental groups, respectively.
We have n1 = K1M1 and n2 = K2M2. Let Rk be the ratio of the numbers of clusters, K2/K1,
and Rm be the ratio of the cluster sizes, M2/M1. Let ρ be the intraclass correlation coefficient and
DE1 and DE2 be the design effect in the control and experimental groups, with

DE1 = 1 + ρ(M1 − 1) and DE2 = 1 + ρ(M2 − 1)

For unequal cluster sizes, we assume that the cluster sizes are independent and identically distributed
and are small relative to the number of clusters; see Ahn, Heo, and Zhang (2015) for details. Let
the coefficient of variation of the cluster sizes be CVcl. According to van Breukelen, Candel, and
Berger (2007) and Campbell and Walters (2014), to adjust for varying cluster sizes, define the relative
efficiency of unequal versus equal cluster sizes as

REi = 1− λi(1− λi)CV2
cl

where λi = ρMi/(ρMi+1−ρ), where i = 1 corresponds to the control group and i = 2 corresponds
to the experimental group.

When cluster sizes are equal, we use RE1 = RE2 = 1 in the formulas.

For a large sample size, a binomial process can be approximated by a normal distribution. Similarly
to the discussion for the two-sample proportions test in the individual-level design, the asymptotic
sampling distribution of the test statistic

z =
(p̂2 − p̂1)− (p2 − p1)√
p(1− p)

(
DE1

n1RE1
+ DE2

n2RE2

)
is standard normal, where the pooled proportion p is defined as

p =
n1p1RE1/DE1 + n2p2RE2/DE2

n1RE1/DE1 + n2RE2/DE2

The square of this statistic, z2, has an approximate χ2 distribution with one degree of freedom,
and the corresponding test is known as Pearson’s χ2 test.

Let α be the significance level, β be the probability of a type II error, and z1−α and zβ be the
(1− α)th and the βth quantiles of the standard normal distribution.

The power π = 1− β is computed using

π =


Φ
{

(p2−p1)−z1−ασp
σD

}
for an upper one-sided test

Φ
{
−(p2−p1)−z1−ασp

σD

}
for a lower one-sided test

Φ
{

(p2−p1)−z1−α/2σp
σD

}
+ Φ

{
−(p2−p1)−z1−α/2σp

σD

}
for a two-sided test

(1)

where Φ(·) is the c.d.f. of the standard normal distribution, σp is the pooled standard deviation, and
σD is the standard deviation of the difference between proportions, both defined below.

σp =
√
p(1− p){DE1/(n1RE1) + DE2/(n2RE2)}
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σD =
√
p1(1− p1)DE1/(n1RE1) + p2(1− p2)DE2/(n2RE2)

The above definitions of σp and σD are based on the “minimum variance weights” method in
Ahn, Heo, and Zhang (2015, 32). The relative efficiencies RE1 and RE2 are used to adjust for varying
cluster sizes approximately.

Given the cluster sizes M1 and M2, and intraclass correlation ρ, we can compute Rm, DE1, DE2,
RE1, and RE2. With these parameters and the ratio of the numbers of clusters Rk, the numbers of
clusters K1 and K2 for a one-sided test are computed as follows. K1 is computed by inverting a
one-sided power equation from (1),

K1 =

{
z1−α

√
p(1− p)− zβ

√
w1p1(1− p1) + w2p2(1− p2)

}2

w1w2 (p2 − p1)
2

(RE1/DE1 +RkRmRE2/DE2)

where w1 = 1− 1/{1 +RkRmDE1RE2/(DE2RE1)} and w2 = 1−w1. Then, K2 is computed using
K2 = RkK1.

In all other cases, parameters are computed iteratively using the power equations in (1).
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power pairedproportions — Power analysis for a two-sample paired-proportions test
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Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power pairedproportions computes sample size, power, or target discordant proportions for a
two-sample paired-proportions test, also known as McNemar’s test. By default, it computes sample
size for given power and the values of the discordant or marginal proportions. Alternatively, it can
compute power for given sample size and the values of the discordant or marginal proportions, or it can
compute the target discordant proportions for given sample size and power. Also see [PSS-2] power
for a general introduction to the power command using hypothesis tests.

Quick start
Using discordant proportions

Sample size for two-sided McNemar’s test of marginal homogeneity H0: π12 = π21 when p12 = 0.1
and p21 = 0.2 with default power of 0.8 and significance level α = 0.05

power pairedproportions .1 .2

Same as above, specified as p12 = 0.1 and difference between proportions p21 − p12 = 0.1
power pairedproportions .1, diff(.1)

Same as above, specified as p12 = 0.1 and ratio p21/p12 = 2
power pairedproportions .1, ratio(2)

Same as above, but for ratios of 1.8, 1.9, 2.0, 2.1, and 2.2
power pairedproportions .1, ratio(1.8(.1)2.2)

Same as above, but display results as a graph of sample size versus ratio
power pairedproportions .1, ratio(1.8(.1)2.2) graph

For a one-sided test with α = 0.01 and sample size of 300
power pairedproportions .1 .2, alpha(0.01) onesided n(300)

Effect size and target discordant proportions for sample size of 200, power of 0.9, and sum of
discordant proportions p12 + p21 = 0.4

power pairedproportions, n(200) power(.9) prdiscordant(.4)

273
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Using marginal proportions

Sample size using marginal proportions p+1 = 0.6 and p1+ = 0.7 with a correlation of 0.35 between
paired observations for default power of 0.8 and α = 0.05

power pairedproportions .6 .7, corr(.35)

Same as above, specified as p+1 = 0.6 and difference p1+ − p+1 = 0.1
power pairedproportions .6, corr(.35) diff(.1)

Same as above, specified as p+1 = 0.6 and relative risk p1+/p+1 = 1.167
power pairedproportions .6, corr(.35) rrisk(1.167)

Same as above, specified as p+1 = 0.6 and odds ratio {p1+/(1− p1+}/{p+1/(1− p+1)} = 1.556
power pairedproportions .6, corr(.35) oratio(1.556)

Power for a sample size of 250
power pairedproportions .6 .7, corr(.35) n(250)

Menu
Statistics > Power, precision, and sample size
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Syntax

Compute sample size

Specify discordant proportions

power pairedproportions p12 p21

[
, power(numlist) discordopts

]
Specify marginal proportions

power pairedproportions p1+ p+1 , corr(numlist)
[
power(numlist) margopts

]

Compute power

Specify discordant proportions

power pairedproportions p12 p21 , n(numlist)
[

discordopts
]

Specify marginal proportions

power pairedproportions p1+ p+1 , corr(numlist) n(numlist)
[

margopts
]

Compute effect size and target discordant proportions

power pairedproportions, n(numlist) power(numlist) prdiscordant(numlist)[
discordopts

]

where p12 is the probability of a success at occasion 1 and a failure at occasion 2, and p21 is the
probability of a failure at occasion 1 and a success at occasion 2. Each represents the probability
of a discordant pair. p1+ is the marginal probability of a success for occasion 1, and p+1 is the
marginal probability of a success for occasion 2. Each may be specified either as one number or
as a list of values in parentheses (see [U] 11.1.8 numlist).
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discordopts Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗prdiscordant(numlist) sum of the discordant proportions, p12 + p21
∗sum(numlist) synonym for prdiscordant()
∗diff(numlist) difference between the discordant proportions, p21 − p12
∗ratio(numlist) ratio of the discordant proportions, p21/p12

effect(effect) specify the type of effect to display; default is effect(diff)

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value for sample size or difference between
discordant proportions

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

notitle does not appear in the dialog box.
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margopts Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗corr(numlist) correlation between the paired observations
∗diff(numlist) difference between the marginal proportions, p+1 − p1+
∗ratio(numlist) ratio of the marginal proportions, p+1/p1+
∗rrisk(numlist) relative risk, p+1/p1+
∗oratio(numlist) odds ratio, {p+1(1− p1+)}/{p1+(1− p+1)}
effect(effect) specify the type of effect to display; default is effect(diff)

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

notitle does not appear in the dialog box.

effect Description

diff difference between the discordant proportions, p21 − p12, or
marginal proportions, p+1 − p1+; the default

ratio ratio of the discordant proportions, p21/p12, or of the
marginal proportions, p+1/p1+

rrisk relative risk, p+1/p1+; may only be specified with marginal
proportions

oratio odds ratio, {p+1(1− p1+)}/{p1+(1− p+1)}; may only be
specified with marginal proportions
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where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N number of subjects N
delta effect size δ
p12 success–failure proportion p12

p21 failure–success proportion p21

pmarg1 success proportion in occasion 1 p1+

pmarg2 success proportion in occasion 2 p+1

corr correlation between paired observations ρ
prdiscordant proportion of discordant pairs p12 + p21

sum sum of discordant proportions p12 + p21

diff difference between discordant proportions p21 − p12

difference between marginal proportions p+1 − p1+

ratio ratio of discordant proportions p21/p12

ratio of marginal proportions p+1/p1+

rrisk relative risk for marginal proportions p+1/p1+

oratio odds ratio for marginal proportions θ
target target parameter; synonym for p12
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Columns p12 and p21 are shown in the default table if discordant proportions are specified.
Columns pmarg1, pmarg2, and corr are shown in the default table if marginal proportions are specified.
Columns pmarg1, pmarg2, corr, rrisk, and oratio are available only if marginal proportions are specified.
Columns diff, ratio, prdiscordant, sum, rrisk, and oratio are shown in the default table if specified.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS-2] power. The nfractional option is
allowed only for sample-size determination.

prdiscordant(numlist) specifies the proportion of discordant pairs or the sum of the discordant
proportions, p12 +p21. See Alternative ways of specifying effect for details about the specification
of this option.

sum(numlist) is a synonym for prdiscordant(). See Alternative ways of specifying effect for
details about the specification of this option.
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corr(numlist) specifies the correlation between paired observations. This option is required if marginal
proportions are specified.

diff(numlist) specifies the difference between the discordant proportions, p21−p12, or the marginal
proportions, p+1−p1+. See Alternative ways of specifying effect for details about the specification
of this option.

ratio(numlist) specifies the ratio of the discordant proportions, p21/p12, or the marginal proportions,
p+1/p1+. See Alternative ways of specifying effect for details about the specification of this option.

rrisk(numlist) specifies the relative risk of the marginal proportions, p+1/p1+. See Alternative
ways of specifying effect for details about the specification of this option.

oratio(numlist) specifies the odds ratio of the marginal proportions, {p+1(1−p1+)}/{p1+(1−p+1)}.
See Alternative ways of specifying effect for details about the specification of this option.

effect(effect) specifies the type of the effect size to be reported in the output as delta. effect is
one of diff or ratio for discordant proportions and one of diff, ratio, rrisk, or oratio
for marginal proportions. By default, the effect size delta is the difference between proportions.
If diff(), ratio(), rrisk(), or oratio() is specified, the effect size delta will contain the
effect corresponding to the specified option. For example, if ratio() is specified, delta will
contain the ratio of the proportions. See Alternative ways of specifying effect for details about the
specification of this option.

direction(), onesided, parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value for the estimated parameter. The estimated parameter is sample
size for sample-size determination or the difference between the discordant proportions for the
effect-size determination.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power pairedproportions but is not shown in the dialog
box:

notitle; see [PSS-2] power.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power pairedproportions

Alternative ways of specifying effect
Effect specifications for discordant proportions
Effect specifications for marginal proportions

Computing sample size
Computing power
Computing effect size and target discordant proportions
Testing a hypothesis about two correlated proportions

This entry describes the power pairedproportions command and the methodology for power
and sample-size analysis for a two-sample paired-proportions test. See [PSS-2] Intro (power) for a
general introduction to power and sample-size analysis and [PSS-2] power for a general introduction
to the power command using hypothesis tests.

Introduction
The analysis of paired proportions is used to compare two dependent binomial populations.

Dependent binomial data arise from matched case–control studies, where the cases are matched to
the controls on the basis of similar demographic characteristics, or from longitudinal studies, where
the same cases serve as their own controls over time or for different treatments. In all cases, each
observation represents a pair of correlated binary outcomes.

There are many examples of studies where a researcher would like to compare two dependent
proportions. For example, a state highway department might be concerned that tollbooth workers may
experience hearing loss because of chronic exposure to traffic noise. It wants to test whether the
proportion of workers with moderate to severe hearing loss is the same between a sample of workers
exposed to traffic noise and a sample of workers sheltered by the quieter interior of the booth. Or a
pediatrician might conduct a study to compare the proportions of males and females with a particular
food allergy in a study of male/female fraternal twins.

This entry describes power and sample-size analysis for correlated binary outcomes in a two-way
contingency table. Consider a 2 × 2 table from a study where the outcome of interest is a pair of
results from “occasion 1” and “occasion 2”, each either a “success” or a “failure”.

Occasion 2
Occasion 1 Success Failure Total
Success n11 n12 n1+

Failure n21 n22 n2+

Total n+1 n+2 n

n is the total number of pairs; n11 is the number of pairs for which the response is a success for
both occasions; n12 is the number of success–failure pairs for which the response is a success on
occasion 1 and a failure on occasion 2; n21 is the number of failure–success pairs for which the
response is a failure on occasion 1 and a success on occasion 2; and n22 is the number of pairs for
which the response is a failure for both occasions. The success–failure and failure–success pairs form
discordant pairs, and the remaining pairs form concordant pairs.
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The above table can also be expressed in terms of the proportions.

Occasion 2
Occasion 1 Success Failure Total
Success p11 p12 p1+

Failure p21 p22 1− p1+

Total p+1 1− p+1 1

p1+ is the success probability for occasion 1, and p+1 is the success probability for occasion 2.
The marginal probabilities, p1+ and p+1, are used to compare the outcomes between occasion 1 and
occasion 2.

The null hypothesis for the test of equality of marginal proportions, also known as the test of
marginal homogeneity, is H0: p+1 = p1+. The null hypothesis can be formulated in terms of the
discordant probabilities, the failure–success probability, p21, and the success–failure probability, p12,
using the relationships p+1 = p11 + p21 and p1+ = p11 + p12. The considered null hypothesis is
then H0: p21 = p12 versus the two-sided alternative hypothesis Ha: p21 6= p12, the upper one-sided
alternative Ha: p21 > p12, or the lower one-sided alternative Ha: p21 < p12. For a 2× 2 table, the
test of marginal homogeneity is also called a “test of symmetry”.

A large-sample McNemar’s test is commonly used for testing the above hypotheses. Under the
null hypothesis, the test statistic is distributed as a χ2

1 distribution with 1 degree of freedom.

power pairedproportions provides power and sample-size analysis for McNemar’s test of two
correlated proportions.

Using power pairedproportions

power pairedproportions computes sample size, power, or target discordant proportions for a
two-sample paired-proportions test. All computations are performed for a two-sided hypothesis test
where, by default, the significance level is set to 0.05. You may change the significance level by
specifying the alpha() option. You can specify the onesided option to request a one-sided test.

For sample-size and power determinations, power pairedproportions provides a number of
ways of specifying the magnitude of an effect desired to be detected by the test. Below we describe
the use of the command, assuming that the desired effect is expressed by the values of the two
discordant proportions; see Alternative ways of specifying effect for other specifications.

To compute sample size, you must specify the discordant proportions, p12 and p21, and, optionally,
the power of the test in option power(). The default power is set to 0.8.

To compute power, you must specify the sample size in option n() and the discordant proportions,
p12 and p21.

The effect-size determination is available only for discordant proportions. To compute effect size
and target discordant proportions, you must specify the sample size in option n(), the power in option
power(), the sum of the discordant proportions in option prdiscordant(), and, optionally, the
direction of the effect. The direction is upper by default, direction(upper), which means that the
failure–success proportion, p21, is assumed to be larger than the specified success–failure proportion,
p12. You can change the direction to lower, which means that p21 is assumed to be smaller than p12,
by specifying the direction(lower) option.

There are multiple definitions of effect size for a two-sample paired-proportions test. The effect()
option specifies what definition power pairedproportions should use when reporting the effect
size, which is labeled as delta in the output of the power command.
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When you specify the discordant proportions, the available definitions are the difference p21− p12

between the discordant proportions, effect(diff), or the ratio p21/p12 of the discordant proportions,
effect(ratio).

When you specify the marginal proportions, the available definitions are the difference p+1− p1+

between the marginal proportions, effect(diff); the relative risk or ratio p+1/p1+ of the marginal
proportions, effect(rrisk) or effect(ratio); or the odds ratio {p+1(1−p1+)}/{p1+(1−p+1)}
of the marginal proportions, effect(oratio).

When effect() is specified, the effect size delta in the output of the power command contains
the estimate of the corresponding effect and is labeled accordingly. By default, delta corresponds
to the difference between proportions. If any one of the options diff(), ratio(), rrisk(), or
oratio() is specified and effect() is not specified, delta will contain the effect size corresponding
to the specified option.

Some of power pairedproportions’s computations require iteration. For example, a sample
size for a two-sided test is obtained by iteratively solving a nonlinear power equation. The default
initial value for the sample size for the iteration procedure is obtained using a closed-form one-sided
formula. If you desire, you may change it by specifying the init() option. See [PSS-2] power for
the descriptions of other options that control the iteration procedure.

Alternative ways of specifying effect

To compute power or sample size, you must also specify the magnitude of the effect that is desired
to be detected by the test. You can do this by specifying either the discordant proportions, p12 and
p21,

power pairedproportions p12 p21 , . . .

or the marginal proportions, p1+ and p+1:

power pairedproportions p1+ p+1 , corr(numlist) . . .

When you specify marginal proportions, you must also specify the correlation between paired
observations in option corr().

Below we describe other alternative specifications separately for discordant proportions and marginal
proportions.

Effect specifications for discordant proportions

Instead of specifying p21, you may specify the discordant proportion p12 as the argument to the
command and the sum of the discordant proportions, p12 +p21, in option prdiscordant() or option
sum(),

power pairedproportions p12 , prdiscordant(numlist) . . .

power pairedproportions p12 , sum(numlist) . . .

the difference between the discordant proportions, p21 − p12, in option diff(),

power pairedproportions p12 , diff(numlist) . . .

or the ratio of the discordant proportions, p21/p12, in option ratio():

power pairedproportions p12 , ratio(numlist) . . .

You may omit both command arguments p12 and p21 altogether and specify options prdiscor-
dant() or sum(), diff(), and ratio() in pairs.
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For example, you can specify the sum p12 + p21 and difference p21 − p12 of the discordant
proportions:

power pairedproportions , prdiscordant(numlist) diff(numlist) . . .

Or you can specify the sum p12 + p21 and ratio p21/p12 of the discordant proportions:

power pairedproportions , sum(numlist) ratio(numlist) . . .

Or you can specify the difference p21 − p12 and ratio p21/p12 of the discordant proportions:

power pairedproportions , diff(numlist) ratio(numlist) . . .

When discordant proportions are specified, the effect size may be expressed as the difference
between discordant proportions, p21 − p12, or the ratio of discordant proportions, p21/p12. You may
choose what effect to compute by specifying the effect() option.

By default, effect size is the difference between the discordant proportions. For example, for the
specification below, the effect size δ is the difference between the discordant proportions.

power pairedproportions p12 p21 , . . .

The above specification is equivalent to

power pairedproportions p12 p21 , effect(diff) . . .

Alternatively, you may request the effect size to be the ratio instead of the difference.

power pairedproportions p12 p21 , effect(ratio) . . .

Likewise, if you specify the ratio() option, the effect size is the ratio of the proportions.

Effect specifications for marginal proportions

Instead of specifying p+1, you may specify the marginal proportion, p1+, as the argument to the
command and the difference between the marginal proportions, p+1 − p1+, in option diff(),

power pairedproportions p1+ , corr(numlist) diff(numlist) . . .

the ratio of the marginal proportions or relative risk, p+1/p1+, in option ratio() or option rrisk(),

power pairedproportions p1+ , corr(numlist) ratio(numlist) . . .

power pairedproportions p1+ , corr(numlist) rrisk(numlist) . . .

or the odds ratio, {p+1(1− p1+)}/{p1+(1− p+1)}, in option oratio():

power pairedproportions p1+ , corr(numlist) oratio(numlist) . . .

Alternatively, you may omit both command arguments p1+ and p+1 and specify one of the
combinations of diff() and rrisk() or ratio(), or oratio() and rrisk() or ratio(). You
may not combine diff() and oratio(), because marginal proportions cannot be identified uniquely
from this combination.

For example, you can specify the difference p+1 − p1+ and ratio p+1/p1+ of the marginal
proportions,

power pairedproportions , corr(numlist) diff(numlist) ratio(numlist) . . .

or the odds ratio, {p+1(1− p1+)}/{p1+(1− p+1)}, and the relative risk, p+1/p1+:

power pairedproportions , corr(numlist) oratio(numlist) rrisk(numlist) . . .
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The effect size for marginal proportions may be defined as one of the difference between marginal
proportions, p+1 − p1+, the odds ratio, {p+1(1 − p1+)}/{p1+(1 − p+1)}, or the relative risk or,
equivalently, the ratio p+1/p1+. The effect() option for marginal proportions may contain one of
diff, oratio, rrisk, or ratio.

By default, effect size is defined as the difference between the marginal proportions. For example,
the following specification,

power pairedproportions p1+ p+1 , corr(numlist) . . .

is equivalent to

power pairedproportions p1+ p+1 , corr(numlist) effect(diff) . . .

You may request other measures of effect size for marginal proportions such as the risk ratio,

power pairedproportions p1+ p+1 , corr(numlist) effect(rrisk) . . .

or odds ratio:

power pairedproportions p1+ p+1 , corr(numlist) effect(oratio) . . .

In the following sections, we describe the use of power pairedproportions accompanied by
examples for computing sample size, power, and target discordant proportion.

Computing sample size

To compute sample size, you must specify the discordant proportions, p12 and p21, and, optionally,
the power of the test in option power(). The default power is set to 0.8. Instead of the discordant
proportions, you can specify an effect of interest as shown in Alternative ways of specifying effect.

Example 1: Sample size for a two-sample paired-proportions test

Consider a study from Agresti (2013, 413) where the same group of subjects was asked who
they voted for in the 2004 and 2008 presidential elections. In 2008, we witnessed a shift from the
Republican President George W. Bush, who was finishing his second term, to Democratic President
Barack Obama, who was beginning his first term. Suppose that we would like to conduct another
survey for the 2012 and 2016 elections to see whether a similar shift—this time from a Democrat
to a Republican—would occur in 2016, when President Obama finishes his second term. We are
interested in testing the hypothesis whether the proportions of votes for a Democratic president in
2012 will be the same as in 2016.

Consider the following 2× 2 table:

2016 Election
2012 Election Democratic Republican Total

Democratic p11 p12 p1+

Republican p21 p22 1− p1+

Total p+1 1− p+1 1

The test of marginal homogeneity that the proportion of Democratic votes in 2012 will be the
same in 2016 is given by the null hypothesis H0: p1+ = p+1. This is equivalent to testing whether
the proportion p12 of voters who changed parties from Democratic to Republican is the same as
the proportion p21 of voters who changed parties from Republican to Democratic between 2012 and
2016. The corresponding null hypothesis that tests these discordant proportions is H0: p12 = p21.
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Suppose that the previous survey reported that the proportion of respondents who voted for
a Democratic president in 2012 is p1+ = 0.53. Using this empirical evidence, a political expert
believes that the odds of a candidate being elected as the president when his or her party has
already served two consecutive terms as the president are low. According to the expert’s opinion,
the odds of the population voting Democrat in 2016 to the odds of the population voting Democrat
in 2012 are 2:3; that is, the corresponding odds ratio is θ = 2/3 = 0.667. Using the relationship
between the odds ratio and marginal probabilities, we compute the marginal probability p+1 to be
= [0.667× {0.53/(1− 0.53)}]/(1 + [(0.667× {0.53/(1− 0.53)}]) = 0.4293.

It is generally believed that voting behavior is positively correlated, which means that a person
voting for one party in an election year is very likely to vote for the same party in the next election
year. Suppose the expert posits a correlation of 0.8.

We wish to compute the sample size required for our survey to detect the difference between
the considered marginal proportions. To compute the minimum sample size, we specify the marginal
proportions after the command name and the correlation in option corr():

. power pairedproportions 0.53 0.4293, corr(0.8)

Performing iteration ...

Estimated sample size for a two-sample paired-proportions test
Large-sample McNemar’s test
H0: p+1 = p1+ versus Ha: p+1 != p1+

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.1007 (difference)

p1+ = 0.5300
p+1 = 0.4293

corr = 0.8000

Estimated sample size:

N = 82

We find that 82 subjects are required in our survey for a 5%-level two-sided McNemar’s test to detect
a change in the proportion voting Democrat from 0.53 in 2012 to 0.4293 in 2016, which corresponds
to the difference of δ = 0.4293− 0.53 = −0.1007, with 80% power.

Example 2: Reporting odds ratio

By default, as in example 1, the effect size δ is the difference between the marginal proportions.
Alternatively, we can request that the effect size be reported as the odds ratio by specifying option
effect(oratio).
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. power pairedproportions 0.53 0.4293, corr(0.8) effect(oratio)

Performing iteration ...

Estimated sample size for a two-sample paired-proportions test
Large-sample McNemar’s test
H0: p+1 = p1+ versus Ha: p+1 != p1+

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.6671 (odds ratio)

p1+ = 0.5300
p+1 = 0.4293

corr = 0.8000

Estimated sample size:

N = 82

The effect size delta now contains the odds ratio estimated from the specified marginal proportions.
Also see Alternative ways of specifying effect for other available measures of effect.

Example 3: Specifying odds ratio

In example 1, we computed the second marginal proportion, p+1, using the postulated values of the
first marginal proportion, p1+, and the odds ratio, θ, and we specified the two marginal proportions
with power pairedproportions. We can instead specify the first marginal proportion and the odds
ratio directly:

. power pairedproportions 0.53, corr(0.8) oratio(0.667)

Performing iteration ...

Estimated sample size for a two-sample paired-proportions test
Large-sample McNemar’s test
H0: p+1 = p1+ versus Ha: p+1 != p1+

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.6670 (odds ratio)

p1+ = 0.5300
p+1 = 0.4293

corr = 0.8000
odds ratio = 0.6670

Estimated sample size:

N = 82

When the oratio() option is specified, the reported effect size delta corresponds to the odds ratio,
and the value of the odds ratio specified in oratio() is also reported in the output.

Also see Alternative ways of specifying effect for other ways of specifying an effect.
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Example 4: Specifying discordant proportions

Instead of marginal proportions, as in example 1, we can specify discordant proportions. We
compute discordant proportions using (1) and the estimates of marginal proportions and correlation
in this study: p12 = 0.53(1 − 0.4293) − 0.8

√
0.53× (1− 0.53)× 0.4293× (1− 0.4293) = 0.105

and p21 = 0.105 + 0.4293− 0.53 = 0.004.
. power pairedproportions 0.105 0.004

Performing iteration ...

Estimated sample size for a two-sample paired-proportions test
Large-sample McNemar’s test
H0: p21 = p12 versus Ha: p21 != p12

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.1010 (difference)

p12 = 0.1050
p21 = 0.0040

Estimated sample size:

N = 82

We obtain the same sample size of 82 as in example 1. The reported effect size delta corresponds
to the difference of −0.1010 between the discordant proportions.

Also see Alternative ways of specifying effect for other ways of specifying the effect desired to
be detected by the test.

Computing power

To compute power, you must specify the sample size in option n() and the discordant proportions,
p12 and p21. Instead of the discordant proportions, you can specify an effect of interest as shown in
Alternative ways of specifying effect.

Example 5: Power of a two-sample paired-proportions test

Continuing with example 4, we will suppose that we anticipate to obtain a sample of 100 subjects
and want to compute the power corresponding to this sample size.

In addition to the discordant proportions, we specify the sample size of 100 in option n():
. power pairedproportions 0.105 0.004, n(100)

Estimated power for a two-sample paired-proportions test
Large-sample McNemar’s test
H0: p21 = p12 versus Ha: p21 != p12

Study parameters:

alpha = 0.0500
N = 100

delta = -0.1010 (difference)
p12 = 0.1050
p21 = 0.0040

Estimated power:

power = 0.8759

As expected, with a larger sample size, this example achieves a larger power, about 88%, compared
with example 4.
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Example 6: Alternative specification of an effect for power determination

Continuing with example 5, we can specify the first discordant proportion, p12, and one of the
options prdiscordant(), diff(), or ratio() instead of specifying both discordant proportions.

For example, let’s specify the sum of the discordant proportions instead of the discordant proportion
p21:

. power pairedproportions 0.105, n(100) prdiscordant(0.109)

Estimated power for a two-sample paired-proportions test
Large-sample McNemar’s test
H0: p21 = p12 versus Ha: p21 != p12

Study parameters:

alpha = 0.0500
N = 100

delta = -0.1010 (difference)
p12 = 0.1050
p21 = 0.0040

p12 + p21 = 0.1090

Estimated power:

power = 0.8759

We obtain results identical to those in example 5.

Example 7: Power determination with marginal proportions

We can compute the power corresponding to the sample of 100 subjects for the specification using
marginal proportions from example 1 by additionally specifying option n(100):

. power pairedproportions 0.53 0.4293, corr(0.8) n(100)

Estimated power for a two-sample paired-proportions test
Large-sample McNemar’s test
H0: p+1 = p1+ versus Ha: p+1 != p1+

Study parameters:

alpha = 0.0500
N = 100

delta = -0.1007 (difference)
p1+ = 0.5300
p+1 = 0.4293

corr = 0.8000

Estimated power:

power = 0.8739

As expected, the estimated power of 0.8739 is very close to the estimated power of 0.8759 in
example 5. If we had used input values for discordant proportions with more precision in example 5,
we would have obtained nearly identical results.

Example 8: Multiple values of study parameters

Continuing with example 7, we would like to assess the effect of varying correlation on the power
of our study.
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We specify a range of correlations between 0.2 and 0.8 with a step size of 0.1 in option corr():

. power pairedproportions 0.53 0.4293, corr(0.2(0.1)0.8) n(100)

Estimated power for a two-sample paired-proportions test
Large-sample McNemar’s test
H0: p+1 = p1+ versus Ha: p+1 != p1+

alpha power N delta pmarg1 pmarg2 corr

.05 .3509 100 -.1007 .53 .4293 .2

.05 .3913 100 -.1007 .53 .4293 .3

.05 .4429 100 -.1007 .53 .4293 .4

.05 .5105 100 -.1007 .53 .4293 .5

.05 .6008 100 -.1007 .53 .4293 .6

.05 .7223 100 -.1007 .53 .4293 .7

.05 .8739 100 -.1007 .53 .4293 .8

For a given sample size, the power increases as the correlation increases, which means that for a
given power, the required sample size decreases as the correlation increases. This demonstrates that
a paired design can improve the precision of the statistical inference compared with an independent
design, which corresponds to a correlation of zero.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

Computing effect size and target discordant proportions

The effect-size determination is available only for discordant proportions. As we describe in detail
in Alternative ways of specifying effect, there are multiple definitions of the effect size for a paired-
proportions test. The default is the difference between the failure–success proportion, p21, and the
success–failure proportion, p12.

Sometimes, we may be interested in determining the smallest effect and the corresponding discordant
proportions that yield a statistically significant result for prespecified sample size and power. In this
case, power, sample size, and the sum of the discordant proportions must be specified. In addition,
you must also decide on the direction of the effect: upper, meaning p21 > p12, or lower, meaning
p21 < p12. The direction may be specified in the direction() option; direction(upper) is the
default.

Example 9: Compute effect size and target proportions

Suppose that we want to compute the corresponding discordant proportions for given sample size
and power. To compute the discordant proportions, we must specify the proportion of discordant pairs
(the sum of the discordant proportions) in addition to sample size and power.

Continuing with example 4, we will compute the corresponding effect size and target proportions
for the sample size of 82 and the power of 0.8 using 0.109 for the proportion of discordant pairs.
We also specify the direction(lower) option because p21 < p12 in our example.
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. power pairedproportions, prdiscordant(.109) n(82) power(0.8) direction(lower)

Performing iteration ...

Estimated discordant proportions for a two-sample paired-proportions test
Large-sample McNemar’s test
H0: p21 = p12 versus Ha: p21 != p12; p21 < p12

Study parameters:

alpha = 0.0500
power = 0.8000

N = 82
p12 + p21 = 0.1090

Estimated effect size and discordant proportions:

delta = -0.1007 (difference)
p12 = 0.1048
p21 = 0.0042

The estimated discordant proportions of 0.1048 and 0.0042 are very close to the respective original
estimates of the discordant proportions of 0.105 and 0.004 from example 4.

Testing a hypothesis about two correlated proportions

Suppose we collected data from two paired binomial samples and wish to test whether the two
proportions of an outcome of interest are the same. We wish to use McNemar’s test to test this
hypothesis. We can use the mcc command to perform McNemar’s test; see [R] Epitab for details.

Example 10: Testing for paired proportions

We use data provided in table 11.1 of Agresti (2013, 414) that present the results of a General
Social Survey, which asked males who they voted for in the 2004 and 2008 presidential elections.

2008 Election
2004 Election Democrat Republican Total

Democrat 175 16 191
Republican 54 188 42

Total 229 204 433

We wish to test whether there was a change in the voting behavior of males in 2008 compared
with 2004 using McNemar’s test. We use mcci, the immediate form of mcc, to perform this test.
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. mcci 175 16 54 188

Controls
Cases Exposed Unexposed Total

Exposed 175 16 191
Unexposed 54 188 242

Total 229 204 433

McNemar’s chi2(1) = 20.63 Prob > chi2 = 0.0000
Exact McNemar significance probability = 0.0000

Proportion with factor
Cases .4411085
Controls .5288684 [95% conf. interval]

difference -.0877598 -.1270274 -.0484923
ratio .8340611 .7711619 .9020907
rel. diff. -.1862745 -.2738252 -.0987238

odds ratio .2962963 .1582882 .5254949 (exact)

McNemar’s test statistic is 20.63 with the corresponding two-sided p-value less than 10−4, which
provides strong evidence of a shift in the Democratic direction among male voters in 2008.

We use the estimates of this study to perform a sample-size analysis we would have conducted before
a new study. The discordant proportions are p12 = 16/433 = 0.037 and p21 = 54/433 = 0.125.

. power pairedproportions 0.037 0.125

Performing iteration ...

Estimated sample size for a two-sample paired-proportions test
Large-sample McNemar’s test
H0: p21 = p12 versus Ha: p21 != p12

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.0880 (difference)

p12 = 0.0370
p21 = 0.1250

Estimated sample size:

N = 162

We find that we need a sample of 162 respondents to detect a difference of 0.0880 between discordant
proportions of 0.037 and 0.125 with 80% power using a 5%-level two-sided test.
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Stored results
power pairedproportions stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) sample size
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(p12) success–failure proportion (first discordant proportion)
r(p21) failure–success proportion (second discordant proportion)
r(pmarg1) success proportion for occasion 1 (first marginal proportion)
r(pmarg2) success proportion for occasion 2 (second marginal proportion)
r(corr) correlation between paired observations
r(diff) difference between proportions
r(ratio) ratio of proportions
r(prdiscordant) proportion of discordant pairs
r(sum) sum of discordant proportions
r(rrisk) relative risk
r(oratio) odds ratio
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample size or difference between discordant proportions
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(effect) diff, ratio, oratio, or rrisk
r(type) test
r(method) pairedproportions
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
Consider a 2×2 contingency table formed with n pairs of observations. The first subscript i = 1, 2

denotes the success of failure in occasion 1, and the second subscript j = 1, 2 denotes the success
of failure in occasion 2.

Occasion 2
Occasion 1 Success Failure Total
Success p11 p12 p1+

Failure p21 p22 1− p1+

Total p+1 1− p+1 1
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Each element in the above table denotes the probability of observing a specific pair. For example,
p11 is the probability of jointly observing a success on occasion 1 and occasion 2, and p12 is the
probability of observing a success on occasion 1 and a failure on occasion 2. p1+ is the marginal
probability of a success on occasion 1, and p+1 is the marginal probability of a success on occasion 2.
The off-diagonal proportions p12 and p21 are referred to as “discordant proportions”. The relationship
between the discordant proportions and the marginal proportions is given by

p12 = p1+(1− p+1)− ρ
√
p1+(1− p1+) p+1(1− p+1)

p21 = p12 + p+1 − p1+ (1)

where ρ is the correlation between the paired observations.

A two-sample paired proportions test involves testing the null hypothesis H0: p+1 = p1+ versus
the two-sided alternative hypothesis Ha: p+1 6= p1+, the upper one-sided alternative Ha: p+1 > p1+,
or the lower one-sided alternative Ha : p+1 < p1+. Using the relationship p1+ = p11 + p12 and
p+1 = p11 + p21, test hypotheses may be stated in terms of the discordant proportions, for example,
H0: p21 = p12 versus Ha: p21 6= p12.

McNemar’s test statistic is:

χ2 = (n12 − n21)2/(n12 + n21)

where nij is the number of successes (i = 1) or failures (i = 2) on occasion 1 and the number of
successes (j = 1) or failures (j = 2) on occasion 2; see Lachin (2011, chap. 5) for details. This test
statistic has an approximately χ2 distribution with 1 degree of freedom under the null hypothesis.
The square root of the χ2 test statistic is approximately normal with zero mean and variance of one.

Let α be the significance level, β be the probability of a type II error, and z1−α/k and zβ be the
(1− α/k)th and the βth quantiles of the standard normal distribution.

The power π = 1− β is computed using

π =



Φ

{
pdiff
√
n−z1−α

√
pdisc√

pdisc−p2diff

}
for an upper one-sided test

Φ

{
−pdiff

√
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√
pdisc√
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}
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√
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√
pdisc√
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}
+ Φ

{
−pdiff

√
n−z1−α/2

√
pdisc√

pdisc−p2diff

}
for a two-sided test

(2)
where Φ(·) is the cdf of a standard normal distribution, pdiff = p21 − p12, and pdisc = p12 + p21.

The sample size n for a one-sided test is computed using

n =

(
zα
√
pdisc + z1−β

√
pdisc − p2

diff

pdiff

)2

(3)

See Connor (1987) for details.

For a two-sided test, sample size is computed iteratively from the two-sided power equation in (2).
The default initial value is obtained from the corresponding one-sided formula (3) with the significance
level α/2.
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The effect size δ = p21 − p12 is computed iteratively from the corresponding power equation in
(2). The default initial value is pdisc/2.
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power onevariance — Power analysis for a one-sample variance test

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

power onevariance computes sample size, power, or target variance for a one-sample variance
test. By default, it computes sample size for given power and the values of the variance parameters
under the null and alternative hypotheses. Alternatively, it can compute power for given sample size
and values of the null and alternative variances or the target variance for given sample size, power,
and the null variance. The results can also be obtained for an equivalent standard deviation test, in
which case standard deviations are used instead of variances. Also see [PSS-2] power for a general
introduction to the power command using hypothesis tests.

For precision and sample-size analysis for a CI for a population variance, see [PSS-3] ciwidth
onevariance.

Quick start
Sample size for test of H0: σ2 = 4 versus Ha: σ2 6= 4 with null variance v0 = 4 and alternative

variance va = 9 with default power of 0.8 and significance level α = 0.05
power onevariance 4 9

Same as above, but for H0 : σ = 2 versus Ha : σ 6= 2 with null standard deviation s0 = 2 and
alternative standard deviation sa = 3

power onevariance 2 3, sd

Same as above, but for α = 0.1
power onevariance 2 3, sd alpha(0.1)

Sample sizes for va equal to 7, 8, 9, 10, and 11
power onevariance 4 (7(1)11)

Same as above, but display results in a graph showing sample size versus alternative variance
power onevariance 4 (7(1)11), graph

Specify v0 and the ratio of variances
power onevariance 4, ratio(2.25)

Power for a sample size of 30
power onevariance 4 9, n(30)

Same as above, but specify standard deviations rather than variances
power onevariance 2 3, n(30) sd

Same as above, but specify a one-sided test
power onevariance 2 3, sd n(30) onesided

295
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Effect size and target variance for v0 = 4 with a sample size of 20 and power of 0.8
power onevariance 4, n(20) power(.8)

Menu
Statistics > Power, precision, and sample size

Syntax

Compute sample size

Variance scale

power onevariance v0 va
[
, power(numlist) options

]
Standard deviation scale

power onevariance s0 sa , sd
[
power(numlist) options

]

Compute power

Variance scale

power onevariance v0 va , n(numlist)
[

options
]

Standard deviation scale

power onevariance s0 sa , sd n(numlist)
[

options
]

Compute effect size and target parameter

Target variance

power onevariance v0 , n(numlist) power(numlist)
[

options
]

Target standard deviation

power onevariance s0 , sd n(numlist) power(numlist)
[

options
]

where v0 and s0 are the null (hypothesized) variance and standard deviation or the value of the
variance and standard deviation under the null hypothesis, and va and sa are the alternative (target)
variance and standard deviation or the value of the variance and standard deviation under the
alternative hypothesis. Each argument may be specified either as one number or as a list of values
in parentheses (see [U] 11.1.8 numlist).
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options Description

sd request computation using the standard deviation scale;
default is the variance scale

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗ratio(numlist) ratio of variances, va/v0 (or ratio of standard deviations,

sa/s0, if option sd is specified); specify instead of the
alternative variance va (or standard deviation sa)

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value for sample size or variance
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
sd does not appear in the dialog box; specification of sd is done automatically by the dialog box selected.
notitle does not appear in the dialog box.
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where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N number of subjects N
delta effect size δ
v0 null variance σ2

0

va alternative variance σ2
a

s0 null standard deviation σ0

sa alternative standard deviation σa

ratio ratio of the alternative variance to the null variance σ2
a/σ

2
0

or ratio of the alternative standard deviation to the σa/σ0

null standard deviation (if sd is specified)
target target parameter; synonym for va
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Columns s0 and sa are displayed in the default table in place of the v0 and va columns when the sd option is

specified.
Column ratio is shown in the default table if specified. If the sd option is specified, this column contains the ratio

of standard deviations. Otherwise, this column contains the ratio of variances.

Options
sd specifies that the computation be performed using the standard deviation scale. The default is to

use the variance scale.

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS-2] power. The nfractional option is
allowed only for sample-size determination.

ratio(numlist) specifies the ratio of the alternative variance to the null variance, va/v0, or the ratio
of standard deviations, sa/s0, if the sd option is specified. You can specify either the alternative
variance va as a command argument or the ratio of the variances in ratio(). If you specify
ratio(#), the alternative variance is computed as va = v0 × #. This option is not allowed with
the effect-size determination.

direction(), onesided, parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.
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� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies an initial value for the iteration procedure. Iteration is used to compute variance
for a two-sided test and to compute sample size. The default initial value for the sample size is
obtained from a closed-form normal approximation. The default initial value for the variance is
obtained from a closed-form solution for a one-sided test with the significance level of α/2.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power onevariance but is not shown in the dialog box:

notitle; see [PSS-2] power.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Using power onevariance
Computing sample size
Computing power
Computing effect size and target variance
Performing a hypothesis test on variance

This entry describes the power onevariance command and the methodology for power and sample-
size analysis for a one-sample variance test. See [PSS-2] Intro (power) for a general introduction to
power and sample-size analysis and [PSS-2] power for a general introduction to the power command
using hypothesis tests.

Introduction

The study of variance arises in cases where investigators are interested in making an inference
on the variability of a process. For example, the precision of a thermometer in taking accurate
measurements, the variation in the weights of potato chips from one bag to another, the variation in
mileage across automobiles of the same model. Before undertaking the actual study, we may want
to find the optimal sample size to detect variations that exceed the tolerable limits or industry-wide
standards.

This entry describes power and sample-size analysis for the inference about the population variance
performed using hypothesis testing. Specifically, we consider the null hypothesis H0: σ

2 = σ2
0 versus

the two-sided alternative hypothesis Ha: σ
2 6= σ2

0 , the upper one-sided alternative Ha: σ
2 > σ2

0 , or
the lower one-sided alternative Ha: σ

2 < σ2
0 .

Hypothesis testing of variances relies on the assumption of normality of the data. For a random
sample of size n from a normal distribution, the distribution of the sample variance s2 is scaled χ2.
The χ2 test statistic (n− 1)s2/σ2

0 , which has a χ2 distribution χ2
n−1 with n− 1 degrees of freedom,

is used to test hypotheses on variance, and the corresponding test is known as a χ2 test.
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The test of a variance is equivalent to the test of a standard deviation with the null hypothesis
H0: σ = σ0. The standard deviation test uses the same χ2 test statistic. The only difference between
the two tests is the scale or metric of the variability parameter: variance for the variance test and
standard deviation for the standard deviation test. In some cases, standard deviations may provide a
more meaningful interpretation than variances. For example, standard deviations of test scores or IQ
have the same scale as the mean and provide information about the spread of the observations around
the mean.

The power onevariance command provides power and sample-size analysis for the χ2 test of
a one-sample variance or a one-sample standard deviation.

Using power onevariance

power onevariance computes sample size, power, or target variance for a one-sample variance
test. If the sd option is specified, power onevariance computes sample size, power, or target standard
deviation for an equivalent one-sample standard-deviation test. All computations are performed for
a two-sided hypothesis test where, by default, the significance level is set to 0.05. You may change
the significance level by specifying the alpha() option. You can specify the onesided option to
request a one-sided test.

In what follows, we describe the use of power onevariance in a variance metric. The corresponding
use in a standard deviation metric, when the sd option is specified, is the same except variances v0

and va should be replaced with the respective standard deviations s0 and sa. Note that computations
using the variance and standard deviation scales yield the same results; the difference is only in the
specification of the parameters.

To compute sample size, you must specify the variances under the null and alternative hypotheses,
v0 and va, respectively, and, optionally, the power of the test in the power() option. A default power
of 0.8 is assumed if power() is not specified.

To compute power, you must specify the sample size in the n() option and the variances under
the null and alternative hypotheses as arguments v0 and va, respectively.

Instead of the null and alternative variances v0 and va, you can specify the null variance v0 and
the ratio of the alternative variance to the null variance in the ratio() option.

To compute effect size, the ratio of the alternative to the null variances, and target variance, you
must specify the sample size in the n() option, the power in the power() option, the null variance
v0, and, optionally, the direction of the effect. The direction is upper by default, direction(upper),
which means that the target variance is assumed to be larger than the specified null value. You can
change the direction to lower, which means that the target variance is assumed to be smaller than the
specified null value, by specifying the direction(lower) option.

By default, the computed sample size is rounded up. You can specify the nfractional option
to see the corresponding fractional sample size; see Fractional sample sizes in [PSS-4] Unbalanced
designs for an example. The nfractional option is allowed only for sample-size determination.

The test statistic for a one-sample variance test follows a χ2 distribution. Its degrees of freedom
depends on the sample size; therefore, sample-size computations require iteration. The effect-size
determination for a two-sided test also requires iteration. The default initial value of the sample size
is obtained using a closed-form normal approximation. The default initial value of the variance for
the effect-size determination is obtained by using the corresponding computation for a one-sided test
with the significance level α/2. The default initial values may be changed by specifying the init()
option. See [PSS-2] power for the descriptions of other options that control the iteration procedure.
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In the following sections, we describe the use of power onevariance accompanied by examples
for computing sample size, power, and target variance.

Computing sample size

To compute sample size, you must specify the variances under the null and alternative hypotheses,
v0 and va, respectively, and, optionally, the power of the test in the power() option. A default power
of 0.8 is assumed if power() is not specified.

Example 1: Sample size for a one-sample variance test

Consider a study where interest lies in testing whether the variability in mileage (measured in
miles per gallon) of automobiles of a certain car manufacturer equals a specified value. Industry-wide
standards maintain that a variation of at most two miles per gallon (mpg) from an average value is
acceptable for commercial production.

The process engineer suspects that a faulty assembly line has been producing the variation higher
than the acceptable standard. He or she wishes to test the null hypothesis of H0: σ = 2 versus a
two-sided alternative Ha : σ 6= 2 or, equivalently, H0 : σ2 = 4 versus H0 : σ2 6= 4. The engineer
wants to find the minimum number of cars so that the 5%-level two-sided test achieves the power of
80% to detect the alternative variance of 9 (or standard deviation of 3 mpg) given the null variance
of 4 (or standard deviation of 2 mpg). To obtain the sample size, we specify the null and alternative
values of the variance in v0 and va after the command name:

. power onevariance 4 9

Performing iteration ...

Estimated sample size for a one-sample variance test
Chi-squared test
H0: v = v0 versus Ha: v != v0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 2.2500

v0 = 4.0000
va = 9.0000

Estimated sample size:

N = 24

We find that a sample of 24 subjects is required for this study.

As we mentioned in the previous section, sample-size computation requires iteration. By default,
power onevariance suppresses the iteration log, which may be displayed by specifying the log
option.
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Example 2: Specifying ratio of variances

Instead of the alternative variance as in example 1, we can specify the ratio of the alternative and
null variances of 9/4 = 2.25 in the ratio() option:

. power onevariance 4, ratio(2.25)

Performing iteration ...

Estimated sample size for a one-sample variance test
Chi-squared test
H0: v = v0 versus Ha: v != v0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 2.2500

v0 = 4.0000
va = 9.0000

ratio = 2.2500

Estimated sample size:

N = 24

We obtain the same results as in example 1. The ratio of the variances is now also displayed in the
output.

Example 3: Standard deviation test

We can use the sd option to perform calculations in the standard deviation metric. We reproduce
results from example 1 using the corresponding null and standard deviations of 2 and 3.

. power onevariance 2 3, sd

Performing iteration ...

Estimated sample size for a one-sample standard-deviation test
Chi-squared test
H0: s = s0 versus Ha: s != s0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.5000

s0 = 2.0000
sa = 3.0000

Estimated sample size:

N = 24

The results are the same, except the output reports standard deviations instead of variances.

Computing power

To compute power, you must specify the sample size in the n() option and the variances under
the null and alternative hypotheses, v0 and va, respectively.
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Example 4: Power of a one-sample variance test

Continuing with example 1, we will suppose that we are designing a new study and anticipate
obtaining a sample of 30 cars. To compute the power corresponding to this sample size given the
study parameters from example 1, we specify the sample size of 30 in the n() option:

. power onevariance 4 9, n(30)

Estimated power for a one-sample variance test
Chi-squared test
H0: v = v0 versus Ha: v != v0

Study parameters:

alpha = 0.0500
N = 30

delta = 2.2500
v0 = 4.0000
va = 9.0000

Estimated power:

power = 0.8827

With a larger sample size, the power of the test increases to about 88%.

Example 5: Multiple values of study parameters

Suppose we would like to assess the effect of increasing the alternative variance on the power of
the test. We do this by specifying a range of values in parentheses in the argument for the alternative
variance:

. power onevariance 4 (4.5(0.5)10), n(30)

Estimated power for a one-sample variance test
Chi-squared test
H0: v = v0 versus Ha: v != v0

alpha power N delta v0 va

.05 .08402 30 1.125 4 4.5

.05 .1615 30 1.25 4 5

.05 .2694 30 1.375 4 5.5

.05 .391 30 1.5 4 6

.05 .511 30 1.625 4 6.5

.05 .6189 30 1.75 4 7

.05 .7098 30 1.875 4 7.5

.05 .7829 30 2 4 8

.05 .8397 30 2.125 4 8.5

.05 .8827 30 2.25 4 9

.05 .9147 30 2.375 4 9.5

.05 .9382 30 2.5 4 10

The power is an increasing function of the effect size, which is measured by the ratio of the alternative
variance to the null variance.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.
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Computing effect size and target variance

Effect size δ for a one-sample variance test is defined as the ratio of the alternative variance to
the null variance δ = va/v0 or the ratio of the alternative standard deviation to the null standard
deviation δ = sa/s0 when the sd option is specified.

Sometimes, we may be interested in determining the smallest effect that yields a statistically
significant result for prespecified sample size and power. In this case, power, sample size, and the
null variance or the null standard deviation must be specified. In addition, you must also decide on
the direction of the effect: upper, meaning va > v0 (sa > s0), or lower, meaning va < v0 (sa < s0).
The direction may be specified in the direction() option; direction(upper) is the default.

Example 6: Minimum detectable value of the variance

Continuing with example 4, we may also be interested to find the minimum effect size that can
be detected with a power of 80% given a sample of 30 subjects. To compute the smallest effect size
and the corresponding target variance, after the command name, we specify the null variance of 4,
sample size n(30), and power power(0.8):

. power onevariance 4, n(30) power(0.8)

Performing iteration ...

Estimated target variance for a one-sample variance test
Chi-squared test
H0: v = v0 versus Ha: v != v0; va > v0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 30
v0 = 4.0000

Estimated effect size and target variance:

delta = 2.0343
va = 8.1371

The smallest detectable value of the effect size, the ratio of the variances, is 2.03, which corresponds
to the alternative variance of 8.14. Compared with example 1, for the same power of 80%, this
example shows a smaller variance with a larger sample of 30 subjects.

Above we assumed the effect to be in the upper direction. The effect size and target variance in
the lower direction can be obtained by specifying direction(lower).
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. power onevariance 4, n(30) power(0.8) direction(lower)

Performing iteration ...

Estimated target variance for a one-sample variance test
Chi-squared test
H0: v = v0 versus Ha: v != v0; va < v0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 30
v0 = 4.0000

Estimated effect size and target variance:

delta = 0.4567
va = 1.8267

The smallest detectable value of the effect size is 0.46, which corresponds to the alternative variance
of 1.83.

Performing a hypothesis test on variance

In this section, we demonstrate the use of the sdtest command for testing hypotheses about
variances; see [R] sdtest for details. Suppose we wish to test the hypothesis that the variance or
standard deviation is different from a specific null value on the collected data. We can use the sdtest
command to do this.

Example 7: Testing for variance

We use auto.dta to demonstrate the use of sdtest. We have data on mileage ratings of 74
automobiles and wish to test whether the overall standard deviation is different from 3 miles per
gallon (mpg).

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. sdtest mpg == 3

One-sample test of variance

Variable Obs Mean Std. err. Std. dev. [95% conf. interval]

mpg 74 21.2973 .6725511 5.785503 19.9569 22.63769

sd = sd(mpg) c = chi2 = 271.4955
H0: sd = 3 Degrees of freedom = 73

Ha: sd < 3 Ha: sd != 3 Ha: sd > 3
Pr(C < c) = 1.0000 2*Pr(C > c) = 0.0000 Pr(C > c) = 0.0000

We find statistical evidence to reject the null hypothesis of H0 : σmpg = 3 versus a two-sided
alternative Ha: σmpg 6= 3 at the 5% significance level; the p-value < 0.0000.

We use the estimates of this study to perform a sample-size analysis we would have conducted
before the study.
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. power onevar 3 5.78, sd

Performing iteration ...

Estimated sample size for a one-sample standard-deviation test
Chi-squared test
H0: s = s0 versus Ha: s != s0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.9267

s0 = 3.0000
sa = 5.7800

Estimated sample size:

N = 10

We find that the sample size required to detect a standard deviation of 5.78 mpg given the null value
of 3 mpg with 80% power using a 5%-level two-sided test is only 10.

Stored results
power onevariance stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) sample size
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(v0) variance under the null hypothesis (for variance scale, default)
r(va) variance under the alternative hypothesis (for variance scale, default)
r(s0) standard deviation under the null hypothesis (if option sd is specified)
r(sa) standard deviation under the alternative hypothesis (if option sd is specified)
r(ratio) ratio of the alternative variance to the null variance (or the ratio of standard deviations if

option sd is specified)
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample size or variance
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) onevariance
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats
r(scale) variance or standard deviation

Matrices
r(pss table) table of results
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Methods and formulas
Consider a random sample of size n from a normal population with mean µ and variance σ2. Let

σ2
0 and σ2

a denote the null and alternative values of the variance parameter, respectively.

A one-sample variance test involves testing the null hypothesis H0: σ
2 = σ2

0 versus the two-sided
alternative hypothesis Ha : σ2 6= σ2

0 , the upper one-sided alternative Ha : σ2 > σ2
0 , or the lower

one-sided alternative Ha: σ
2 < σ2

0 .

The sampling distribution of the test statistic χ2 = (n−1)s2/σ2 under the null hypothesis follows
a χ2 distribution with n− 1 degrees of freedom, where s2 is the sample variance. The corresponding
test is known as a χ2 test.

The following formulas are based on Dixon and Massey (1983, 110–112).

Let α be the significance level, β be the probability of a type II error, and χ2
n−1,1−α and χ2

n−1,β

be the (1− α)th and the βth quantiles of the χ2 distribution with n− 1 degrees of freedom.

The following equality holds at the critical value of the accept/reject boundary for H0:

χ2
n−1,1−α

n− 1
σ2

0 =
χ2
n−1,β

n− 1
σ2
a

The power π = 1− β is computed using

π =


1− χ2

n−1

(
σ2
0

σ2
a
χ2
n−1,1−α

)
for an upper one-sided test

χ2
n−1

(
σ2
0

σ2
a
χ2
n−1,α

)
for a lower one-sided test

1− χ2
n−1

(
σ2
0

σ2
a
χ2
n−1,1−α/2

)
+ χ2

n−1

(
σ2
0

σ2
a
χ2
n−1,α/2

)
for a two-sided test

(1)

where χ2
n−1 (·) is the cdf of a χ2 distribution with n− 1 degrees of freedom.

Sample size n is obtained by iteratively solving the corresponding power equation from (1) for n.
The default initial value for the sample size is obtained by using a large-sample normal approximation.

For a large n, the log-transformed sample variance is approximately normal with mean 2 ln(σ)

and standard deviation
√

2/n. The approximate sample size is then given by

n =
1

2

z1−α/k − zβ
ln
(
σa
σ0

)


2

where k = 1 for a one-sided test and k = 2 for a two-sided test.

For a one-sided test, the minimum detectable value of the variance is computed as follows:

σ2
a =


σ2

0
χ2
n−1,1−α
χ2
n−1,β

for an upper one-sided test

σ2
0
χ2
n−1,α

χ2
n−1,1−β

for a lower one-sided test
(2)

For a two-sided test, the minimum detectable value of the variance is computed by iteratively
solving the two-sided power equation from (1) for σ2

a. The default initial value is obtained from (2)
with α replaced by α/2.

If the nfractional option is not specified, the computed sample size is rounded up.
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Reference
Dixon, W. J., and F. J. Massey, Jr. 1983. Introduction to Statistical Analysis. 4th ed. New York: McGraw–Hill.

Also see
[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] power, graph — Graph results from the power command

[PSS-2] power, table — Produce table of results from the power command

[PSS-3] ciwidth onevariance — Precision analysis for a one-variance CI

[PSS-5] Glossary
[R] sdtest — Variance-comparison tests
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power twovariances — Power analysis for a two-sample variances test

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power twovariances computes sample size, power, or the experimental-group variance (or
standard deviation) for a two-sample variances test. By default, it computes sample size for given
power and the values of the control-group and experimental-group variances. Alternatively, it can
compute power for given sample size and values of the control-group and experimental-group variances
or the experimental-group variance for given sample size, power, and the control-group variance. Also
see [PSS-2] power for a general introduction to the power command using hypothesis tests.

Quick start
Sample size for a test of H0: σ2

1 = σ2
2 versus Ha: σ

2
1 6= σ2

2 with control-group variance v1 = 25,
experimental-group variance v2 = 36, default power of 0.8, and significance level α = 0.05

power twovariances 25 36

Same as above, but specified as standard deviations s1 = 5 and s2 = 6
power twovariances 5 6, sd

Sample size for v1 = 25 and v2 equals to 36, 38, 40, and 42
power twovariances 25 (36(2)42)

Same as above, but display results in a graph of sample size versus v2

power twovariances 25 (36(2)42), graph

Save results to the dataset mydata.dta
power twovariances 25 (36(2)42), saving(mydata)

Power for a total sample size of 300
power twovariances 25 36, n(300)

Same as above, but specify sample sizes of 200 and 100 for groups 1 and 2, respectively
power twovariances 25 36, n1(200) n2(100)

Effect size and experimental-group standard deviation given control-group standard deviation of 5,
sample size of 200, and power of 0.8

power twovariances 5, sd n(200) power(0.8)

Same as above, but calculate experimental-group variance given control-group variance of 25
power twovariances 25, n(200) power(0.8)

309
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Menu
Statistics > Power, precision, and sample size

Syntax

Compute sample size

Variance scale

power twovariances v1 v2

[
, power(numlist) options

]
Standard deviation scale

power twovariances s1 s2 , sd
[
power(numlist) options

]

Compute power

Variance scale

power twovariances v1 v2 , n(numlist)
[

options
]

Standard deviation scale

power twovariances s1 s2 , sd n(numlist)
[

options
]

Compute effect size and target parameter

Experimental-group variance

power twovariances v1 , n(numlist) power(numlist)
[

options
]

Experimental-group standard deviation

power twovariances s1 , sd n(numlist) power(numlist)
[

options
]

where v1 and s1 are the variance and standard deviation, respectively, of the control (reference) group
and v2 and s2 are the variance and standard deviation of the experimental (comparison) group.
Each argument may be specified either as one number or as a list of values in parentheses (see
[U] 11.1.8 numlist).
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options Description

sd request computation using the standard deviation scale;
default is the variance scale

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1), meaning

equal group sizes
compute(N1 | N2) solve for N1 given N2 or for N2 given N1

nfractional allow fractional sample sizes
∗ratio(numlist) ratio of variances, v2/v1 (or ratio of standard deviations,

s2/s1, if option sd is specified); specify instead of the
experimental-group variance v2 (or standard deviation s2)

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value for sample sizes or experimental-group
variance

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title
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∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
sd does not appear in the dialog box; specification of sd is done automatically by the dialog box selected.
notitle does not appear in the dialog box.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N total number of subjects N
N1 number of subjects in the control group N1

N2 number of subjects in the experimental group N2

nratio ratio of sample sizes, experimental to control N2/N1

delta effect size δ

v1 control-group variance σ2
1

v2 experimental-group variance σ2
2

s1 control-group standard deviation σ1

s2 experimental-group standard deviation σ2

ratio ratio of the experimental-group variance to the σ2
2/σ

2
1

control-group variance or ratio of the
experimental-group standard deviation to σ2/σ1

the control-group standard deviation
(if sd is specified)

target target parameter; synonym for v2
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Columns s1 and s2 are displayed in the default table in place of the v1 and v2 columns when the sd option is

specified.
Column ratio is shown in the default table if specified. If the sd option is specified, this column contains the ratio

of standard deviations. Otherwise, this column contains the ratio of variances.

Options

sd specifies that the computation be performed using the standard deviation scale. The default is to
use the variance scale.
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� � �
Main �

alpha(), power(), beta(), n(), n1(), n2(), nratio(), compute(), nfractional; see
[PSS-2] power.

ratio(numlist) specifies the ratio of the experimental-group variance to the control-group variance,
v2/v1, or the ratio of the standard deviations, s2/s1, if the sd option is specified. You can specify
either the experimental-group variance v2 as a command argument or the ratio of the variances in
ratio(). If you specify ratio(#), the experimental-group variance is computed as v2 = v1 ×
#. This option is not allowed with the effect-size determination.

direction(), onesided, parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value for the estimated parameter. For sample-size determination, the
estimated parameter is either the control-group size n1 or, if compute(N2) is specified, the
experimental-group size n2. For the effect-size determination, the estimated parameter is the
experimental-group variance v2 or, if the sd option is specified, the experimental-group standard
deviation s2. The default initial values for the variance and standard deviation for a two-sided test
are obtained as a closed-form solution for the corresponding one-sided test with the significance level
α/2. The default initial values for sample sizes for a χ2 test are obtained from the corresponding
closed-form normal approximation.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power twovariances but is not shown in the dialog box:

notitle; see [PSS-2] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power twovariances
Computing sample size
Computing power
Computing effect size and experimental-group variance
Testing a hypothesis about two independent variances

This entry describes the power twovariances command and the methodology for power and
sample-size analysis for a two-sample variances test. See [PSS-2] Intro (power) for a general intro-
duction to power and sample-size analysis and [PSS-2] power for a general introduction to the power
command using hypothesis tests.
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Introduction

Investigators are often interested in comparing the variances of two populations, such as comparing
variances in yields of corn from two plots, comparing variances of stock returns from two companies,
comparing variances of the alcohol concentrations from two different yeast strains, and so on. Before
conducting the actual study, the investigators need to find the optimal sample size to detect variations
that are beyond tolerable limits or industry-wide standards.

This entry describes power and sample-size analysis for the inference about two population variances
performed using hypothesis testing. Specifically, we consider the null hypothesis H0: σ

2
2 = σ2

1 versus
the two-sided alternative hypothesis Ha: σ

2
2 6= σ2

1 , the upper one-sided alternative Ha: σ
2
2 > σ2

1 , or
the lower one-sided alternative Ha: σ

2
2 < σ2

1 .

Hypothesis testing of variances relies on the assumption of normality. If two independent processes
are assumed to follow a normal distribution, then the ratio of their sample variances follows an F
distribution, and the corresponding test is known as an F test.

The test of variances is equivalent to the test of standard deviations with the null hypothesis
H0: σ1 = σ2. The standard deviation test uses the same F test statistic. The only difference between
the two tests is the scale or metric of the variability parameters: variances for the variance test and
standard deviations for the standard deviation test. In some cases, standard deviations may provide
a more meaningful interpretation than variances. For example, standard deviations of test scores or
IQ have the same scale as the mean and provide information about the spread of the observations
around the mean.

The power twovariances command provides power and sample-size analysis for the F test of
two-sample variances or standard deviations.

Using power twovariances

power twovariances computes sample size, power, or experimental-group variance for a two-
sample variances test. All computations are performed for a two-sided hypothesis test where, by
default, the significance level is set to 0.05. You may change the significance level by specifying the
alpha() option. You can specify the onesided option to request a one-sided test. By default, all
computations assume a balanced- or equal-allocation design; see [PSS-4] Unbalanced designs for a
description of how to specify an unbalanced design.

In what follows, we describe the use of power twovariances in a variance metric. The corre-
sponding use in a standard deviation metric, when the sd option is specified, is the same except
variances v1 and v2 should be replaced with the respective standard deviations s1 and s2. Note that
computations using the variance and standard deviation scales yield the same results; the difference
is only in the specification of the parameters.

To compute the total sample size, you must specify the control- and experimental-group variances,
v1 and v2, respectively, and, optionally, the power of the test in the power() option. The default
power is set to 0.8.

Instead of the total sample size, you can compute one of the group sizes given the other one. To
compute the control-group sample size, you must specify the compute(N1) option and the sample
size of the experimental group in the n2() option. Likewise, to compute the experimental-group
sample size, you must specify the compute(N2) option and the sample size of the control group in
the n1() option.

To compute power, you must specify the total sample size in the n() option and the control and
the experimental-group variances, v1 and v2, respectively.
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Instead of the experimental-group variance v2, you may specify the ratio v2/v1 of the experimental-
group variance to the control-group variance in the ratio() option when computing sample size or
power.

To compute effect size, the ratio of the experimental-group variance to the control-group variance,
and the experimental-group variance, you must specify the total sample size in the n() option, the
power in the power() option, the control-group variance v1, and, optionally, the direction of the effect.
The direction is upper by default, direction(upper), which means that the experimental-group
variance is assumed to be larger than the specified control-group value. You can change the direction
to be lower, which means that the experimental-group variance is assumed to be smaller than the
specified control-group value, by specifying the direction(lower) option.

Instead of the total sample size n(), you can specify individual group sizes in n1() and n2(), or
specify one of the group sizes and nratio() when computing power or effect size. Also see Two
samples in [PSS-4] Unbalanced designs for more details.

In the following sections, we describe the use of power twovariances accompanied by examples
for computing sample size, power, and experimental-group variance.

Computing sample size

To compute sample size, you must specify the control- and the experimental-group variances, v1

and v2, respectively, and, optionally, the power of the test in the power() option. A default power
of 0.8 is assumed if power() is not specified.

Example 1: Sample size for a two-sample variances test

Consider a study whose goal is to investigate whether the variability in weights (measured in
ounces) of bags of potato chips produced by a machine at a plant A, the control group, differs from
that produced by a similar machine at a new plant B, the experimental group. The considered null
hypothesis is H0: σA = σB versus a two-sided alternative hypothesis Ha: σA 6= σB or, equivalently,
H0: σ2

A = σ2
B versus Ha: σ

2
A 6= σ2

B . The standard deviation of weights from plant A is 2 ounces.
The standard deviation of weights from the new plant B is expected to be lower, 1.5 ounces. The
respective variances of weights from plants A and B are 4 and 2.25. Investigators wish to obtain the
minimum sample size required to detect the specified change in variability with 80% power using a
5%-level two-sided test assuming equal-group allocation. To compute sample size for this study, we
specify the control- and experimental-group variances after the command name:

. power twovariances 4 2.25

Performing iteration ...

Estimated sample sizes for a two-sample variances test
F test
H0: v2 = v1 versus Ha: v2 != v1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.5625

v1 = 4.0000
v2 = 2.2500

Estimated sample sizes:

N = 194
N per group = 97
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A total sample of 194 bags, 97 in each plant, must be obtained to detect the specified ratio of variances
in the two plants with 80% power using a two-sided 5%-level test.

Example 2: Standard deviation scale

We can also specify standard deviations instead of variances, in which case we must also specify
the sd option:

. power twovariances 2 1.5, sd

Performing iteration ...

Estimated sample sizes for a two-sample standard-deviations test
F test
H0: s2 = s1 versus Ha: s2 != s1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7500

s1 = 2.0000
s2 = 1.5000

Estimated sample sizes:

N = 194
N per group = 97

We obtain the same sample sizes as in example 1.

Example 3: Specifying ratio of variances or standard deviations

Instead of the experimental-group variance of 2.25 as in example 1, we can specify the ratio of
variances 2.25/4 = 0.5625 in the ratio() option.

. power twovariances 4, ratio(0.5625)

Performing iteration ...

Estimated sample sizes for a two-sample variances test
F test
H0: v2 = v1 versus Ha: v2 != v1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.5625

v1 = 4.0000
v2 = 2.2500

ratio = 0.5625

Estimated sample sizes:

N = 194
N per group = 97

The results are identical to those from example 1.
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Similarly, instead of the experimental-group standard deviation of 1.5 as in example 2, we can
specify the ratio of standard deviations 1.5/2 = 0.75 in the ratio() option and obtain the same
results:

. power twovariances 2, sd ratio(0.75)

Performing iteration ...

Estimated sample sizes for a two-sample standard-deviations test
F test
H0: s2 = s1 versus Ha: s2 != s1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7500

s1 = 2.0000
s2 = 1.5000

ratio = 0.7500

Estimated sample sizes:

N = 194
N per group = 97

Example 4: Computing one of the group sizes

Continuing with example 1, we will suppose that investigators anticipate a sample of 100 bags
from plant A and wish to compute the required number of bags from plant B. To compute sample
size for plant B using the study parameters of example 1, we use a combination of the n1() and
compute(N2) options.

. power twovariances 4 2.25, n1(100) compute(N2)

Performing iteration ...

Estimated sample sizes for a two-sample variances test
F test
H0: v2 = v1 versus Ha: v2 != v1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.5625

v1 = 4.0000
v2 = 2.2500
N1 = 100

Estimated sample sizes:

N = 194
N2 = 94

A slightly smaller sample of 94 bags is needed from plant B given a slightly larger sample of bags
from plant A to achieve the same 80% power as in example 1.

If the sample size for plant B is known a priori, you can compute the sample size for plant A by
specifying the n2() and compute(N1) options.
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Example 5: Unbalanced design

By default, power twovariances computes sample size for a balanced- or equal-allocation design.
If we know the allocation ratio of subjects between the groups, we can compute the required sample
size for an unbalanced design by specifying the nratio() option.

Continuing with example 1, we will suppose that the new plant B is more efficient and more
cost effective in producing bags of chips than plant A. Investigators anticipate twice as many bags
from plant B than from plant A; that is, n2/n1 = 2. We compute the required sample size for this
unbalanced design by specifying the nratio() option:

. power twovariances 4 2.25, nratio(2)

Performing iteration ...

Estimated sample sizes for a two-sample variances test
F test
H0: v2 = v1 versus Ha: v2 != v1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.5625

v1 = 4.0000
v2 = 2.2500

N2/N1 = 2.0000

Estimated sample sizes:

N = 225
N1 = 75
N2 = 150

The requirement on the total sample size increases for an unbalanced design compared with the
balanced design from example 1. Investigators must decide whether the decrease of 22 from 97 to
75 in the number of bags from plant A covers the cost of the additional 53 (150 − 97 = 53) bags
from plant B.

Also see Two samples in [PSS-4] Unbalanced designs for more examples of unbalanced designs
for two-sample tests.

Computing power

To compute power, you must specify the total sample size in the n() option and the control- and
experimental-group variances, v1 and v2, respectively.

Example 6: Power of a two-sample variances test

Continuing with example 1, we will suppose that the investigators can afford a total sample of
250 bags, 125 from each plant, and want to find the power corresponding to this larger sample size.
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To compute the power corresponding to this sample size, we specify the total sample size in the
n() option:

. power twovariances 4 2.25, n(250)

Estimated power for a two-sample variances test
F test
H0: v2 = v1 versus Ha: v2 != v1

Study parameters:

alpha = 0.0500
N = 250

N per group = 125
delta = 0.5625

v1 = 4.0000
v2 = 2.2500

Estimated power:

power = 0.8908

With a total sample of 250 bags, 125 per plant, we obtain a power of roughly 89%.

Example 7: Multiple values of study parameters

In this example, we assess the effect of varying the variances of weights obtained from plant B on
the power of our study. Continuing with example 6, we vary the experimental-group variance from
1.5 to 3 in 0.25 increments. We specify the corresponding numlist in parentheses:

. power twovariances 4 (1.5(0.25)3), n(250)

Estimated power for a two-sample variances test
F test
H0: v2 = v1 versus Ha: v2 != v1

alpha power N N1 N2 delta v1 v2

.05 .9997 250 125 125 .375 4 1.5

.05 .9956 250 125 125 .4375 4 1.75

.05 .9701 250 125 125 .5 4 2

.05 .8908 250 125 125 .5625 4 2.25

.05 .741 250 125 125 .625 4 2.5

.05 .5466 250 125 125 .6875 4 2.75

.05 .3572 250 125 125 .75 4 3

The power decreases from 99.97% to 35.72% as the experimental-group variance gets closer to the
control-group variance of 4.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.
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Computing effect size and experimental-group variance

Effect size δ for a two-sample variances test is defined as the ratio of the experimental-group
variance to the control-group variance, δ = v2/v1. If the sd option is specified, effect size δ is the
ratio of the experimental-group standard deviation to the control-group standard deviation, δ = s2/s1.

Sometimes, we may be interested in determining the smallest effect and the corresponding
experimental-group variance that yield a statistically significant result for prespecified sample size and
power. In this case, power, sample size, and control-group variance must be specified. In addition,
you must also decide on the direction of the effect: upper, meaning v2 > v1, or lower, meaning
v2 < v1. The direction may be specified in the direction() option; direction(upper) is the
default. If the sd option is specified, the estimated parameter is the experimental-group standard
deviation instead of the variance.

Example 8: Minimum detectable value of the experimental-group variance

Continuing with example 6, we will compute the minimum plant B variance that can be detected
given a total sample of 250 bags and 80% power. To find the variance, after the command name, we
specify the plant A variance of 4, total sample size n(250), and power power(0.8):

. power twovariances 4, n(250) power(0.8)

Performing iteration ...

Estimated experimental-group variance for a two-sample variances test
F test
H0: v2 = v1 versus Ha: v2 != v1; v2 > v1

Study parameters:

alpha = 0.0500
power = 0.8000

N = 250
N per group = 125

v1 = 4.0000

Estimated effect size and experimental-group variance:

delta = 1.6573
v2 = 6.6291

We find that the minimum value of the experimental-group variance that would yield a statistically
significant result in this study is 6.63, and the corresponding effect size is 1.66.

In this example, we computed the variance assuming an upper direction, or a ratio greater than 1,
δ > 1. To request a lower direction, or a ratio less than 1, we can specify the direction(lower)
option.

Testing a hypothesis about two independent variances

In this section, we demonstrate the use of the sdtest command for testing a hypothesis about
two independent variances; see [R] sdtest for details.

Example 9: Comparing two variances

Consider the fuel dataset analyzed in [R] sdtest. Suppose we want to investigate the effectiveness
of a new fuel additive on the mileage of cars. We have a sample of 12 cars, where each car was run
without the additive and later with the additive. The results of each run are stored in variables mpg1
and mpg2.
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. use https://www.stata-press.com/data/r18/fuel

. sdtest mpg1==mpg2

Variance ratio test

Variable Obs Mean Std. err. Std. dev. [95% conf. interval]

mpg1 12 21 .7881701 2.730301 19.26525 22.73475
mpg2 12 22.75 .9384465 3.250874 20.68449 24.81551

Combined 24 21.875 .6264476 3.068954 20.57909 23.17091

ratio = sd(mpg1) / sd(mpg2) f = 0.7054
H0: ratio = 1 Degrees of freedom = 11, 11

Ha: ratio < 1 Ha: ratio != 1 Ha: ratio > 1
Pr(F < f) = 0.2862 2*Pr(F < f) = 0.5725 Pr(F > f) = 0.7138

sdtest uses the ratio of the control-group standard deviation to the experimental-group standard
deviation as its test statistic. We do not have sufficient evidence to reject the null hypothesis of
H0: σ1 = σ2 versus the two-sided alternative Ha: σ1 6= σ2; the p-value > 0.5725.

We use the estimates of this study to perform a sample-size analysis we would have conducted
before the study. We assume an equal-group design and power of 80%.

. power twovariances 2.73 3.25, sd power(0.8)

Performing iteration ...

Estimated sample sizes for a two-sample standard-deviations test
F test
H0: s2 = s1 versus Ha: s2 != s1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.1905

s1 = 2.7300
s2 = 3.2500

Estimated sample sizes:

N = 522
N per group = 261

The total sample size required by the test to detect the difference between the two standard deviations
of 2.73 in the control group and of 3.25 in the experimental group is 522, 261 for each group, which
is significantly larger than the sample of 12 cars in our fuel dataset.

Stored results
power twovariances stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
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r(nratio) ratio of sample sizes, N2/N1
r(nratio a) actual ratio of sample sizes
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(v1) control-group variance
r(v2) experimental-group variance
r(ratio) ratio of the experimental- to the control-group variances (or standard deviations if sd is

specified)
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample sizes, experimental-group variance, or standard deviation
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) twovariances
r(scale) variance or standard deviation
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
Consider two independent samples from a normal population with means µ1 and µ2 and variances

σ2
1 and σ2

2 . The ratio (s1/σ1)2/(s2/σ2)2 has an F distribution with n1 − 1 numerator and n2 − 1
denominator degrees of freedom. s2

1 and s2
2 are the sample variances, and n1 and n2 are the sample

sizes.

Let σ2
1 and σ2

2 be the control-group and experimental-group variances, respectively.

A two-sample variances test involves testing the null hypothesis H0: σ
2
2 = σ2

1 versus the two-sided
alternative hypothesis Ha : σ2

2 6= σ2
1 , the upper one-sided alternative Ha : σ2

2 > σ2
1 , or the lower

one-sided alternative Ha: σ
2
2 < σ2

1 .

Equivalently, the hypotheses can be expressed in terms of the ratio of the two variances: H0 :
σ2

2/σ
2
1 = 1 versus the two-sided alternative Ha : σ2

2/σ
2
1 6= 1, the upper one-sided alternative

Ha: σ
2
2/σ

2
1 > 1, or the lower one-sided alternative Ha: σ

2
2/σ

2
1 < 1.

The following formulas are based on Dixon and Massey (1983, 116–119).

Let α be the significance level, β be the probability of a type II error, and Fα = Fn1−1,n2−1,α

and Fn1−1,n2−1,β be the αth and the βth quantiles of an F distribution with n1 − 1 numerator and
n2 − 1 denominator degrees of freedom.
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The power π = 1− β is computed using

π =


1− Fn1−1,n2−1

(
σ2
1

σ2
2
F1−α

)
for an upper one-sided test

Fn1−1,n2−1

(
σ2
1

σ2
2
Fα

)
for a lower one-sided test

1− Fn1−1,n2−1

(
σ2
1

σ2
2
F1−α/2

)
+ Fn1−1,n2−1

(
σ2
1

σ2
2
Fα/2

)
for a two-sided test

(1)

where Fn1−1,n2−1 (·) is the cdf of an F distribution with n1− 1 numerator and n2− 1 denominator
degrees of freedom.

Let R = n2/n1 denote the allocation ratio. Then n2 = R × n1 and power can be viewed as
a function of n1. Therefore, for sample-size determination, the control-group sample size n1 is
computed first. The experimental-group size n2 is then computed as R×n1, and the total sample size
is computed as n = n1 + n2. By default, sample sizes are rounded to integer values; see Fractional
sample sizes in [PSS-4] Unbalanced designs for details.

If either n1 or n2 is known, the other sample size is computed iteratively from the corresponding
power equation in (1).

The initial values for the sample sizes are obtained from closed-form large-sample normal approx-
imations; see, for example, Mathews (2010, 68).

For a one-sided test, the minimum detectable value of the experimental-group variance is computed
as follows:

σ2
2 =

σ2
1
Fn1−1,n2−1,1−α
Fn1−1,n2−1,β

for an upper one-sided test

σ2
1
Fn1−1,n2−1,α

Fn1−1,n2−1,1−β
for a lower one-sided test

(2)

For a two-sided test, the minimum detectable value of the experimental-group variance is computed
iteratively using the two-sided power equation from (1). The default initial value is obtained from (2)
with α replaced by α/2.

References
Dixon, W. J., and F. J. Massey, Jr. 1983. Introduction to Statistical Analysis. 4th ed. New York: McGraw–Hill.

Mathews, P. 2010. Sample Size Calculations: Practical Methods for Engineers and Scientists. Fairport Harbor, OH:
Mathews Malnar and Bailey.

Also see
[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] power, graph — Graph results from the power command

[PSS-2] power, table — Produce table of results from the power command

[PSS-5] Glossary
[R] sdtest — Variance-comparison tests
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power onecorrelation — Power analysis for a one-sample correlation test

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power onecorrelation computes sample size, power, or target correlation for a one-sample
correlation test. By default, it computes sample size for given power and the values of the correlation
parameters under the null and alternative hypotheses. Alternatively, it can compute power for given
sample size and values of the null and alternative correlations or the target correlation for given
sample size, power, and the null correlation. Also see [PSS-2] power for a general introduction to the
power command using hypothesis tests.

Quick start
Sample size for a test of H0 : ρ = 0 versus Ha : ρ 6= 0 with null correlation r0 = 0, alternative

correlation ra = 0.3, and default power of 0.8 and significance level α = 0.05
power onecorrelation 0 .3

Same as above, for alternative correlations of 0.2, 0.25, 0.3, 0.35, and 0.4
power onecorrelation 0 (.2(.05).4)

Same as above, but display a graph showing sample size versus alternative correlation
power onecorrelation 0 (.2(.05).4), graph

Sample size for r0 = 0.1, ra = 0.3 with power of 0.85 and α = 0.01
power onecorrelation .1 .3, power(.85) alpha(.01)

Power for a sample size of 30
power onecorrelation 0 .5, n(30)

Effect size and target correlation for a sample size of 20 and power of 0.8
power onecorrelation 0, n(20) power(.8)

Same as above, but for sample sizes of 20, 30, 40, and 50
power onecorrelation 0, n(20(10)50) power(.8)

Menu
Statistics > Power, precision, and sample size

324
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Syntax

Compute sample size

power onecorrelation r0 ra
[
, power(numlist) options

]

Compute power

power onecorrelation r0 ra , n(numlist)
[

options
]

Compute effect size and target correlation

power onecorrelation r0 , n(numlist) power(numlist)
[

options
]

where r0 is the null (hypothesized) correlation or the value of the correlation under the null hypothesis,
and ra is the alternative (target) correlation or the value of the correlation under the alternative
hypothesis. r0 and ra may each be specified either as one number or as a list of values in
parentheses (see [U] 11.1.8 numlist).
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗diff(numlist) difference between the alternative correlation and the null

correlation, ra − r0; specify instead of the alternative
correlation ra

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value for sample size or correlation
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).
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column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N number of subjects N
delta effect size δ
r0 null correlation ρ0

ra alternative correlation ρa
diff difference between the alternative and null ρa − ρ0

correlations
target target parameter; synonym for ra
all display all supported columns

Column beta is shown in the default table in place of column power if specified.

Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS-2] power. The nfractional option is
allowed only for sample-size determination.

diff(numlist) specifies the difference between the alternative correlation and the null correlation,
ra − r0. You can specify either the alternative correlation ra as a command argument or the
difference between the two correlations in the diff() option. If you specify diff(#), the
alternative correlation is computed as ra = r0 + #. This option is not allowed with the effect-size
determination.

direction(), onesided, parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value for the iteration procedure. Iteration is used to compute sample
size or target correlation for a two-sided test. The default initial value for the estimated parameter
is obtained from the corresponding closed-form one-sided computation using the significance level
α/2.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power onecorrelation but is not shown in the dialog box:

notitle; see [PSS-2] power.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power onecorrelation
Computing sample size
Computing power
Computing effect size and target correlation
Performing hypothesis tests on correlation

This entry describes the power onecorrelation command and the methodology for power
and sample-size analysis for a one-sample correlation test. See [PSS-2] Intro (power) for a general
introduction to power and sample-size analysis and [PSS-2] power for a general introduction to the
power command using hypothesis tests.

Introduction
Correlation analysis emanates from studies quantifying dependence between random variables,

such as dependence between height and weight of individuals, between blood pressure and cholesterol
levels, between the SAT scores of students and their first-year grade point average, between the number
of minutes per week customers spend using a new fitness program and the number of pounds lost,
and many more.

The correlation coefficient ρ is commonly used to measure the strength of such dependence. We
consider Pearson’s correlation obtained by standardizing the covariance between two random variables.
As a result, the correlation coefficient has no units and ranges between −1 and 1.

This entry describes power and sample-size analysis for the inference about the population correlation
coefficient performed using hypothesis testing. Specifically, we consider the null hypothesisH0: ρ = ρ0

versus the two-sided alternative hypothesis Ha: ρ 6= ρ0, the upper one-sided alternative Ha: ρ > ρ0,
or the lower one-sided alternative Ha: ρ < ρ0. In most applications, the null value of the correlation,
ρ0, is set to zero.

Statistical inference on the correlation coefficient requires a distributional assumption between two
random variables—bivariate normality with correlation ρ. The distribution of the sample correlation
coefficient is rather complicated except under the null hypothesis of the true correlation being zero,
H0: ρ = 0, under which it is a Student’s t distribution (for example, see Graybill [1961, 209]). The
general inference of H0: ρ = ρ0 is based on the asymptotic approximation.

One common approach in testing hypotheses concerning the correlation parameter is to use an
inverse hyperbolic tangent transformation, tanh−1(x) = 0.5 ln(1 + x)/ ln(1 − x), also known as
Fisher’s z transformation when applied to the correlation coefficient (Fisher 1915). Specifically, if ρ̂
is the sample correlation coefficient and n is the sample size, Fisher (1915) showed that

√
n− 3

{
tanh−1(ρ̂)− tanh−1(ρ)

}
∼ N(0, 1)

for n as small as 10, although the approximation tends to perform better for n > 25. The null
hypothesis H0: ρ = ρ0 is equivalent to H0: tanh−1(ρ) = tanh−1(ρ0). The latter test is referred to
as Fisher’s z test.

power onecorrelation performs computations based on the asymptotic Fisher’s z test.
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Using power onecorrelation

power onecorrelation computes sample size, power, or target correlation for a one-sample
correlation test. All computations are performed for a two-sided hypothesis test where, by default, the
significance level is set to 0.05. You may change the significance level by specifying the alpha()
option. You can specify the onesided option to request a one-sided test.

To compute sample size, you must specify the correlations under the null and alternative hypotheses,
r0 and ra, respectively, and, optionally, the power of the test in the power() option. The default
power is set to 0.8.

To compute power, you must specify the sample size in the n() option and the correlations under
the null and alternative hypotheses, r0 and ra, respectively.

Instead of the alternative correlation, ra, you may specify the difference ra − r0 between the
alternative correlation and the null correlation in the diff() option when computing sample size or
power.

To compute effect size, the difference between the alternative and null correlations, and target
correlation, you must specify the sample size in the n() option, the power in the power() option,
the null correlation r0, and, optionally, the direction of the effect. The direction is upper by default,
direction(upper), which means that the target correlation is assumed to be larger than the specified
null value. This is also equivalent to the assumption of a positive effect size. You can change the
direction to lower, which means that the target correlation is assumed to be smaller than the specified
null value, by specifying the direction(lower) option. This is equivalent to assuming a negative
effect size.

By default, the computed sample size is rounded up. You can specify the nfractional option
to see the corresponding fractional sample size; see Fractional sample sizes in [PSS-4] Unbalanced
designs for an example. The nfractional option is allowed only for sample-size determination.

The sample-size and effect-size determinations for a two-sided test require iteration. The default
initial value for the estimated parameter is obtained from the corresponding closed-form one-sided
computation using the significance level α/2. The default initial value may be changed by specifying
the init() option. See [PSS-2] power for the descriptions of other options that control the iteration
procedure.

In the following sections, we describe the use of power onecorrelation accompanied by
examples for computing sample size, power, and target correlation.

Computing sample size

To compute sample size, you must specify the correlations under the null and alternative hypotheses,
r0 and ra, respectively, and, optionally, the power of the test in the power() option. A default power
of 0.8 is assumed if power() is not specified.

Example 1: Sample size for a one-sample correlation test

Consider a study where the goal is to test the existence of a positive correlation between height and
weight of individuals, that is, H0: ρ = 0 versus Ha: ρ > 0. Before conducting the study, we wish
to determine the sample size required to detect a correlation of at least 0.5 with 80% power using a
one-sided 5%-level test. We specify the values 0 and 0.5 of the null and alternative correlations after
the command name. The only option we need to specify is onesided, which requests a one-sided
test. We omit options alpha(0.05) and power(0.8) because the specified values are their defaults.
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. power onecorrelation 0 0.5, onesided

Estimated sample size for a one-sample correlation test
Fisher’s z test
H0: r = r0 versus Ha: r > r0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.5000

r0 = 0.0000
ra = 0.5000

Estimated sample size:

N = 24

A sample of 24 individuals must be obtained to detect a correlation of at least 0.5 between height
and weight with 80% power using an upper one-sided 5%-level test.

If we anticipate a stronger correlation of, say, 0.7, we will need a sample of only 12 subjects:

. power onecorrelation 0 0.7, onesided

Estimated sample size for a one-sample correlation test
Fisher’s z test
H0: r = r0 versus Ha: r > r0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7000

r0 = 0.0000
ra = 0.7000

Estimated sample size:

N = 12

This is consistent with our expectation that in this example, as the alternative correlation increases,
the required sample size decreases.

Computing power

To compute power, you must specify the sample size in the n() option and the correlations under
the null and alternative hypotheses, r0 and ra, respectively.

Example 2: Power of a one-sample correlation test

Continuing with example 1, we will suppose that we are designing a pilot study and would like to
keep our initial sample small. We want to find out how much the power of the test would decrease
if we sample only 15 individuals. To compute power, we specify the sample size in n():
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. power onecorrelation 0 0.5, n(15) onesided

Estimated power for a one-sample correlation test
Fisher’s z test
H0: r = r0 versus Ha: r > r0

Study parameters:

alpha = 0.0500
N = 15

delta = 0.5000
r0 = 0.0000
ra = 0.5000

Estimated power:

power = 0.6018

The power decreases to roughly 60%. The power to detect a correlation of 0.5 is low for a sample
of 15 individuals. We should consider either a larger target correlation or a larger sample.

Example 3: Nonzero null hypothesis

To demonstrate power computation for a nonzero null hypothesis, we consider an example from
Graybill (1961, 211) of a hypothetical study where the primary interest lies in the correlation between
protein and fat for a particular breed of dairy cow. The sample contains 24 cows. Suppose we want
to compute the power of a two-sided test with the null hypothesis H0: ρ = 0.5 versus the alternative
hypothesis Ha: ρ 6= 0.5. Suppose that the correlation between protein and fat was estimated to be
0.3 in an earlier pilot study. We can compute power by typing

. power onecorrelation 0.5 0.3, n(24)

Estimated power for a one-sample correlation test
Fisher’s z test
H0: r = r0 versus Ha: r != r0

Study parameters:

alpha = 0.0500
N = 24

delta = -0.2000
r0 = 0.5000
ra = 0.3000

Estimated power:

power = 0.1957

The power of the test is estimated to be 0.1957 for the above study, which is unacceptably low for
practical purposes. We should consider either increasing the sample size or choosing a different target
correlation.

In fact, the author considers two values of the alternative correlation, 0.3 and 0.2. We can compute
the corresponding powers for the multiple values of the alternative correlation by enclosing them in
parentheses, as we demonstrate below.
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. power onecorrelation 0.5 (0.3 0.2), n(24)

Estimated power for a one-sample correlation test
Fisher’s z test
H0: r = r0 versus Ha: r != r0

alpha power N delta r0 ra

.05 .1957 24 -.2 .5 .3

.05 .3552 24 -.3 .5 .2

The power increases from 20% to 36% as the alternative correlation decreases from 0.3 to 0.2. It may
seem counterintuitive that the power increased as the value of the alternative correlation decreased.
It is important to remember that the power of the correlation test is an increasing function of the
magnitude of the effect size, δ = ρa − ρ0, the difference between the alternative and null values of
the correlation. So the power of 20% corresponds to |δ| = |0.3− 0.5| = 0.2, and the power of 36%
corresponds to |δ| = 0.3.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

Computing effect size and target correlation

In a one-sample correlation analysis, the effect size is commonly defined as the difference between
the alternative correlation and the null correlation, δ = ρa−ρ0. For a zero-null hypothesis, the effect
size is the alternative correlation.

The distribution of the sample correlation coefficient is symmetric when the population correlation
ρ is zero and becomes negatively skewed as ρ approaches 1 and positively skewed as ρ approaches −1.
Also, the sampling variance approaches zero as |ρ| approaches 1. Clearly, the power of a correlation
test depends on the magnitude of the true correlation; therefore, δ alone is insufficient for determining
the power. In other words, for the same difference δ = 0.1, the power to detect the difference between
ρa = 0.2 and ρ0 = 0.1 is not the same as that between ρa = 0.3 and ρ0 = 0.2; the former difference
is associated with the larger sampling variability and thus has lower power to be detected.

Sometimes, we may be interested in determining the smallest effect (for a given null correlation)
and the corresponding target correlation that yield a statistically significant result for prespecified
sample size and power. In this case, power, sample size, and null correlation must be specified. In
addition, you must also decide on the direction of the effect: upper, meaning ρa > ρ0, or lower,
meaning ρa < ρ0. The direction may be specified in the direction() option; direction(upper)
is the default.

Example 4: Minimum detectable value of the correlation

Continuing with example 2, we will compute the minimum positive correlation that can be detected
given a sample of 15 individuals and 80% power. To solve for target correlation, we specify the null
correlation of 0 after the command, sample size n(15), and power power(0.8):
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. power onecorrelation 0, n(15) power(0.8) onesided

Estimated target correlation for a one-sample correlation test
Fisher’s z test
H0: r = r0 versus Ha: r > r0; ra > r0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 15
r0 = 0.0000

Estimated effect size and target correlation:

delta = 0.6155
ra = 0.6155

We find that the minimum value of the correlation as well as of the effect size that would yield a
statistically significant result in this study is 0.6155.

In this example, we computed the correlation assuming an upper direction, ρa > ρ0, or a positive
effect, δ > 0. To request a lower direction, or a negative effect, we can specify the direction(lower)
option.

Performing hypothesis tests on correlation

After the data are collected, you can use the pwcorr command to test for correlation; see
[R] correlate.

Example 5: Testing for correlation

For example, consider auto.dta, which contains various characteristics of 74 cars. Suppose that
our study goal is to investigate the existence of a correlation between miles per gallon and weights
of cars. The corresponding variables in the dataset are mpg and weight. We use pwcorr to perform
the test.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. pwcorr mpg weight, sig

mpg weight

mpg 1.0000

weight -0.8072 1.0000
0.0000

The test finds a statistically significant negative correlation of −0.8 between mpg and weight; the
p-value is less than 0.0001.

We use the parameters of this study to perform a sample-size analysis we would have conducted
before the study.
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. power onecorrelation 0 -0.8, power(0.9) alpha(0.01)

Performing iteration ...

Estimated sample size for a one-sample correlation test
Fisher’s z test
H0: r = r0 versus Ha: r != r0

Study parameters:

alpha = 0.0100
power = 0.9000
delta = -0.8000

r0 = 0.0000
ra = -0.8000

Estimated sample size:

N = 16

We find that the sample size required to detect a correlation of −0.8 with 90% power using a 1%-level
two-sided test is 16. The current sample contains many more cars (74), which would allow us to
detect a potentially smaller (in absolute value) correlation.

We should point out that pwcorr performs an exact one-sample correlation test of H0: ρ = 0, which
uses a Student’s t distribution. power onecorrelation performs computation for an approximate
Fisher’s z test, which uses the normal distribution.

Stored results
power onecorrelation stores the following in r():
Scalars

r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) sample size
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(r0) correlation under the null hypothesis
r(ra) correlation under the alternative hypothesis
r(diff) difference between the alternative and null correlations
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample size or correlation
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) onecorrelation
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results
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Methods and formulas
Let ρ denote Pearson’s correlation and ρ̂ its estimator, the sample correlation coefficient.

A one-sample correlation test involves testing the null hypothesis H0: ρ = ρ0 versus the two-sided
alternative hypothesis Ha: ρ 6= ρ0, the upper one-sided alternative Ha: ρ > ρ0, or the lower one-sided
alternative Ha: ρ < ρ0.

The exact distribution of the sample correlation coefficient ρ̂ is complicated for testing a general
hypothesis H0 : ρ = ρ0 6= 0. An alternative is to apply an inverse hyperbolic tangent, tanh−1(·),
or Fisher’s z transformation to ρ̂ to approximate its sampling distribution by a normal distribution
(Fisher 1915). The hypothesis H0: ρ = ρ0 is then equivalent to H0: tanh−1(ρ) = tanh−1(ρ0).

Let Z = tanh−1(ρ̂) = 0.5 ln{(1 + ρ̂)/(1 − ρ̂)} denote Fisher’s z transformation of ρ̂. Then Z
follows a normal distribution with mean µz = tanh−1(ρ) and standard deviation σz = 1/

√
n− 3,

where n is the sample size (for example, see Graybill [1961, 211]; Anderson [2003, 134]).

Let α be the significance level, β be the probability of a type II error, and z1−α/k and zβ be
the (1− α/k)th and the βth quantiles of the standard normal distribution. Denote δz = µa − µ0 =
tanh−1(ρa)− tanh−1(ρ0).

The power π = 1− β is computed using

π =


Φ
(
δz
σz
− z1−α

)
for an upper one-sided test

Φ
(
− δz
σz
− z1−α

)
for a lower one-sided test

Φ
(
δz
σz
− z1−α/2

)
+ Φ

(
− δz
σz
− z1−α/2

)
for a two-sided test

(1)

where Φ(·) is the cdf of a standard normal distribution.

The sample size n for a one-sided test is computed using

n = 3 +

(
z1−α − zβ

δz

)2

See, for example, Lachin (1981) for the case of ρ0 = 0.

The minimum detectable value of the correlation is obtained by first finding the corresponding
minimum value of µa and then applying the inverse Fisher’s z transformation to the µa:

ρa =
e2µa − 1

e2µa + 1

For a one-sided test, µa = µ0 + σz(z1−α − zβ) when µa > µ0, and µa = µ0 − σz(z1−α − zβ)
when µa < µ0.

For a two-sided test, the sample size n and µa are obtained by iteratively solving the two-sided
power equation in (1) for n and µa, respectively. The initial values are obtained from the respective
formulas for the one-sided computation with the significance level α/2.

If the nfractional option is not specified, the computed sample size is rounded up.
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power twocorrelations — Power analysis for a two-sample correlations test

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power twocorrelations computes sample size, power, or the experimental-group correlation
for a two-sample correlations test. By default, it computes sample size for given power and the
values of the control-group and experimental-group correlations. Alternatively, it can compute power
for given sample size and values of the control-group and experimental-group correlations or the
experimental-group correlation for given sample size, power, and the control-group correlation. Also
see [PSS-2] power for a general introduction to the power command using hypothesis tests.

Quick start
Sample size for a test of H0: ρ1 = ρ2 versus Ha: ρ1 6= ρ2 when control-group correlation r1 = 0.4

and experimental-group correlation r2 = 0.1 with default power of 0.8 and significance level
α = 0.05

power twocorrelations .4 .1

Same as above, for r2 equal to −0.05, 0, 0.05, and 0.1
power twocorrelations .4 (-.05(.05).1)

Same as above, but for a one-sided test
power twocorrelations .4 (-.05(.05).1), onesided

Specify r1 and difference r2 − r1 = −0.3
power twocorrelations .4, diff(-.3)

Same as above, but specify a sample size of 200 for group 1 and compute sample size for group 2
power twocorrelations 0.4, diff(-0.3) n1(200) compute(N2)

Power for r1 = 0.4 and r2 = −0.15 with a sample size of 100 and default α = 0.05
power twocorrelations .4 -.15, n(100)

Same as above, but specify sample size of 50 and 65 for groups 1 and 2, respectively
power twocorrelations .4 -.15 , n1(50) n2(65)

Power for sample sizes of 60, 70, 80, 90, and 100
power twocorrelations .4 -.15, n(60(10)100)

Same as above, but display results in a graph of power versus sample size
power twocorrelations .4 -.15, n(60(10)100) graph

Effect size and experimental-group correlation for r1 = 0.4 with sample size of 150 and power of
0.85

power twocorrelations .4, n(150) power(.85)

337
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Menu
Statistics > Power, precision, and sample size

Syntax

Compute sample size

power twocorrelations r1 r2

[
, power(numlist) options

]

Compute power

power twocorrelations r1 r2 , n(numlist)
[

options
]

Compute effect size and experimental-group correlation

power twocorrelations r1 , n(numlist) power(numlist)
[

options
]

where r1 is the correlation in the control (reference) group and r2 is the correlation in the experimental
(comparison) group. r1 and r2 may each be specified either as one number or as a list of values
in parentheses (see [U] 11.1.8 numlist).
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1), meaning

equal group sizes
compute(N1 | N2) solve for N1 given N2 or for N2 given N1

nfractional allow fractional sample sizes
∗diff(numlist) difference between the experimental-group and

control-group correlations, r2 − r1; specify instead of the
experimental-group correlation r2

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value for sample sizes or experimental-group correlation
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.
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where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N total number of subjects N
N1 number of subjects in the control group N1

N2 number of subjects in the experimental group N2

nratio ratio of sample sizes, experimental to control N2/N1

delta effect size δ
r1 control-group correlation ρ1

r2 experimental-group correlation ρ2

diff difference between the experimental-group correlation ρ2 − ρ1

and the control-group correlation
target target parameter; synonym for r2
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Columns diff and nratio are shown in the default table if specified.

Options

� � �
Main �

alpha(), power(), beta(), n(), n1(), n2(), nratio(), compute(), nfractional; see
[PSS-2] power.

diff(numlist) specifies the difference between the experimental-group correlation and the control-
group correlation, r2 − r1. You can specify either the experimental-group correlation r2 as a
command argument or the difference between the two correlations in diff(). If you specify
diff(#), the experimental-group correlation is computed as r2 = r1 + #. This option is not
allowed with the effect-size determination.

direction(), onesided, parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.
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� � �
Iteration �

init(#) specifies the initial value for the estimated parameter. For sample-size determination, the
estimated parameter is either the control-group size n1 or, if compute(N2) is specified, the
experimental-group size n2. For the effect-size determination, the estimated parameter is the
experimental-group correlation r2. The default initial values for a two-sided test are obtained as
a closed-form solution for the corresponding one-sided test with the significance level α/2.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power twocorrelations but is not shown in the dialog box:

notitle; see [PSS-2] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power twocorrelations
Computing sample size
Computing power
Computing effect size and experimental-group correlation
Testing a hypothesis about two independent correlations

This entry describes the power twocorrelations command and the methodology for power
and sample-size analysis for a two-sample correlations test. See [PSS-2] Intro (power) for a general
introduction to power and sample-size analysis and [PSS-2] power for a general introduction to the
power command using hypothesis tests.

Introduction
There are many examples of studies where a researcher may want to compare two correlations. A

winemaker may want to test the null hypothesis that the correlation between fermentation time and
alcohol level is the same for pinot noir grapes and merlot grapes. An education researcher may want
to test the null hypothesis that the correlation of verbal and math SAT scores is the same for males
and females. Or a genetics researcher may want to test the null hypothesis that the correlation of the
cholesterol levels in identical twins raised together is equal to the correlation of the cholesterol levels
in identical twins raised apart.

Correlation analysis emanates from studies quantifying dependence between random variables. The
correlation coefficient ρ is commonly used to measure the strength of such dependence. We consider
Pearson’s correlation obtained by standardizing the covariance between two random variables. As a
result, the correlation coefficient has no units and ranges between −1 and 1.

This entry describes power and sample-size analysis for the inference about two population
correlation coefficients performed using hypothesis testing. Specifically, we consider the null hypothesis
H0: ρ2 = ρ1 versus the two-sided alternative hypothesis Ha: ρ2 6= ρ1, the upper one-sided alternative
Ha: ρ2 > ρ1, or the lower one-sided alternative Ha: ρ2 < ρ1.

One common approach in testing hypotheses concerning the correlation parameter is to use an
inverse hyperbolic tangent transformation, tanh−1(x) = 0.5 ln(1 + x)/ ln(1 − x), also known as
Fisher’s z transformation when applied to the correlation coefficient (Fisher 1915). Specifically, if ρ̂
is the sample correlation coefficient and n is the sample size, Fisher (1915) showed that

√
n− 3

{
tanh−1(ρ̂)− tanh−1(ρ)

}
∼ N(0, 1)
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for n as small as 10, although the approximation tends to perform better for n > 25. For a two-sample
correlations test, the null hypothesis H0: ρ1 = ρ2 is equivalent to H0: tanh−1(ρ1) = tanh−1(ρ2).
The latter test is referred to as the two-sample Fisher’s z test.

power twocorrelations performs computations based on the asymptotic two-sample Fisher’s
z test.

Using power twocorrelations

power twocorrelations computes sample size, power, or experimental-group correlation for a
two-sample correlations test. All computations are performed for a two-sided hypothesis test where,
by default, the significance level is set to 0.05. You may change the significance level by specifying
the alpha() option. You can specify the onesided option to request a one-sided test. By default,
all computations assume a balanced or equal-allocation design; see [PSS-4] Unbalanced designs for
a description of how to specify an unbalanced design.

To compute the total sample size, you must specify the control- and experimental-group correlations,
r1 and r2, respectively, and, optionally, the power of the test in the power() option. The default
power is set to 0.8.

Instead of the total sample size, you can compute one of the group sizes given the other one. To
compute the control-group sample size, you must specify the compute(N1) option and the sample
size of the experimental group in the n2() option. Likewise, to compute the experimental-group
sample size, you must specify the compute(N2) option and the sample size of the control group in
the n1() option.

To compute power, you must specify the total sample size in the n() option and the control- and
experimental-group correlations, r1 and r2, respectively.

Instead of the experimental-group correlation r2, you may specify the difference r2 − r1 between
the experimental-group correlation and the control-group correlation in the diff() option when
computing sample size or power.

To compute effect size, the difference between the experimental-group and the control-group
correlation, and the experimental-group correlation, you must specify the total sample size in the
n() option, the power in the power() option, the control-group correlation r1, and optionally, the
direction of the effect. The direction is upper by default, direction(upper), which means that the
experimental-group correlation is assumed to be larger than the specified control-group value. You
can change the direction to be lower, which means that the experimental-group correlation is assumed
to be smaller than the specified control-group value, by specifying the direction(lower) option.

Instead of the total sample size n(), you can specify individual group sizes in n1() and n2(), or
specify one of the group sizes and nratio() when computing power or effect size. Also see Two
samples in [PSS-4] Unbalanced designs for more details.

In the following sections, we describe the use of power twocorrelations accompanied with
examples for computing sample size, power, and experimental-group correlation.

Computing sample size

To compute sample size, you must specify the control- and experimental-group correlations, r1

and r2, respectively, and, optionally, the power of the test in the power() option. A default power
of 0.8 is assumed if power() is not specified.
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Example 1: Sample size for a two-sample correlations test

Consider a study in which investigators are interested in testing whether the correlation between
height and weight differs for males and females. The null hypothesis H0: ρF = ρM is tested against
the alternative hypothesis Ha: ρF 6= ρM , where ρF is the correlation between height and weight for
females and ρM is the correlation between height and weight for males.

Before conducting the study, investigators wish to determine the minimum sample size required
to detect a difference between the correlation of 0.3 for females and a correlation of 0.5 for males
with 80% power using a two-sided 5%-level test. We specify the values 0.3 and 0.5 as the control-
and experimental-group correlations after the command name. We omit options alpha(0.05) and
power(0.8) because the specified values are their defaults. To compute the total sample size assuming
equal-group allocation, we type

. power twocorrelations 0.3 0.5

Performing iteration ...

Estimated sample sizes for a two-sample correlations test
Fisher’s z test
H0: r2 = r1 versus Ha: r2 != r1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000

r1 = 0.3000
r2 = 0.5000

Estimated sample sizes:

N = 554
N per group = 277

A total sample of 554 individuals, 277 in each group, must be obtained to detect the difference
between correlations of females and males when the correlations are 0.3 and 0.5, respectively, with
80% power using a two-sided 5%-level test.

Example 2: Computing one of the group sizes

Continuing with example 1, we will suppose that for some reason, we can enroll only 250 male
subjects in our study. We want to know how many female subjects we need to recruit to maintain the
80% power for detecting the difference as described in example 1. To do so, we use the combination
of compute(N1) and n2():
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. power twocorrelations 0.3 0.5, n2(250) compute(N1)

Performing iteration ...

Estimated sample sizes for a two-sample correlations test
Fisher’s z test
H0: r2 = r1 versus Ha: r2 != r1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000

r1 = 0.3000
r2 = 0.5000
N2 = 250

Estimated sample sizes:

N = 559
N1 = 309

We need 309 females for a total sample size of 559 subjects, which is larger than the required total
sample size for the corresponding balanced design from example 1.

Example 3: Unbalanced design

By default, power twocorrelations computes sample size for a balanced or equal-allocation
design. If we know the allocation ratio of subjects between the groups, we can compute the required
sample size for an unbalanced design by specifying the nratio() option.

Continuing with example 1, we will suppose that we anticipate to recruit twice as many males as
females; that is, n2/n1 = 2. We specify the nratio(2) option to compute the required sample size
for the specified unbalanced design.

. power twocorrelations 0.3 0.5, nratio(2)

Performing iteration ...

Estimated sample sizes for a two-sample correlations test
Fisher’s z test
H0: r2 = r1 versus Ha: r2 != r1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2000

r1 = 0.3000
r2 = 0.5000

N2/N1 = 2.0000

Estimated sample sizes:

N = 624
N1 = 208
N2 = 416

Also see Two samples in [PSS-4] Unbalanced designs for more examples of unbalanced designs
for two-sample tests.
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Computing power

To compute power, you must specify the sample size in the n() option and the control- and the
experimental-group correlations, r1 and r2, respectively.

Example 4: Power of a two-sample correlations test

Continuing with example 1, we will suppose that we are designing a study and anticipate a total
sample of 500 subjects. To compute the power corresponding to this sample size given the study
parameters from example 1, we specify the sample size in n():

. power twocorrelations 0.3 0.5, n(500)

Estimated power for a two-sample correlations test
Fisher’s z test
H0: r2 = r1 versus Ha: r2 != r1

Study parameters:

alpha = 0.0500
N = 500

N per group = 250
delta = 0.2000

r1 = 0.3000
r2 = 0.5000

Estimated power:

power = 0.7595

With a smaller sample of 500 subjects compared with example 1, we obtain a power of roughly 76%.

Example 5: Multiple values of study parameters

In this example, we assess the effect of varying the value of the correlation of the male group
on the power of our study. We supply a list of correlations in parentheses for the second command
argument:

. power twocorrelations 0.3 (0.4(0.1)0.9), n(500)

Estimated power for a two-sample correlations test
Fisher’s z test
H0: r2 = r1 versus Ha: r2 != r1

alpha power N N1 N2 delta r1 r2

.05 .2452 500 250 250 .1 .3 .4

.05 .7595 500 250 250 .2 .3 .5

.05 .9894 500 250 250 .3 .3 .6

.05 1 500 250 250 .4 .3 .7

.05 1 500 250 250 .5 .3 .8

.05 1 500 250 250 .6 .3 .9

From the table, we see that the power increases from 25% to 100% as the correlation increases from
0.4 to 0.9.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.
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Computing effect size and experimental-group correlation

Effect size δ for a two-sample correlations test is defined as the difference between the experimental-
group and control-group correlations, δ = ρ2 − ρ1.

Sometimes, we may be interested in determining the smallest effect (for a given control-group
correlation) that yields a statistically significant result for prespecified sample size and power. In this
case, power, sample size, and control-group correlation must be specified. In addition, you must also
decide on the direction of the effect: upper, meaning ρ2 > ρ1, or lower, meaning ρ2 < ρ1. The
direction may be specified in the direction() option; direction(upper) is the default.

Example 6: Minimum detectable value of the experimental-group correlation

Continuing with example 4, we will compute the smallest positive correlation of the male group
that can be detected given a total sample of 500 individuals and a power of 80%. To solve for the
experimental-group correlation, after the command, we specify the control-group correlation of 0.3,
total sample size n(500), and power power(0.8):

. power twocorrelations 0.3, n(500) power(0.8)

Performing iteration ...

Estimated experimental-group correlation for a two-sample correlations test
Fisher’s z test
H0: r2 = r1 versus Ha: r2 != r1; r2 > r1

Study parameters:

alpha = 0.0500
power = 0.8000

N = 500
N per group = 250

r1 = 0.3000

Estimated effect size and experimental-group correlation:

delta = 0.2092
r2 = 0.5092

We find that the minimum value of the experimental-group correlation that would yield a statistically
significant result in this study is 0.5092, and the corresponding effect size is 0.2092.

In this example, we computed the correlation assuming an upper direction, ρ2 > ρ1, or a positive
effect, δ > 0. To request a lower direction, or a negative effect, we can specify the direction(lower)
option.

Testing a hypothesis about two independent correlations

After data are collected, we can use the mvtest command to test the equality of two independent
correlations using an asymptotic likelihood-ratio test; see [MV] mvtest for details. We can also manually
perform a two-sample Fisher’s z test on which power twocorrelations bases its computations.
We demonstrate our examples using genderpsych.dta from [MV] mvtest correlations.

Example 7: Comparing two correlations using mvtest

Consider a sample of 64 individuals with equal numbers of males and females. We would like
to know whether the correlation between the pictorial inconsistencies (variable y1) and vocabulary
(variable y4) is the same between males and females.
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. use https://www.stata-press.com/data/r18/genderpsych
(Four psychological test scores, Rencher and Christensen (2012))

. mvtest correlations y1 y4, by(gender)

Test of equality of correlation matrices across samples

Jennrich chi2(1) = 2.16
Prob > chi2 = 0.1415

The reported p-value is 0.1415, so we do not have sufficient evidence to reject the null hypothesis
about the equality of the two correlations.

Example 8: Two-sample Fisher’s z test

To compute a two-sample Fisher’s z test manually, we perform the following steps. We first
compute the estimates of correlation coefficients for each group by using the correlate command;
see [R] correlate. We then compute Fisher’s z test statistic and its corresponding p-value.

We compute and store correlation estimates for males in the r1 scalar and the corresponding
sample size in the N1 scalar.

. /* compute and store correlation and sample size for males */

. correlate y1 y4 if gender==1
(obs=32)

y1 y4

y1 1.0000
y4 0.5647 1.0000

. scalar r1 = r(rho)

. scalar N1 = r(N)

We store the corresponding results for females in r2 and N2.

. /* compute and store correlation and sample size for females */

. correlate y1 y4 if gender==2
(obs=32)

y1 y4

y1 1.0000
y4 0.2596 1.0000

. scalar r2 = r(rho)

. scalar N2 = r(N)

We now compute the z test statistic, stored in the Z scalar, by applying Fisher’s z transformation
to the obtained correlation estimates r1 and r2 and using the cumulative function of the standard
normal distribution normal() to compute the p-value.

. /* compute Fisher’s z statistic and p-value and display results */

. scalar mu_Z = atanh(r2) - atanh(r1)

. scalar sigma_Z = sqrt(1/(N1-3)+1/(N2-3))

. scalar Z = mu_Z/sigma_Z

. scalar pvalue = 2*normal(-abs(Z))

. display "Z statistic = " %8.4g Z _n "P-value = " %8.4g pvalue
Z statistic = -1.424
P-value = .1543

The p-value is 0.1543 and is close to the p-value reported by mvtest in example 7.
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The estimates of the correlations obtained from correlate are 0.5647 for males and 0.2596
for females. We may check how many subjects we need to detect the difference between these two
correlation values.

. power twocorrelations 0.5647 0.2596

Performing iteration ...

Estimated sample sizes for a two-sample correlations test
Fisher’s z test
H0: r2 = r1 versus Ha: r2 != r1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.3051

r1 = 0.5647
r2 = 0.2596

Estimated sample sizes:

N = 232
N per group = 116

We need a total of 232 subjects, 116 per group in a balanced design, to have a power of 80% to
detect the difference between the given values of correlations for males and females.

Stored results
power twocorrelations stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
r(nratio) ratio of sample sizes, N2/N1
r(nratio a) actual ratio of sample sizes
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(r1) control-group correlation
r(r2) experimental-group correlation
r(diff) difference between the experimental- and control-group correlations
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample sizes or experimental-group correlation
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise
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Macros
r(type) test
r(method) twocorrelations
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
Let ρ1 and ρ2 denote Pearson’s correlation for the control and the experimental groups, respectively.

Let ρ̂1 and ρ̂2 denote the corresponding estimators, the sample correlation coefficients.

A two-sample correlations test involves testing the null hypothesis H0 : ρ2 = ρ1 versus the
two-sided alternative hypothesis Ha: ρ2 6= ρ1, the upper one-sided alternative Ha: ρ2 > ρ1, or the
lower one-sided alternative Ha: ρ2 < ρ1.

The exact distribution of the difference between the sample correlation coefficients ρ̂1 and ρ̂2

is complicated for testing the hypothesis H0 : ρ1 − ρ2 6= 0. An alternative is to apply an inverse
hyperbolic tangent, tanh−1(·), or Fisher’s z transformation to the estimators to approximate their
sampling distribution by a normal distribution (Fisher 1915). The hypothesis H0: ρ1 = ρ2 is then
equivalent to H0: tanh−1(ρ1) = tanh−1(ρ2).

Let Z1 = tanh−1(ρ̂1) = 0.5 ln{(1 + ρ̂1)/(1− ρ̂1)} denote Fisher’s z transformation of ρ̂1, and
let Z2 denote the corresponding transformation of ρ̂2. Then the difference δz = Z2 − Z1 follows a
normal distribution with mean µz = µ2 − µ1 = tanh−1(ρ2)− tanh−1(ρ1) and standard deviation
σz =

√
1/(n1 − 3) + 1/(n2 − 3), where n1 and n2 are the sample sizes of the control and the

experimental groups, respectively (for example, see Graybill [1961, 211] and Anderson [2003, 134]).

Let α be the significance level, β be the probability of a type II error, and z1−α and zβ be the
(1− α)th and the βth quantiles of the standard normal distribution.

The power π = 1− β is computed using

π =


Φ
(
δz
σz
− z1−α

)
for an upper one-sided test

Φ
(
− δz
σz
− z1−α

)
for a lower one-sided test

Φ
(
δz
σz
− z1−α/2

)
+ Φ

(
− δz
σz
− z1−α/2

)
for a two-sided test

(1)

where Φ(·) is the cdf of a standard normal distribution.

Let R = n2/n1 denote the allocation ratio. Then n2 = R × n1 and power can be viewed as
a function of n1. Therefore, for sample-size determination, the control-group sample size n1 is
computed first. The experimental-group size n2 is then computed as R×n1, and the total sample size
is computed as n = n1 + n2. By default, sample sizes are rounded to integer values; see Fractional
sample sizes in [PSS-4] Unbalanced designs for details.

For a one-sided test, the control-group sample size n1 is computed as a positive root of the
following quadratic equation:

(R+ 1)n1 − 6

(n1 − 3)(Rn1 − 3)
=

(
δz

z1−α − zβ

)2
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For a one-sided test, if one of the group sizes is known, the other one is computed using the
following formula. For example, to compute n1 given n2 we use

n1 = 3 +
1(

δz
z1−α−zβ

)2

− 1
n2−3

The minimum detectable value of the experimental-group correlation is obtained by first finding
the corresponding minimum value of µ2 and then applying the inverse Fisher’s z transformation to
that µ2:

ρ2 =
e2µ2 − 1

e2µ2 + 1

For a one-sided test, µ2 = µ1 + σz(z1−α − zβ) when µ2 > µ1, and µ2 = µ1 − σz(z1−α − zβ)
when µ2 < µ1.

For a two-sided test, the sample sizes and µ2 are obtained by iteratively solving the two-sided
power equation in (1) for the respective parameters. The initial values are obtained from the respective
formulas for the one-sided computation with the significance level α/2.
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power oneway — Power analysis for one-way analysis of variance

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power oneway computes sample size, power, or effect size for one-way analysis of variance
(ANOVA). By default, it computes sample size for given power and effect size. Alternatively, it can
compute power for given sample size and effect size or compute effect size for given sample size,
power, and number of groups. Also see [PSS-2] power for a general introduction to the power
command using hypothesis tests.

Quick start
Sample size for a test of H0: µ1 = µ2 = µ3 for cell means of 21, 19, and 18 and within-group

variance of 16 with default power of 0.8 and significance level α = 0.05
power oneway 21 19 18, varerror(16)

Same as above, but specify a between-group variance of 1.55 for three groups
power oneway, varerror(16) varmeans(1.55) ngroups(3)

Same as above, but specify that delta (Cohen’s f ), given by
√
σ2
m/σ

2
e , equals 0.31

power oneway, ngroups(3) delta(.31)

Same as above, but specify delta equal to 0.2, 0.25, 0.3, 0.35, and 0.4
power oneway, ngroups(3) delta(.2(.05).4)

Same as above, but show results in a graph of sample size versus effect size (delta)
power oneway, ngroups(3) delta(.2(.05).4) graph

Sample size for contrast of H0: µ1 = (µ2 + µ3)/2 or, equivalently, H0: −µ1 + 0.5µ2 + 0.5µ3 = 0
power oneway 21 19 18, varerror(16) contrast(-1 0.5 0.5)

For an unbalanced design where the sample size in group 1 is 1.5 times the sample sizes for groups
2 and 3

power oneway 21 19 18, varerror(16) grweights(3 2 2)

Specify group means for 5 groups using matrix means and within-group variance of 34
matrix means = (21, 19, 19, 22, 27)
power oneway means, varerror(34)

Power for sample sizes of 99, 108, 117, and 126 with balanced group sizes
power oneway 21 19 18, varerror(16) n(99(9)126)

Same as above, but with sample sizes of 25, 25, and 50 for groups 1, 2 and 3, respectively
power oneway 21 19 18, varerror(16) n1(25) n2(25) n3(50)

351
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Same as above, sample size allocations treated as parallel sets, each with total sample size 100
power oneway 21 19 18, varerror(16) n1(50 25 25) n2(25 50 25) ///

n3(25 25 50) parallel

Effect size and target between-group variance for a sample size of 150 for three groups, power of
0.9, and α = 0.01

power oneway, n(150) ngroups(3) power(.9) alpha(0.1)

Menu
Statistics > Power, precision, and sample size

Syntax

Compute sample size

power oneway meanspec
[
, power(numlist) options

]

Compute power

power oneway meanspec, n(numlist)
[

options
]

Compute effect size and target between-group variance

power oneway, n(numlist) power(numlist) ngroups(#)
[
varerror(numlist) options

]

where meanspec is either a matrix matname containing group means or individual group means
specified in a matrix form:

m1 m2 [m3 . . . mJ ]

mj , where j = 1, 2, . . . , J , is the alternative group mean or the group mean under the alternative
hypothesis for the jth group. Each mj may be specified either as one number or as a list of values
in parentheses; see [U] 11.1.8 numlist.

matname is the name of a Stata matrix with J columns containing values of alternative group
means. Multiple rows are allowed, in which case each row corresponds to a different set of J
group means or, equivalently, column j corresponds to numlist for the jth group mean.
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
nfractional allow fractional sample sizes
∗npergroup(numlist) number of subjects per group; implies balanced design
∗n#(numlist) number of subjects in group #
grweights(wgtspec) group weights; default is one for each group, meaning

equal group sizes
ngroups(#) number of groups
∗varmeans(numlist) variance of the group means or between-group variance
∗varerror(numlist) error (within-group) variance; default is varerror(1)

contrast(contrastspec) contrast specification for group means
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value for sample size or effect size;
default is to use a bisection algorithm to bound the solution

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.
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wgtspec Description

#1 #2 . . . #J J group weights. Weights must be positive and must be integers unless option
nfractional is specified. Multiple values for each group weight #j can be
specified as a numlist enclosed in parentheses.

matname matrix with J columns containing J group weights. Multiple rows are
allowed, in which case each row corresponds to a different set of J weights
or, equivalently, column j corresponds to a numlist for the jth weight.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N total number of subjects N
N per group number of subjects per group N/Ng
N avg average number of subjects per group Navg

N# number of subjects in group # N#

delta effect size δ
N g number of groups Ng
m# group mean # µ#

Cm mean contrast C·µ
c0 null mean contrast c0
Var m group means (between-group) variance σ2

m

Var Cm contrast variance σ2
Cµ

Var e error (within-group) variance σ2
e

grwgt# group weight # w#

target target parameter; synonym for Var m or Var Cm

all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Column N per group is available and is shown in the default table only for balanced designs.
Columns N avg and N# are shown in the default table only for unbalanced designs.
Columns m# are shown in the default table only if group means are specified.
Column Var m is not shown in the default table if the contrast() option is specified.
Columns Cm, c0, and Var Cm are shown in the default table only if the contrast() option is specified.
Columns grwgt# are not shown in the default table.
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Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS-2] power.

npergroup(numlist) specifies the group size. Only positive integers are allowed. This option implies
a balanced design. npergroup() cannot be specified with n(), n#(), or grweights().

n#(numlist) specifies the size of the #th group. Only positive integers are allowed. All group sizes
must be specified. For example, all three options n1(), n2(), and n3() must be specified for a
design with three groups. n#() cannot be specified with n(), npergroup(), or grweights().

grweights(wgtspec) specifies J group weights for an unbalanced design. The weights may be
specified either as a list of values or as a matrix, and multiple sets of weights are allowed; see
wgtspec for details. The weights must be positive and must also be integers unless the nfractional
option is specified. grweights() cannot be specified with npergroup() or n#().

ngroups(#) specifies the number of groups. At least two groups must be specified. This option is
required if meanspec is not specified. This option is also required for effect-size determination
unless grweights() is specified.

varmeans(numlist) specifies the variance of the group means or the between-group variance.
varmeans() cannot be specified with meanspec or contrast(), nor is it allowed with effect-size
determination.

varerror(numlist) specifies the error (within-group) variance. The default is varerror(1).

contrast(contrastspec) specifies a contrast for group means containing J contrast coefficients that
must sum to zero. contrastspec is

#1 #2

[
#3 . . . #J

][
, null(numlist) onesided

]
null(numlist) specifies the null or hypothesized value of the mean contrast. The default is
null(0).

onesided requests a one-sided t test. The default is F test.

parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value of the sample size for the sample-size determination or the initial
value of the effect size δ for the effect-size determination. The default uses a bisection algorithm
to bracket the solution.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power oneway but is not shown in the dialog box:

notitle; see [PSS-2] power.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power oneway

Alternative ways of specifying effect
Computing sample size
Computing power
Computing effect size and between-group variance
Testing hypotheses about multiple group means
Video examples

This entry describes the power oneway command and the methodology for power and sample-size
analysis for one-way ANOVA. See [PSS-2] Intro (power) for a general introduction to power and
sample-size analysis and [PSS-2] power for a general introduction to the power command using
hypothesis tests.

Introduction

The comparison of multiple group means using one-way ANOVA models is a commonly used
approach in a wide variety of statistical studies. The term “one way” refers to a single factor
containing an arbitrary number of groups or levels. In what follows, we will assume that the factor
levels are fixed. For two groups, the ANOVA model is equivalent to an unpaired two-sample t test; see
[PSS-2] power twomeans for the respective power and sample-size analysis. One-way ANOVA uses
an F test based on the ratio of the between-group variance to the within-group variance to compare
means of multiple groups.

For example, consider a type of drug with three levels of dosage in treating a medical condition.
An investigator may wish to test whether the mean response of the drug is the same across all levels
of dosage. This is equivalent to testing the null hypothesis H0: µ1 = µ2 = µ3 versus the alternative
hypothesis Ha: µ1 6= µ2 or µ1 6= µ3 or µ2 6= µ3; that is, at least one of the three group means is
different from all the others. Rejection of the null hypothesis, however, does not provide any specific
information about the individual group means. Therefore, in some cases, investigators may want to
form a hypothesis for a mean contrast, c =

∑k
j=1 cjµj , a linear combination of group means where

weights cj sum to zero, and compare individual means by testing a hypothesis H0: c = c0 versus
Ha: c 6= c0.

This entry describes power and sample-size analysis for the inference about multiple population
means using hypothesis testing based on one-way ANOVA. Specifically, we consider the null hypothesis
H0: µ1 = · · · = µJ , which tests the equality of J group means against the alternative hypothesis
Ha: µi 6= µjfor some i, j. The test statistic for this hypothesis is based on the ratio of the between-
group variance to the within-group variance and has an F distribution under the null hypothesis. The
corresponding test is known as an overall F test, which tests the equality of multiple group means.
This test is nondirectional.

For testing a single mean contrast, H0: c = c0 versus Ha: c 6= c0, a test statistic is a function of
the ratio of the contrast variance to the error (or within-group) variance, and either an F test or a
t test can be used for a two-sided alternative. For a one-sided alternative, Ha: c > c0 or Ha: c < c0,
only a t test can be used.

Power and sample-size computations use the distribution of the test statistic under the alternative
hypothesis, which is a noncentral F distribution for the considered tests. Power is a function of the
noncentrality parameter, and the noncentrality parameter is a function of the ratio of the standard
deviation of the tested effect to the standard deviation of the errors. As such, the effect size for
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the overall F test is defined as the square root of the ratio of the between-group variance to the
within-group variance. For testing a mean contrast, the effect size is defined as the square root of the
contrast variance to the error or within-group variance.

Using power oneway

power oneway computes sample size, power, or effect size and target variance of the effect for a
one-way fixed-effects analysis of variance. All computations are performed assuming a significance
level of 0.05. You may change the significance level by specifying the alpha() option.

By default, the computations are performed for an overall F test testing the equality of all group
means. The within-group or error variance for this test is assumed to be 1 but may be changed by
specifying the varerror() option.

To compute the total sample size, you must specify the alternative meanspec and, optionally, the
power of the test in the power() option. The default power is set to 0.8.

To compute power, you must specify the total sample size in the n() option and the alternative
meanspec.

Instead of the alternative group means, you can specify the number of groups in the ngroups()
option and the variance of the group means (or the between-group variance) in the varmeans()
option when computing sample size or power.

To compute effect size, the square root of the ratio of the between-group variance to the error
variance, and the target between-group variance, you must specify the total sample size in the n()
option, the power in the power() option, and the number of groups in the ngroups() option.

To compute sample size or power for a test of a mean contrast, in addition to the respective options
power() or n() as described above, you must specify the alternative meanspec and the corresponding
contrast coefficients in the contrast() option. A contrast coefficient must be specified for each of
the group means, and the specified coefficients must sum to zero. The null value for the specified
contrast is assumed to be zero but may be changed by specifying the null() suboption within
contrast(). The default test is an F test. You can instead request a one-sided t test by specifying
the onesided suboption within contrast(). Effect-size determination is not available when testing
a mean contrast.

For all the above computations, the error or within-group variance is assumed to be 1. You can
change this value by specifying the varerror() option.

By default, all computations assume a balanced- or equal-allocation design. You can use the
grweights() option to specify an unbalanced design for power, sample-size, or effect-size compu-
tations. For power and effect-size computations, you can specify individual group sizes in options
n1(), n2(), and so on instead of a combination of n() and grweights() to accommodate an
unbalanced design. For a balanced design, you can also specify the npergroup() option to specify
a group size instead of a total sample size in n().

In a one-way analysis of variance, sample size and effect size depend on the noncentrality parameter
of the F distribution, and their estimation requires iteration. The default initial values are obtained
from a bisection search that brackets the solution. If you desire, you may change this by specifying
your own value in the init() option. See [PSS-2] power for the descriptions of other options that
control the iteration procedure.
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Alternative ways of specifying effect

To compute power or sample size, you must specify the magnitude of the effect desired to be
detected by the test. With power oneway, you can do this by specifying either the individual alternative
meanspec, for example,

power oneway m1 m2 . . . mJ, . . .

or the variance of J group means (between-group variance) and the number of groups J :

power oneway, varmeans(#) ngroups(#)
[
. . .
]

You can also specify multiple values for variances in varmeans().

There are multiple ways in which you can supply the group means to power oneway.

As we showed above, you may specify group means following the command line as

power oneway m1 m2 . . . mJ, . . .

At least two means must be specified.

Alternatively, you can define a Stata matrix as a row or a column vector and use it with power
oneway. The dimension of the Stata matrix must be at least 2. For example,

matrix define meanmat = (m1, m2,. . . , mJ)

power oneway meanmat, . . .

You can also specify multiple values or numlist for each of the group means in parentheses:

power oneway (m1,1 m1,2 . . . m1,K1) (m2,1 m2,2 . . . m2,K2) . . ., . . .

Each of the numlists may contain different numbers of values, K1 6= K2 6= . . . 6= KJ . power
oneway will produce results for all possible combinations of values across numlists. If instead you
would like to treat each specification as a separate scenario, you can specify the parallel option.

Similarly, you can accommodate multiple sets of group means in a matrix form by adding a row
for each specification. The columns of a matrix with multiple rows correspond to J group means, and
values within each column j correspond to multiple specifications of the jth group mean or numlist
for the jth group mean.

For example, the following two specifications are the same:

power oneway (m1,1 m1,2 m1,3) (m2,1 m2,2 m2,3), . . .

and

matrix define meanmat = (m1,1, m2,1 \ m1,2, m2,2 \ m1,3, m2,3)

power oneway meanmat, . . .

In the above specification, if you wish to specify a numlist only for the first group, you may define
your matrix as

matrix define meanmat = (m1,1, m2,1 \ m1,2, . \ m1,3, .)

and the results of

power oneway meanmat, . . .

will be the same as the results of

power oneway (m1,1 m1,2 m1,3) m2,1, . . .
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If you wish to treat the rows of meanmat as separate scenarios, you must specify the parallel
option.

In the following sections, we describe the use of power oneway accompanied by examples for
computing sample size, power, and effect size.

Computing sample size

To compute sample size, you must specify the alternative group means or their variance and,
optionally, the power of the test in the power() option. A power of 0.8 is assumed if power() is
not specified.

Example 1: Sample size for a one-way ANOVA

Consider an example from van Belle et al. (2004, 367), where the authors report the results of a
study of the association between cholesterol level and the number of diseased blood vessels, which
indicate the presence of coronary artery disease, in patients undergoing coronary bypass surgery.
Suppose we wish to plan a similar new study in which a cholesterol level is considered a risk
factor that may be associated with the number of diseased blood vessels, our grouping variable. We
consider three groups of subjects with 1, 2, or 3 numbers of diseased blood vessels. We would like to
know how many subjects we need to observe in each group to detect differences between cholesterol
levels across groups. Our projected cholesterol levels in three groups are 260, 289, and 295 mg/dL,
respectively. Suppose that we anticipate the within-group or error variance is 4,900. To compute the
total sample size for power oneway’s default setting of a balanced design with 5% significance level
and 80% power, we type

. power oneway 260 289 295, varerror(4900)

Performing iteration ...

Estimated sample size for one-way ANOVA
F test for group effect
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2183

N_g = 3
m1 = 260.0000
m2 = 289.0000
m3 = 295.0000

Var_m = 233.5556
Var_e = 4900.0000

Estimated sample sizes:

N = 207
N per group = 69

We find that a total sample of 207 subjects, 69 subjects per group, is required to detect a change in
average cholesterol levels in at least 1 of the 3 groups for this study.

In addition to the specified and implied study parameters, power oneway reports the value of the
effect size, delta =

√
233.556/4900 = 0.2183, computed as a square root of the ratio between the

variance of the group means Var m and the error variance Var e. The two variances are also often
referred to as the between-group variance and the within-group variance, respectively. The effect size
δ provides a unitless measure of the magnitude of an effect with a lower bound of zero meaning
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no effect. It corresponds to Cohen’s effect-size measure f (Cohen 1988). Cohen’s convention is that
f = 0.1 means small effect size, f = 0.25 means medium effect size, and f = 0.4 means large effect
size. According to this convention, the effect size considered in our example is medium.

Example 2: Alternative ways of specifying effect

Instead of specifying the alternative means as in example 1, we can specify the variance between
them and the number of groups. From example 1, the variance between the group means was computed
to be 233.5556. We specify this value in varmeans() as well as the number of groups in ngroups():

. power oneway, varmeans(233.5556) ngroups(3) varerror(4900)

Estimated sample size for one-way ANOVA
F test for group effect
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2183

N_g = 3
Var_m = 233.5556
Var_e = 4900.0000

Estimated sample sizes:

N = 207
N per group = 69

We obtain the exact same results as in example 1.

Instead of specifying alternative means directly following the command line, we can define a
matrix, say, means, containing these means and use it with power oneway:

. matrix define means = (260,289,295)

. power oneway means, varerror(4900)
(output omitted )

You can verify that the results are identical to the previous results.

Example 3: Computing sample size for a mean contrast

Continuing with example 1, suppose we would like to test whether the average of the first
two cholesterol levels is different from the cholesterol level of the third group. We construct the
following contrast (0.5, 0.5,−1) to test this hypothesis. To compute sample size, we specify the
contrast coefficients in the contrast() option:
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. power oneway 260 289 295, varerror(4900) contrast(.5 .5 -1)

Performing iteration ...

Estimated sample size for one-way ANOVA
F test for contrast of means
H0: Cm = 0 versus Ha: Cm != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.1381

N_g = 3
m1 = 260.0000
m2 = 289.0000
m3 = 295.0000

C*m = -20.5000
c0 = 0.0000

Var_Cm = 93.3889
Var_e = 4900.0000

Estimated sample sizes:

N = 414
N per group = 138

The required sample size to achieve this study objective is 414 with 138 subjects per group.

For a test of a mean contrast, we can also test a directional hypothesis by specifying the onesided
option within contrast(). In this case, the computation is based on the t test instead of the F test.

For example, to test whether the average of the first two cholesterol levels is less than the cholesterol
level of the third group, we type

. power oneway 260 289 295, varerror(4900) contrast(.5 .5 -1, onesided)

Performing iteration ...

Estimated sample size for one-way ANOVA
t test for contrast of means
H0: Cm = 0 versus Ha: Cm < 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.1381

N_g = 3
m1 = 260.0000
m2 = 289.0000
m3 = 295.0000

C*m = -20.5000
c0 = 0.0000

Var_Cm = 93.3889
Var_e = 4900.0000

Estimated sample sizes:

N = 327
N per group = 109

The results show that the required sample size reduces to a total of 327 subjects for this lower
one-sided hypothesis.

The default null value for the contrast is zero, but you can change this by specifying contrast()’s
suboption null().
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Example 4: Unbalanced design

Continuing with example 1, suppose we anticipate that the first group will have twice as many
subjects as the second and the third groups. We can accommodate this unbalanced design by specifying
the corresponding group weights in the grweights() option:

. power oneway 260 289 295, varerror(4900) grweights(2 1 1)

Performing iteration ...

Estimated sample size for one-way ANOVA
F test for group effect
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2306

N_g = 3
m1 = 260.0000
m2 = 289.0000
m3 = 295.0000

Var_m = 260.5000
Var_e = 4900.0000

Estimated sample sizes:

N = 188
Average N = 62.6667

N1 = 94
N2 = 47
N3 = 47

The required total sample size for this unbalanced design is 188 with 94 subjects in the first group
and 47 subjects in the second and third groups. The average number of subjects per group is 62.67.

We can compute results for multiple sets of group weights. The specification of group weights
within grweights() is exactly the same as the specification of group means described in Alternative
ways of specifying effect. Suppose that we would like to compute sample sizes for two unbalanced
designs. The first design has twice as many subjects in the first group as the other two groups.
The second design has the first two groups with twice as many subjects as the third group. We
specify multiple group weights for the first and second groups in parentheses. We also specify the
parallel option to treat multiple weight values in parallel instead of computing results for all
possible combinations of these values, which would have been done by default.

. local tabcols alpha power N N1 N2 N3 grwgt1 grwgt2 grwgt3 Var_m Var_e

. power oneway 260 289 295, varerror(4900) grweights((2 2) (1 2) 1) parallel
> table(‘tabcols’, formats("%6.0g"))

Performing iteration ...

Estimated sample size for one-way ANOVA
F test for group effect
H0: delta = 0 versus Ha: delta != 0

alpha power N N1 N2 N3 grwgt1 grwgt2 grwgt3 Var_m Var_e

.05 .8 188 94 47 47 2 1 1 260.5 4900

.05 .8 205 82 82 41 2 2 1 235.4 4900

The default table does not include group weights, so we request a table with custom columns containing
group weights via table(). We also request a smaller format to make the table more compact.
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Computing power

To compute power, you must specify the total sample size in the n() option and the alternative
group means or their variance.

Example 5: Power for a one-way ANOVA

Continuing with example 1, suppose that we anticipate obtaining a total sample of 300 subjects.
To compute the corresponding power, we specify the sample size of 300 in n():

. power oneway 260 289 295, n(300) varerror(4900)

Estimated power for one-way ANOVA
F test for group effect
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
N = 300

N per group = 100
delta = 0.2183

N_g = 3
m1 = 260.0000
m2 = 289.0000
m3 = 295.0000

Var_m = 233.5556
Var_e = 4900.0000

Estimated power:

power = 0.9308

The power increases to 93.08% for a larger sample of 300 subjects.

Example 6: Multiple values of study parameters

Continuing with example 5, we may want to check powers for several sample sizes. We simply
list multiple sample-size values in n():

. power oneway 260 289 295, n(100 200 300) varerror(4900)
> table(, labels(N_per_group "N/N_g") formats("%6.2g"))

Estimated power for one-way ANOVA
F test for group effect
H0: delta = 0 versus Ha: delta != 0

alpha power N N/N_g delta N_g m1 m2 m3 Var_m Var_e

.05 .47 100 33 .22 3 260 289 295 234 4900

.05 .78 200 66 .22 3 260 289 295 234 4900

.05 .93 300 100 .22 3 260 289 295 234 4900

To shorten our default table, we specified a shorter label for the N per group column and reduced
the default display format for all table columns by specifying the corresponding options within the
table() option.

We can compute results for multiple values of group means. For example, to see how power
changes when the first group mean takes values of 245, 260, and 280, we specify these values in
parentheses:
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. power oneway (245 260 280) 289 295, n(300) varerror(4900)
> table(, labels(N_per_group "N/N_g") formats("%6.2g"))

Estimated power for one-way ANOVA
F test for group effect
H0: delta = 0 versus Ha: delta != 0

alpha power N N/N_g delta N_g m1 m2 m3 Var_m Var_e

.05 1 300 100 .32 3 245 289 295 497 4900

.05 .93 300 100 .22 3 260 289 295 234 4900

.05 .25 300 100 .088 3 280 289 295 38 4900

We can compute results for a combination of multiple sample sizes and multiple mean values or
a combination of multiple values of other study parameters.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

Computing effect size and between-group variance

Sometimes, we may be interested in determining the smallest effect that yields a statistically
significant result for prespecified sample size and power. In this case, power, sample size, and the
number of groups must be specified.

The effect size is defined as a square root of the ratio of the variance of the tested effect, for example,
the between-group variance, to the error variance. Both the effect size and the target between-group
variance are computed.

The effect-size determination is not available for testing a mean contrast.

Example 7: Effect size for a one-way analysis of variance

Continuing with example 5, we now want to compute the effect size that can be detected for a
sample of 300 subjects and a power of 80%. We specify both parameters in the respective options.
For the effect-size determination, we must also specify the number of groups in ngroups():

. power oneway, varerror(4900) n(300) power(0.80) ngroups(3)

Performing iteration ...

Estimated between-group variance for one-way ANOVA
F test for group effect
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 300
N per group = 100

N_g = 3
Var_e = 4900.0000

Estimated effect size and between-group variance:

delta = 0.1801
Var_m = 158.9648
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For a larger sample size, given the same power, we can detect a smaller effect size, 0.18, compared
with the effect size of 0.22 from example 1. The corresponding estimate of the between-group variance
is 158.96, given the error variance of 4,900.

Testing hypotheses about multiple group means

There are several ways in which you can compare group means of a single factor on the collected data.
Two commonly used commands to do this are oneway (or anova) and contrast. We demonstrate
a quick use of these commands here using the systolic blood pressure example; see [R] oneway and
[R] contrast for more examples. Also see [R] anova for general ANOVA models.

Example 8: One-way ANOVA

Consider systolic.dta containing 58 patients undergoing 4 different drug treatments for reducing
systolic blood pressure. The systolic variable records the change in systolic blood pressure and
the drug variable records four treatment levels. We would like to test whether the average change in
systolic blood pressure is the same for all treatments. We use oneway to do this:

. use https://www.stata-press.com/data/r18/systolic
(Systolic blood pressure data)

. oneway systolic drug

Analysis of variance
Source SS df MS F Prob > F

Between groups 3133.23851 3 1044.41284 9.09 0.0001
Within groups 6206.91667 54 114.942901

Total 9340.15517 57 163.862371

Bartlett’s equal-variances test: chi2(3) = 1.0063 Prob>chi2 = 0.800

We reject the null hypothesis that all treatment means are equal at the 5% significance level; the
p-value is less than 0.0001.

Suppose we wish to design a new similar study. We use the estimates from this study to perform
a sample-size analysis for our new study. First, we estimate the means of systolic blood pressure for
different treatment levels:

. mean systolic, over(drug)

Mean estimation Number of obs = 58

Mean Std. err. [95% conf. interval]

c.systolic@drug
1 26.06667 3.014989 20.02926 32.10408
2 25.53333 2.999788 19.52636 31.54031
3 8.75 2.892323 2.958224 14.54178
4 13.5 2.330951 8.832351 18.16765

From the oneway output, the estimate of the error variance is roughly 115. Second, we specify
the means and the error variance with power oneway and compute the required sample size for a
balanced design assuming 5% significance level and 90% power.
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. power oneway 26.07 25.53 8.75 13.5, varerror(115) power(.9)

Performing iteration ...

Estimated sample size for one-way ANOVA
F test for group effect
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = 0.7021

N_g = 4
m1 = 26.0700
m2 = 25.5300
m3 = 8.7500
m4 = 13.5000

Var_m = 56.6957
Var_e = 115.0000

Estimated sample sizes:

N = 36
N per group = 9

The effect size for this ANOVA model specification is rather large, 0.7021. So we need only 36
subjects, 9 per group, to detect the effect of this magnitude with 90% power.

Suppose that in addition to testing the overall equality of treatment means, we are interested in
testing a specific hypothesis of whether the average of the first two treatment means is equal to the
average of the last two treatment means.

To perform this test on the collected data, we can use the contrast command. The contrast
command is not available after oneway, so we repeat our one-way ANOVA analysis using the anova
command before using contrast; see [R] contrast for details.

. anova systolic i.drug

Number of obs = 58 R-squared = 0.3355
Root MSE = 10.7211 Adj R-squared = 0.2985

Source Partial SS df MS F Prob>F

Model 3133.2385 3 1044.4128 9.09 0.0001

drug 3133.2385 3 1044.4128 9.09 0.0001

Residual 6206.9167 54 114.9429

Total 9340.1552 57 163.86237



power oneway — Power analysis for one-way analysis of variance 367

. contrast {drug .5 .5 -.5 -.5}

Contrasts of marginal linear predictions

Margins: asbalanced

df F P>F

drug 1 26.85 0.0000

Denominator 54

Contrast Std. err. [95% conf. interval]

drug
(1) 14.675 2.832324 8.996533 20.35347

As with the overall equality test, we find statistical evidence to reject this hypothesis as well.

To compute the required sample size for this hypothesis, we specify the contrast coefficients in
the contrast() option of power oneway:

. power oneway 26.07 25.53 8.75 13.5, varerror(115) power(.9)
> contrast(.5 .5 -.5 -.5)

Performing iteration ...

Estimated sample size for one-way ANOVA
F test for contrast of means
H0: Cm = 0 versus Ha: Cm != 0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = 0.6842

N_g = 4
m1 = 26.0700
m2 = 25.5300
m3 = 8.7500
m4 = 13.5000

C*m = 14.6750
c0 = 0.0000

Var_Cm = 53.8389
Var_e = 115.0000

Estimated sample sizes:

N = 28
N per group = 7

The required sample size is 28 subjects with 7 subjects per group, which is smaller than the required
sample size computed earlier for the overall test of the equality of means.

Video examples

Sample-size calculation for one-way analysis of variance

Power calculation for one-way analysis of variance

Minimum detectable effect size for one-way analysis of variance

https://www.youtube.com/watch?v=3trds1UO5C8
https://www.youtube.com/watch?v=uo9q0elpvMI
https://www.youtube.com/watch?v=rh8XFbFEn2k
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Stored results
power oneway stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N avg) average sample size
r(N#) number of subjects in group #
r(N per group) number of subjects per group
r(N g) number of groups
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(balanced) 1 for a balanced design, 0 otherwise
r(grwgt#) group weight #
r(onesided) 1 for a one-sided test of a mean contrast, 0 otherwise
r(m#) group mean #
r(Cm) mean contrast
r(c0) null mean contrast
r(Var m) group-means (between-group) variance
r(Var Cm) contrast variance
r(Var e) error (within-group) variance
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for the sample size or effect size
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) oneway
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
Consider a single factor A with J groups or levels, where each level comprises nj observations

for j = 1, . . . , J . The total number of observations is n =
∑J
j=1 nj . Let Yij denote the response for

the jth level of the ith individual and µj denote the factor-level or group means. Individual responses
from J populations are assumed to be normally distributed with mean µj and a constant variance σ2

e .

The hypothesis of an overall F test of the equality of group means is

H0: µ1 = · · · = µJ

versus
Ha: µj’s are not all equal (1)
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The hypothesis for a test of a mean contrast is

H0:

J∑
j=1

cjµj = c0 (2)

versus a two-sided Ha:
∑J
j=1 cjµj 6= c0, upper one-sided Ha:

∑J
j=1 cjµj > c0, and lower one-sided

Ha:
∑J
j=1 cjµj < c0, where cj’s are contrast coefficients such that

∑J
i=1 cj = 0 and c0 is a null

value of a mean constant. The two-sided hypothesis is tested using an F test, and one-sided hypotheses
are tested using a t test.

Hypotheses (1) and (2) can be tested in a general linear model framework. Consider a linear model

y = Xb + ε

where y is an n× 1 vector of observations, X is an n× p matrix of predictors, b is a p× 1 vector
of unknown and fixed coefficients, and ε is an n× 1 vector of error terms that are independent and
identically distributed as N(0, σ2

e).

For the one-way model, p = J and the contents of b = (b1, . . . , bJ)′ are the µj , j = 1, . . . , J .

A general linear hypothesis in this framework is given by

Cb = c0

where C is a ν × p matrix with rank(C) = ν ≤ p, and c0 is a vector of constants. For an overall
test of the means in (1), c0 = 0. The estimates of b and σ2

e , respectively, are given by

b̂ = (X′X)−1X′y

σ̂2
e = (y −Xb̂)′(y −Xb̂)/(n− p)

A general test statistic for testing hypotheses (1) and (2) is given by

FC =
SSC

(p− 1)σ̂2
e

(3)

where SSC = (Cb̂− c0)′{C(X′X)−1C′}−1(Cb̂− c0). Let α be the significance level, β be the
probability of a type II error, and Fp−1,n−p,1−α be the (1− α)th quantile of an F distribution with
p − 1 numerator and n − p denominator degrees of freedom. We reject the null hypothesis if we
observe a statistic FC > Fp−1,n−p,1−α.

The test statistic in (3) under the alternative hypothesis is distributed as a noncentral F distribution
with p− 1 numerator and n− p denominator degrees of freedom with a noncentrality parameter λ
given by

λ = (Cb− c0)′{C(X′X)−1C′}−1(Cb− c0)/σ2
e

= n(Cb− c0)′{C(Ẍ′WẌ)−1C′}−1(Cb− c0)/σ2
e

= nδ2

where the matrix Ẍ contains the unique rows of X and W = diag(w1, . . . , wp). We define δ as the
effect size.
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For the one-way design, the dimension of Ẍ is J × J . The weights are formally wj = nj/n
but can also be expressed in terms of the group weights (specified in grweights()), normalized by
the sum of the group weights, making wj independent of n. Specifically, let the group weights be
denoted w̃j , then define a cell sample size multiplier as nc = n/

∑
j w̃j so that nj = ncw̃j . The

cell-means parameterization simplifies Ẍ to the identity matrix, IJ .

See O’Brien and Muller (1993) for details.

The power of the overall F test in (1) is given by

1− β = Fν,n−p,λ (Fν,n−p,1−α) (4)

where F·,·,λ (·) is the cdf of a noncentral F distribution.

Total sample size and effect size are obtained by iteratively solving the nonlinear equation (4).
When the grweights() option is specified, a constant multiplier nc is computed and rounded to an
integer unless the nfractional option is specified. The group sizes are then computed as w̃jnc.
The actual sample size, N a, is the sum of the group sizes.

See Kutner et al. (2005) for details.

The power of the test (2) for a mean contrast is given by

1− β =


1− T

n−1,̃λ
(tn−1,1−α) for an upper one-sided test

T
n−1,̃λ

(−tn−1,1−α) for a lower one-sided test
F1,n−p,λ (F1,n−p,1−α) for a two-sided test

(5)

where T
.,̃λ

(·) is the cumulative of a noncentral Student’s t distribution with the noncentrality parameter

λ̃ given by

λ̃ =
√
n(Cb− c0)′

√{
C(Ẍ′WẌ)−1C′

}−1

/σ2
e

=
√
nδ̃

Sample size is obtained by iteratively solving the nonlinear equation (5).
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Also see
[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] power repeated — Power analysis for repeated-measures analysis of variance

[PSS-2] power twomeans — Power analysis for a two-sample means test

[PSS-2] power twoway — Power analysis for two-way analysis of variance

[PSS-2] power, graph — Graph results from the power command

[PSS-2] power, table — Produce table of results from the power command

[PSS-5] Glossary
[R] anova — Analysis of variance and covariance

[R] contrast — Contrasts and linear hypothesis tests after estimation

[R] oneway — One-way analysis of variance
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power twoway — Power analysis for two-way analysis of variance

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power twoway computes sample size, power, or effect size for two-way analysis of variance
(ANOVA). By default, it computes sample size for given power and effect size. Alternatively, it can
compute power for given sample size and effect size or compute effect size for given sample size,
power, and number of cells. You can choose between testing for main row or column effect or their
interaction. Also see [PSS-2] power for a general introduction to the power command using hypothesis
tests.

Quick start
Sample size for the main effect of the row factor for a 2× 3 design specified using cell means with

a within-cell variance of 27 and default power of 0.8 and significance level α = 0.05
power twoway 19 18 32 \ 23 25 26, varerror(27)

Same as above, but specify cell means in the matrix cm

matrix cm = (19, 18, 32 \ 23, 25, 26)
power twoway cm, varerror(27)

Same as above
power twoway cm, varerror(27) factor(row)

Same as above, but calculate sample size for the main effect of the column factor
power twoway cm, varerror(27) factor(column)

Same as above, but calculate sample size for the interaction of the row and column factors
power twoway cm, varerror(27) factor(rowcol)

Same as above, but for within-cell variances of 20, 25, 30, and 35
power twoway cm, varerror(20(5)35) factor(rowcol)

Sample size for the row factor with power of 0.85 and α = 0.01
power twoway cm, varerror(27) power(.85) alpha(.01)

Specify that the groups in the second row have twice the sample size as those in the first row
power twoway cm, varerror(27) cellweights(1 1 1\2 2 2) showcellsizes

Sample size when variance of the main effect of the row factor equals 1.2 in a 2× 3 design
power twoway, varerror(27) factor(row) vareffect(1.2) ///

nrows(2) ncols(3)

372
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Power for the main effect of the row factor with a sample size of 180 for cell means stored in
matrix cm

power twoway cm, varerror(27) factor(row) n(180)

Same as above, but specify that the sample size per cell is 40
power twoway cm, varerror(27) factor(row) npercell(40)

Same as above, but specify cell sample sizes of 40, 45, 50, and 55
power twoway cm, varerror(27) factor(row) npercell(40(5)55)

Same as above, but display results as a graph of power versus sample size
power twoway cm, varerror(27) factor(row) npercell(40(5)55) graph

Effect size and target between-group variance for three groups, sample size of 150, and power of 0.8
power twoway, varerror(27) nrows(2) ncols(3) n(150) power(.8)

Menu
Statistics > Power, precision, and sample size

Syntax

Compute sample size

power twoway meanspec
[
, power(numlist) options

]

Compute power

power twoway meanspec, n(numlist)
[

options
]

Compute effect size and target effect variance

power twoway, n(numlist) power(numlist) nrows(#) ncols(#)
[

options
]

where meanspec is either a matrix matname containing cell means or individual cell means in a matrix
form:

m1,1 m1,2

[
. . .
]
\ m2,1 m2,2

[
. . .
] [

\ . . . \ mJ,1 . . .mJ,K

]
mjk, where j = 1, 2, . . . , J and k = 1, 2, . . . ,K, is the alternative cell mean or the cell mean of
the jth row and kth column under the alternative hypothesis.

matname is the name of a Stata matrix with J rows and K columns containing values of alternative
cell means.
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
nfractional allow fractional sample sizes
∗npercell(numlist) number of subjects per cell; implies balanced design
cellweights(wgtspec) cell weights; default is one for each cell, meaning

equal cell sizes
nrows(#) number of rows
ncols(#) number of columns
factor(row | column | rowcol) tested effect
∗vareffect(numlist) variance explained by the tested effect in factor()
∗varrow(numlist) variance explained by the row effect; synonym for

factor(row) and vareffect(numlist)
∗varcolumn(numlist) variance explained by the column effect; synonym for

factor(column) and vareffect(numlist)
∗varrowcolumn(numlist) variance explained by the row–column interaction effect;

synonym for factor(rowcol) and vareffect(numlist)
∗varerror(numlist) error variance; default is varerror(1)

showmatrices display cell means and sample sizes as matrices
showmeans display cell means
showcellsizes display cell sizes
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value for sample size or effect size;
default is to use a bisection algorithm to bound the solution

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title
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∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.

wgtspec Description

#1,1 . . . #1,K \ . . . \ #J,1 . . . #J,KJ ×K cell weights; weights must be positive and must be
integers unless option nfractional is specified

matname J ×K matrix containing cell weights

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N total number of subjects N
N per cell number of subjects per cell N/Nrc
N avg average number of subjects per cell Navg

N#1 #2 number of subjects in cell (#1, #2) N#1,#2

delta effect size δ
N rc number of cells Nrc
N r number of rows Nr
N c number of columns Nc
m#1 #2 cell mean (#1, #2) µ#1,#2

Var r variance explained by the row effect σ2
r

Var c variance explained by the column effect σ2
c

Var rc variance explained by the row–column interaction σ2
rc

Var e error variance σ2
e

cwgt#1 #2 cell weight (#1, #2) w#1,#2

target target parameter; synonym for target effect variance
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Column N per cell is available and is shown in the default table only for balanced designs.
Column N avg is shown in the default table only for unbalanced designs.
Columns N#1 #2, N rc, m#1 #2, and cwgt#1 #2 are not shown in the default table.
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Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS-2] power.

npercell(numlist) specifies the cell size. Only positive integers are allowed. This option implies a
balanced design. npercell() cannot be specified with n() or cellweights().

cellweights(wgtspec) specifies J×K cell weights for an unbalanced design. The weights must be
positive and must also be integers unless the nfractional option is specified. cellweights()
cannot be specified with npercell().

nrows(#) specifies the number of rows or the number of levels of the row factor in a two-way
ANOVA. At least two rows must be specified. This option is required if meanspec is not specified.
This option is also required for effect-size determination unless cellweights() is specified.

ncols(#) specifies the number of columns or the number of levels of the column factor in a two-way
ANOVA. At least two columns must be specified. This option is required if meanspec is not specified.
This option is also required for effect-size determination unless cellweights() is specified.

factor(row | column | rowcol) specifies the effect of interest for which power and sample-size
analysis is to be performed. In a two-way ANOVA, the tested effects include the main effects of
a row factor (row effect), the main effects of a column factor (column effect), or the interaction
effects between the row and column factors (row–column effect). The default is factor(row).

vareffect(numlist) specifies the variance explained by the tested effect specified in factor().
For example, if factor(row) is specified, vareffect() specifies the variance explained by the
row factor. This option is required if the factor() option is specified and cell means are not
specified. This option is not allowed with the effect-size determination. Only one of vareffect(),
varrow(), varcolumn(), or varrowcolumn() may be specified.

varrow(numlist) specifies the variance explained by the row factor. This option is equivalent to
specifying factor(row) and vareffect(numlist) and thus cannot be combined with factor().
This option is not allowed with the effect-size determination. Only one of vareffect(), varrow(),
varcolumn(), or varrowcolumn() may be specified.

varcolumn(numlist) specifies the variance explained by the column factor. This option is equivalent
to specifying factor(column) and vareffect(numlist) and thus cannot be combined with
factor(). This option is not allowed with the effect-size determination. Only one of vareffect(),
varrow(), varcolumn(), or varrowcolumn() may be specified.

varrowcolumn(numlist) specifies the variance explained by the interaction between row and column
factors. This option is equivalent to specifying factor(rowcol) and vareffect(numlist) and thus
cannot be combined with factor(). This option is not allowed with the effect-size determination.
Only one of vareffect(), varrow(), varcolumn(), or varrowcolumn() may be specified.

varerror(numlist) specifies the error (within-cell) variance. The default is varerror(1).

showmatrices specifies that the matrices of cell means and cell sizes be displayed, when applicable.
The cell means will be displayed only if specified. The cell sizes will be displayed only for an
unbalanced design.

showmeans specifies that the cell means be reported. For a text or graphical output, this option is
equivalent to showmatrices except only the cell-mean matrix will be reported. For a tabular
output, the columns containing cell means will be included in the default table.
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showcellsizes specifies that the cell sizes be reported. For a text or graphical output, this option
is equivalent to showmatrices except only the cell-sizes matrix will be reported. For a tabular
output, the columns containing cell sizes will be included in the default table.

parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value of the sample size for the sample-size determination or the initial
value of the effect size δ for the effect-size determination. The default uses a bisection algorithm
to bracket the solution.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power twoway but is not shown in the dialog box:

notitle; see [PSS-2] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power twoway

Alternative ways of specifying effect
Computing sample size
Computing power
Computing effect size and target variance explained by the tested effect
Testing hypotheses about means from multiple populations

This entry describes the power twoway command and the methodology for power and sample-size
analysis for two-way ANOVA. See [PSS-2] Intro (power) for a general introduction to power and
sample-size analysis and [PSS-2] power for a general introduction to the power command using
hypothesis tests.

Introduction
ANOVA has been one of the most widely used statistical tools in many scientific applications.

Two-way ANOVA models allow analysts to study the effects of two factors simultaneously. The term
“two way” refers to two factors each containing an arbitrary number of groups or levels.

For example, consider a type of drug with three levels of dosage in reducing blood pressure for
males and females. In this case, three interesting hypotheses arise: an investigator may wish to test
whether the average change in blood pressure is the same for both genders, whether the average
change in blood pressure is the same across all levels of dosage regardless of gender, or whether
there is any interaction between dosage levels and gender.
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This entry describes power and sample-size analysis for the inference about main and interaction
effects of two factors based on hypothesis testing. Let µjk be the cell mean of the jth row and the kth
column in a two-way cell-means ANOVA model, µj· be the marginal mean of the jth row, µ·k be the
marginal mean of the kth column, and µ·· be the grand mean. The jth-row-by-kth-column interaction
effect is then (ab)jk = µjk−µj·−µ·k+µ··. We consider the null hypotheses 1) H0: µ1· = . . . = µJ·,
for testing the main row effect; 2) H0: µ·1 = . . . = µ·K , for testing the main column effect; and
3) H0: all (ab)jk = 0, for testing the row-by-column interaction effect.

The test statistic for each of the three hypotheses is based on the ratio of the variance explained
by the tested effect to the error variance. Under the null hypothesis, the test statistics used for items
1, 2, and 3 above have an F distribution. We will refer to the corresponding tests as F tests for
row, column, and row-by-column effects. For power analysis, we consider the distribution of the test
statistic under the alternative hypothesis. This distribution is a noncentral F distribution for all the
considered tests. Power is a function of the noncentrality parameter, and the noncentrality parameter
is a function of the ratio of the standard deviation of the tested effect to the standard deviation of the
errors. As such, the effect size for each of the F tests is defined as the square root of the ratio of
the variance explained by the tested effect to the error variance.

power twoway performs power and sample-size computation for a two-way fixed-effects ANOVA
model based on an F test of the effect of interest.

Using power twoway

power twoway computes sample size, power, or effect size and target variance of the effect for a
two-way fixed-effects ANOVA. All computations are performed assuming a significance level of 0.05.
You may change the significance level by specifying the alpha() option.

By default, the computations are performed for an F test of the main row effects; factor(row) is
assumed. You can instead request a test of the main column effects by specifying factor(column)
or a test of the row-by-column interaction effects by specifying factor(rowcol). The error variance
for all tests is assumed to be 1 but may be changed by specifying the varerror() option.

To compute the total sample size, you must specify the alternative meanspec and, optionally, the
power of the test in the power() option. The default power is set to 0.8.

To compute power, you must specify the total sample size in the n() option and the alternative
meanspec.

Instead of the alternative cell means, you can specify the number of rows in the nrows() option,
the number of columns in the ncols() option, and the variance explained by the tested effect in
the vareffect() option when computing sample size or power. See Alternative ways of specifying
effect.

To compute effect size, the square root of the ratio of the variance explained by the tested factor
to the error variance, and the target variance explained by the tested factor, you must specify the
total sample size in the n() option, the power in the power() option, and the number of rows and
columns in nrows() and ncols(), respectively.

By default, all computations assume a balanced- or an equal-allocation design. You can use
the cellweights() option to specify an unbalanced design for power, sample-size, or effect-size
computations. For power and effect-size computations of a balanced design, you can also specify the
npercell() option to specify a cell size instead of a total sample size in n().

In a two-way ANOVA, sample size and effect size depend on the noncentrality parameter of the
F distribution, and their estimation requires iteration. The default initial values are obtained from a
bisection search that brackets the solution. If you desire, you may change this by specifying your
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own value in the init() option. See [PSS-2] power for the descriptions of other options that control
the iteration procedure.

In a two-way ANOVA, all computations depend on the noncentrality parameter of the F distribution.
The sample-size and effect-size computation requires a nonlinear search algorithm where the default
initial value is obtained using a bisection search algorithm that brackets the solution.

power twoway provides several ways of specifying the study parameters that we discuss next.

Alternative ways of specifying effect

To compute power or sample size, you must specify the magnitude of the effect desired to be
detected by the test. With power twoway, you can do this in several ways. For example, consider
a two-way model with J = 2 ≥ 2 row-factor levels and K = 3 ≥ 2 column-factor levels. You can
specify either the individual alternative meanspec,

power twoway m1,1 m1,2 m1,3 \ m2,1 m2,2 m2,3

[
, factor() . . .

]
or the variance of the tested effect and the number of rows J and columns K:

power twoway, factor() vareffect(#) nrows(2) ncols(3)
[
. . .
]

You can also replace vareffect() and factor() in the above with the varrow(), varcolumn(),
or varrowcolumn() option. And you can specify multiple values of the variances in these options.

As an alternative to directly specifying alternative cell means following the command name, you
can define a Stata matrix containing these means and use it with power twoway. For example,

matrix define meanmat = (m1,1, m1,2, m1,3 \ m2,1, m2,2, m2,3)

The matrix must have at least two rows and two columns.

power twoway meanmat, . . .

In the following sections, we describe the use of power twoway accompanied by examples for
computing sample size, power, and effect size.

Computing sample size

To compute sample size, you must specify the alternative cell means or the variance of the tested
effect and, optionally, the power of the test in the power() option. A power of 0.8 is assumed if
power() is not specified.

Example 1: Sample size for a two-way ANOVA—row effect

van Belle et al. (2004, 376) provide an example of an experimental study that investigates the
effect of an automobile emission pollutant, nitrogen dioxide (NO2). The experiment considers the
effect of NO2 exposure on protein leakage in the lungs of mice. In the experimental group, mice
were exposed to 0.5 part per million (ppm) NO2 for 10, 12, and 14 days. Measurements on the
response variable, serum fluorescence, were taken on mice in the experimental (exposed) and control
(unexposed) groups. The analysis of these data used a two-way ANOVA model with the exposure status
as a row factor and the number of days of exposure to NO2 as a column factor. The row factor has
two levels, exposed or unexposed, and the column factor has three levels: 10, 12, and 14 days.
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Suppose that investigators are planning to conduct another similar study. They would like to know
how many subjects, mice, they need for the experiment. We will use the estimates of parameters from
the above study to answer this question.

The estimated cell means from this study over the number of days are 134.4, 143, and 91.3 in
the control group and 106.4, 173.2, and 145.5 in the experimental group. From the ANOVA table on
page 379 (van Belle et al. 2004), the estimated residual variance is 1417.35. For convenience, we
round these numbers down to the nearest integers in our computations.

We begin by computing sample size for testing the main treatment (exposure) effects using power
twoway’s defaults for other aspects of the study: a balanced design, a 5% significance level, and 80%
power. (Option factor(row) is assumed by default.)

. power twoway 134 143 91 \ 106 173 145, varerror(1417)

Performing iteration ...

Estimated sample size for two-way ANOVA
F test for row effect
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2479

N_r = 2
N_c = 3

means = <matrix>
Var_r = 87.1111
Var_e = 1417.0000

Estimated sample sizes:

N = 132
N per cell = 22

Assuming a balanced design, we need a total of 132 mice with 22 mice per cell to detect the effect
of exposure to NO2 on the protein leakage of mice.

Like all other power methods, power twoway reports study parameters first and the estimated
parameters next. The reported study parameters include the specified and implied parameters such as
significance level, power, number of rows, number of columns, and so on. power twoway does not
display the specified cell means by default but indicates in the output that the means are specified.
You can specify the showmeans option to display cell means as a matrix.

In addition to the specified and implied study parameters, power twoway reports the value of the
effect size, delta =

√
87.1111/1417 = 0.2479, computed as a square root of the ratio between the

variance of the row effect Var r and the error variance Var e. As for the one-way ANOVA models,
the effect size δ provides a unitless measure of the magnitude of an effect with a lower bound of
zero, meaning no effect. It corresponds to Cohen’s effect-size measure f (Cohen 1988). Cohen’s
convention is that f = 0.1 means small effect size, f = 0.25 means medium effect size, and f = 0.4
means large effect size. According to this convention, the effect size considered in our example is
medium.
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Example 2: Sample size for a two-way ANOVA—column effect

Continuing with example 1, we can compute the required sample size for the main column effects
by specifying the factor(column) option:

. power twoway 134 143 91 \ 106 173 145, varerror(1417) factor(column)

Performing iteration ...

Estimated sample size for two-way ANOVA
F test for column effect
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.4889

N_r = 2
N_c = 3

means = <matrix>
Var_c = 338.6667
Var_e = 1417.0000

Estimated sample sizes:

N = 48
N per cell = 8

Assuming a balanced design, we need a total of 48 mice with 8 mice per cell to detect the effect of
the length of exposure to NO2 on the protein leakage of mice.

Similarly to the row effect, the effect size for the column effect, delta =
√

338.6667/1417 =
0.4889, is computed as a square root of the ratio between the variance of the column effect Var c and
the error variance Var e. The interpretation remains the same but with respect to the main column
effects. According to Cohen’s scale, the effect size corresponding to the test of the main column
effects is large, so we need fewer subjects to detect the column effect than we need to detect the
previous row effect.



382 power twoway — Power analysis for two-way analysis of variance

Example 3: Sample size for a two-way ANOVA—row-by-column effect

Continuing with example 2, we can also compute the required sample size for the row-by-column
effects interaction by specifying the factor(rowcol) option:

. power twoway 134 143 91 \ 106 173 145, varerror(1417) factor(rowcol)

Performing iteration ...

Estimated sample size for two-way ANOVA
F test for row-by-column effect
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.4572

N_r = 2
N_c = 3

means = <matrix>
Var_rc = 296.2222
Var_e = 1417.0000

Estimated sample sizes:

N = 54
N per cell = 9

For a balanced design, we need a total of 54 mice with 9 mice per cell to detect the joint effects of
exposure and the length of exposure to NO2 on the protein leakage of mice.

Similarly to the row-by-column effects, the effect size for the row-by-column effect, delta =√
296.2222/1417 = 0.4572, is computed as a square root of the ratio between the variance of the

row-by-column effect Var rc and the error variance Var e. The interpretation is again the same
but with respect to the interaction of row-by-column effects. According to Cohen’s scale, the effect
size corresponding to the test of the row-by-column effects is also large, so we need fewer subjects
to detect this effect than we need to detect the row effect. The effect size is similar to the column
effect size, so the required numbers of subjects are comparable for the two tests. As a final sample
size, we would choose the largest of the three sizes to ensure that we have enough subjects to detect
any of the considered effects.

Example 4: Alternative ways of specifying effect

Instead of specifying the alternative cell means as in previous examples, we can specify the variance
explained by the corresponding tested effect and the numbers of rows and columns.

For instance, from example 2, the variance explained by the column effect was computed to be
338.6667. We specify this value in vareffect() as well as the number of rows in nrows() and
the number of columns in ncols():
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. power twoway, varerror(1417) factor(column) vareffect(338.6667)
> nrows(2) ncols(3)

Performing iteration ...

Estimated sample size for two-way ANOVA
F test for column effect
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.4889

N_r = 2
N_c = 3

Var_c = 338.6667
Var_e = 1417.0000

Estimated sample sizes:

N = 48
N per cell = 8

We obtain the exact same results as in example 2.

A shorthand for the specification of factor(column) and vareffect() is the varcolumn()
option. You can verify that the specification

. power twoway, varerror(1417) varcolumn(338.6667) nrows(2) ncols(3)
(output omitted )

produces results identical to the results above.

You can also use similar alternative specifications for the tests of row and row-by-column effects
with intuitive modifications to the syntax.

power twoway also provides another alternative specification of the cell means. Instead of specifying
alternative cell means directly following the command line, as in example 2, we can define a matrix,
say, means, containing these means and use it with power twoway:

. matrix define means = (134, 143, 91 \ 106, 173, 145)

. power twoway means, varerror(1417) factor(column)
(output omitted )

You can again verify that the results are identical to the previous results.

Example 5: Unbalanced design

Continuing with example 1, let’s compute the required sample size for an unbalanced design.
For instance, consider a design in which the control group (the first row) contains twice as many
subjects as the experimental group (the second row) for each level of the other factor. We use the
cellweights() option to specify weights for each cell.
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. power twoway 134 143 91 \ 106 173 145, varerror(1417) cellweights(2 2 2 \ 1 1 1)
> showcellsizes

Performing iteration ...

Estimated sample size for two-way ANOVA
F test for row effect
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.2338

N_r = 2
N_c = 3

means = <matrix>
Var_r = 77.4321
Var_e = 1417.0000

Estimated sample sizes:

N = 153
Average N = 25.5000

Cell sample sizes

columns
1 2 3

rows
1 34 34 34
2 17 17 17

The required total sample size for this unbalanced design is 153 with the average number of subjects
in a cell of 25.5. We specified the showcellsizes option to display the number of subjects for each
cell along with the total and average sample sizes that are displayed by default for an unbalanced
design.

You can alternatively specify cell weights as a matrix.

Computing power

To compute power, you must specify the total sample size in the n() option and the desired effect
size, expressed using alternative cell means, for example. See Alternative ways of specifying effect.

Example 6: Power for a two-way ANOVA

Continuing with example 1, suppose that we anticipate a sample of 90 mice. To compute the
corresponding power, we specify the sample size of 90 in n().
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. power twoway 134 143 91 \ 106 173 145, varerror(1417) n(90)

Estimated power for two-way ANOVA
F test for row effect
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
N = 90

N per cell = 15
delta = 0.2479

N_r = 2
N_c = 3

means = <matrix>
Var_r = 87.1111
Var_e = 1417.0000

Estimated power:

power = 0.6426

For this smaller sample size, the power for detecting the effect size of 0.25 is only 64%.

Example 7: Multiple values of study parameters

Continuing with example 6, we may want to check powers for several sample sizes. We simply
list multiple sample-size values in n():

. power twoway 134 143 91 \ 106 173 145, varerror(1417) n(90 114 126)

Estimated power for two-way ANOVA
F test for row effect
H0: delta = 0 versus Ha: delta != 0

means = <matrix>

alpha power N N_per_cell delta N_r N_c Var_r Var_e

.05 .6426 90 15 .2479 2 3 87.11 1417

.05 .7466 114 19 .2479 2 3 87.11 1417

.05 .7884 126 21 .2479 2 3 87.11 1417

The larger the sample size, the larger the power.

We can even compute results for multiple sample sizes and, for example, multiple values of error
variances.
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. power twoway 134 143 91 \ 106 173 145, varerror(1000 1800) n(90 114 126)
> table(, sep(3))

Estimated power for two-way ANOVA
F test for row effect
H0: delta = 0 versus Ha: delta != 0

means = <matrix>

alpha power N N_per_cell delta N_r N_c Var_r Var_e

.05 .7904 90 15 .2951 2 3 87.11 1000

.05 .8776 114 19 .2951 2 3 87.11 1000

.05 .9076 126 21 .2951 2 3 87.11 1000

.05 .5411 90 15 .22 2 3 87.11 1800

.05 .6436 114 19 .22 2 3 87.11 1800

.05 .6878 126 21 .22 2 3 87.11 1800

We specified table()’s suboption separator(), abbreviated to sep(), to improve readability of
the table.

We can also compute results for combinations of multiple values of other study parameters.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

Computing effect size and target variance explained by the tested effect

Sometimes, we may be interested in determining the smallest effect that yields a statistically
significant result for prespecified sample size and power. In this case, power, sample size, and the
numbers of rows and columns must be specified.

The effect size is defined as a square root of the ratio of the variance explained by the tested
effect to the error variance. The effect size and the target variance explained by the tested effect are
computed.

Example 8: Effect size for a two-way ANOVA—row effect

Continuing with example 6, we now want to compute the effect size that can be detected for a
sample of 90 subjects and a power of 80%. We specify both parameters in the respective options. For
the effect-size determination, we must also specify the number of rows in nrows() and the number
of columns in ncols():
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. power twoway, varerror(1417) n(90) power(0.8) nrows(2) ncols(3)

Performing iteration ...

Estimated row variance for two-way ANOVA
F test for row effect
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 90
N per cell = 15

N_r = 2
N_c = 3

Var_e = 1417.0000

Estimated effect size and row variance:

delta = 0.2987
Var_r = 126.4634

With a smaller sample size, given the same power, we can only detect a larger effect size of 0.2987,
compared with the effect size of 0.2479 from example 1. The corresponding estimate of the variance
explained by the row effect is 126.46, given the error variance of 1417.

Testing hypotheses about means from multiple populations

Example 9: Two-way ANOVA

After the initial power and sample-size planning, we can use Stata’s anova command to perform
inference for two-way ANOVA based on the collected sample. We show a quick example of how to
do this here; see [R] anova for more examples and details.

We use data on systolic blood pressure. Consider a sample of 58 patients, each suffering from 1
of 3 different diseases, who were randomly assigned to 1 of 4 different drug treatments and whose
change in systolic blood pressure was recorded. To test for the effects of the drug and the disease
and their interaction, we type the following:

. use https://www.stata-press.com/data/r18/systolic
(Systolic blood pressure data)

. anova systolic drug disease drug#disease

Number of obs = 58 R-squared = 0.4560
Root MSE = 10.5096 Adj R-squared = 0.3259

Source Partial SS df MS F Prob>F

Model 4259.3385 11 387.21259 3.51 0.0013

drug 2997.4719 3 999.15729 9.05 0.0001
disease 415.87305 2 207.93652 1.88 0.1637

drug#disease 707.26626 6 117.87771 1.07 0.3958

Residual 5080.8167 46 110.45254

Total 9340.1552 57 163.86237

We find that only the main effect of the drug is significant.
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Suppose that we would like to conduct a similar study. We use the estimates from the study above
to compute the required sample size for our new study. We are particularly interested in testing the
interaction between the drug and disease, so we would like to compute the sample size for this test.

First, we estimate the cell means of systolic blood pressure for different treatment and disease
levels:

. table drug disease, statistic(mean systolic) nformat(%9.0f) nototals

Patient’s disease
1 2 3

Drug used
1 29 28 20
2 28 34 18
3 16 4 8
4 14 13 14

From the twoway output, the estimate of the error variance is roughly 110. Second, we specify
the means and the error variance with power twoway and compute the required sample size for a
balanced design assuming 5% significance level and 80% power for the test of interaction effects.

. power twoway 29 28 20 \ 28 34 18 \ 16 4 8 \ 14 13 14, varerror(110) f(rowcol)

Performing iteration ...

Estimated sample size for two-way ANOVA
F test for row-by-column effect
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.3465

N_r = 4
N_c = 3

means = <matrix>
Var_rc = 13.2083
Var_e = 110.0000

Estimated sample sizes:

N = 132
N per cell = 11

We need a total of 132 subjects with 11 subjects per cell to detect the drug-by-disease effect size of
0.3465 for this design.

To determine the final sample size, you may want to repeat the same computations for the tests
of the main effects of drug and the main effects of disease and select the sample size based on the
three tests.
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Stored results

power twoway stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N avg) average sample size
r(N#1 #2) number of subjects in cell (#1, #2)
r(N per cell) number of subjects per cell
r(N rc) number of cells
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(balanced) 1 for a balanced design, 0 otherwise
r(cwgt#1 #2) cell weight (#1, #2)
r(N r) number of rows
r(N c) number of columns
r(m#1 #2) cell mean (#1, #2)
r(Var r) row variance
r(Var c) column variance
r(Var rc) row-by-column variance
r(Var e) error variance
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample size or effect size
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) twoway
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results
r(Nij) cell-sizes matrix
r(means) cell-means matrix
r(cwgt) cell-weights matrix

Methods and formulas

Consider factor A with J levels and factor B with K levels. Let µjk be the mean of cell (j, k)
in a table formed by the levels of factors A and B. For example, let J = 3 and K = 3; then the
following cell-means table summarizes the experiment.



390 power twoway — Power analysis for two-way analysis of variance

Factor B
Factor A k = 1 k = 2 k = 3 Total

j = 1 µ11 µ12 µ13 µ1·
j = 2 µ21 µ22 µ23 µ2·
j = 3 µ31 µ32 µ33 µ3·

Total µ·1 µ·2 µ·3 µ··

Methods and formulas are presented under the following headings:

Main effects
Interaction effects
Hypothesis testing

Main effects

Main effects measure the deviation of the factor-level means from the overall or grand mean. The
larger the main effect, the more likely you can detect the effect. From the above table, the main effect
of factor A at the jth level is aj = µj· − µ··. Similarly, the main effect of factor B at the kth level
is bk = µ·k − µ··. The overall mean can be expressed as

µ·· =

∑J
j=1

∑K
k=1 µjk

JK
=

∑J
j=1 µj·

J
=

∑K
k=1 µ·k
K

This implies that

J∑
j=1

aj = 0 and
K∑
k=1

bk = 0

Interaction effects
Unlike main effects that measure the effect of individual factors on the dependent variable,

interaction effects measure the effect of the two factors jointly on the dependent variable. For
example, the interaction effect of factor A at the jth level and factor B at the kth level is
(ab)jk = µjk − µj· − µ·k + µ··

The sum of interaction effects is zero:

J∑
j=1

(ab)jk = 0 at each level of k = 1, . . . ,K

K∑
k=1

(ab)jk = 0 at each level of j = 1, . . . , J

This implies

J∑
j=1

K∑
k=1

(ab)jk = 0
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Hypothesis testing

Let n denote the total sample size and yijk denote the response of ith individual at the jth level
of factor A and kth level of factor B for i = 1, . . . , njk such that n =

∑
j,k njk. ANOVA models

assume that responses yijk within each cell are independent and identically distributed random normal
with constant variance σ2

e . Using the definitions of aj , bk, and (ab)jk from the previous sections,
our linear model is expressed as

yijk = µ·· + aj + bk + (ab)jk + eijk

= µjk + eijk

where µ·· is the overall mean and eijk’s are the independent error terms that have the standard normal
distribution. The first equation corresponds to the formulation of an ANOVA model using effects, and
the second formulation corresponds to the cell-means formulation.

The variance explained by the row effects is σ2
a =

∑
j a

2
j/J , by the column effects is σ2

b =∑
k b

2
k/K, and by the row-by-column effects is σ2

(ab) =
∑
j,k(ab)2

jk/JK.

The following sets of hypotheses are of interest in a two-way ANOVA:

H0: all aj = 0 versus Ha: at least one aj 6= 0 (1)

H0: all bk = 0 versus Ha: at least one bk 6= 0 (2)

H0: all (ab)jk = 0 versus Ha: at least one (ab)jk 6= 0 (3)

Hypotheses (1) and (2) test the main effects of factors A and B, respectively, and hypothesis (3) tests
the interaction effects between A and B.

To test the above hypotheses, we can use the general linear model framework discussed in Methods
and formulas of [PSS-2] power oneway. We recapitulate it here with application to the two-way model.

A general test statistic for testing hypotheses like (1), (2), and (3) is given by

FC =
SSC
νσ̂2

e

(4)

where SSC = (Cb̂)′{C(X′X)−1C′}−1(Cb̂). The n× JK matrix X specifies the coding for the
two-way design. Matrix C is ν × JK and contains the contrasts for the means that are used to test
each of the three hypotheses. For the two-way design, v is J − 1, K − 1, or (J − 1)(K − 1) for
hypotheses (1), (2), and (3), respectively.

Let α be the significance level and Fν,n−JK,1−α be the (1− α)th quantile of an F distribution
with ν numerator and n− JK denominator degrees of freedom. We reject the null hypothesis if we
observe a statistic FC > Fν,n−JK,1−α.

Under the alternative hypothesis, the test statistic (4) is distributed as a noncentral F distribution
with ν numerator and n − JK denominator degrees of freedom and a noncentrality parameter λ
given by

λ = n(Cb)′{C(Ẍ′WẌ)−1C′}−1(Cb)/σ2
e

= nδ2

where the matrix Ẍ contains the unique rows of X such that µ = Ẍb, W = diag(w1, . . . , wJK),
and δ is the effect size. For a two-way design, the dimension of Ẍ is JK × JK, and the weights
are wi = njk/n, i = (k − 1)J + j. The cell-means parameterization simplifies Ẍ to the identity
matrix, IJK .
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The rows of Ẍ and weights wi are associated with the column-major, vec(), order of the two-way
table with factor A indexed on the rows and factor B indexed on the columns. (See the 3× 3 table in
the beginning of this section, and scan each column k = 1, 2, 3.) The weight wi can be reexpressed
as a cell weight w̃i, which is independent of the sample size n; see Methods and formulas of
[PSS-2] power oneway for details.

When the cellweights() option is specified, a constant cell-size multiplier nc is computed and
rounded to an integer unless the nfractional option is specified. The cell sizes are then computed
as w̃jnc. The actual sample size, N a, is the sum of the cell sizes.

References
Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Erlbaum.

van Belle, G., L. D. Fisher, P. J. Heagerty, and T. S. Lumley. 2004. Biostatistics: A Methodology for the Health
Sciences. 2nd ed. New York: Wiley.

Also see
[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] power oneway — Power analysis for one-way analysis of variance

[PSS-2] power repeated — Power analysis for repeated-measures analysis of variance

[PSS-2] power, graph — Graph results from the power command

[PSS-2] power, table — Produce table of results from the power command

[PSS-5] Glossary
[R] anova — Analysis of variance and covariance
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power repeated — Power analysis for repeated-measures analysis of variance

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power repeated computes sample size, power, or effect size for one-way or two-way repeated-
measures analysis of variance (ANOVA). By default, it computes sample size for given power and
effect size. Alternatively, it can compute power for given sample size and effect size or compute
effect size for given sample size, power, and number of groups. Also see [PSS-2] power for a general
introduction to the power command using hypothesis tests.

Quick start
Sample size for a repeated measures design with one 3-level within-subject factor, a correlation of

0.3 between measurements, and an error variance of 42 with default power of 0.8 and significance
level α = 0.05

power repeated 25 27 22, varerror(42) corr(.3)

Same as above, specified as 3 measurements on 1 group with within-subject variance of 4.22
power repeated, varerror(42) corr(.3) nrepeated(3) ngroups(1) ///

varwithin(4.22)

Same as above, specified as cell means in matrix cm

matrix cm = (25,27,22)
power repeated cm, corr(.3) varerror(42)

Same as above, and show the mean and covariance matrices in the output
power repeated cm, corr(.3) varerror(42) showmatrices

Sample size for the between effect in a design with a 3-level within-subject factor and a 2-level
between-subject factor

power repeated 18 14 12\14 13 10, covmatrix(24 9 9\9 24 9\9 9 24)

Same as above, specified as cell means in matrix cm2 and covariances in matrix cov

matrix cm2 = (18,14,12\14,13,10)
matrix cov = (24,9,9\9,24,9\9,9,24)
power repeated cm2, covmatrix(cov)

Same as above, but for the within effect
power repeated cm2, covmatrix(cov) factor(within)

Same as above, but for the between–within effect
power repeated cm2, covmatrix(cov) factor(bwithin)

Power for a design with one within-subject factor, a sample size of 25, and α = 0.01
power repeated 25 27 22, varerror(42) corr(.3) n(25) alpha(.01)

393
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Same as above, but for sample sizes of 20, 24, 28, and 32
power repeated 25 27 22, varerror(42) corr(.3) n(20(4)32)

Same as above, but show results in a graph of sample size versus power
power repeated 25 27 22, varerror(42) corr(.3) n(20(4)32) graph

Power for the between effect of a design with a 3-level within-subject factor and a 2-level between-
subject factor with a sample size of 160

power repeated cm2, covmatrix(cov) n(160)

Same as above, but specify sample sizes of 100 and 140 for groups 1 and 2, respectively
power repeated cm2, covmatrix(cov) n1(100) n2(140)

Effect size for a one-group repeated-measures design
power repeated, varerror(42) corr(.3) n(24) ngroups(1) ///

nrepeated(3) power(.8)

Effect size for the within-subject effect of a design with a 3-level within-subject factor, a 2-level
between-subject factor, and a sample size of 160

matrix cov = (24,9,9\9,24,9\9,9,24)
power repeated, covmatrix(cov) n(160) power(.8) ngroups(2) ///

factor(within)

Menu
Statistics > Power, precision, and sample size
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Syntax

Compute sample size

power repeated meanspec, corrspec
[
power(numlist) options

]

Compute power

power repeated meanspec, n(numlist) corrspec
[

options
]

Compute effect size

power repeated, n(numlist) power(numlist) ngroups(#) corrspec
[

options
]

where meanspec is either a matrix matname containing cell means or individual cell means in a matrix
form:

m1,1 m1,2

[
. . . m1,K

] [
\ . . .

[
\ mJ,1 mJ,2

[
. . . mJ,K

] ] ]
mjk, where j = 1, 2, . . . , J and k = 1, 2, . . . ,K, is the alternative cell mean or the cell mean of
the jth row (group) and kth column (repeated measure) under the alternative hypothesis.

matname is the name of a Stata matrix with J rows and K columns containing values of alternative
cell means.

At least one group, J = 1, and two repeated measures, K = 2, must be specified.

where corrspec for computing power and sample size is {corr(numlist) | covmatrix(matname)}, and
corrspec for computing effect size is {nrepeated(#) corr(numlist) | covmatrix(matname)}.
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
nfractional allow fractional sample sizes
∗npergroup(numlist) number of subjects per group; implies balanced design
∗n#(numlist) number of subjects in group #
grweights(wgtspec) group weights; default is one for each group, meaning

equal group sizes
ngroups(#) number of groups
nrepeated(#) number of repeated measures
∗corr(numlist) correlation between repeated measures; one of corr()

or covmatrix() is required
covmatrix(matname) covariance between repeated measures; one of corr()

or covmatrix() is required
factor(between | within | bwithin) tested effect: between, within, or between–within;

default is factor(between)
∗vareffect(numlist) variance explained by the tested effect specified in factor()
∗varbetween(numlist) variance explained by the between-subjects effect; synonym

for factor(between) and vareffect(numlist)
∗varwithin(numlist) variance explained by the within-subject effect; synonym

for factor(within) and vareffect(numlist)
∗varbwithin(numlist) variance explained by the between–within effect; synonym

for factor(bwithin) and vareffect(numlist)
∗varerror(numlist) error variance; default is varerror(1) when corr()

is specified; not allowed with covmatrix()

showmatrices display cell-means matrix and covariance matrix
showmeans display cell means
parallel treat number lists in starred options or in command

arguments as parallel when multiple values per option or
argument are specified (do not enumerate all possible
combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph
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Iteration

init(#) initial value for sample size or effect size; default is
to use a bisection algorithm to bound the solution

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.

wgtspec Description

#1 #2 . . . #J J group weights. Weights must be positive and must be
integers unless option nfractional is specified. Multiple
values for each group weight #j can be specified as a
numlist enclosed in parentheses.

matname matrix with J columns containing J group weights. Multiple
rows are allowed, in which case each row corresponds
to a different set of J weights or, equivalently, column j
corresponds to numlist for the jth weight.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).



398 power repeated — Power analysis for repeated-measures analysis of variance

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N total number of subjects N
N per group number of subjects per group N/Ng
N avg average number of subjects per group Navg

N# number of subjects in group # N#

delta effect size δ
N g number of groups Ng
N rep number of repeated measurements Nrep

m#1 #2 cell mean (#1, #2): group #1, occasion #2 µ#1,#2

Var b between-subjects variance σ2
b

Var w within-subject variance σ2
w

Var bw between–within (group-by-occasion) variance σ2
bw

Var be between-subjects error variance σ2
be

Var we within-subject error variance σ2
we

Var bwe between–within (group-by-occasion) error variance σ2
bwe

Var e error variance σ2
e

corr correlation between repeated measures ρ
grwgt# group weight # w#

target target parameter; synonym for target effect variance
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Column N per group is available and is shown in the default table only for balanced designs.
Columns N avg and N# are shown in the default table only for unbalanced designs.
Columns m#1 #2 are not shown in the default table.
Columns Var b and Var be are shown in the default table for the between-subjects test, Var w and Var we for the

within-subjects test, and Var bw and Var bwe for the between–within test.
Columns grwgt# are not shown in the default table.

Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS-2] power.

npergroup(numlist) specifies the group size. Only positive integers are allowed. This option implies
a balanced design. npergroup() cannot be specified with n(), n#(), or grweights().

n#(numlist) specifies the size of the #th group. Only positive integers are allowed. All group sizes
must be specified. For example, all three options n1(), n2(), and n3() must be specified for a
design with three groups. n#() cannot be specified with n(), npergroup(), or grweights().

grweights(wgtspec) specifies J group weights for an unbalanced design. The weights may be
specified either as a list of values or as a matrix, and multiple sets of weights are allowed; see
wgtspec for details. The weights must be positive and must also be integers unless the nfractional
option is specified. grweights() cannot be specified with npergroup() or n#().
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ngroups(#) specifies the number of groups. This option is required if meanspec is not specified.
This option is also required for effect-size determination unless grweights() is specified. For a
one-way repeated-measures ANOVA, specify ngroups(1).

nrepeated(#) specifies the number of repeated measurements within each subject. At least two
repeated measurements must be specified. This option is required if the corr() option is specified
and meanspec is not specified. This option is also required for effect-size determination unless
covmatrix() is specified.

corr(numlist) specifies the correlation between repeated measurements. corr() cannot be specified
with covmatrix(). This option requires the nrepeated() option unless meanspec is specified.

covmatrix(matname) specifies the covariance matrix between repeated measurements. covmatrix()
cannot be specified with corr() or varerror().

factor(between | within | bwithin) specifies the effect of interest for which power and sample-size
analysis is to be performed. For a one-way repeated-measures ANOVA, only factor(within) is
allowed and is implied when only one group is specified. In a two-way repeated-measures ANOVA,
the tested effects include the between effect or main effect of a between-subjects factor, the within
effect or main effect of a within-subject factor, and the between–within effect or interaction effect
of the between-subjects factor and the within-subject factor. The default for a two-way repeated
design is factor(between).

vareffect(numlist) specifies the variance explained by the tested effect specified in factor().
For example, if factor(between) is specified, vareffect() specifies the variance explained
by the between-subjects factor. This option is required if the factor() option is specified and
meanspec is not specified. This option is not allowed with the effect-size determination. Only one
of vareffect(), varbetween(), varwithin(), or varbwithin() may be specified.

varbetween(numlist) specifies the variance explained by the between-subjects factor. This option
is equivalent to specifying factor(between) and vareffect(numlist) and thus cannot be
combined with factor(). This option is not allowed with the effect-size determination. Only
one of vareffect(), varbetween(), varwithin(), or varbwithin() may be specified. This
option is not allowed when only one group is specified.

varwithin(numlist) specifies the variance explained by the within-subject factor. This option is
equivalent to specifying factor(within) and vareffect(numlist) and thus cannot be com-
bined with factor(). This option is not allowed with the effect-size determination. Only one of
vareffect(), varbetween(), varwithin(), or varbwithin() may be specified.

varbwithin(numlist) specifies the variance explained by the interaction between a between-subjects
factor and a within-subject factor. This option is equivalent to specifying factor(bwithin) and
vareffect(numlist) and thus cannot be combined with factor(). This option is not allowed
with the effect-size determination. Only one of vareffect(), varbetween(), varwithin(), or
varbwithin() may be specified. This option is not allowed when only one group is specified.

varerror(numlist) specifies the error variance if covmatrix() is not specified. This option is
allowed only if corr() is specified. When corr() is specified, the default is varerror(1).

showmatrices specifies that the cell-means matrix and the covariance matrix be displayed, when
applicable.

showmeans specifies that the cell means be reported. For a text or graphical output, this option is
equivalent to showmatrices except only the cell-mean matrix will be reported. For a tabular
output, the columns containing cell means will be included in the default table.

parallel; see [PSS-2] power.
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� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value of the sample size for the sample-size determination or the initial
value of the effect size δ for the effect-size determination. The default uses a bisection algorithm
to bracket the solution.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power repeated but is not shown in the dialog box:

notitle; see [PSS-2] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power repeated
Computing sample size
Computing power
Computing effect size and target variance explained by the tested effect
Testing hypotheses about means from multiple dependent populations

This entry describes the power repeated command and the methodology for power and sample-
size analysis for one-way and two-way repeated-measures ANOVA. See [PSS-2] Intro (power) for a
general introduction to power and sample-size analysis and [PSS-2] power for a general introduction
to the power command using hypothesis tests.

Introduction
Repeated-measures ANOVA models are popular among experimenters because of their increased

power compared with regular ANOVA models. Repeated-measures designs allow multiple measurements
on the same subject. The repeated measurements often correspond to outcomes measured over time
for each subject, but they can also correspond to different measurements of the same treatment or
measurements of different treatments. The key point is that multiple measurements are made on the
same subject.

One example of a repeated-measures design is a longitudinal study that offers an important
alternative to a cross-sectional study because of its ability to establish a temporal relationship between
the treatment and the outcome. For example, patients with hypertension might be randomized to
receive a new experimental drug or standard care and have their systolic blood pressure measured at
baseline and each year for two years.

Baseline Year 1 Year 2
Old drug 145 135 130
New drug 145 130 120
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What makes repeated-measures designs more powerful? Using each subject as his or her own
control reduces subject-to-subject variability that is explained by anything other than the effect of the
treatment under study. This may dramatically increase power for detecting the effect of the treatment
of interest.

Two classes of methods can be used to analyze repeated-measures data: univariate methods such
as regular F tests and multivariate methods such as Wilks’s lambda test, Pillai’s trace test, and the
Lawley–Hotelling trace test. The multivariate methods are more flexible in terms of the assumptions
about the repeated-measures covariance structure, but they have lower power than regular F tests. In
this entry, we concentrate on the univariate methods.

A repeated-measures design belongs to a class of within-subject designs, designs that contain one or
more within-subject factors. A within-subject factor is a factor for which each subject receives several
or all levels. A between-subjects factor, on the other hand, is any factor for which each subject receives
only one level. In what follows, we consider designs with one fixed within-subject factor—one-way
fixed-effects repeated-measures ANOVA models—or designs with one fixed between-subjects factor
and one fixed within-subjects factor—two-way fixed-effects repeated-measures ANOVA models.

In a one-way repeated-measures model, the within-subject effect is the effect of interest. In a
two-way repeated-measures model, you can choose between the three effects of interest: a main
between-subjects effect or the between effect, a main within-subject effect or the within effect, and an
interaction effect between the between-subjects factor and within-subject factor or the between–within
effect. power repeated provides power and sample-size computations for the tests of all of these
effects.

Repeated-measures ANOVA assumes that errors are normally distributed with zero mean and constant
variance. The measurements between subjects are independent, but the measurements within a subject
are assumed to be correlated. The within-subject covariance matrices must be constant between groups
defined by the levels of between-subjects factors. The validity of the regular F test also relies on
the so-called sphericity assumption (or, more generally, the circularity assumption). You can think
of this assumption as all differences between levels of the within-subject factor having the same
variances. A special case of this assumption is compound symmetry, a less stringent assumption. A
covariance matrix is said to have a compound-symmetry structure if all the variances are equal and
all the covariances are equal.

The assumption of sphericity is rather restrictive. When it is violated, the distribution of the test
statistic of the regular F test of within and between–within effects is no longer an exact F distribution.
To compensate for this, several nonsphericity corrections such as the Greenhouse–Geisser correction
or Huynh–Feldt correction for the degrees of freedom of the regular F test are proposed (for example,
Geisser and Greenhouse [1958]; Huynh and Feldt [1976]).

The distribution of the test statistic under the alternative hypothesis is a noncentral F distribution for
all the considered tests. Thus power is a function of the noncentrality parameter, and the noncentrality
parameter is a function of the ratio of the variance of the tested effect to the comparison error variance
used in the denominator of the corresponding F test. For example, for a test of the within effect,
the comparison error variance is the within-effect error variance. In what follows, by comparison
error variance, we will imply one of the between-effect, within-effect, or between–within-effect error
variance, whichever is appropriate for the considered test. The effect size for each of the F tests is
defined as the square root of the ratio of the variance of the tested effect to the comparison error
variance.

This entry describes power and sample-size analysis of repeated-measures ANOVA using the
univariate F test with Greenhouse–Geisser correction for the nonsphericity.
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Using power repeated

power repeated computes sample size, power, or effect size for one-way and two-way fixed-
effects repeated-measures ANOVA models. A one-way repeated-measures ANOVA model includes one
fixed within-subject factor. The supported two-way repeated-measures ANOVA includes one fixed
between-subjects factor and one fixed within-subject factor. A one-way model is available as a special
case of a two-way model with one group. At least one group and two repeated measures must be
specified.

All computations are performed assuming a significance level of 0.05. You may change the
significance level by specifying the alpha() option.

The computations are performed for an F test of the effect of interest. In a one-way model, the
only effect of interest is a within-subject effect. In a two-way model, you can choose between the
three effects of interest: between-subjects effect with factor(between) (the default), within-subject
effect with factor(within), and between–within effect with factor(bwithin).

All computations require that you specify a residual covariance between repeated measures. You
can either specify any unstructured covariance matrix in covmatrix() or specify the correlation
between repeated measures in corr() and the error variance in varerror(). If corr() is specified,
varerror(1) is assumed. The latter specification implies a residual covariance with compound-
symmetry structure.

To compute the total sample size, you must also specify the alternative meanspec and, optionally,
the power of the test in power(). The default power is set to 0.8.

To compute power, you must specify the total sample size in the n() option and the alternative
meanspec.

Instead of the alternative cell means, you can specify the number of groups (rows) in the ngroups()
option, the number of repeated measures (columns) in the nrepeated() option, and the variance
explained by the tested effect in the vareffect() option when computing sample size or power. See
Alternative ways of specifying effect in [PSS-2] power twoway; substitute ngroups() for nrows(),
nrepeated() for ncols(), varbetween() for varrow(), varwithin() for varcolumn(), and
varbwithin() for varrowcolumn(). If covmatrix() is specified, the nrepeated() option is not
required—the number of repeated measures is determined by the dimensionality of the specified
covariance matrix.

To compute effect size, the square root of the ratio of the variance explained by the tested factor
to the comparison error variance, and the target variance explained by the tested factor, in addition
to the residual covariance, you must specify the total sample size in n(), the power in power(), the
number of groups in ngroups(), and the number of repeated measures in nrepeated() if corr()
is specified.

By default, all computations assume a balanced- or an equal-allocation design. You can use
grweights() to specify an unbalanced design for power, sample-size, or effect-size computations.
For power and effect-size computations, you can specify individual group sizes in n1(), n2(), and
so on, instead of a combination of n() and grweights() to accommodate an unbalanced design.
For a balanced design, you can also specify npergroup() to specify a group size instead of a total
sample size in n().

In repeated-measures ANOVA, sample size and effect size depend on the noncentrality parameter
of the F distribution, and their estimation requires iteration. The default initial values are obtained
from a bisection search that brackets the solution. If you desire, you may change this by specifying
your own value in the init() option. See [PSS-2] power for the descriptions of other options that
control the iteration procedure.
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Computing sample size

To compute sample size, you must specify a repeated-measures covariance, an alternative cell
means, or the variance of the tested effect and, optionally, the power of the test in the power()
option. A power of 0.8 is assumed if power() is not specified.

Example 1: Sample size for a one-way repeated-measures ANOVA

Consider a version of the study described in Winer, Brown, and Michels (1991, 228). Suppose that
researchers would like to conduct a similar study to investigate the effects of three drugs on reaction
time to a series of standardized tasks. Per design, each subject will receive all three drugs, and a
subject’s score (mean reaction time to a task) will be recorded for each of the three drugs; that is, there
will be three repeated measurements on each subject. This is a simple one-way repeated-measures
design in which drug is the within-subject factor. See Winer, Brown, and Michels (1991) for other
details of the design.

Before conducting the study, researchers would like to compute the required sample size to detect
the effect of interest with 80% power and a 5% significance level. Suppose that the postulated means
for the three drug levels are 26.4, 25.6, and 21; the correlation between repeated measurements is
0.6; and the error variance is 77. We use power repeated to compute the sample size:

. power repeated 26.4 25.6 21, corr(0.6) varerror(77)

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for within subject with Greenhouse--Geisser correction
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7426

N_g = 1
N_rep = 3
means = <matrix>
Var_w = 5.6622

Var_we = 10.2667
Var_e = 77.0000

rho = 0.6000

Estimated sample sizes:

N = 20
N per group = 20

We need to recruit 20 subjects to detect the effect size of 0.7426 =
√

5.6622/10.2667 in this study.

Repeated-measures covariance in this study has a compound-symmetry structure by design, so the
assumption of sphericity, underlying the F test of means for the within-subject factor, is automatically
satisfied. Thus no correction to the degrees of freedom of the test is made.
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Example 2: Alternative ways of specifying effect and repeated-measures covariance

Instead of specifying the alternative cell means as in example 1, we can specify the variance
between them. Here we also need to specify the number of groups and the number of repeated
measures. From example 1, the variance between the means was computed as 5.6622. We specify this
value in varwithin(), the number of groups in ngroups(), and the number of repeated measures
in nrepeated():

. power repeated, ngroups(1) varwithin(5.6622) nrepeated(3) corr(0.6) varerror(77)

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for within subject with Greenhouse--Geisser correction
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7426

N_g = 1
N_rep = 3
Var_w = 5.6622

Var_we = 10.2667
Var_e = 77.0000

rho = 0.6000

Estimated sample sizes:

N = 20
N per group = 20

We obtain the exact same results as in example 1.

Instead of specifying alternative means directly following the command line, we can define a
matrix, say, M, containing these means and use it with power repeated:
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. matrix M = (26.4,25.6,21)

. power repeated M, corr(0.6) varerror(77) showmatrices

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for within subject with Greenhouse--Geisser correction
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7426

N_g = 1
N_rep = 3
means = <matrix>
Var_w = 5.6622

Var_we = 10.2667
Var_e = 77.0000

rho = 0.6000

Study matrices:

Cell means

repeated
1 2 3

groups
1 26.4 25.6 21

Covariance

repeated
1 2 3

repeated
1 77
2 46.2 77
3 46.2 46.2 77

Estimated sample sizes:

N = 20
N per group = 20

We used the showmatrices option to display the cell-means matrix and the covariance matrix.

We can also use the covmatrix() option to specify the repeated-measures covariance matrix.
This option allows you to specify unstructured covariance matrices.

We could have typed the values of the covariance matrix displayed above, but instead, we simply
retrieve it from the stored result r(Cov). We then display the values of the covariance matrix to
verify that we have the correct matrix.

. matrix Cov = r(Cov)

. matlist Cov

repeated
1 2 3

repeated
1 77
2 46.2 77
3 46.2 46.2 77
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We specify the covariance matrix in covmatrix():

. power repeated M, covmatrix(Cov)

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for within subject with Greenhouse--Geisser correction
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7426

N_g = 1
N_rep = 3
means = <matrix>
Var_w = 5.6622

Var_we = 10.2667
Cov = <matrix>

spherical = true

Estimated sample sizes:

N = 20
N per group = 20

We obtain the exact same results as before.

Example 3: Sample size for a two-way repeated-measures ANOVA—between effect

A group of researchers would like to design a study to determine whether a new antihypertension
medication is more effective than the best medication currently available. They plan their study based
on the design and results of the ALLHAT clinical trial (1996, 2002). Average systolic blood pressure
(SBP) is assumed to be 145 mm/Hg at baseline in both treatment groups. Using the results of the
ALLHAT study, the researchers expect a mean SBP of 135 at year 1 and 130 at year 2 in the old drug
group. Using the results of pilot studies, the researchers expect a mean SBP of 130 at year 1 and 120
at year 2 in the new drug group.

Baseline Year 1 Year 2
Old drug 145 135 130
New drug 145 130 120

There are two factors in this experiment: treatment group is the between-subjects factor, and mea-
surement time (baseline, year 1, and year 2) is the within-subject factor. Using the ALLHAT study and
the pilot data, the researchers assume that the variance of SBP will be 225 for both groups at each of
the three measurements. They also assume that the correlation between the repeated measurements is
0.7, so the covariance matrix is

Σ =

 225 157.5 157.5
157.5 225 157.5
157.5 157.5 225


There are potentially three tests of interest here: the test of the main effect of treatment, the test of
the main effect of time, and the test of the interaction effect between treatment and time.

Let’s compute the required sample size for the test of the between effect, treatment. This is the
default test in power repeated when there is more than one group.
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We begin by defining a matrix of means and a covariance matrix.

. matrix M = (145,135,130\145,130,120)

. matrix Cov = (225,157.5,157.5\157.5,225,157.5\157.5,157.5,225)

We can use the matlist command to display these matrices to verify that we typed them correctly:

. matlist M

c1 c2 c3

r1 145 135 130
r2 145 130 120

. matlist Cov

c1 c2 c3

r1 225
r2 157.5 225
r3 157.5 157.5 225

For brevity, we use one of the alternative specifications from example 2 to compute sample size.
We specify the cell-means matrix M following the command name and the covariance matrix Cov in
covmatrix():

. power repeated M, covmatrix(Cov)

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for between subjects
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.1863

N_g = 2
N_rep = 3
means = <matrix>
Var_b = 6.2500

Var_be = 180.0000
Cov = <matrix>

Estimated sample sizes:

N = 228
N per group = 114

To detect the treatment effect of the specified magnitude, δ = 0.1863 =
√

6.25/180, we need to
enroll 228 subjects with 114 subjects per treatment. Note that the sphericity requirement is not needed
for the F test of between effects, so no correction is done to the degrees of freedom of the test.
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By default, power repeated does not display the specified matrices. If desired, we can use the
showmatrices option to display them:

. power repeated M, covmatrix(Cov) showmatrices

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for between subjects
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.1863

N_g = 2
N_rep = 3
means = <matrix>
Var_b = 6.2500

Var_be = 180.0000
Cov = <matrix>

Study matrices:

Cell means

repeated
1 2 3

groups
1 145 135 130
2 145 130 120

Covariance

repeated
1 2 3

repeated
1 225
2 157.5 225
3 157.5 157.5 225

Estimated sample sizes:

N = 228
N per group = 114

Similarly to the alternative specifications discussed in example 2, all the specifications below will
produce identical results:

. power repeated 145 135 130 \ 145 130 120, covmatrix(Cov)
(output omitted )

. power repeated M, corr(0.7) varerror(225)
(output omitted )

. power repeated, nrepeated(3) corr(0.7) varerror(225) ngroups(2) varbetween(6.25)
(output omitted )
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Example 4: Sample size for a two-way repeated-measures ANOVA—within effect

Continuing with example 3, we now compute the required sample size for the test of the main
effects of time, the within effects.

. power repeated M, covmatrix(Cov) factor(within)

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for within subject with Greenhouse--Geisser correction
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.7392

N_g = 2
N_rep = 3
means = <matrix>
Var_w = 68.0556

Var_we = 22.5000
Cov = <matrix>

spherical = true

Estimated sample sizes:

N = 6
N per group = 3

We only need a total of 6 subjects, 3 per group, to detect the within effect in this study.

We can also obtain identical results by using the following alternative specification:
. power repeated, covmatrix(Cov) ngroups(2) varwithin(68.0556)

(output omitted )

Example 5: Sample size for a two-way repeated-measures ANOVA—between–within
effect

Continuing with example 3, we can also compute the required sample size for the test of the
between–within interaction effects, interaction between treatment and time.

. power repeated M, covmatrix(Cov) factor(bwithin)

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for between-within subjects with Greenhouse--Geisser correction
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.4303

N_g = 2
N_rep = 3
means = <matrix>

Var_bw = 4.1667
Var_bwe = 22.5000

Cov = <matrix>
spherical = true

Estimated sample sizes:

N = 54
N per group = 27

For this test, we need a total of 54 subjects with 27 subjects per group.



410 power repeated — Power analysis for repeated-measures analysis of variance

If we are interested in performing all three tests (between, within, and between–within) during
our analysis, we should pick the largest of the three sample sizes as our final sample size. In our
examples, the largest sample size is 228 for the test of between effects.

We can also obtain results identical to the above by using the following alternative specification:

. power repeated, covmatrix(Cov) ngroups(2) varbwithin(4.1667)
(output omitted )

Example 6: Unbalanced design

Continuing with example 2, suppose we anticipate that the first group will have twice as many subjects
as the second group. We can accommodate this unbalanced design by specifying the corresponding
group weights in grweights():

. power repeated M, covmatrix(Cov) grweights(2 1)

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for between subjects
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.1757

N_g = 2
N_rep = 3
means = <matrix>
Var_b = 5.5556

Var_be = 180.0000
Cov = <matrix>

Estimated sample sizes:

N = 258
Average N = 129.0000

N1 = 172
N2 = 86

The required total sample size for this unbalanced design is 258 with 172 subjects in the first group
and 86 subjects in the second group. The average number of subjects per group is 129.

We can compute results for multiple sets of group weights. The specification of group weights
within grweights() is exactly the same as the specification of group means described in Alternative
ways of specifying effect. Suppose that we would like to compute sample sizes for two unbalanced
designs. The first design has twice as many subjects in the first group, and the second design has
twice as many subjects in the second group. We specify multiple group weights for the first and
second groups in parentheses. We also specify the parallel option to treat multiple weight values
in parallel instead of computing results for all possible combinations of these values that would have
been done by default.
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. local columns alpha power N N1 N2 grwgt1 grwgt2 delta N_rep Var_b Var_be

. power repeated M, covmatrix(Cov) grweights((2 1) (1 2)) parallel
> table(‘columns’, formats("%6.0g"))

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for between subjects
H0: delta = 0 versus Ha: delta != 0

means = <matrix>
Cov = <matrix>

alpha power N N1 N2 grwgt1 grwgt2 delta N_rep Var_b Var_be

.05 .8 258 172 86 2 1 .1757 3 5.556 180

.05 .8 258 86 172 1 2 .1757 3 5.556 180

The default table does not include group weights, so we request a table with custom columns containing
group weights via table(). We also request a smaller format to make the table more compact.

Computing power

To compute power, you must specify a repeated-measures covariance, the total sample size in n(),
and the alternative cell means or the variance of the tested effect.

Example 7: Power for a two-way repeated-measures ANOVA

The team discovers that they are only able to recruit a maximum of n = 200 participants. They
would like to calculate the statistical power for the between-subjects effect given this constraint and
assuming a balanced design.

. power repeated M, covmatrix(Cov) n(200)

Estimated power for repeated-measures ANOVA
F test for between subjects
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
N = 200

N per group = 100
delta = 0.1863

N_g = 2
N_rep = 3
means = <matrix>
Var_b = 6.2500

Var_be = 180.0000
Cov = <matrix>

Estimated power:

power = 0.7462

The power corresponding to this design is 75%.
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Example 8: Multiple values of study parameters

Continuing with example 7, suppose that the researchers would like to know whether randomizing
60% of the participants to the new drug group and 40% to the old drug group will have an effect on
statistical power. For comparison, we will also include the results from a balanced design.

To accommodate this unbalanced design, we could use grweights(), as we demonstrated in
example 6. For variety, we instead use n1() and n2() to specify unequal group sizes directly. We
also display only a subset of table columns, including power and sample sizes.

. power repeated M, covmat(Cov) n1(100 80) n2(100 120) parallel
> table(power N1 N2 N)

Estimated power for repeated-measures ANOVA
F test for between subjects
H0: delta = 0 versus Ha: delta != 0

means = <matrix>
Cov = <matrix>

power N1 N2 N

.7462 100 100 200

.7289 80 120 200

For the specified unbalanced design, the power decreases slightly to 73% from 75%.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

Computing effect size and target variance explained by the tested effect

Sometimes, we may be interested in determining the smallest effect that yields a statistically
significant result for prespecified sample size and power. In this case, repeated-measures covariance,
power, sample size, the numbers of groups, and possibly the number of repeated measurements must
be specified.

The effect size in power repeated is defined as a square root of the ratio of the variance explained
by the tested effect to the comparison error variance. The effect size and the target variance explained
by the tested effect are computed.

Example 9: Effect size for a two-way repeated-measures ANOVA

Continuing with example 7, suppose that researchers would like to know how large the between-
subjects variance must be to achieve a power of 80% with a total sample size of 200 using a balanced
design.
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. power repeated, covmat(Cov) n(200) power(0.8) ngroups(2)

Performing iteration ...

Estimated between-subjects variance for repeated-measures ANOVA
F test for between subjects
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 200
N per group = 100

N_g = 2
N_rep = 3

Var_be = 180.0000
Cov = <matrix>

Estimated effect size and between-subjects variance:

delta = 0.1991
Var_b = 7.1331

We see that to achieve a power of at least 80%, the between-subjects variance must increase to 7.1331
from 6.250, which achieved a power of 0.7462 in example 7. The effect size increases from 0.1863
to 0.1991.

Testing hypotheses about means from multiple dependent populations

After the data are collected, we can use Stata’s anova command, for example, to perform inference
for repeated-measures ANOVA. We show a quick example of how to do this here; see [R] anova for
more examples and details.

Example 10: One-way repeated-measures ANOVA

Suppose that researchers conduct their study and collect the data. Consider the data from Winer,
Brown, and Michels (1991, 228), a version of which was discussed in example 1.

t43.dta contains 20 observations of scores of 4 repeated measurements identified by the drug
variable from 5 people identified by the person variable. We use the anova command to fit a one-way
repeated-measures model to these data.
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. use https://www.stata-press.com/data/r18/t43
(T4.3 -- Winer, Brown, Michels)

. anova score person drug, repeated(drug)

Number of obs = 20 R-squared = 0.9244
Root MSE = 3.06594 Adj R-squared = 0.8803

Source Partial SS df MS F Prob>F

Model 1379 7 197 20.96 0.0000

person 680.8 4 170.2 18.11 0.0001
drug 698.2 3 232.73333 24.76 0.0000

Residual 112.8 12 9.4

Total 1491.8 19 78.515789

Between-subjects error term: person
Levels: 5 (4 df)

Lowest b.s.e. variable: person

Repeated variable: drug
Huynh-Feldt epsilon = 1.0789
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.6049
Box’s conservative epsilon = 0.3333

Prob > F
Source df F Regular H-F G-G Box

drug 3 24.76 0.0000 0.0000 0.0006 0.0076
Residual 12

We are interested in the test of the effect of drug. The regular F test reports a significant result.
The anova output for the repeated variable drug, however, indicates that the sphericity assumption
is not met in these data; for example, the Greenhouse–Geisser epsilon of 0.6049 is different from 1.

When the sphericity assumption is not met, the degrees of freedom of a regular F test must be
adjusted. Even after the adjustment, the effect of a drug is still significant according to all tests, at
least at the 1% level.

To design a new study based on the results of this experiment, we can use power repeated to
compute the required sample size. To perform this computation, we will need the estimates of the
repeated-measures covariance and within-drug score means.

anova saves the estimated repeated-measures covariance in e(Srep). We save it to a new matrix
Cov and display it:

. mat Cov = e(Srep)

. matlist Cov

c1 c2 c3 c4

r1 76.8
r2 53.2 42.8
r3 29.2 15.8 14.8
r4 69 47 27 64
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We now use the mean command to estimate means for each of the four drug levels. We store the
resulting matrix of means in M:

. mean score, over(drug)

Mean estimation Number of obs = 20

Mean Std. err. [95% conf. interval]

c.score@drug
1 26.4 3.919184 18.19705 34.60295
2 25.6 2.925748 19.47634 31.72366
3 15.6 1.720465 11.99903 19.20097
4 32 3.577709 24.51177 39.48823

. mat M = e(b)

We now specify the obtained matrices with power repeated to compute the sample size:

. power repeated M, covmatrix(Cov)

Performing iteration ...

Estimated sample size for repeated-measures ANOVA
F test for within subject with Greenhouse--Geisser correction
H0: delta = 0 versus Ha: delta != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 3.8543

N_g = 1
N_rep = 4
means = <matrix>
Var_w = 34.9100

Var_we = 2.3500
Cov = <matrix>

spherical = false

Estimated sample sizes:

N = 4
N per group = 4

We only need 4 subjects to detect the effect of a drug in a study with 80% power and a 5% significance
level.
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Stored results
power repeated stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N avg) average sample size
r(N#) number of subjects in group #
r(N per group) number of subjects per group
r(N g) number of groups
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(balanced) 1 for a balanced design, 0 otherwise
r(grwgt#) group weight #
r(N rep) number of rows
r(m#1 #2) cell mean (#1, #2)
r(Var b) between-subjects variance
r(Var w) within-subject variance
r(Var bw) between–within subjects, interaction variance
r(Var be) between-subjects error variance
r(Var we) within-subject error variance
r(Var bwe) between–within subjects, interaction error variance
r(Var e) error variance
r(spherical) 1 covariance is spherical, 0 otherwise
r(epsilon) nonsphericity correction
r(epsilon m) mean nonsphericity correction
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample size or effect size
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) repeated
r(factor) between, within, or bwithin
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results
r(means) cell-means matrix
r(Cov) repeated-measures covariance

Methods and formulas
Consider a sample of n units where each observation comprises q responses based on p predictors.

A general linear multivariate model can then be expressed as

Y = XB + E (1)
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where Y is an n× q matrix of dependent variables, X is an n×p matrix of fixed predictor variables,
B is a p × q matrix of coefficients, and the error E is an n × q matrix where each row is an
independent and identically distributed random variable drawn from a q-dimensional multivariate
normal with mean 0 and a variance–covariance matrix Σ. In our repeated measures design, q = K
is the number of repeated measures within p = J treatments or groups.

For expositional purposes, consider a two-way repeated-measures design with one between-subjects
factor, treatment, and one within-subject factor, time. Suppose we wish to test the effect of a treatment
with three levels. The response of each individual is measured at the beginning of the experiment and
at three time periods after one of the three treatments is administered. To put this into perspective,
we see that K = 4 is the number of repeated measures and that J = 3 is the number of treatment
levels. We can express this model as


y1,1 y1,2 y1,3 y1,4

y2,1 y2,2 y2,3 y2,4

. . . .

. . . .
yn,1 yn,2 yn,3 yn,4

 =


1 x1,1 x1,2

1 x2,1 x2,2

. . .

. . .
1 xn,1 xn,2


 µ1 µ2 µ3 µ4

α1,1 α1,2 α1,3 α1,4

α2,1 α2,2 α2,3 α2,4

+


ε′1
ε′2
.
.
ε′n


where yi,k is the response of the ith individual at time period k = 1, 2, 3, 4 and

xi1 =

{ 1 if subject i received treatment 1
0 if subject i received treatment 2
−1 if subject i received treatment 3

xi2 =

{ 0 if subject i received treatment 1
1 if subject i received treatment 2
−1 if subject i received treatment 3

represent the effects of a treatment for individual i. The elements in the coefficient matrix B have the
following interpretation: µk is the mean-treatment response at time period k, αj,k is the jth treatment
effect, j = 1, 2, at time period k, and α3,k = −α1,k − α2,k. The treatment-by-time means are
µ = XB. The εi are independent normal vectors of length K with mean 0 and variance–covariance
Σ.

Methods and formulas are presented under the following headings:
Hypothesis testing
Computing power

Hypothesis testing

A hypothesis test for a general linear multivariate model can be formed as

H0: Θ = 0 Ha: Θ 6= 0

where Θ = CBU is a dc × du matrix with arbitrary dimensions dc and du that depend on the
specified contrast matrices C and U. C is a dc × p matrix of full rank, where rank(C) = dc ≤ p,
and U is a q × du matrix of full rank, where rank(U) = du ≤ q.

Each row of C corresponds to the row of Θ and forms a contrast to test the between-subjects
effects. Similarly, each column of U corresponds to the column of Θ and forms a contrast to test the
within-subject effect. Together, C and U can also be used to test for interaction effects.
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The estimates are given by

B̂ = (X′X)−1X′Y

Θ̂ = CB̂U (2)

Ĥ = Θ̂
′
{C(X′X)−1C′}−1Θ̂ (3)

Define Ê = U′Σ̂U(n− p). Then, under the assumption of sphericity, the test statistic is given by

FC,U =
tr(Ĥ)/dcdu

tr(Ê)/{du(n− p)}
(4)

where the statistic follows an F distribution with dcdu numerator and du(n−p) denominator degrees
of freedom. However, if the assumption is not met, then the test statistic follows an F distribution
with dcduε numerator and du(n− p)ε denominator degrees of freedom, where

ε =
tr2(Σ̂)

du tr(Σ̂
2
)

=

(∑du
k=1 λk

)2

du
∑du
k=1 λ

2
k

Under the alternative hypothesis, the power is obtained using a noncentral F distribution with
noncentrality parameter equal to

λ = dcduεFC,U

Computing power

To compute power, we make conjectures about the parameters of interest, B and Σ, and rewrite
(2), (3), and (4) as

Θ = CBU

H = nΘ′{C(Ẍ′WẌ)−1C′}−1Θ

= nH∗

E = U′ΣU(n− p)
= Σ∗(n− p)

where Ẍ is the p× p model matrix containing all the unique rows of X in a special order and W is
a diagonal matrix containing nj/n, the sample size for the jth treatment divided by the total sample
size. In our three-treatment example, the matrix Ẍ is

Ẍ =

 1 1 0
1 0 1
1 −1 −1
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The FC,U statistic using the parameter matrices H and E is

FC,U =
tr(H)/dcdu

tr(E)/{du(n− p)}

=
n

dc

tr(H∗)
tr(Σ∗)

from which we obtain the noncentrality parameter as

λ = dudcεFC,U

= nεδ2
(5)

where the effect size δ is defined as δ =
√
dutr(H∗)/tr(Σ∗).

The effect variance (Var b, Var w, or Var bw) reported by power repeated is computed as
tr(H∗)/dc. The effect error variance (Var be, Var we, or Var bwe) is computed as tr(Σ∗)/(dcdu).

Under the alternative hypothesis, the test statistic in (4) is distributed as a noncentral F distribution
with dcduε numerator and du(n− p)ε denominator degrees of freedom and noncentrality parameter
λ from (5).

The power of the overall F test is

1− β = Fdcduε,du(n−p)ε,λ
(
Fdcduεm,du(n−p)εm,1−α

)
(6)

where F·,·,λ (·) is the cdf of a noncentral F distribution, and εm = E(ε) is computed as described
in Muller and Barton (1989, 551).

Total sample size and effect size are obtained by iteratively solving the nonlinear equation (6).
When the grweights() option is specified, a constant multiplier nc is computed and rounded to an
integer unless the nfractional option is specified. The group sizes are then computed as w̃jnc,
where w̃ is a standardized weight; see Methods and formulas of [PSS-2] power oneway for details.
The actual sample size, N a, is the sum of the group sizes.

See Muller et al. (1992) for details.

References
ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. 2002. Major outcomes in high-risk

hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic:
The antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). Journal of the American
Medical Association 288: 2981–2997. https://doi.org/10.1001/jama.288.23.2981.

Davis, B. R., J. A. Cutler, D. J. Gordon, C. D. Furberg, J. T. Wright, Jr., W. C. Cushman, R. H. Grimm, J. LaRosa,
P. K. Whelton, H. M. Perry, M. H. Alderman, C. E. Ford, S. Oparil, C. Francis, M. Proschan, S. Pressel, H. R.
Black, and C. M. Hawkins, for the ALLHAT Research Group. 1996. Rationale and design for the antihypertensive
and lipid lowering treatment to prevent heart attack trial (ALLHAT). American Journal of Hypertension 9: 342–360.
https://doi.org/10.1016/0895-7061(96)00037-4.

Geisser, S., and S. W. Greenhouse. 1958. An extension of Box’s results on the use of the F distribution in multivariate
analysis. Annals of Mathematical Statistics 29: 885–891. https://doi.org/10.1214/aoms/1177706545.

Grayling, M. J., J. M. S. Wason, and A. P. Mander. 2018. Group sequential clinical trial designs for normally
distributed outcome variables. Stata Journal 18: 416–431.

Huynh, H., and L. S. Feldt. 1976. Estimation of the Box correction for degrees of freedom from sample data in
randomized block and split-plot designs. Journal of Educational Statistics 1: 69–82. https://doi.org/10.2307/1164736.

https://doi.org/10.1001/jama.288.23.2981
https://doi.org/10.1016/0895-7061(96)00037-4
https://doi.org/10.1214/aoms/1177706545
http://www.stata-journal.com/article.html?article=st0529
http://www.stata-journal.com/article.html?article=st0529
https://doi.org/10.2307/1164736


420 power repeated — Power analysis for repeated-measures analysis of variance

Muller, K. E., and C. N. Barton. 1989. Approximate power for repeated-measures ANOVA lacking sphericity. Journal
of the American Statistical Association 84: 549–555. https://doi.org/10.2307/2289941.

Muller, K. E., L. M. LaVange, S. Landesman Ramey, and C. T. Ramey. 1992. Power calculations for general linear
multivariate models including repeated measures applications. Journal of the American Statistical Association 87:
1209–1226. https://doi.org/10.1080/01621459.1992.10476281.

Winer, B. J., D. R. Brown, and K. M. Michels. 1991. Statistical Principles in Experimental Design. 3rd ed. New
York: McGraw–Hill.

Also see
[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] power oneway — Power analysis for one-way analysis of variance

[PSS-2] power pairedmeans — Power analysis for a two-sample paired-means test

[PSS-2] power twoway — Power analysis for two-way analysis of variance

[PSS-2] power, graph — Graph results from the power command

[PSS-2] power, table — Produce table of results from the power command

[PSS-5] Glossary
[R] anova — Analysis of variance and covariance

https://doi.org/10.2307/2289941
https://doi.org/10.1080/01621459.1992.10476281


Title

power oneslope — Power analysis for a slope test in a simple linear regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power oneslope computes sample size, power, or the target slope coefficient for a test of a slope in
a simple linear regression. By default, it computes sample size given power and the slope coefficient.
Alternatively, it computes power given sample size and the slope coefficient, or it computes the target
slope coefficient given sample size, power, and the coefficient under the null. See [PSS-2] power for
a general introduction to the power command using hypothesis tests.

Quick start
Sample size for a two-sided test of H0 : b = 1.0 versus Ha : b 6= 1.0 with null slope b0 = 1.0,

alternative slope ba = 1.2, covariate standard deviation of 3, and error standard deviation of 1.5
using default power of 0.8 and significance level α = 0.05

power oneslope 1.0 1.2, sdx(3) sderror(1.5)

Same as above, but for a one-sided test with power of 0.9
power oneslope 1.0 1.2, sdx(3) sderror(1.5) power(.9) onesided

Specify b0 and the difference between ba and b0 instead of specifying ba = 1.2
power oneslope 1.0, sdx(3) sderror(1.5) diff(0.2)

Same as above, but specify correlation between the dependent variable and the covariate instead of
the error standard deviation

power oneslope 1.0, sdx(3) corr(.923) diff(0.2)

Power for sample size of 75
power oneslope 1.0 1.2, sdx(3) sderror(1.5) n(75)

Power for sample sizes of 50, 60, 70, and 80
power oneslope 1.0 1.2, sdx(3) sderror(1.5) n(50(10)80)

Same as above, but display results in a graph of power versus sample size
power oneslope 1.0 1.2, sdx(3) sderror(1.5) n(50(10)80) graph

Effect size and target slope for sample size of 40, power of 0.9, and α = 0.01
power oneslope 1.0, sdx(3) sderror(1.5) n(40) power(.9) alpha(0.01)

Menu
Statistics > Power, precision, and sample size

421
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Syntax

Compute sample size

power oneslope b0 ba
[
, power(numlist) options

]

Compute power

power oneslope b0 ba , n(numlist)
[

options
]

Compute effect size and target slope

power oneslope b0 , n(numlist) power(numlist)
[

options
]

where b0 is the null (hypothesized) slope or the value of the slope coefficient under the null hypothesis
and ba is the alternative (target) slope or the value of the slope coefficient under the alternative
hypothesis. b0 and ba may each be specified either as one number or as a list of values in
parentheses (see [U] 11.1.8 numlist).
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗diff(numlist) difference between the alternative slope and the null slope

coefficients, ba − b0; specify instead of the alternative
slope ba

∗sdx(numlist) standard deviation of the covariate of interest; default is sdx(1)
∗sderror(numlist) standard deviation of the error term of the regression model;

may not be combined with sdy() or corr(); default is
sderror(1)

∗sdy(numlist) standard deviation of the dependent variable; may not be
combined with sderror() or corr()

∗corr(numlist) correlation between the dependent variable and the covariate
of interest; may not be combined with sderror() or sdy()

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value for sample size or slope
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.
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where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N number of subjects N
delta effect size δ
b0 null slope coefficient b0
ba alternative slope coefficient ba
diff difference between alternative and null slope

coefficients ba − b0
sdx standard deviation of covariate σx
sderror standard deviation of error term σ
sdy standard deviation of dependent variable σy
corr correlation between dependent variable and covariate ρ
target target parameter; synonym for ba
all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Columns diff, sdy, and corr are shown in the default table if specified.

Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS-2] power. The nfractional option is
allowed only for sample-size determination.

diff(numlist) specifies the difference between the alternative slope and the null slope coefficients,
ba − b0. You can specify either the alternative slope ba as a command argument or the difference
between the two slopes in diff(). If you specify diff(#), the alternative slope is computed as
ba = b0 + #. This option is not allowed with effect-size determination.

sdx(numlist) specifies the standard deviation for the covariate of interest. The default is sdx(1).

sderror(numlist) specifies the standard deviation of the error term of the regression model. The
default is sderror(1). This option may not be combined with sdy() or corr().

sdy(numlist) specifies the standard deviation of the dependent variable in the regression model. This
option may not be combined with sderror() or corr().

corr(numlist) specifies the correlation between the covariate of interest and the dependent variable.
This option may not be combined with sderror() or sdy().

direction(), onesided, parallel; see [PSS-2] power.
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� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value of the sample size for the sample-size determination or the initial
value of the slope for the effect-size determination. The default is to use a closed-form normal
approximation to compute an initial value for the sample size and a bisection search method to
compute an initial value for the effect size.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power oneslope but is not shown in the dialog box:

notitle; see [PSS-2] power.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Using power oneslope
Computing sample size
Computing power
Computing effect size and target slope
Performing hypothesis tests on the slope coefficient

power oneslope computes sample size, power, and the target slope coefficient for a linear
regression slope test. See [PSS-2] Intro (power) for a general introduction to power and sample-size
analysis, and see [PSS-2] power for a general introduction to the power command using hypothesis
tests.

Introduction

In a simple linear regression, researchers estimate the relationship between a covariate and the
outcome without controlling for other covariates. Consider a study where a researcher would like to
compare the slope from a simple linear regression with a hypothesized slope. For example, health
researchers may want to know whether the effect of time spent exercising on body mass index
(BMI) has changed compared with 10 years ago. Or pharmacological researchers may be interested
in knowing whether the slope of the dose–response curve reaches a given magnitude.

We can test whether the covariate of interest, x, has an effect on the outcome, y, by using a t test.
In the case of the dose–response study, for example, we may have a model,

yi = a+ bdosexi + εi i = 1, 2, . . . , n
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where the errors εi’s are independently and normally distributed with mean 0 and standard deviation
σ. The null hypothesis would be H0: bdose = b0, where bdose is the slope coefficient for the dose
of the drug that was administered and b0 is the hypothesized value of the slope. In general, for
a slope coefficient b, we consider the null hypothesis H0: b = b0 versus the two-sided alternative
hypothesis Ha: b 6= b0, the upper one-sided alternative Ha: b > b0, or the lower one-sided alternative
Ha: b < b0.

The power oneslope command provides power and sample-size analysis for the comparison of
a slope coefficient with a reference value using a t test in a simple linear regression. For power and
sample-size analysis in a multiple linear regression, see [PSS-2] power rsquared and [PSS-2] power
pcorr.

Using power oneslope

power oneslope computes sample size, power, or the target slope, ba, for a test of slope in a
simple linear regression. By default, all computations are performed for a two-sided hypothesis test
where the significance level is set to 0.05. You can change the significance level by specifying the
alpha() option. You can request a one-sided test by specifying the onesided option.

By default, all computations use one as the standard deviation of the covariate of interest and as the
standard deviation of the error. You can change these values by specifying the sdx() and sderror()
options. Instead of the sderror() option, you can combine the sdx() option with the sdy() option
to specify the standard deviation of the dependent variable or combine the sdx() option with the
corr() option to specify the correlation between the covariate and the dependent variable.

To compute sample size, you must specify the slope under the null hypothesis (b0) and the slope
under the alternative hypothesis (ba), and you may specify the power of the test in the power()
option. The default power is set to 0.8.

To compute power, you must specify the sample size in the n() option, the null slope b0, and the
alternative slope ba.

When computing sample size or power, you may specify the difference between the alternative
slope and null slope, ba − b0, in the diff() option instead of specifying the alternative slope.

To compute the effect size δ, you must specify the sample size in the n() option, the power in
the power() option, and the null slope b0, and you may specify the direction of the effect. δ is
defined as the difference between the alternative and null values of the slope multiplied by the ratio
of standard deviation of the covariate to that of the error term, δ = (ba − b0)σx/σ. The direction
is upper by default, direction(upper), which means that the target slope is assumed to be larger
than the specified null value. This is also equivalent to the assumption of a positive effect size. You
may change the direction to lower by specifying the direction(lower) option, which means that
the target slope is assumed to be smaller than the specified null value. This is equivalent to assuming
a negative effect size.

By default, the computed sample size is rounded up. You can specify the nfractional option
to see the corresponding fractional sample size; see Fractional sample sizes in [PSS-4] Unbalanced
designs for an example. The nfractional option is allowed only for sample-size determination.

power oneslope’s computations of sample size and effect size require iteration. A noncentral
Student’s t distribution is used for the computations. The degrees of freedom depends on the sample
size, and the noncentrality parameter depends on the sample size and effect size. The default initial
value of the sample size is obtained using a closed-form normal approximation. The default initial
value of the effect size is obtained using a bisection search method. The default initial values may
be changed by specifying the init() option. See [PSS-2] power for the descriptions of other options
that control the iteration procedure.
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Computing sample size

To compute sample size, you must specify the slope coefficients under the null, b0, and alternative,
ba, hypotheses, and you may specify the power of the test in the power() option. A default power
of 0.8 is assumed if power() is not specified.

Example 1: Sample size for a linear regression slope test

Consider an example from Dupont and Plummer (1998) that discusses the effectiveness of a dieting
program in encouraging patients to exercise regularly. Suppose we are conducting a similar study and
we want to know the effect of average time spent per day exercising on BMI, measured in kg/m2,
after six months in the program. The parameter of interest is the slope coefficient b, which measures
the effect of exercising on BMI, and our null hypothesis is H0: b = 0 versus a two-sided Ha: b 6= 0.

We wish to compute the sample size required to detect a drop in BMI of 0.0667 kg/m2 per minute
of exercise, the effect reported in Dupont and Plummer, with 80% power using a 5%-level two-sided
test. Using values obtained from previous studies, we specify a standard deviation of 7.5 minutes for
time spent exercising in sdx() and 4.0 kg/m2 for BMI in sdy().

. power oneslope 0 -0.0667, sdx(7.5) sdy(4)

Performing iteration ...

Estimated sample size for a linear regression slope test
t test
H0: b = b0 versus Ha: b != b0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.1261

b0 = 0.0000
ba = -0.0667

sdx = 7.5000
sderror = 3.9686

sdy = 4.0000

Estimated sample size:

N = 496

We find that a sample of 496 subjects is required to detect a drop of 0.0667 kg/m2 BMI per minute
with 80% power using a 5%-level two-sided test. The effect size (delta) and standard deviation of
the error term (sderror) are calculated using the given information about the null and alternative
slopes and the standard deviations of the dependent and independent variables; see Methods and
formulas.

As we mentioned in Using power oneslope, sample-size computation requires iteration. The iteration
log is suppressed by default, but you can display it by specifying the log option.

Example 2: Specifying difference between slopes

Instead of specifying the alternative slope as in example 1, we can obtain the same results by
specifying the difference between the slope coefficient under the alternative and null hypotheses in
the diff() option. We specify diff(-0.0667) and the same standard deviation of the covariate of
interest in the sdx() option and standard deviation of the outcome in the sdy() option that we used
in example 1.

In this case, the difference is equal to ba, specified in example 1. If we wanted to test for a null
value other than zero, then ba would not equal the difference.
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. power oneslope 0, diff(-0.0667) sdx(7.5) sdy(4)

Performing iteration ...

Estimated sample size for a linear regression slope test
t test
H0: b = b0 versus Ha: b != b0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.1261

b0 = 0.0000
ba = -0.0667

diff = -0.0667
sdx = 7.5000

sderror = 3.9686
sdy = 4.0000

Estimated sample size:

N = 496

Although the sample size estimate is the same, the difference between the alternative and null
values is also reported in the output when we specify the diff() option. Notice that the command
computed the value of ba.

Example 3: Specifying standard deviation of the error

Instead of σy , the standard deviation of the dependent variable, we can specify the standard deviation
of the error term in the regression model using the sderror() option. The value of the standard

deviation is obtained from the relation σ =
√
σ2
y − b2aσ2

x =
√

42 − {(−0.0667)2 × 7.52} ≈ 3.9686.

. power oneslope 0 -0.0667, sdx(7.5) sderror(3.9686)

Performing iteration ...

Estimated sample size for a linear regression slope test
t test
H0: b = b0 versus Ha: b != b0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.1261

b0 = 0.0000
ba = -0.0667

sdx = 7.5000
sderror = 3.9686

Estimated sample size:

N = 496

Example 4: Specifying correlation

We can also specify the correlation between time per day spent exercising and BMI using the
corr() option. The value of the correlation ρ is obtained from the relation ρ = ba × (σx/σy) =
−0.0667× (7.5/4) ≈ −0.1251.
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. power oneslope 0 -0.0667, sdx(7.5) corr(-0.1251)

Performing iteration ...

Estimated sample size for a linear regression slope test
t test
H0: b = b0 versus Ha: b != b0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.1261

b0 = 0.0000
ba = -0.0667

sdx = 7.5000
sderror = 3.9674

corr = -0.1251

Estimated sample size:

N = 496

The sample sizes in the two examples now are the same, but the standard deviation of the errors
is slightly different because of limited precision of the specified correlation.

Computing power

To compute power, you must specify the sample size in the n() option and the slopes under the
null, b0, and alternative, ba, hypotheses.

Example 5: Power of a linear regression slope test

Continuing with example 1, suppose that we are designing a new study and anticipate that we
will observe a similar effect but that we will be able to recruit only a sample of 400 subjects. Given
the study parameters from example 1, we compute the power by specifying the sample size of 400
in the n() option:

. power oneslope 0 -0.0667, n(400) sdx(7.5) sdy(4)

Estimated power for a linear regression slope test
t test
H0: b = b0 versus Ha: b != b0

Study parameters:

alpha = 0.0500
N = 400

delta = -0.1261
b0 = 0.0000
ba = -0.0667

sdx = 7.5000
sderror = 3.9686

sdy = 4.0000

Estimated power:

power = 0.7106

With a smaller sample size, the power of the test decreases to about 71%.
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Example 6: Multiple values of study parameters

To investigate the effect of sample size on power, we can specify a list of sample sizes in the n()
option:

. power oneslope 0 -0.0667, n(50 100 200 400 800) sdx(7.5) sdy(4)

Estimated power for a linear regression slope test
t test
H0: b = b0 versus Ha: b != b0

alpha power N delta b0 ba sdx sderror sdy

.05 .141 50 -.1261 0 -.0667 7.5 3.969 4

.05 .239 100 -.1261 0 -.0667 7.5 3.969 4

.05 .4263 200 -.1261 0 -.0667 7.5 3.969 4

.05 .7106 400 -.1261 0 -.0667 7.5 3.969 4

.05 .9453 800 -.1261 0 -.0667 7.5 3.969 4

As expected, when the sample size increases, the power tends to get closer to 1.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

Computing effect size and target slope

The effect size δ for a linear regression slope test is defined as the difference between the alternative
and null values of the slope multiplied by the ratio of standard deviations of the covariate to the error
term, δ = (ba − b0)σx/σ.

Sometimes, we may want to determine the minimum detectable effect and the corresponding
alternative or target slope coefficient that yield a statistically significant result for a prespecified
sample size and power. In this case, we must specify power, sample size, and the null slope
coefficient. In addition, we must also decide on the direction of the effect: upper, which means
ba > b0, or lower, which means ba < b0. The default direction is upper but may be changed by
specifying direction(lower).

Example 7: Minimum detectable value of the slope coefficient

Continuing with example 5, we may also be interested in finding the minimum value of the slope
coefficient that can be detected with a sample of 400 subjects and 80% power. To compute this,
we specify the null value of 0 as the command argument and the required options n(400) and
power(0.8) and continue to use sdx(7.5) and sdy(4).
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. power oneslope 0, n(400) power(0.8) sdx(7.5) sdy(4)

Performing iteration ...

Estimated target slope for a linear regression slope test
t test
H0: b = b0 versus Ha: b != b0; ba > b0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 400
b0 = 0.0000

sdx = 7.5000
sderror = 3.9611

sdy = 4.0000

Estimated effect size and target slope:

delta = 0.1404
ba = 0.0742

The minimum detectable value of the slope coefficient is 0.0742, which corresponds to an effect size
of 0.1404. Compared with example 1, this example uses a smaller sample size of 400 subjects, so
the minimum detectable difference for the slope coefficient is larger than the absolute value of the
alternative slope specified in example 1.

In this example, we assumed the effect to be in the upper direction. By symmetry, the effect size
in the lower direction will be −0.1404, which can be obtained by specifying direction(lower).

Performing hypothesis tests on the slope coefficient

Suppose we wish to test the hypothesis that the slope coefficient is different from a reference
value on the collected data. We can use the regress command to estimate the slope and perform a
hypothesis test.

Example 8: Testing for the slope coefficient

Suppose our study goal is to investigate the effect that the weight of cars (weight) has on their
mileage (mpg). We use regress with the beta option to estimate the standardized slope using data
from auto.dta:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. regress mpg weight, beta

Source SS df MS Number of obs = 74
F(1, 72) = 134.62

Model 1591.9902 1 1591.9902 Prob > F = 0.0000
Residual 851.469256 72 11.8259619 R-squared = 0.6515

Adj R-squared = 0.6467
Total 2443.45946 73 33.4720474 Root MSE = 3.4389

mpg Coefficient Std. err. t P>|t| Beta

weight -.0060087 .0005179 -11.60 0.000 -.8071749
_cons 39.44028 1.614003 24.44 0.000 .
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The standardized slope is about −0.81. The p-value < 0.001 for the test of the slope gives us
statistical evidence to reject the null hypothesis of H0: bweight = 0 versus a two-sided alternative
Ha: bweight 6= 0 at the 1% significance level.

Suppose we wish to design a new similar study. We use the estimated standardized slope from this
study to perform a sample-size analysis for our new study. Because we use the standardized slope,
we can use the default value of 1 for sdx(), and we specify sdy(1).

. power oneslope 0 -0.81, sdy(1)

Performing iteration ...

Estimated sample size for a linear regression slope test
t test
H0: b = b0 versus Ha: b != b0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -1.3812

b0 = 0.0000
ba = -0.8100

sdx = 1.0000
sderror = 0.5864

sdy = 1.0000

Estimated sample size:

N = 7

We find that a sample size of only 7 is required to detect a slope coefficient of −0.81 with 80%
power using a 5%-level two-sided test.

Stored results
power oneslope stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) sample size
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(b0) slope coefficient under the null hypothesis
r(ba) slope coefficient under the alternative hypothesis
r(diff) difference between the alternative and null slopes
r(sdx) standard deviation of the covariate of interest
r(sderror) standard deviation of the error term of the regression model
r(sdy) standard deviation of the dependent variable
r(corr) correlation between the covariate of interest and the dependent variable
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample size or for slope
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise
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Macros
r(type) test
r(method) oneslope
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
Consider a simple linear regression model of a dependent variable y on a single covariate x,

yi = a+ bxi + εi

for i = 1, . . . , n, where i denotes an individual observation in a sample of n subjects, a is the
intercept, b is the slope coefficient, and εi is the error term. εi’s are independently and normally
distributed with mean 0 and standard deviation σ. Let b0 denote the null value of the slope coefficient
and ba denote the alternative value of the slope coefficient.

Testing a linear regression slope involves testing the null hypothesis H0 : b = b0 versus the
two-sided alternative hypothesis Ha: b 6= b0, the upper one-sided alternative Ha: b > b0, or the lower
one-sided alternative Ha: b < b0.

Let σy denote the standard deviation of y, σx denote the standard deviation of x, and ρ denote
the correlation between y and x. These terms have the following relations with the standard deviation
of the error term σ (Dupont and Plummer 1998):

σ = bσx

√
1

ρ2
− 1 =

√
σ2
y − b2σ2

x

Let b̂ denote the estimator of the population slope coefficient b, σ̂ denote the estimated standard
deviation of the error term, and s = σ̂/σx denote the estimated standard error of

√
n b̂. The sampling

distribution of the test statistic t =
√
n(̂b − b0)/s under the null hypothesis follows a Student’s t

distribution with n− 2 degrees of freedom.

Let α be the significance level, β be the probability of a type II error, and tn−2,α denote the αth
quantile of a Student’s t distribution with n− 2 degrees of freedom. Let δ = (ba − b0)σx/σ̂ denote
the effect size. Under the alternative hypothesis, the test statistic follows a noncentral Student’s t
distribution.

The power π = 1− β is computed using

π =


1− Tn−2,λ (tn−2,1−α) for an upper one-sided test

Tn−2,λ (−tn−2,1−α) for a lower one-sided test

1− Tn−2,λ

(
tn−2,1−α/2

)
+ Tn−2,λ

(
−tn−2,1−α/2

)
for a two-sided test

(1)

where Tn−2,λ (·) is the cumulative noncentral Student’s t distribution with a noncentrality parameter
λ =
√
nδ.
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Sample size and minimum detectable value of the slope are obtained by iteratively solving nonlinear
equations in (1) for n and δ. The default initial value for the sample size is calculated using the
following closed-form expression,

n =

(
z1−α/k − zβ

δ

)2

where k = 1 for a one-sided and k = 2 for a two-sided test, respectively, and z1−α/k and zβ are the
(1 − α/k)th and the βth quantiles of the standard normal distribution. If the nfractional option
is not specified, the computed sample size is rounded up.
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power rsquared — Power analysis for an R2 test in a multiple linear regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

power rsquared computes sample size, power, or target R2 for an R2 test in a multiple linear
regression. An R2 test is an F test for the coefficient of determination, R2, which is used to test the
significance of all coefficients or of a subset of coefficients in a regression model.

By default, power rsquared computes sample size for a test of all coefficients given power and
the R2 of the tested model, R2

T . Instead of the sample size, it can compute power given sample size
and R2

T or the target R2
T given sample size and power.

If the number of control covariates is provided, power rsquared computes sample size for a test
of a subset of coefficients given power, the R2 of the full model, R2

F , and the R2 of the reduced
model, R2

R. It can also compute power given sample size, R2
R, and R2

F or the target R2
F given

sample size, power, and R2
R.

See [PSS-2] power for a general introduction to the power command using hypothesis tests.

Quick start
Testing all coefficients

Sample size for a test of H0: R
2
T = 0 versus Ha: R

2
T 6= 0 given alternative R2

T of 0.10 and 2 tested
covariates using default power 0.8 and significance level α = 0.05

power rsquared 0.10, ntested(2)

Also use values of R2
T equal to 0.11, 0.12, 0.13, and 0.14, and display results in a table

power rsquared (0.10(0.01)0.14), ntested(2)

Same as above, but display results in a graph of sample size versus R2
T

power rsquared (0.10(0.01)0.14), ntested(2) graph

Power for a sample size of 80
power rsquared 0.10, ntested(2) n(80)

Effect size and target R2
T for a sample size of 80 with power 0.9

power rsquared, ntested(2) n(80) power(0.9)

435
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Testing a subset of coefficients

Sample size for a test of H0: R2
F = R2

R versus Ha: R
2
F 6= R2

R given R2 of the reduced model of
0.10, the hypothesized R2 of the full model of 0.15, 2 tested covariates, and 3 control covariates
using default power 0.8 and significance level α = 0.05

power rsquared 0.10 0.15, ntested(2) ncontrol(3)

Also use values of R2
F equal to 0.11, 0.12, 0.13, 0.14, and 0.15, and display results in a table

power rsquared 0.10 (0.11(0.01)0.15), ntested(2) ncontrol(3)

Same as above, but display results in a graph of sample size versus R2
F

power rsquared 0.10 (0.11(0.01)0.15), ntested(2) ncontrol(3) graph

Power for a sample size of 80
power rsquared 0.10 0.15, ntested(2) ncontrol(3) n(80)

Effect size and target R2 for a sample size of 80 with power of 0.9
power rsquared 0.10, ntested(2) ncontrol(3) n(80) power(0.9)

Menu
Statistics > Power, precision, and sample size
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Syntax

Compute sample size

Test all coefficients

power rsquared R2
T

[
, power(numlist) options

]
Test a subset of coefficients

power rsquared R2
R R2

F , ncontrol(numlist)
[
power(numlist) options

]

Compute power

Test all coefficients

power rsquared R2
T , n(numlist)

[
options

]
Test a subset of coefficients

power rsquared R2
R R2

F , ncontrol(numlist) n(numlist)
[

options
]

Compute effect size and target R2

Test all coefficients

power rsquared, n(numlist) power(numlist)
[

options
]

Test a subset of coefficients

power rsquared R2
R , ncontrol(numlist) n(numlist) power(numlist)

[
options

]

where R2
T is the hypothesized R2 of the tested model under the alternative hypothesis when testing

all coefficients in the model, R2
R is the R2 of the reduced model, and R2

F is the hypothesized R2

of the full model when testing a subset of coefficients in the model.

R2
T , R2

R, and R2
F may each be specified either as one number or as a list of values in parentheses

(see [U] 11.1.8 numlist).
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗ntested(numlist) number of tested covariates
∗ncontrol(numlist) number of control covariates; required for testing a subset of

coefficients
∗diff(numlist) difference between the R2 of the full and the reduced

model, R2
F −R2

R; specify instead of the R2 of the
full model, R2

F , when testing a subset of coefficients
parallel treat number lists in starred options as parallel when

multiple values per option are specified (do not
enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value for sample size or R2 of tested model in the
case of testing all coefficients and R2 difference in the case
of testing a subset of coefficients

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).
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column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N number of subjects N
delta effect size δ
R2 T R2 of the tested model R2

T

R2 R R2 of the reduced model R2
R

R2 F R2 of the full model R2
F

R2 diff difference of R2 between full and reduced models R2
D

ntested number of tested covariates NT
ncontrol number of control covariates NC
target target parameter; synonym for R2 T or R2 diff

all display all supported columns

Column beta is shown in the default table in place of column power if specified.
Column R2 T is shown in the default table for a test of all coefficients and is not available if ncontrol() is specified.
Columns R2 R, R2 F, R2 diff, and ncontrol are shown in the default table for a test of a subset of coefficients

and only available if ncontrol() is specified.
For a test of all coefficients, target is R2 T. For a test of a subset of coefficients, target is R2 diff.

Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS-2] power. The nfractional option is
allowed only for sample-size determination.

ntested(numlist) specifies the number of tested covariates. The default is ntested(1).

ncontrol(numlist) specifies the number of control covariates or the number of the covariates in
the reduced model. This option is required for testing a subset of coefficients. If the option is not
specified, all coefficients are assumed to be tested.

diff(numlist) specifies the difference between the R2 of the full and reduced models, R2
F − R2

R,
when computing sample size or power for a test of a subset of coefficients. You may specify either
the R2 of the full model, R2

F , as a command argument or the difference R2
F −R2

R in the diff()
option. This option is not allowed with effect-size computation.

parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.
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� � �
Iteration �

init(#) specifies the initial value of the sample size for the sample-size determination or the initial
value of the R2 of the tested model in the case of testing all coefficients and the difference
between the R2 of the full and reduced models in the case of testing a subset of coefficients for
the effect-size determination. The default is to use a bisection search method to compute an initial
value.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power rsquared but is not shown in the dialog box:

notitle; see [PSS-2] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power rsquared
Computing sample size
Computing power
Computing effect size and target R2

Performing hypothesis tests on the coefficients

power rsquared computes sample size, power, and the target R2 for a multiple linear regression
R2 test. See [PSS-2] Intro (power) for a general introduction to power and sample-size analysis, and
see [PSS-2] power for a general introduction to the power command using hypothesis tests.

Introduction

In contrast to a simple linear regression, a multiple regression framework allows researchers to
control for additional variables that may better predict or explain the variation in the dependent
variable of interest. The fit of the model, as measured by the R2 statistic, sheds light on the efficacy
of the multiple regression model in explaining the variation of the dependent variable.

Several scenarios arise for testing the fit of a multiple regression model. Consider an example
where a researcher is interested in the effect of gender and education on wage,

ywage = β0 + βeduxedu + βgenderxgender + ε (1)

where the error term ε is independently and normally distributed with mean zero and constant standard
deviation σ.

An F test may be performed for testing the joint significance of the coefficients on education and
gender. The null hypothesis may be stated as H0: βeduc = βgender = 0; xedu and xgender are the
tested covariates. This is equivalent to the null hypothesis H0: R

2
T = 0, where R2

T is the coefficient
of determination, or alternatively, the variation of the dependent variable explained by the tested
model.

Alternatively, a researcher may be interested in whether experience xexp and location xloc add
further information in explaining wage variation after controlling for xedu and xgender:

ywage = β0 + βexpxexp + βlocxloc + βeduxedu + βgenderxgender + ε (2)
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An F test may also be performed for testing the joint significance of the coefficients on experience
and location. The null hypothesis may be stated as H0: βexp = βloc = 0; xexp and xloc are now
the tested covariates, and xedu and xgender are the control covariates. An equivalent test can be
constructed based on the R2. The null hypothesis is then H0: R2

F = R2
R, where R2

F is the R2 of
the full model (2) and R2

R is the R2 of the reduced model (1).

The power rsquared command provides power and sample-size analysis for the test of R2

using an F test. For power analysis for a partial-correlation test in a multiple linear regression, see
[PSS-2] power pcorr. For power analysis for a slope test in a simple linear regression, see [PSS-2] power
oneslope.

Using power rsquared

power rsquared computes sample size, power, or target R2 for an R2 test in a multiple linear
regression. By default, all computations are performed at the significance level of 0.05. You may
change the significance level by specifying the alpha() option.

By default, the number of tested covariates is set to 1. You can change the number of tested
covariates with the ntested() option. All computations assume that the model includes a constant.
To test a subset of coefficients, you must also specify the ncontrol() option.

To compute sample size for testing all coefficients in the model, you must specify the R2 of the
tested model, R2

T . For testing a subset of coefficients, you must specify the R2 of the reduced model,
R2
R, and the R2 of the full model, R2

F . For either test, you can specify the power of the test in the
power() option. The default power is set to 0.8.

To compute power, you must specify the sample size in the n() option. To test all coefficients in
the model, you must also specify R2

T . To test a subset of coefficients, you must also specify R2
R and

R2
F .

When computing sample size or power for a subset of coefficients, you can specify the difference
between the R2 of the full and reduced models in the diff() option instead of R2

F .

To compute effect size, which is defined as the ratio of R2 explained by the tested covariates to
the variance explained by the model error, you must specify the sample size in the n() option and
the power of the test in the power() option. For a test of all coefficients, power rsquared reports
the effect size and R2

T . For a test of a subset of coefficients, you must also specify R2
R to obtain the

effect size. For this test, power rsquared reports the effect size and the difference between the R2

statistics of the full and reduced models.

By default, the computed sample size is rounded up. You can specify the nfractional option
to see the corresponding fractional sample size; see Fractional sample sizes in [PSS-4] Unbalanced
designs for an example. The nfractional option is allowed only for sample-size determination.

power rsquared’s computations of sample size and effect size require iteration because the
denominator degrees of freedom of the noncentral F distribution depends on the sample size, and
the noncentrality parameter depends on the sample size and effect size. The default initial values are
obtained using a bisection search method. You can use the init() option to specify your own value.
The initial value of the sample size must be greater than the number of parameters in the multiple
regression model. See [PSS-2] power for the descriptions of other options that control the iteration
procedure.

In the following sections, we describe the use of power rsquared accompanied by examples for
computing sample size, power, and target R2.
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Computing sample size

To compute sample size for testing all coefficients in the model, you must specify the R2 of
the tested model, R2

T . For testing a subset of coefficients, you must specify the R2 of the reduced
model, R2

R, the R2 of the full model, R2
F , and the number of control covariates in ncontrol(). For

either test, a default power of 0.8 is assumed if power() is not specified, and one tested covariate is
assumed if ntested() is not specified.

Example 1: Sample size for testing all coefficients

Consider an example from Cohen (1988, 424) where a psychologist investigates a selection
procedure based on job candidates’ demographic characteristics used to predict success in a sales
position. The five variables are age, education, prior experience, verbal aptitude, and extraversion.

Previous studies found that the addition of all five variables accounted for 10% of the variance
in the dependent variable, that is to say, an R2 of 0.1. We are designing a new study and want to
determine the required sample size for detecting this previously observed R2 so that we achieve 80%
power at a 5% significance level. We do this by typing

. power rsquared 0.1, ntested(5)

Performing iteration ...

Estimated sample size for multiple linear regression
F test for R2 testing all coefficients
H0: R2_T = 0 versus Ha: R2_T != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.1111
R2_T = 0.1000

ntested = 5

Estimated sample size:

N = 122

We find that a sample of 122 subjects is required to detect an R2 of 0.1 with 80% power using a
5%-level test. The effect size (delta) is calculated using the given R2 of the model; see Methods
and formulas for details.

As we mentioned in Using power rsquared, sample-size computation requires iteration. The iteration
log is suppressed by default, but you can display it by specifying the log option.

Example 2: Sample size for testing a subset of coefficients

Continuing with example 1, suppose that data for three of the variables—age, education, and prior
experience—are readily available to the investigator. However, data for the other two variables—verbal
aptitude and extraversion—are costly to obtain.

From previous studies, age, education, and prior experience explain about 6% of the variance in
the dependent variable. The decision to include verbal aptitude and extraversion is deemed important
only if their addition explains an additional 4% of the variance in the dependent variable; together the
five variables should explain about 10% of the variance in the dependent variable. We will construct
a test-case study to see the minimum sample size required to detect a 4% change in the R2. We
compute the minimum sample size required with 80% power at a 5% significance level:
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. power rsquared 0.06 0.1, ntested(2) ncontrol(3)

Performing iteration ...

Estimated sample size for multiple linear regression
F test for R2 testing subset of coefficients
H0: R2_F = R2_R versus Ha: R2_F != R2_R

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.0444
R2_R = 0.0600
R2_F = 0.1000

R2_diff = 0.0400
ncontrol = 3
ntested = 2

Estimated sample size:

N = 220

We find that a sample of 220 subjects is required to detect an increase in R2 by 4% (R2 diff) after
adding verbal aptitude and extraversion with 80% power using a 5% level test.

Example 3: Specifying difference between the R2 of the full and reduced models

Instead of using the R2 of the full model 0.1 as in example 2, we can specify the difference
between the R2 of the full and reduced models, 0.04, in the diff() option.

. power rsquared 0.06, ntested(2) ncontrol(3) diff(0.04)

Performing iteration ...

Estimated sample size for multiple linear regression
F test for R2 testing subset of coefficients
H0: R2_F = R2_R versus Ha: R2_F != R2_R

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.0444
R2_R = 0.0600
R2_F = 0.1000

R2_diff = 0.0400
ncontrol = 3
ntested = 2

Estimated sample size:

N = 220

We obtain the same results as in example 2.

Computing power

To compute power, you must specify the sample size in the n() option. To test all coefficients in
the model, you must also specify the R2 of the tested model, R2

T . To test a subset of coefficients,
you must also specify the R2 of the reduced, R2

R, and full models, R2
F , and the number of control

covariates in ncontrol(). The number of tested covariates is assumed to be one if ntested() is
not specified.
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Example 4: Power for testing all coefficients in a multiple regression

Continuing with example 1, suppose that we are designing a new study and anticipate obtaining
a sample of 100 subjects. To compute the power corresponding to this sample size given the study
parameters from example 1, we specify the sample size of 100 in the n() option:

. power rsquared 0.1, ntested(5) n(100)

Estimated power for multiple linear regression
F test for R2 testing all coefficients
H0: R2_T = 0 versus Ha: R2_T != 0

Study parameters:

alpha = 0.0500
N = 100

delta = 0.1111
R2_T = 0.1000

ntested = 5

Estimated power:

power = 0.7014

For the smaller sample size, we achieve a lower power of about 70%.

Example 5: Power for testing a subset of coefficients

Continuing with example 2, suppose that we are designing a new study and anticipate a sample
of 200 subjects. To compute the power corresponding to this sample size given the study parameters
from example 2, we specify the sample size of 200 in the n() option:

. power rsquared 0.06 0.1, ntested(2) ncontrol(3) n(200)

Estimated power for multiple linear regression
F test for R2 testing subset of coefficients
H0: R2_F = R2_R versus Ha: R2_F != R2_R

Study parameters:

alpha = 0.0500
N = 200

delta = 0.0444
R2_R = 0.0600
R2_F = 0.1000

R2_diff = 0.0400
ncontrol = 3
ntested = 2

Estimated power:

power = 0.7583

With a smaller sample size, the power of the test decreases to about 76%.

Example 6: Multiple values of study parameters

Continuing with example 5, we want to investigate the effect of sample size on power, so we
specify a list of sample sizes in the n() option:
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. power rsquared 0.06 0.1, n(50 100 200 400 800) ntested(2) ncontrol(3)

Estimated power for multiple linear regression
F test for R2 testing subset of coefficients
H0: R2_F = R2_R versus Ha: R2_F != R2_R

alpha power N delta R2_R R2_F R2_diff ntested ncontrol

.05 .2328 50 .04444 .06 .1 .04 2 3

.05 .4431 100 .04444 .06 .1 .04 2 3

.05 .7583 200 .04444 .06 .1 .04 2 3

.05 .9719 400 .04444 .06 .1 .04 2 3

.05 .9999 800 .04444 .06 .1 .04 2 3

As expected, when the sample size increases, the power tends to get closer to 1.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

Computing effect size and target R2

For a test of all coefficients, effect size δ is defined as the ratio of the R2 of the tested model
to the variance explained by the model error term, δ = R2

T /(1 − R2
T ). For a test of a subset of

coefficients, effect size δ is defined as the ratio of the difference between the R2 of the full and
reduced models to the variance explained by the model error term, δ = (R2

F −R2
R)/(1−R2

F ).

Sometimes, we may be interested in determining the minimum detectable effect and the corre-
sponding target R2 that yield a statistically significant result for a prespecified sample size and power.
In this case, we must specify power and sample size. To test a subset of coefficients, we must also
specify the R2 of the reduced model and the number of control covariates.

Example 7: Minimum detectable value for the R2 of the tested model

Continuing with example 4, we may also be interested in finding the minimum value for the R2

of the tested model that can be detected with a power of 80% given a sample of 100 subjects. To
compute this, we specify the sample size of 100 in the n() option and power of 0.8 in the power()
option. As in example 4, we use the same value of 5 for the number of tested covariates.

. power rsquared, n(100) power(0.8) ntested(5)

Performing iteration ...

Estimated R-squared for multiple linear regression
F test for R2 testing all coefficients
H0: R2_T = 0 versus Ha: R2_T != 0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 100
ntested = 5

Estimated effect size and R-squared:

delta = 0.1360
R2_T = 0.1197
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The minimum detectable value for the R2 of the tested model is 0.1197, which corresponds to the
effect size of 0.1360. Compared with example 4, we would detect a slightly larger value for the R2

of the tested model.

Example 8: Minimum detectable value of the R2 difference

Continuing with example 5, we may also be interested in finding the minimum difference between
the R2 of the full and reduced models that can be detected with a power of 80% given a sample
of 200 subjects. To compute this, we specify the R2 of the reduced model of 0.06 as the command
argument and also specify the sample size of 200 in the n() option and a power of 0.8 in the power()
option. As in example 5, we use 2 tested covariates and 3 control covariates.

. power rsquared 0.06, n(200) power(0.8) ntested(2) ncontrol(3)

Performing iteration ...

Estimated R-squared for multiple linear regression
F test for R2 testing subset of coefficients
H0: R2_F = R2_R versus Ha: R2_F != R2_R

Study parameters:

alpha = 0.0500
power = 0.8000

N = 200
R2_R = 0.0600

ncontrol = 3
ntested = 2

Estimated effect size and R-squared:

delta = 0.0489
R2_diff = 0.0438

R2_F = 0.1038

The minimum detectable value for the R2 difference is 0.0438, which corresponds to an effect size
of 0.0489. In example 2, we assumed the same power and significance levels, and we found that we
need 220 subjects to detect an R2 difference of 0.04. With the smaller sample of 200, the minimum
detectable R2 difference is slightly larger.

Performing hypothesis tests on the coefficients

Suppose we wish to test the hypothesis that, controlling for other variables, a group of variables
has no effect in explaining the variance of the dependent variable. We can use the regress command
to estimate the coefficients and the test command to perform a hypothesis test.

Example 9: Joint test of the coefficients

Consider auto.dta, which contains various characteristics of 74 cars. Suppose that our study
goal is to investigate whether headroom (headroom) and trunk space (trunk) have any effect on the
price of cars after controlling for their weight (weight) and mileage (mpg). We can fit the full linear
model and obtain the R2 using regress.
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. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. regress price headroom trunk weight mpg

Source SS df MS Number of obs = 74
F(4, 69) = 8.21

Model 204838391 4 51209597.9 Prob > F = 0.0000
Residual 430227005 69 6235173.98 R-squared = 0.3225

Adj R-squared = 0.2833
Total 635065396 73 8699525.97 Root MSE = 2497

price Coefficient Std. err. t P>|t| [95% conf. interval]

headroom -726.5434 462.0322 -1.57 0.120 -1648.272 195.1856
trunk 23.04248 108.3649 0.21 0.832 -193.1396 239.2246

weight 2.011936 .7036432 2.86 0.006 .6082062 3.415666
mpg -54.79153 85.91635 -0.64 0.526 -226.19 116.6069

_cons 3114.94 3648.08 0.85 0.396 -4162.779 10392.66

The R2 of the full model is around 0.32. We can test the joint hypothesis H0: βheadroom = βtrunk = 0
using the test command.

. test headroom trunk

( 1) headroom = 0
( 2) trunk = 0

F( 2, 69) = 1.48
Prob > F = 0.2337

We fail to reject the null hypothesis at the 5% significance level; the p-value > 0.05.

Suppose we wish to design a new similar study. We use the estimates from this study to perform
a sample-size analysis. First, we need to fit the reduced model to obtain the estimate of its R2.

. regress price weight mpg

Source SS df MS Number of obs = 74
F(2, 71) = 14.74

Model 186321280 2 93160639.9 Prob > F = 0.0000
Residual 448744116 71 6320339.67 R-squared = 0.2934

Adj R-squared = 0.2735
Total 635065396 73 8699525.97 Root MSE = 2514

price Coefficient Std. err. t P>|t| [95% conf. interval]

weight 1.746559 .6413538 2.72 0.008 .467736 3.025382
mpg -49.51222 86.15604 -0.57 0.567 -221.3025 122.278

_cons 1946.069 3597.05 0.54 0.590 -5226.245 9118.382

The R2 of the reduced model is around 0.29. Next, we specify this number as well as the R2 of
the full model, 0.32, with power rsquared to perform a sample-size analysis.
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. power rsquared 0.29 0.32, ntested(2) ncontrol(2)

Performing iteration ...

Estimated sample size for multiple linear regression
F test for R2 testing subset of coefficients
H0: R2_F = R2_R versus Ha: R2_F != R2_R

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.0441
R2_R = 0.2900
R2_F = 0.3200

R2_diff = 0.0300
ncontrol = 2
ntested = 2

Estimated sample size:

N = 222

We find that a sample size of 222 is required to detect an increase in R2 by 0.03 with 80% power
using a 5%-level two-sided test.

Stored results
power rsquared stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) sample size
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(R2 T) R2 of the tested model
r(R2 R) R2 of the reduced model
r(R2 F) R2 of the full model
r(R2 diff) difference between R2 of the full and reduced models
r(ntested) number of tested covariates
r(ncontrol) number of control covariates
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample size or for R2

r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) rsquared
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results
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Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Testing all coefficients
Testing a subset of coefficients: R2 of full versus reduced models
Testing a subset of coefficients: Partial multiple correlation

Introduction

This section subsumes the Methods and formulas for [PSS-2] power pcorr.

Consider a multiple linear regression model of a dependent variable yi on k + p fixed covariates
xi in a sample of n subjects,

yi = β0 + β1x1i + β2x2i + · · ·+ βkxki + βk+1x(k+1)i + · · ·+ βk+px(k+p)i + εi

where εi’s are independently and normally distributed with mean zero and constant standard deviation
σ. Suppose that we are interested in testing the significance of the coefficients in the model and we
construct an F statistic using the effect size δ; see subsections below for the definition of the effect
size specific to each test. Under the alternative hypothesis, the F statistic

F =
δ/ν1

1/ν2

follows a noncentral F distribution with noncentrality parameter λ = nδ and ν1 numerator and ν2

denominator degrees of freedom. The formulas of the F test are based on Cohen (1988).

Let α be the significance level, β be the probability of a type II error, and Fν1,ν2,α denote the
αth quantile of an F distribution with ν1 numerator and ν2 denominator degrees of freedom.

The power π = 1− β is computed using

π = 1− Fν1,ν2,λ (Fν1,ν2,1−α) (3)

where Fν1,ν2,λ (·) is the cumulative noncentral F distribution with a noncentrality parameter λ.

Sample size and effect size are obtained by iteratively solving the nonlinear equations in (3) for
n and δ. If the nfractional option is not specified, the computed sample size is rounded up.

Details of the effect size δ and the F statistics are given in the following sections.

Testing all coefficients

Consider first the hypothesis that all the coefficients are zero, H0: β1 = β2 = · · · = βk+p = 0.
Let R2

T denote the proportion of the variance of y explained by all the k + p covariates. The effect
size is defined as δ = R2

T /(1−R2
T ). The test statistic is then given by

F =
δ/ν1

1/ν2
=

R2
T /ν1

(1−R2
T )/ν2

where ν1 = k + p and ν2 = n− k − p− 1.



450 power rsquared — Power analysis for an R2 test in a multiple linear regression

Testing a subset of coefficients: R2 of full versus reduced models

Now suppose we are interested in testing whether the subset of p covariates accounts for any
variation in the dependent variable after adjusting for the effects of the k covariates. The null hypothesis
may be stated as H0 : βk+1 = · · · = βk+p = 0. Let R2

F denote the R2 of the full model with
k + p covariates and R2

R denote the R2 of the reduced model with k covariates. With effect size
δ = (R2

F −R2
R)/(1−R2

F ), the test statistic is given by

F =
δ/ν1

1/ν2
=

(R2
F −R2

R)/ν1

(1−R2
F )/ν2

(4)

where ν1 = p and ν2 = n− k − p− 1.

Testing a subset of coefficients: Partial multiple correlation

The F test for testing the null hypothesis H0: βk+1 = · · · = βk+p = 0 can also be constructed
using partial multiple correlation. Let ρ2

p = (R2
F − R2

R)/(1− R2
R) denote the square of the partial

multiple correlation. With effect size δ = ρ2
p/(1− ρ2

p), the F statistic is given by

F =
δ/ν1

1/ν2
=

ρ2
p/ν1

(1− ρ2
p)/ν2

where ν1 = p and ν2 = n− k − p− 1. This is the same test statistic as in (4) for testing a subset
of coefficients using R2.

Reference
Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Erlbaum.

Also see
[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] power oneslope — Power analysis for a slope test in a simple linear regression

[PSS-2] power pcorr — Power analysis for a partial-correlation test in a multiple linear regression

[PSS-2] power, graph — Graph results from the power command

[PSS-2] power, table — Produce table of results from the power command

[PSS-5] Glossary
[R] regress — Linear regression

[R] test — Test linear hypotheses after estimation
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power pcorr — Power analysis for a partial-correlation test in a multiple linear regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

power pcorr computes sample size, power, or target squared partial correlation for a partial-
correlation test in a multiple linear regression. A partial-correlation test is an F test of the squared
partial multiple correlation that is used to test the significance of a subset of coefficients in a regression
model. By default, power pcorr computes sample size given power and the squared partial correlation.
Alternatively, it computes power given sample size and the squared partial correlation, or it computes the
squared partial correlation given sample size and power. See [PSS-2] power for a general introduction
to the power command using hypothesis tests.

Quick start
Sample size for a test of H0: ρ2

p = 0 versus Ha: ρ2
p 6= 0 given squared partial correlation of 0.1,

3 tested covariates, and 5 control covariates using default power of 0.8 and significance level
α = 0.05

power pcorr 0.1, ntested(3) ncontrol(5)

Power for sample size of 100
power pcorr 0.1, ntested(3) ncontrol(5) n(100)

Same as above, but for sample sizes of 45, 60, 75, and 90
power pcorr 0.1, ntested(3) ncontrol(5) n(45(15)90)

Same as above, but display results in a graph of power versus sample size
power pcorr 0.1, ntested(3) ncontrol(5) n(45(15)90) graph

Effect size and target squared partial correlation for sample size of 100 with power of 0.8
power pcorr, ntested(3) ncontrol(5) n(100) power(0.8)

Menu
Statistics > Power, precision, and sample size

451
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Syntax

Compute sample size

power pcorr rho2 p
[
, power(numlist) options

]

Compute power

power pcorr rho2 p, n(numlist)
[

options
]

Compute effect size and target squared partial correlation

power pcorr, n(numlist) power(numlist)
[

options
]

where rho2 p is the hypothesized squared partial correlation in a multiple linear regression. rho2 p
may be specified either as one number or as a list of values in parentheses (see [U] 11.1.8 numlist).
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗ntested(numlist) number of tested covariates; default is ntested(1)
∗ncontrol(numlist) number of control covariates; default is

ncontrol(1)

parallel treat number lists in starred options as parallel when
multiple values per option are specified (do not
enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value for sample size or squared partial correlation
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).
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column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N number of subjects N
delta effect size δ
rho2 p squared partial multiple correlation ρ2

p

ntested number of tested covariates NT
ncontrol number of control covariates NC
target target parameter; synonym for rho2 p

all display all supported columns

Column beta is shown in the default table in place of column power if specified.

Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS-2] power. The nfractional option is
allowed only for sample-size determination.

ntested(numlist) specifies the number of tested covariates. The default is ntested(1).

ncontrol(numlist) specifies the number of control covariates or the number of covariates in the
reduced model. The default is ncontrol(1).

parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value of the sample size for the sample-size determination or the initial
value of the squared partial correlation for the effect-size determination. The default is to use a
bisection search method to compute an initial value.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power pcorr but is not shown in the dialog box:

notitle; see [PSS-2] power.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power pcorr
Computing sample size
Computing power
Computing effect size and target squared partial correlation
Performing hypothesis tests on the partial correlation

power pcorr computes sample size, power, and the target squared partial correlation for a multiple
regression partial-correlation test. See [PSS-2] Intro (power) for a general introduction to power and
sample-size analysis, and see [PSS-2] power for a general introduction to the power command using
hypothesis tests.

Introduction
In contrast to a simple linear regression, a multiple regression framework allows researchers to

control for additional predictors that may add information to better predict or explain the variation
in the dependent variable of interest. There are several scenarios in which we may be interested in
knowing whether additional predictors improve the model. Consider an example where a researcher is
interested in whether variables such as experience, xexp, and location, xloc, add additional information
in explaining variation in wage, ywage, after controlling for education, xedu, and gender, xgender,

ywage = β0 + βexpxexp + βlocxloc + βeduxedu + βgenderxgender + ε

where ε is an independently and normally distributed error term with mean zero and constant standard
deviation σ. One way to test whether experience and location add additional information is to test the
joint significance of the coefficients on experience, βexp, and location, βloc. In this case, we perform
an F test using the null H0: βexp = βloc = 0. xexp and xloc are the tested covariates; xedu and
xgender are the control covariates.

An equivalent test, what we refer to as a partial-correlation test, can be constructed based on
the squared partial correlation, ρ2

p. The null hypothesis is H0: ρ2
p = 0 and, as in the joint test of

coefficients, can be tested with an F test. ρ2
p is a function of the coefficient of determination, R2,

which is a measure of the variation of the dependent variable explained by the model that is used
to assess overall model fit for a linear regression. Specifically, ρ2

p = (R2
F −R2

R)/(1−R2
R). R2

F is
the R2 of the full model that includes the tested and control covariates, and R2

R is the R2 of the
reduced model that includes only the control covariates.

The power pcorr command provides power and sample-size analysis for a partial-correlation test.
For power analysis for an R2 test in a multiple linear regression, see [PSS-2] power rsquared. For
power analysis for a slope test in a simple linear regression, see [PSS-2] power oneslope.

Using power pcorr

power pcorr computes sample size, power, or the target squared partial correlation rho2 p for
a partial-correlation test in a multiple linear regression. By default, all computations are performed
at the significance level of 0.05. You may change the significance level by specifying the alpha()
option.

By default, the numbers of tested covariates and of control covariates are set to 1. You may change
the respective values with the ntested() and ncontrol() options.
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To compute sample size, you must specify the squared partial correlation rho2 p and, optionally,
the power of the test in the power() option. The default power is set to 0.8.

To compute power, you must specify the sample size in the n() option and the squared partial
correlation rho2 p.

To compute the target partial correlation and effect size, which is defined in terms of the partial
correlation as δ = ρ2

p/(1− ρ2
p), you must specify the sample size in the n() option and the power

in the power() option.

By default, the computed sample size is rounded up. You can specify the nfractional option
to see the corresponding fractional sample size; see Fractional sample sizes in [PSS-4] Unbalanced
designs for an example. The nfractional option is allowed only for sample-size determination.

power pcorr’s computations of sample size and effect size require iteration because the denominator
degrees of freedom of the noncentral F distribution depends on the sample size, and the noncentrality
parameter depends on the sample size and effect size. The default initial values are obtained using
a bisection search method. You may use the init() option to specify your own value. The initial
value of the sample size must be greater than the number of parameters in the multiple regression
model. See [PSS-2] power for the descriptions of other options that control the iteration procedure.

Computing sample size

To compute sample size, you must specify the squared partial correlation rho2 p and, optionally,
the power of the test in the power() option. A default power of 0.8 is assumed if power() is not
specified.

Example 1: Sample size for a partial-correlation test

Consider an example from Cohen (1988, 436) where a psychologist investigates a selection
procedure based on job candidates’ demographic characteristics used to predict success in a sales
position. Suppose we want to conduct a similar study. Data for age, education, and prior experience,
our control covariates, are readily available. However, data on verbal aptitude and extraversion, the
tested covariates, are costly to obtain, and we decide that these variables are worth including only if
the squared partial correlation with the dependent variable is at least 0.0426.

We will conduct a test-case study to determine the minimum sample size required to detect a
squared partial correlation of 0.0426 between the dependent variable and the two extra variables,
verbal aptitude and extraversion. We compute the minimum sample size required with 80% power at
a 5% significance level:
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. power pcorr 0.0426, ntested(2) ncontrol(3)

Performing iteration ...

Estimated sample size for multiple linear regression
F test for partial correlation
H0: rho2_p = 0 versus Ha: rho2_p != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.0445

rho2_p = 0.0426
ncontrol = 3
ntested = 2

Estimated sample size:

N = 220

We find that a sample of 220 subjects is required to detect a squared partial correlation of 0.0426
associated with the two extra variables, verbal aptitude and extraversion, with 80% power using a
5% level test. The effect size delta is calculated using the given information about the hypothesized
squared partial correlation; see Methods and formulas in [PSS-2] power rsquared for details.

As we mentioned in Using power pcorr, sample-size computation requires iteration. The iteration
log is suppressed by default, but you can display it by specifying the log option.

Computing power

To compute power, you must specify the sample size in the n() option and the squared partial
correlation rho2 p.

Example 2: Power for a partial-correlation test

Continuing with example 1, suppose that we are designing a new study and anticipate a sample
of 200 subjects. Given the study parameters from example 1, we compute the power by specifying
the sample size of 200 in the n() option:

. power pcorr 0.0426, ntested(2) ncontrol(3) n(200)

Estimated power for multiple linear regression
F test for partial correlation
H0: rho2_p = 0 versus Ha: rho2_p != 0

Study parameters:

alpha = 0.0500
N = 200

delta = 0.0445
rho2_p = 0.0426

ncontrol = 3
ntested = 2

Estimated power:

power = 0.7588

With this smaller sample size, the power of the test decreases to about 76%.
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Example 3: Multiple values of study parameters
Continuing with example 2, we want to see the effect of sample size on power. We specify a list

of sample sizes in the n() option:
. power pcorr 0.0426, n(50 100 200 400 800) ntested(2) ncontrol(3)

Estimated power for multiple linear regression
F test for partial correlation
H0: rho2_p = 0 versus Ha: rho2_p != 0

alpha power N delta rho2_p ntested ncontrol

.05 .2331 50 .0445 .0426 2 3

.05 .4435 100 .0445 .0426 2 3

.05 .7588 200 .0445 .0426 2 3

.05 .972 400 .0445 .0426 2 3

.05 .9999 800 .0445 .0426 2 3

As expected, when the sample size increases, the power tends to get closer to 1.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

Computing effect size and target squared partial correlation

Effect size δ for a multiple regression, defined in terms of the partial correlation, is δ = ρ2
p/(1−ρ2

p).
To compute the effect size and target squared partial correlation, you must specify the sample size
in the n() option and the power in the power() option.

Example 4: Minimum detectable squared partial correlation

Continuing with example 2, we may also be interested in finding the minimum value of the squared
partial correlation that can be detected with a sample of 200 subjects and 80% power. To compute this,
we specify n(200) and power(0.8). As before, we use 2 tested covariates and 3 control covariates.

. power pcorr, n(200) power(0.8) ntested(2) ncontrol(3)

Performing iteration ...

Estimated squared partial correlation for multiple linear regression
F test for partial correlation
H0: rho2_p = 0 versus Ha: rho2_p != 0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 200
ncontrol = 3
ntested = 2

Estimated effect size and squared partial correlation:

delta = 0.0489
rho2_p = 0.0466

The minimum detectable squared partial correlation is 0.0466, which corresponds to an effect size of
0.0489. These values are slightly larger than the values of 0.0426 and 0.0445 that can be detected
with the larger sample of 220 subjects from example 1 for the same 80% power.
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Performing hypothesis tests on the partial correlation

In this section, we briefly demonstrate the use of the pcorr command for estimating partial
correlations.

Example 5: Partial-correlation test for one variable

Suppose that our study goal is to investigate whether the mileage of a car (mpg) has an effect on
its price (price) after controlling for headroom (headroom) and trunk space (trunk). We compute
the partial correlation by using pcorr on data about cars from 1978 in auto.dta. This preliminary
investigation will tell us how many modern cars we should select for our study.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. pcorr price mpg headroom trunk
(obs=74)

Partial and semipartial correlations of price with

Partial Semipartial Partial Semipartial Significance
Variable corr. corr. corr.^2 corr.^2 value

mpg -0.3800 -0.3576 0.1444 0.1279 0.0010
headroom -0.1606 -0.1416 0.0258 0.0201 0.1779

trunk 0.1397 0.1228 0.0195 0.0151 0.2418

We obtain a squared partial correlation of around 0.14 for mpg. The significance value is less than
0.05.

Suppose we wish to design a new similar study. We use the estimated squared partial correlation
from this study to perform a sample-size analysis. pcorr computes the partial correlation for only a
single variable, not a group of variables, so our power calculation here uses only one tested covariate;
see [R] pcorr for details. We use the default value of 1 for ntested() and specify 2 control covariates.

. power pcorr 0.14, ntested(1) ncontrol(2)

Performing iteration ...

Estimated sample size for multiple linear regression
F test for partial correlation
H0: rho2_p = 0 versus Ha: rho2_p != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.1628

rho2_p = 0.1400
ncontrol = 2
ntested = 1

Estimated sample size:

N = 51

We find that a sample size of 51 is required to detect a squared partial correlation of 0.14 with 80%
power using a 5%-level test.
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Stored results
power pcorr stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) sample size
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(rho2 p) squared partial correlation
r(ntested) number of tested covariates
r(ncontrol) number of control covariates
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample size or for squared partial correlation
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) pcorr
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
See Testing a subset of coefficients: Partial multiple correlation under Methods and formulas in

[PSS-2] power rsquared.

Reference
Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Erlbaum.

Also see
[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] power oneslope — Power analysis for a slope test in a simple linear regression

[PSS-2] power rsquared — Power analysis for an R2 test in a multiple linear regression

[PSS-2] power, graph — Graph results from the power command

[PSS-2] power, table — Produce table of results from the power command

[PSS-5] Glossary
[R] pcorr — Partial and semipartial correlation coefficients
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power cmh — Power and sample size for the Cochran–Mantel–Haenszel test

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power cmh computes sample size, power, or effect size (the minimum detectable odds ratio)
for a Cochran–Mantel–Haenszel (CMH) test of association in stratified 2 × 2 tables. The command
accommodates unbalanced stratum sizes and unbalanced group sizes within each stratum.

Quick start
Sample size for a two-sided CMH test with success probabilities in the control group of 0.2, 0.3, and

0.4 and hypothesized common odds ratio of 3.5 given default power of 0.8 and significance level
α = 0.05

power cmh .2 .3 .4, oratio(3.5)

Sample size for an unbalanced design with numbers of subjects in the experimental group as 25% of
the subjects in each stratum

power cmh .2 .3 .4, oratio(3.5) grratios(.25 .25 .25)

Sample size for a one-sided test with the continuity correction applied
power cmh .2 .3 .4, oratio(3.5) onesided continuity

Power for a total sample size of 120 subjects
power cmh .2 .3 .4, oratio(3.5) n(120)

Plot of power against total sample size for samples of 100 to 150 in increments of 10
power cmh .2 .3 .4, oratio(3.5) n(100(10)150) graph

Same as above, but display results in a table instead of a graph
power cmh .2 .3 .4, oratio(3.5) n(100(10)150)

Minimum detectable odds ratio with 80% power
power cmh .2 .3 .4, power(.8) n(120)

Same as above, but with 50% of subjects from the first stratum, 30% of subjects from the second
stratum, and 20% of subjects from the third stratum

power cmh .2 .3 .4, power(.8) n(120) strweights(50 30 20)

Menu
Statistics > Power, precision, and sample size

461
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Syntax

Compute sample size

power cmh probspec, oratio(numlist)
[
power(numlist) options

]

Compute power

power cmh probspec, oratio(numlist) n(numlist)
[

options
]

Compute target odds ratio

power cmh probspec, n(numlist) power(numlist)
[

options
]

where probspec is either a matrix matname containing the probability of a success in a control group
for each stratum or a list of individual stratum probabilities:

p11 p12 . . . p1K

p1k, where k = 1, 2, . . . , K, is the control-group probability of a success in the kth stratum.
Each p1k may be specified either as one number or as a list of values in parentheses (see
[U] 11.1.8 numlist).

matname is the name of a Stata matrix with K columns containing control-group success prob-
abilities. Multiple rows are allowed, in which case each row corresponds to a different set of K
strata probabilities or, equivalently, column k corresponds to numlist for the control-group success
probability in the kth stratum.
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
nfractional allow fractional sample sizes
∗nperstratum(numlist) number of subjects per stratum; implies balanced design
∗n#(numlist) number of subjects in stratum #
strweights(wgtspec) stratum weights; default is one for each stratum, meaning

equal stratum sizes
∗grratios(grspec) stratum-specific group ratios of the experimental-group size to

the stratum size, n2k/nk
∗oratio(numlist) common odds ratio of the experimental group to the control

group; required to compute power or sample size
continuity apply continuity correction; default is no continuity

correction
direction(upper|lower) direction of the effect for effect-size determination; default is

direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value for sample size or effect size
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

Reporting[
no
]
showgrstrsizes suppress or display group-per-stratum sizes

showasmatrix display all sample sizes in a matrix

notitle suppress the title
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∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.

wgtspec Description

#1 #2 . . . #K K stratum weights. Weights must be positive and must be integers unless option
nfractional is specified. Multiple values for each stratum weight #k can be
specified as a numlist enclosed in parentheses.

matname matrix with K columns containing K stratum weights. Multiple rows are
allowed, in which case each row corresponds to a different set of K weights
or, equivalently, column k corresponds to a numlist for the kth weight.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N total number of subjects N
N per stratum number of subjects per stratum N/Ns
N avg average number of subjects per stratum Navg

N# number of subjects in stratum # N#

N per group number of subjects per group N/2
G1 number of subjects in control group G1

G2 number of subjects in experimental group G2

N per grstr number of subjects per group and stratum N/(2Ns)
G1 # number of subjects in control group and stratum # G1,#

G2 # number of subjects in experimental group and
stratum # G2,#

delta effect size δ
N s number of strata Ns
oratio odds ratio θ
p1 # #th stratum control-group success probability p1,#

strwgt# weight for stratum # w#

grratio# ratio of experimental-group size to stratum size
for stratum # G2,#/N#

target target parameter; synonym for oratio
all display all supported columns
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Column beta is shown in place of column power in the default table if option beta() is specified.
Column N per stratum is shown in the default table only for equal-strata designs; otherwise, columns N# are

displayed.
Column N per group is shown in the default table only when group sizes are the same; otherwise, columns G1 and

G2 are displayed.
Column N per grstr is shown in the default table only for balanced designs.
Columns G1 # and G2 # are shown in the table only if requested or if option showgrstrsizes is specified.
Columns strwgt# are shown in the default table only if option strweights() is specified.
Columns grratio# are shown in the default table only if option grratios() is specified.

Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS-2] power.

nperstratum(numlist) specifies the stratum size. Only positive integers are allowed. This option
implies a balanced-strata design with equal strata sizes. nperstratum() cannot be specified with
n(), n#(), or strweights().

n#(numlist) specifies the size of the #th stratum. Only positive integers are allowed. All stratum sizes
must be specified. For example, all three options n1(), n2(), and n3() must be specified for a
design with three strata. n#() cannot be specified with n(), nperstratum(), or strweights().

strweights(wgtspec) specifies K stratum weights for an unequal-strata design. The weights may
be specified either as a list of values or as a matrix, and multiple sets of weights are allowed; see
wgtspec for details. The weights must be positive and must also be integers unless the nfractional
option is specified. strweights() cannot be specified with nperstratum() or n#().

grratios(grspec) specifies K ratios, one for each stratum, of the number of subjects in the
experimental group to the number of subjects in the corresponding stratum, n2k/nk. By default,
a balanced group design (or equal numbers of subjects in the control and experimental groups in
each stratum) is assumed, which corresponds to setting the K ratios to 0.5.

grspec is similar to wgtspec but allows noninteger numbers.

oratio(numlist) specifies the alternative value of the common odds ratio of the experimental group
to the control group. This option specifies the magnitude of an effect size. It is required to compute
power or sample size.

continuity requests that the continuity correction be applied. By default, no continuity correction
is applied.

direction(), onesided, parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.
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� � �
Iteration �

init(#) specifies the initial value for the estimated sample size or effect size when an iterative search
is required. When computing the sample size for the two-sided test, the sample-size estimate from
the one-sided test is used. The initial estimate for computing the effect size is obtained from a
bisection search.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

� � �
Reporting �

showgrstrsizes and noshowgrstrsizes displays or suppresses the display of sample sizes in each
group and stratum. The default for general output is to display group-per-stratum sizes in a matrix.
The default for table output is to suppress the display of group-per-stratum sizes. If you specify
this option with table output, group-per-stratum sizes will be displayed in a table as columns. This
option has no effect on graphical output.

showasmatrix requests that reported sample sizes be displayed as a matrix containing group-per-
stratum sizes as cells, and total strata sizes, total group sizes, and a total sample size as marginal
totals. This option is not allowed with table or graphical output.

The following option is available with power cmh but is not shown in the dialog box:

notitle; see [PSS-2] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power cmh

Alternative ways of specifying probabilities
Motivating example
Computing sample size
Computing power
Computing effect size
Testing hypotheses about association in 2×2×K tables

This entry describes the power cmh command and the methodology for power and sample-size
analysis for a CMH test of association in 2× 2×K tables. See [PSS-2] Intro (power) for a general
introduction to power and sample-size analysis and [PSS-2] power for a general introduction to the
power command using hypothesis tests.

Introduction
Many studies are designed to ascertain the relationship between a binary exposure (exposed or

unexposed) and a binary outcome (success of failure). Sometimes the relationship between the two
binary variables is influenced by another variable (or variables). One way to adjust for such influence
is to stratify on that variable and perform stratified analysis.

For example, a health researcher might conduct a case–control study of birth defects (cases) and
mother’s medication use during pregnancy (exposure) stratified by mother’s age group. A law firm
might want to know if there is a relationship between a defendant receiving the death penalty and the
defendant’s race stratified by the murder victim’s race. An education researcher might like to know
if students’ promotion to the next grade level is more likely after participating in a remedial reading
program after stratifying by grade level.
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In stratified analysis, a separate 2 × 2 contingency table is constructed for each stratum k =
1, 2, . . . ,K.

Group

Control Experimental Total

Failure ak bk m0k
Success ck dk m1k

Total n1k n2k nk

The corresponding stratum-specific probabilities of success are π1k and π2k in the control and
experimental groups, respectively, and their respective estimates are p1k = ck/n1k and p2k = dk/n2k.
The strength of the association in each table is described by the stratum-specific odds ratio of the
experimental group to control group θk, estimated as p2k/(1−p2k)/{p1k/(1−p1k)} = (akdk)/(bkck).
An overall measure of association between the exposure groups and the outcome across all strata is
formed to provide stratified-adjusted inference about the association.

The CMH test (Cochran 1954; Mantel and Haenszel 1959) is commonly used to test for association
in stratified 2× 2 tables or, equivalently, in 2× 2×K tables. It forms a common odds ratio θ, which
can be viewed as a weighted aggregate of stratum-specific odds ratios θk to quantify the strength
of the association between the exposure and outcome in such stratified analysis. The null hypothesis
for this test is H0: π1k = π2k for all k = 1, 2, . . . ,K. This is equivalent to H0: θk = 1 for all k.
The alternative hypothesis is such that there is common odds ratio that is different from one, that
is, Ha: θ1 = θ2 = . . . = θK = θ 6= 1. Thus, we can rewrite our hypotheses simply as H0: θ = 1
versus the two-sided alternative Ha: θ 6= 1, an upper one-sided alternative Ha: θ > 1, or a lower
one-sided alternative Ha: θ < 1. Statistical significance is assessed using a weighted CMH χ2 test
statistic. Under the null, the distribution of the test statistic is approximately a χ2 distribution with
one degree of freedom. See, for example, Lachin (2011) for more details about this test.

power cmh provides power and sample-size computations based on the asymptotic distribution of
the test statistic according to Nam (1992); see Methods and formulas for details.

Using power cmh

power cmh computes sample size, power, or effect size (the minimum detectable odds ratio) for
the CMH test of association in 2 × 2 × K tables. All computations are performed for a two-sided
hypothesis test where, by default, the significance level is set to 0.05. You may change the significance
level by specifying option alpha(). You can specify the onesided option to request a one-sided
test.

To compute the total sample size, you must specify the probabilities of success p1k in the control
group in each of the K strata following the command name; the common odds ratio in the oratio()
option; and, optionally, the power of the test in option power(). The default power is set to 0.8.

To compute power, you must specify the total sample size in the n() option, the common odds
ratio in the oratio() option, and the control-group success probabilities p1k following the command
name.

To compute effect size, the minimum detectable odds ratio, or the target odds ratio, you must
specify the total sample size in n(); the power in power(); the control-group success probabilities
following the command name; and, optionally, the direction of the effect. The direction is upper by
default, direction(upper), which means that the common odds ratio is assumed to be larger than
one. You can change the direction to be lower, which means that the common odds ratio is assumed
to be smaller than one, by specifying the direction(lower) option.
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There are multiple ways to specify the control-group success probabilities; see Alternative ways
of specifying probabilities.

By default, all computations assume a design with equal numbers of subjects in each group and each
stratum. To change group-specific proportions of subjects in each stratum, use the grratios(grspec)
option. A common proportion may be used for all strata or you may specify different proportions for
each stratum. Regardless of whether you choose a common proportion or choose to let the proportions
vary across strata, you must specify K ratios of cases to the stratum sample size within grratios().

To accommodate unequal stratum sizes for power and effect-size computations, you can specify
either individual stratum sizes in options n1(), n2(), . . . , nK() or a combination of the total sample
size in n() and integer stratum weights in strweights(wgtpec). For equal stratum sizes, you can
also specify the nperstratum() option to specify a common stratum size instead of a total sample
size in n().

By default, all computations assume no continuity correction. Use the continuity option to
change that.

power cmh reports group-per-stratum sizes as a matrix in the output. To suppress this matrix, use
the noshowgrstrsizes option. Alternatively, for the table output, you can use the showgrstrsizes
option to include columns containing group-per-stratum sizes in the default table.

To make the output of power cmh more compact, you may consider using the showasmatrix
option to display all sample sizes in a matrix.

Sample-size determination for the two-sided test and effect-size determination require iteration. The
default initial value for the sample size uses the estimate for the one-sided test. The initial estimate
for the effect size is obtained using a bisection search. To specify a different starting value, you may
use option init(). For more options used to control the iteration process, see [PSS-2] power.

Alternative ways of specifying probabilities

There are multiple ways in which you can supply the success probabilities in the control group to
power cmh.

You may specify each p1k following the command line as

power cmh p11 p12 . . . p1K, . . .

At least two probabilities must be specified.

When you have many strata, you may find it more convenient to first define a Stata matrix as a
row or column vector and use it with power cmh. The dimension of the matrix must be at least 2.
For example,

matrix define probmat = (p11, p12,. . ., p1K)

power cmh probmat, . . .

In some cases, you may wish to examine multiple control-group success probabilities in one or
more strata. To do this, you can specify multiple values or numlist for each of the stratum probabilities
in parentheses:

power cmh (p11,1 p11,2 . . . p11,L1) (p12,1 p12,2 . . . p12,L2) . . . , . . .

Each of the numlists may contain different numbers of values, L1 6= L2 6= · · · 6= LK . power cmh
will produce results for all possible combinations of values across numlists. Results are presented in
a table. If instead you would like to treat each specification as a separate scenario, you may specify
the parallel option.
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You can accommodate multiple sets of stratum probabilities in a matrix form by adding a row for
each specification. The columns of a matrix with multiple rows correspond to K strata probabilities,
and values within each column k correspond to multiple specifications of the kth stratum probability
or a numlist for the kth stratum probability.

For example, the following two specifications for three strata with two scenarios each are the same:

power cmh (p11,1 p11,2) (p12,1 p12,2) (p13,1 p13,2), . . .

and

matrix define probmat = (p11,1, p12,1, p13,1 \ p11,2, p12,2, p13,2)

power cmh probmat, . . .

In the above specification, if you wish to specify a numlist only for the first stratum, you may
define your matrix as

matrix define probmat = (p11,1, p12, p13 \ p11,2, ., .)

and the results of

power cmh probmat, . . .

will be the same as the results of

power cmh (p11,1 p11,2) p12 p13, . . .

In the following sections, we describe the use of power cmh accompanied by examples for
computing sample size, power, and the minimum detectable odds ratio.

Motivating example

Consider example 4.1 of a clinical trial in duodenal ulcers from Lachin (2011). Blum (1982)
describes a hypothetical clinical trial studying the effectiveness of a new drug for treating an ulcer
versus placebo. The outcome is whether an ulcer is healed or not, that is, whether the excretion of
gastric juices that lead to ulceration of the duodenum is retarded. Three classes of ulcers are considered:
acid-dependent (caused by excessive gastric secretion), drug-dependent (caused by excessive use of
drugs), and ulcers of intermediate origin. The third class contains ulcers for which the cause is difficult
to determine.

The research objective is to evaluate the effectiveness of the treatment on healing ulcers adjusted
for ulcer types.
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The data are summarized in three 2× 2 tables, one for each ulcer type.

. use https://www.stata-press.com/data/r18/ulcer
(Duodenal ulcers data)

. table (ulcer healed) (treatment) [fw=weight]

Treatment
Placebo Drug Total

Ulcer type
Acid-dependent

Healing status
Not healed 27 26 53
Healed 20 16 36
Total 47 42 89

Drug-dependent
Healing status

Not healed 5 3 8
Healed 4 9 13
Total 9 12 21

Intermediate
Healing status

Not healed 28 18 46
Healed 16 28 44
Total 44 46 90

Total
Healing status

Not healed 60 47 107
Healed 40 53 93
Total 100 100 200

The stratum-specific proportions of healed ulcers in each group are as follows:

. table (ulcer treatment) [fw=weight], statistic(mean healed) nformat(%8.3g)
> nototals

Mean

Ulcer type
Acid-dependent

Treatment
Placebo .426
Drug .381

Drug-dependent
Treatment

Placebo .444
Drug .75

Intermediate
Treatment

Placebo .364
Drug .609
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The common (marginal) odds ratio can be computed by using the cc command. (See [R] Epitab
and Testing hypotheses about association in 2×2×K tables for details about this command.)

. cc treatment healed [fw=weight]
Proportion

Exposed Unexposed Total exposed

Cases 53 47 100 0.5300
Controls 40 60 100 0.4000

Total 93 107 200 0.4650

Point estimate [95% conf. interval]

Odds ratio 1.691489 .9299035 3.08095 (exact)
Attr. frac. ex. .408805 -.0753804 .6754248 (exact)
Attr. frac. pop .2166667

chi2(1) = 3.40 Pr>chi2 = 0.0653

The estimate of the marginal odds ratio for these data is 1.691.

Suppose that we would like to conduct a similar study for evaluating a new treatment for healing
ulcers. We would like to perform power and sample-size analysis for this new study. In what follows,
we demonstrate how to use power cmh to perform these analyses, and we use the results from the
current study as our pilot estimates.

Computing sample size

To compute sample size, you must specify the control-group probability of success in each stratum
following the command name; the common odds ratio in option oratio(); and, optionally, the power
of the test in option power(). A default power of 0.8 is assumed if power() is not specified.

Example 1: Sample size for a two-sided CMH test

Consider a study of drug effectiveness for healing ulcers from Motivating example. The data are
stratified by an ulcer type. We would like to conduct a new study to evaluate another ulcer treatment
versus placebo. We need to compute the required sample size for this study. We use the estimates
from the previous ulcer study as our pilot estimates.

The proportions of healed ulcers in the placebo (control) group for each of the three strata were
estimated to be 0.426, 0.444, and 0.364, respectively. We anticipate an improvement in the new
treatment, and we would like to detect an odds ratio of at least 2.5 with 80% power using a two-sided
5%-level test.

To compute the required sample size, we specify the control-group proportions after the command
name and an odds ratio of 2.5 in option oratio(). We omit options alpha(0.05) and power(0.8),
because the specified values are their defaults.
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. power cmh 0.426 0.444 0.364, or(2.5)

Performing iteration ...

Estimated sample size for a test of independence in stratified 2x2 tables
Cochran--Mantel--Haenszel test
H0: OR = 1 versus Ha: OR != 1; OR = OR_1 = OR_2 = OR_3

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 2.5000

N_s = 3
p1_1 = 0.4260
p1_2 = 0.4440
p1_3 = 0.3640

oratio = 2.5000

Estimated sample sizes:

N = 156
N per stratum = 52

N per group = 78
N per group/stratum = 26

A total sample of 156 subjects (78 per group, 52 per stratum, and 26 per each group and stratum)
must be obtained to detect an odds ratio of at least 2.5 with 80% power using a 5%-level two-sided
CMH test.

Example 2: Unbalanced design, unequal stratum sizes

In example 1, we assumed equal numbers of subjects in each stratum. Based on our pilot data,
there are 89 subjects in stratum 1, 21 subjects in stratum 2, and 90 subjects in stratum 3. In other
words, the first and the third strata have about 4 times as many subjects as the second stratum.

Let’s see how unequal stratum sizes affect our required sample size. We specify strata weights in
the strweights() option.
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. power cmh 0.426 0.444 0.364, or(2.5) strweights(4 1 4)

Performing iteration ...

Estimated sample size for a test of independence in stratified 2x2 tables
Cochran--Mantel--Haenszel test
H0: OR = 1 versus Ha: OR != 1; OR = OR_1 = OR_2 = OR_3

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 2.5000

N_s = 3
p1_1 = 0.4260
p1_2 = 0.4440
p1_3 = 0.3640

oratio = 2.5000

Estimated sample sizes:

N = 162
N1 = 72
N2 = 18
N3 = 72

N per group = 81

Group-per-stratum sample sizes:

stratum
1 2 3

group
1 36 9 36
2 36 9 36

The required total sample size increases slightly from 156 to 162 with 81 subjects now in each group,
which is a slightly larger number than before. Because of unbalanced stratum sizes, the number of
subjects per group differs across strata with 36 subjects per group in the first and the third strata and
9 subjects per group in the second stratum.

Example 3: Unbalanced design, unequal group ratios

Continuing with example 2 and our Motivating example, we notice that our pilot study also
had different numbers of subjects in each group across strata. The actual ratios of the experimental
group sizes to the stratum sizes were 42/89 = 0.47 in stratum 1, 12/21 = 0.57 in stratum 2, and
46/90 = 0.51 in stratum 3.

To accommodate unequal group sizes across strata, we can specify stratum-specific group ratios
in the grratios() option.
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. power cmh 0.426 0.444 0.364, or(2.5) strweights(4 1 4) grratios(0.47 0.57 0.51)

Performing iteration ...

Estimated sample size for a test of independence in stratified 2x2 tables
Cochran--Mantel--Haenszel test
H0: OR = 1 versus Ha: OR != 1; OR = OR_1 = OR_2 = OR_3

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 2.5000

N_s = 3
p1_1 = 0.4260
p1_2 = 0.4440
p1_3 = 0.3640

oratio = 2.5000

Estimated sample sizes:

N = 162
N1 = 72
N2 = 18
N3 = 72

N group 1 = 80
N group 2 = 82

Group-per-stratum sample sizes:

stratum
1 2 3

group
1 38 7 35
2 34 11 37

Because all the group ratios are close enough to 0.5 (equal-sized groups), the estimate of the total
sample size does not change, and the group sizes change only slightly.

We can investigate the impact of group ratios that are appreciably different from 0.5. For example,
for the following three group ratios, the total sample size increases to 207 with 88 subjects in the
control group and 119 subjects in the experimental group.
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. power cmh 0.426 0.444 0.364, or(2.5) strweights(4 1 4) grratios(0.8 0.7 0.3)

Performing iteration ...

Estimated sample size for a test of independence in stratified 2x2 tables
Cochran--Mantel--Haenszel test
H0: OR = 1 versus Ha: OR != 1; OR = OR_1 = OR_2 = OR_3

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 2.5000

N_s = 3
p1_1 = 0.4260
p1_2 = 0.4440
p1_3 = 0.3640

oratio = 2.5000

Estimated sample sizes:

N = 207
N1 = 92
N2 = 23
N3 = 92

N group 1 = 88
N group 2 = 119

Group-per-stratum sample sizes:

stratum
1 2 3

group
1 18 6 64
2 74 17 28

Computing power

To compute power, you must specify the total sample size in the n() option, the common odds
ratio in option oratio(), and the probabilities of success in the control group following the command
name.

Example 4: Power of a two-sided CMH test

Returning to example 1, suppose that we have resources to recruit twice as many subjects, say,
300. To compute power, we add the total number of subjects, 300, in the n() option to the syntax
from example 1:
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. power cmh 0.426 0.444 0.364, or(2.5) n(300)

Estimated power for a test of independence in stratified 2x2 tables
Cochran--Mantel--Haenszel test
H0: OR = 1 versus Ha: OR != 1; OR = OR_1 = OR_2 = OR_3

Study parameters:

alpha = 0.0500
N = 300

N per stratum = 100
N per group = 150

N per group/stratum = 50
delta = 2.5000

N_s = 3
p1_1 = 0.4260
p1_2 = 0.4440
p1_3 = 0.3640

oratio = 2.5000

Estimated power:

power = 0.9759

For such an increase in sample size, the power increases dramatically to 0.976 to detect an odds ratio
of 2.5.

Example 5: Multiple values of study parameters

We may want to check powers for several sample sizes. Continuing with example 4, we simply
list desired sample-size values in option n(numlist); see [U] 11.1.8 numlist.

. power cmh 0.426 0.444 0.364, or(2.5) n(150(25)300) table(power N)

Estimated power for a test of independence in stratified 2x2 tables
Cochran--Mantel--Haenszel test
H0: OR = 1 versus Ha: OR != 1; OR = OR_1 = OR_2 = OR_3

power N

.7904 150

.8473 175

.8902 200

.9253 225

.9475 250

.9634 275

.9759 300

To shorten our default table, we selected only two varying columns, power and total sample size N,
by specifying them within the table() option.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.
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Computing effect size

Sometimes, we may be interested in determining the smallest odds ratio that yields a statistically
significant result for prespecified sample size and power. In this case, we must specify power in option
power(), sample size in option n(), and control-group success probabilities following the command
name. We may also choose the direction of the effect by specifying the direction() option. The
default is direction(upper), meaning a common odds ratio greater than one, which corresponds to
the improvement of the experimental group over the control group. You can use direction(lower)
to request an odds ratio less than one.

Example 6: Minimum detectable odds ratio

In example 4, we learned that with a sample of 300 subjects, the power to detect a common odds
ratio of 2.5 is very high. We now want to identify the minimum detectable odds ratio for that study
with 80% power.

. power cmh 0.426 0.444 0.364, power(0.8) n(300)

Performing iteration ...

Estimated odds ratio for a test of independence in stratified 2x2 tables
Cochran--Mantel--Haenszel test
H0: OR = 1 versus Ha: OR != 1, OR > 1; OR = OR_1 = OR_2 = OR_3

Study parameters:

alpha = 0.0500
power = 0.8000

N = 300
N per stratum = 100

N per group = 150
N per group/stratum = 50

N_s = 3
p1_1 = 0.4260
p1_2 = 0.4440
p1_3 = 0.3640

Estimated effect size and odds ratio:

delta = 1.9192
odds ratio = 1.9192

With a sample of 300 subjects, we can detect an odds ratio of 1.92 with 80% power using a two-sided
5%-level CMH test.

Testing hypotheses about association in 2× 2×K tables

You can test hypotheses about association in 2 × 2 × K tables using the cc command; see
[R] Epitab. cc conducts a Mantel–Haenszel test, which is asymptotically equivalent to a Cochran
test; see, for example, Methods and formulas.

Example 7: Performing Mantel–Haenszel test

Consider the ulcer data from Motivating example. We would like to test for association between
the treatment and healing of an ulcer stratified by a type of ulcer.
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. use https://www.stata-press.com/data/r18/ulcer
(Duodenal ulcers data)

. describe

Contains data from https://www.stata-press.com/data/r18/ulcer.dta
Observations: 12 Duodenal ulcers data

Variables: 4 3 Mar 2022 21:40

Variable Storage Display Value
name type format label Variable label

treatment byte %9.0g treatlab Treatment
healed byte %10.0g heallab Healing status
ulcer byte %14.0g ulcerlab Ulcer type
weight byte %9.0g Frequency weights

Sorted by:

The binary variable healed indicates whether an ulcer healed. The binary variable treatment
indicates whether a subject received a treatment (drug) or placebo. The categorical variable ulcer
is a stratification variable, which records an ulcer type. The weight variable contains the numbers
of subjects for each combination of values for healed and treatment for each of the three strata.
This variable will be used as a frequency weight on our analysis.

Here are our data:

. list, sepby(ulcer) nolabel

treatm~t healed ulcer weight

1. 1 1 1 16
2. 1 0 1 26
3. 0 1 1 20
4. 0 0 1 27

5. 1 1 2 9
6. 1 0 2 3
7. 0 1 2 4
8. 0 0 2 5

9. 1 1 3 28
10. 1 0 3 18
11. 0 1 3 16
12. 0 0 3 28

We use the cc command to test for association between healed and treatment adjusted for
ulcer types. We specify healed as the dependent variable and treatment as the exposure variable
after the command name and use the by(ulcer) option to stratify on ulcer. We also specify the
weight variable as the frequency weight.
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. cc healed treatment [fweight=weight], by(ulcer)

Ulcer type Odds ratio [95% conf. interval] M--H weight

Acid-dependent .8307692 .32516 2.112608 5.842697 (exact)
Drug-dependent 3.75 .4283095 35.61362 .5714286 (exact)

Intermediate 2.722222 1.069202 6.992856 3.2 (exact)

Crude 1.691489 .9299035 3.08095 (exact)
M--H combined 1.633836 .934329 2.857044

Test of homogeneity (M--H) chi2(2) = 4.58 Pr>chi2 = 0.1012

Test that combined odds ratio = 1:
Mantel--Haenszel chi2(1) = 3.00

Pr>chi2 = 0.0830

The combined Mantel–Haenszel odds ratio equals 1.63, which is not significantly different from 1 at
the 5% significance level; the p-value is 0.0830. Thus, we do not have sufficient evidence to reject
the null hypothesis of no association between the treatment and healing of ulcer after adjusting for
ulcer type, at least at the 5% significance level.

Stored results
power cmh stores the following in r():
Scalars

r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N avg) average sample size
r(N#) number of subjects in stratum #
r(N per stratum) number of subjects per stratum
r(N s) number of strata
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(balanced) 1 for a balanced design, 0 otherwise
r(strwgt#) stratum weight #
r(N per group) number of subjects per group
r(G1) number of subjects in the control group
r(G2) number of subjects in the experimental group
r(N per grstr) number of subjects per group and stratum
r(G1 #) number of subjects in the control group in stratum #
r(G2 #) number of subjects in the experimental group in stratum #
r(grratio#) ratio of the experimental-group size to stratum size for stratum #
r(p1 #) control-group probability of success in stratum #
r(oratio) odds ratio of the experimental group to control group
r(continuity) 1 if continuity correction is used, 0 otherwise
r(c) continuity-correction value
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample size or effect size
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise
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Macros
r(type) test
r(method) cmh
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
Consider definitions and a 2× 2 contingency table for stratum k = 1, 2, . . . ,K from Introduction.

Assume a common odds ratio among all the K tables; that is, θ1 = θ2 = · · · = θK = θ (Woolson,
Bean, and Rojas 1986; Nam 1992). To test the hypothesis H0: θ = 1 versus Ha: θ > 1, Cochran’s
test statistic may be formed as

C =

∑K
k=1 ωk(p2k − p1k)√∑K

k=1 ωkpkqk

=
W√ ̂Var0(W )

where
ωk =

n1kn2k

nk

pk =
n1kp1k + n2kp2k

nk
and qk = 1− pk

Under the null hypothesis, the statistic C converges to a standard normal distribution. We therefore
reject the null hypothesis if C > z1−α, where z1−α is the (1− α)th quantile of a standard normal
distribution.

A similar statistic is the Mantel–Haenszel statistic, which considers a hypergeometric distribution
for all fixed marginals for the variance of W under the null hypothesis. Asymptotically, the Cochran
test is equivalent to the Mantel–Haenszel test (Armitage, Berry, and Matthews 2002), and thus we
refer to this test jointly as the Cochran–Mantel–Haenszel (CMH) test.

Following Nam (1992), we note that the expected value and the variance of W is given, respectively,
by

E(W ) =

K∑
k=1

ωk(π2k − π1k)

Var(W ) =

K∑
k=1

ω2
k

{
π1k(1− π1k)

n1k
+
π2k(1− π2k)

n2k

}
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The variance under the null hypothesis is given by

Var(W |H0) = Var0(W ) =

K∑
k=1

ωkπk(1− πk)

For the upper one-sided alternative hypothesis, Ha: θ > 1, the asymptotic power is given by

1− β ≈ P (C > z1−α) = 1− Φ(Uu) (1)

where

Uu =
z1−α

√
Var0(W )− E(W )√

Var(W )

and Φ(·) is the cumulative of the standard normal distribution.

For the lower one-sided alternative hypothesis, Ha: θ < 1, the asymptotic power is given by

1− β ≈ P (C ≤ zα) = Φ(Ul) (2)

where

Ul =
zα
√

Var0(W )− E(W )√
Var(W )

When the onesided option is used, the direction of the test is determined by the sign of
E(W )—when E(W ) > 0, then Ha: θ > 1 and when E(W ) < 0, then Ha: θ < 1.

Then, the power of the test is given by

π =


1− Φ(Uu) for an upper one-sided test

Φ(Ul) for a lower one-sided test

1− Φ(Uu) + Φ(Ul) for a two-sided test

The two-sided test uses α/2 in the definitions of Uu and Ul.

The sample size for a two-sided test and the minimum detectable odds ratio θ must be computed
iteratively from the corresponding power equations. The starting value for the sample-size computation
is the sample-size estimate for the one-sided test. For the minimum detectable odds ratio, the starting
value is obtained from a bisection algorithm.

When strata weights wk are specified in the strweights() option, a constant multiplier nc is
computed and rounded to an integer unless the nfractional option is specified. The stratum sizes
are then computed as w̃jnc, where w̃k are normalized strata weights. The actual sample size, N a,
is the sum of the stratum sizes. The numbers of subjects in each group and stratum are computed as
nk/2 for equal-group designs and as n2k = nk×#k and n1k = nk−n2k when group ratios #ks are
supplied in grratios(). Unless the nfractional option is specified, the experimental-group sizes
corresponding to unbalanced strata are rounded up. For strata that have equal numbers of subjects in
each group, the group-per-stratum sizes are not rounded.

Woolson, Bean, and Rojas (1986) provide a formula for the sample size that is required to attain
a specific power by substituting Uu = zβ = Φ−1(β) and Ul = z1−β = Φ−1(1− β) in (1) and (2)
and solving for n:
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n =



(
z1−α

√
X + z1−β

√
Y

Z

)2

if E(W ) > 0

(
zα
√
X + zβ

√
Y

Z

)2

if E(W ) < 0

where

X =

K∑
k=1

wksk(1− sk)πk(1− πk)

Y =

K∑
k=1

wksk(1− sk) {(1− sk)π2k(1− π2k) + skπ1k(1− π1k)}

Z =

K∑
k=1

wksk(1− sk)(π2k − π1k)

and wk = nk/n is the fraction of the individual-stratum size to the total sample size, and sk = n2k/nk
is the fraction of the number of subjects in the experimental group to the sample size of each stratum.
Sample size for the two-sided alternative hypothesis is solved iteratively.

The continuity-corrected version of Uu and Ul is

Uu =
z1−α

√
Var0(W )− E(W ) + 1

2√
Var(W )

if E(W ) > 0

Ul =
zα
√

Var0(W )− E(W )− 1
2√

Var(W )
if E(W ) < 0

Nam (1992) derives the sample size for the continuity-corrected version of the CMH test, nc, as
follows:

nc =


n
4

(
1 +

√
1 + 2

nZ

)2

if E(W ) > 0

n
4

(
1 +

√
1− 2

nZ

)2

if E(W ) < 0

where n is the uncorrected sample size.

For the computation, π1k and π2k are replaced with their estimates p1k and p2k in the above
formulas. p1ks are supplied directly to power cmh, and p2ks are computed using the specified p1ks
and odds ratio in oratio().
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power mcc — Power analysis for matched case–control studies

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power mcc computes sample size, power, or effect size (the minimum detectable odds ratio) for
a test of association between a risk factor and a disease in 1:M matched case–control studies.

Quick start
Number of cases for a test with exposure probability for controls of 0.2 and odds ratio for exposure

of 1.4 from a 1:1 matched design using default power of 0.8 and significance level α = 0.05
power mcc .2, oratio(1.4)

Same as above, but for a 1:2 matched design and compute the ratio of the number of cases for a 1:2
matched design relative to a 1:1 matched design

power mcc .2, oratio(1.4) m(2) compare

Number of cases when correlation of exposure between matched pairs is 0.3
power mcc .2, oratio(1.4) corr(.3)

Power for 500 cases and a 1:1 matched design
power mcc .2, oratio(1.4) n(500)

Plot of power against the number of cases for 450, 475, 500, 525, and 550 cases
power mcc .2, oratio(1.4) n(450(25)550) graph

Minimum detectable odds ratio with 80% power and 500 cases using a 1:1 matched design
power mcc .2, power(.8) n(500)

Same as above, but for an upper one-sided test
power mcc .2, power(.8) n(500) onesided direction(upper)

Same as above
power mcc .2, power(.8) n(500) onesided

Menu
Statistics > Power, precision, and sample size

484
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Syntax

Compute sample size

power mcc p0, oratio(numlist)
[
power(numlist) options

]

Compute power

power mcc p0, oratio(numlist) n(numlist)
[

options
]

Compute target odds ratio

power mcc p0, power(numlist) n(numlist)
[

options
]

where p0 is the probability of exposure among control patients. p0 must satisfy the condition
0 < p0 < 1 and may be specified either as one number or as a list of values in parentheses (see
[U] 11.1.8 numlist).
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗oratio(numlist) odds ratio of exposure in cases relative to controls; required

to compute power or sample size
∗m(numlist) number of matched controls per case; default is m(1)

compare ratio of the required number of cases for a 1:M design relative
to a paired 1:1 design

∗corr(numlist) correlation of exposure between cases and controls; default is
corr(0)

direction(upper|lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated value
of the parameter is larger than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value for sample size or effect size
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]
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column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N number of cases N
delta effect size δ
M number of matched controls M
F M ratio of the number of cases with M controls

relative to one control FM
p0 probability of exposure among controls p0

p1 probability of exposure among cases p1

oratio odds ratio θ
corr correlation of exposure between cases and controls ρ
target target parameter; synonym for oratio
all display all supported columns

Column beta is shown in the default table in place of column power if option beta() is specified.
Column F M is shown in the default table only if option compare is specified.
Column p1 is not shown in the default table.

Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS-2] power. The sample size in n() is the
number of matched case–control sets or, equivalently, the number of cases. The nfractional
option is allowed only for sample-size determination.

oratio(numlist) specifies the odds ratio of exposure in cases relative to controls. This option
is required for power or sample-size determination and may not be specified for effect-size
determination.

m(numlist) specifies the number of matched controls per case. Only positive integers are allowed.
The default is m(1), which implies a paired design.

compare specifies that the ratio, FM , of the required number of cases for a 1:M design relative to a
paired 1:1 design be computed. compare can be specified only when computing sample size and
when a value of 2 or greater is specified in option m().

corr(numlist) specifies the correlation coefficient for exposure ρ between matched cases and controls.
corr() must contain numbers between −1 and 1. The default is corr(0), meaning no correlation
between matched cases and controls. This assumption may not be realistic in practice; see example 3
for discussion.

direction(), onesided, parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.
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� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value for the estimated sample size or effect size when an iterative
search is required. When computing the sample size for the two-sided test, the closed-form sample-
size computation for the one-sided test is used. The initial estimate for computing the minimum
detectable odds ratio is obtained from a bisection search.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power mcc but is not shown in the dialog box:

notitle; see [PSS-2] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power mcc
Computing sample size
Computing power
Computing target odds ratio
Testing hypotheses in matched case–control studies

This entry describes the power mcc command and the methodology for power and sample-size
analysis for 1:M matched case–control studies. See [PSS-2] Intro (power) for a general introduction
to power and sample-size analysis and [PSS-2] power for a general introduction to the power command
using hypothesis tests.

Introduction

Matched case–control studies investigate the relationship between disease and exposure, controlling
for the effect of confounding variables. Cases are observations that have the outcome of interest;
controls are observations that do not. Cases are matched to the controls on the basis of similar values
of the variable or variables thought to confound the relationship between exposure and disease.

Matched case–control studies are used to investigate a variety of outcomes. A pediatrician might
be interested in the relationship between low birthweight (case) and mother’s smoking status during
pregnancy (exposure), where case and control mothers are matched on the basis of age, race, alcohol
consumption, and history of hypertension (confounding variables). An oncologist might want to know
if women with endometrial cancer are more likely to have taken estrogen, where cases and controls
are matched on age, marital status, and time living in the community. A psychologist might design a
study to see if suicide is more prevalent among patients who used a particular antidepressant, where
cases and controls are matched on age, sex, race, severity of depression symptoms, and history of
head injury.

This entry describes power and sample-size analysis for inference about correlated binary outcomes.
In a 1:M matched case–control study, we first randomly select cases from a population of cases
and observe their exposure status. The population is then stratified by the confounding (matching)
variables, and for each selected case, M matched controls are randomly selected from the same
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stratum as the selected case. This creates a series of 2 × 2 contingency tables within the stratum
defined by the matching covariates. Each contingency table summarizes the probability of observing
each exposure–outcome combination within a given stratum, and the probabilities are assumed to be
equal across strata (or, equivalently, odds ratios are assumed to be equal across strata) so that for any
study we need to analyze only one table.

Control

Case Exposed Unexposed Total

Exposed p11 p10 p1
Unexposed p01 p00 q1

Total p0 q0 1

The concordant probabilities lie on the diagonal; p11 is the probability that an exposed case subject
is matched to an exposed control subject, and p00 is the probability that an unexposed case subject
is matched to an unexposed control subject. The target parameter is the odds ratio θ of developing
the disease in exposed and unexposed subjects who have equal values of matching variables. It can
be calculated from the discordant probabilities as p10/p01.

The probability of exposure for controls, p0, is the probability that the sampled control subject
is exposed and is simply the sum of p11 and p01. The probability of exposure for cases, p1, is the
probability that the sampled case subject is exposed and is simply the sum of p11 and p10.

The two-sided hypothesis test for association between disease and exposure can be formally stated
in terms of the odds ratio as H0: θ = 1 versus Ha: θ 6= 1. We can equivalently state the hypothesis
test in terms of marginal homogeneity: H0: p0 = p1 versus Ha: p0 6= p1.

In a matched case–control study, n cases are sampled and then matched to M controls. When
M = 1, a 1:1 matched design or paired design, there are n matched pairs and n× 2 total subjects.
When M > 1, there are n matched sets and n × (M + 1) total subjects. Unlike a study without
matching, a matched case–control study does not have n×2 independent observations [or n×(M+1)
for matched designs with multiples controls].

All calculations performed by power mcc treat n as the relevant sample size. Throughout the
remainder of this entry, when we refer to the sample size, we mean n, the number of cases and thus
the number of matched pairs (or sets).

Using power mcc

power mcc computes sample size, power, or effect size (the minimum detectable odds ratio) for
1:M matched case–control studies, in which one case is matched to M controls. All computations are
performed for a two-sided hypothesis test where, by default, the significance level is set to 0.05. You
may change the significance level by specifying the alpha() option. You can specify the onesided
option to request a one-sided test.

To compute sample size, you must specify the probability of exposure for the control group p0; the
odds ratio for exposure θ in option oratio(); and, optionally, the power of the test in the power()
option. The default power is set to 0.8. The sample-size estimate returned is the number of matched
pairs or, if option m() was specified, the number of matched sets. This is equivalent to the number
of cases. Hereafter, we simply refer to the number of cases.

To compute power, you must specify the sample size in option n(), the probability of exposure
for the control group p0, and the odds ratio in option oratio().
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To compute the minimum detectable odds ratio, you must specify the sample size in option n();
the power in option power(); the probability of exposure for the control group p0; and, optionally,
the direction of the effect. The direction is upper by default, direction(upper), which means that
the probability of exposure among cases is assumed to be larger than the specified control-group value.
You can change the direction to be lower, which means that the probability of exposure among cases
is assumed to be lower than the specified control-group value, by specifying the direction(lower)
option. power mcc defines the effect size as the target odds ratio.

By default, all computations assume a 1:1 or paired design, in which one case is matched to one
control. You may specify the m() option to accommodate multiple matches per case.

The correlation between the matched case–control subjects is set to 0 by default but may be
changed by specifying option corr().

For sample-size determination, you can specify the compare option to compute the ratio of the
required number of cases when using M matched controls rather than one.

Sample-size determination for the two-sided test and effect-size determination for M > 1 require
iteration. The default initial sample-size value is set to the closed-form one-sided sample size. The
initial value for the effect size is computed using a bisection algorithm. You can use the init()
option to specify your own value. See [PSS-2] power for a description of other options that control
the iteration process.

In the following sections, we describe the use of power mcc accompanied by examples for
computing sample size, power, and the minimum detectable odds ratio.

Computing sample size

To compute sample size, you must specify the probability of exposure among control patients p0

after the command name; the odds ratio θ in option oratio(); and, optionally, the power in option
power().

Example 1: Sample size for a 1:1 matched case–control study

Consider a study comparing the odds of developing lung cancer among smokers with the odds
among nonsmokers. Suppose that previous studies matching smokers and nonsmokers on the basis
of age, gender, race, and alcohol consumption found the following proportions:

No Lung Cancer (Control)
Lung Cancer (Case) Smoker Nonsmoker Total

Smoker 0.180 0.144 0.324
Nonsmoker 0.040 0.636 0.676
Total 0.220 0.780 1

If we wish to plan a new case–control study, we might assume that these proportions represent
population probabilities and, therefore, let p0 = 0.22. Under the assumption of no correlation of
exposure in matched pairs, θ = (0.324× 0.78)/(0.22× 0.676) = 1.7.

We would like to determine the number of case–control pairs that we will need to achieve 80%
power to detect an odds ratio of 1.7 with a 5%-level two-sided test.

To compute the required sample size, we specify 0.22 as the probability of exposure for the control
group after the command name and specify 1.7 as the odds ratio in option oratio(). We omit
options alpha(0.05) and power(0.8) because the specified values are their defaults.
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. power mcc .22, oratio(1.7)

Performing iteration ...

Estimated sample size for a matched case--control study
Asymptotic z test, 1:1 matched design
H0: OR = 1 versus Ha: OR != 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.7000

p0 = 0.2200
oratio = 1.7000

corr = 0.0000
M = 1

Estimated sample size:

N cases = 285

Our calculation indicates that we will need a sample of 285 cases to detect an odds ratio of 1.7 with
80% power using a 5%-level test.

Example 2: Sample size for a 1:M matched case–control study

Multiple controls are often matched with one case to increase the efficiency of the study. Continuing
with example 1, we note that we have access to many more control participants than case participants.

We specify option m(2) to recalculate our sample size assuming that we will match two controls
with each case (a 1:2 matched design). We also specify the compare option to calculate the ratio of
the number of required cases relative to the 1:1 paired design.

. power mcc .22, oratio(1.7) m(2) compare

Performing iteration ...

Estimated sample size for a matched case--control study
Asymptotic z test, 1:2 matched design
H0: OR = 1 versus Ha: OR != 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.7000

p0 = 0.2200
oratio = 1.7000

corr = 0.0000
M = 2

Estimated sample size:

N cases = 210
F_M = 0.7368

We obtain a new sample-size estimate of 210 cases, and the reduction in the number of cases relative
to the paired design is approximately 26% (1− F M = 0.2632).
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Example 3: Sample size with correlated exposures

Matching based on confounders will typically lead to correlation of the exposure between cases and
controls. For example, smoking status is known to be correlated with alcohol consumption. Matching
on alcohol consumption might, therefore, result in the cases and controls being more similar with
regard to smoking status. Ignoring this correlation will lead to underestimation of the required sample
size or overestimation of power.

The correlation coefficient ρ for exposure between cases and controls can be computed from the
probabilities in our contingency table; see (1) in Methods and formulas.

Returning to example 1, we compute the correlation of exposure:

ρ = (0.180× 0.636− 0.144× 0.040)/
√

0.324× 0.676× 0.220× 0.780 = 0.56

We then specify its value in the corr() option.

. power mcc .22, oratio(1.7) corr(.56)

Performing iteration ...

Estimated sample size for a matched case--control study
Asymptotic z test, 1:1 matched design
H0: OR = 1 versus Ha: OR != 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.7000

p0 = 0.2200
oratio = 1.7000

corr = 0.5600
M = 1

Estimated sample size:

N cases = 703

With such a high level of correlation between exposure and the matching variables, our sample size
increases dramatically to 703 cases.

This examples demonstrates the importance of taking into account the correlation of exposure
between matched cases and controls. For this reason, Dupont (1988) recommends using the value of,
say, 0.2 in computations instead of making an independence assumption, which is unlikely to hold
in practice.

Example 4: Multiple values of study parameters

Continuing with example 3, suppose that we believe that the previously gathered data may provide
a good estimate of exposure probability for controls p0 and the odds ratio θ, but that the individual
cell proportions are not precise enough estimates of the population probabilities to produce a good
estimate of ρ.

In this case, we may want to use a range of plausible values and consider how it affects the sample
size for our study. We can specify a range of correlations between 0.4 and 0.6 with a step size of
0.05 using standard numlist (see [U] 11.1.8 numlist) notation in option corr().
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. power mcc .22, oratio(1.7) corr(.4(.05).6)

Performing iteration ...

Estimated sample size for a matched case--control study
Asymptotic z test, 1:1 matched design
H0: OR = 1 versus Ha: OR != 1

alpha power N delta M p0 oratio corr

.05 .8 503 1.7 1 .22 1.7 .4

.05 .8 553 1.7 1 .22 1.7 .45

.05 .8 613 1.7 1 .22 1.7 .5

.05 .8 687 1.7 1 .22 1.7 .55

.05 .8 779 1.7 1 .22 1.7 .6

For a given power, the required sample size increases as the correlation ρ increases. In this example,
the choice of the correlation has a large effect on the required sample size, which suggests that we
should carefully consider the choice of matching variables.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

Computing power

To compute power, you must specify the number of cases in option n(), the exposure probability
among controls p0 following the command name, and the odds ratio in option oratio().

Example 5: Power for matched case–control studies

Returning to example 1, we discover that we are able to recruit 300 cases for our study. To compute
the corresponding power, we specify 300 as the sample size in option n().

. power mcc .22, oratio(1.7) n(300)

Estimated power for a matched case--control study
Asymptotic z test, 1:1 matched design
H0: OR = 1 versus Ha: OR != 1

Study parameters:

alpha = 0.0500
N cases = 300

delta = 1.7000
p0 = 0.2200

oratio = 1.7000
corr = 0.0000

M = 1

Estimated power:

power = 0.8204

As expected, with a larger sample size, this example has a higher power (about 82%) than example 1.
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Example 6: Power for a one-sided test
Continuing with example 5, suppose that we are interested in testing whether the odds ratio is

greater than 1 because we hypothesize that a history of smoking will lead to an increased incidence
of lung cancer. In this case, we can specify the onesided option to calculate power for a one-sided
test.

. power mcc .22, oratio(1.7) n(300) onesided

Estimated power for a matched case--control study
Asymptotic z test, 1:1 matched design
H0: OR = 1 versus Ha: OR > 1

Study parameters:

alpha = 0.0500
N cases = 300

delta = 1.7000
p0 = 0.2200

oratio = 1.7000
corr = 0.0000

M = 1

Estimated power:

power = 0.8931

As expected, the power of the one-sided is higher (89%) than the power of the corresponding two-sided
test.

Computing target odds ratio
Sometimes, we may be interested in determining the smallest effect that will yield a statistically

significant result for a prespecified sample size and power. In this case, power, sample size, and the
exposure probability among controls must be specified. The effect size in power mcc is expressed as
an odds ratio of exposure in cases relative to controls.

Example 7: Minimum detectable odds ratio with 1:1 matching

Continuing with example 5, we now would like to calculate the minimum detectable odds ratio
that we can identify with the study design we have planned and knowing that we will be able to
recruit 300 cases. We again specify 300 cases in option n() and also specify 80% power by using
option power(0.8):

. power mcc .22, n(300) power(.8)

Performing iteration ...

Estimated odds ratio for a matched case--control study
Asymptotic z test, 1:1 matched design
H0: OR = 1 versus Ha: OR != 1

Study parameters:

alpha = 0.0500
power = 0.8000

N cases = 300
p0 = 0.2200

corr = 0.0000
M = 1

Estimated effect size and odds ratio:

delta = 1.6783
odds ratio = 1.6783

Our minimum detectable odds ratio is about 1.68 for this study design.
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Example 8: Minimum detectable odds ratio with 1:M matching

We can specify other options to tailor our estimates of the minimum detectable odds ratio to
accommodate other study design parameters. Continuing with example 7, we may wish to calculate
the minimum detectable odds ratio if we adopt a 1:2 matched design.

. power mcc .22, n(300) power(.8) m(2)

Performing iteration ...

Estimated odds ratio for a matched case--control study
Asymptotic z test, 1:2 matched design
H0: OR = 1 versus Ha: OR != 1

Study parameters:

alpha = 0.0500
power = 0.8000

N cases = 300
p0 = 0.2200

corr = 0.0000
M = 2

Estimated effect size and odds ratio:

delta = 1.5656
odds ratio = 1.5656

Our minimum detectable odds ratio estimate decreases to 1.57 from 1.68 when the number of cases
is held constant at 300.

Comparing results with example 7, we see that increasing M while holding power and sample size
constant decreases the minimum detectable odds ratio. Consequently, increasing M while holding
sample size and the odds ratio constant increases power.

Testing hypotheses in matched case–control studies

Matched case–control data can be organized in two ways: long and wide format. In long format,
each row corresponds to a person; this is the format used by clogit and mhodds (see [R] clogit and
[R] Epitab). In wide format, each row corresponds to a matched pair or set; this is the format used
by mcc (see [R] Epitab).

Example 9: Analysis of matched case–control data in long format

Hosmer, Lemeshow, and Sturdivant (2013) describe a study in which low birthweight infants were
matched with normal weight infants on the basis of the age of the mother. The mothers were then
asked whether or not they smoked during pregnancy. We will list a subset of these data to illustrate
long format.
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. use https://www.stata-press.com/data/r18/lowbirth2
(Applied Logistic Regression, Hosmer & Lemeshow)

. list pairid low smoke in 1/6, sepby(pairid)

pairid low smoke

1. 1 0 0
2. 1 1 1

3. 2 0 0
4. 2 1 0

5. 3 0 0
6. 3 1 0

The first column is the case–control identifier for each pair of infants. The second column identifies
each infant as a case (low==1, indicating low birthweight) or a control (low==0). The third column
identifies each infant as exposed (smoke==1, indicating that the mother smoked) or not exposed
(smoke==0). We can estimate the odds ratio and test the null hypothesis that it equals 1 by using
clogit.

We must use option group() to specify the identifier for our case–control matched pairs. We also
specify option nolog to suppress the iteration log and or to view the result as an odds ratio.

. clogit low smoke, group(pairid) nolog or

Conditional (fixed-effects) logistic regression Number of obs = 112
LR chi2(1) = 6.79
Prob > chi2 = 0.0091

Log likelihood = -35.419282 Pseudo R2 = 0.0875

low Odds ratio Std. err. z P>|z| [95% conf. interval]

smoke 2.75 1.135369 2.45 0.014 1.224347 6.176763

The estimated odds ratio is 2.75. We reject the null hypothesis that mothers who smoke and mothers
who do not smoke have equal odds of giving birth to an infant with low birthweight at the 5%-level
(p = 0.014).

Example 10: Analysis of paired case–control data in wide format

Continuing with example 9, because the Hosmer, Lemeshow, and Sturdivant (2013) data are for
a study with matched pairs, we could also conduct a classic McNemar’s test. In Stata, McNemar’s
test is calculated by the mcc command; see [R] Epitab. The mcc command, however, requires that
the data be in wide form. For details, see the technical note in [R] clogit.
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We can reshape our low birthweight data using the reshape command.

. keep low smoke pairid

. reshape wide smoke, i(pairid) j(low 0 1)

Data Long -> Wide

Number of observations 112 -> 56
Number of variables 3 -> 3
j variable (2 values) low -> (dropped)
xij variables:

smoke -> smoke0 smoke1

. list pairid smoke1 smoke0 in 1/3

pairid smoke1 smoke0

1. 1 1 0
2. 2 0 0
3. 3 0 0

The variable smoke1 indicates whether or not the case mother smoked, and the variable smoke0
indicates whether or not the control mother smoked. We can now use mcc to estimate the overall
odds ratio.

. mcc smoke1 smoke0

Controls
Cases Exposed Unexposed Total

Exposed 8 22 30
Unexposed 8 18 26

Total 16 40 56

McNemar’s chi2(1) = 6.53 Prob > chi2 = 0.0106
Exact McNemar significance probability = 0.0161

Proportion with factor
Cases .5357143
Controls .2857143 [95% conf. interval]

difference .25 .0519726 .4480274
ratio 1.875 1.148685 3.060565
rel. diff. .35 .1336258 .5663742

odds ratio 2.75 1.179154 7.143667 (exact)

Again, the estimated odds ratio θ is 2.75, and McNemar’s χ2 is 6.53. As with the analysis using
clogit, we reject the null hypothesis of equal odds at the 5% significance level (p = 0.0106). The
confidence interval for the odds ratio calculated by clogit and mcc differ slightly due to different
estimation methods.

We could also calculate the same test statistic based on symmetry and marginal homogeneity; see
[R] symmetry for further details.



498 power mcc — Power analysis for matched case–control studies

Stored results
power mcc stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) sample size
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(p0) probability of exposure among controls
r(M) number of matched controls per case
r(F M) ratio of the number of cases relative to the 1:1 paired design
r(oratio) odds ratio
r(corr) correlation of exposure between matched cases and controls
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample size or effect size
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) mcc
r(direction) upper or lower
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
Consider a 1:M matched case–control study, where n cases with a disease are matched to M

controls without the disease on the basis of similar values of confounding variables such as age, gender,
etc. Some patients in the study have prior exposure to a certain risk factor of interest. Below we
provide power and sample-size formulas based on Dupont (1988) . Also see Breslow and Day (1980,
sec. 5.3) for background on the analysis of 1:M matched data.

Referring to the table in the Introduction, let p0 denote the probability of exposure among the
control patients. Under the null hypothesis, the odds ratio θ of developing the disease in exposed and
unexposed subjects is constant for equal values of the confounding variables.

The value of pij for each cell represents the joint probability of exposure status of the matched
case–control pair for i, j = 0, 1. (With M matches, the first control is used.) Let p0 and p1 represent
the probability of exposure of the control and case patient, respectively. Let ρ denote the correlation
coefficient for exposure in matched pairs of case–control patients. Let q0 = 1− p0 and q1 = 1− p1,
then the odds ratio is given by θ = p1q0/p0q1 if ρ = 0 and θ = p10/p01 if ρ 6= 0.
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The correlation coefficient can be expressed as

ρ =
p11p00 − p10p01√

p1q1p0q0
(1)

The individual cell probabilities can be expressed in terms of exposure probabilities as

p11 = p1p0 + ρ
√
p1q1p0q0

p10 = p1q0 − ρ
√
p1q1p0q0

p01 = q1p0 − ρ
√
p1q1p0q0

p00 = q1q0 + ρ
√
p1q1p0q0

Let p0+ and p0− denote the probability that a control patient is exposed given the corresponding
matched case is or is not exposed, respectively. Then

p0+ =
p11

p1

p0− =
p01

q1

q0+ = 1− p0+

q0− = 1− p0−

The probability of observing m exposed subjects among a case matched with M controls is given by

tm = p1

(
M

m− 1

)
pm−1

0+ qM−m+1
0+ + q1

(
M

m

)
pm0−q

M−m
0−

for m = 1, . . . ,M .

Let ni,j denote the number of matched sets such that n1,j is the number of exposed cases matched
with j of M exposed controls and n0,j is the number of nonexposed cases matched with j of M
exposed controls. Then, the number of matched sets in which m subjects were exposed is

Tm = n1,m−1 + n0,m

Define a matched set as a discordant matched set if there is a least one discordant pair between
the case and the M controls. Then, the number of discordant matched sets in which the case patients
were exposed is

y =

M∑
m=1

n1,m−1

Denote Eθ and sθ the conditional mean and standard deviation of y, respectively, given Tm =
E(Tm) = ntm, for m = 1, . . . ,M . Then Eθ = neθ and sθ =

√
nνθ, where

eθ =

M∑
m=1

mtmθ

mθ +M −m+ 1
and νθ =

M∑
m=1

mtmθ(M −m+ 1)

(mθ +M −m+ 1)2

(Breslow and Day 1980, eq. 5.19).
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Let Lα = (E1 − Eθ − z1−αs1)/sθ and Uα = (E1 − Eθ + z1−αs1)/sθ, where z1−α is the
quantile of a standard normal distribution such that P (Z ≥ z1−α) = α and Φ(·) is the cumulative
of a standard normal distribution.

Then, the power of the test is given by

1− β =


Φ
(
Lα/2

)
+ 1− Φ

(
Uα/2

)
for a two-sided test

Φ (Lα) for a lower one-sided test

1− Φ (Uα) for an upper one-sided test

(2)

The sample size for a one-sided test can be obtained from the inverse of the power computation,
n = (z1−β

√
νθ + z1−α

√
ν1)2/(e1 − eθ)2. The sample size for a two-sided test and the minimum

detectable odds ratio θ must be computed iteratively from (2). The starting value for the sample-size
computation is the sample-size estimate for the one-sided test. For the minimum detectable odds ratio,
the starting value is obtained from a bisection algorithm.

Let FM denote the ratio of the sample sizes for a study with a 1:M matched design relative to a
study with a 1:1 matched design. If n1 is the sample size required for a study with 1 control matched
to 1 case and nM is the sample size required for a study with M controls matched to 1 case, then
FM = nM/n1.
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power trend — Power analysis for the Cochran–Armitage trend test

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power trend computes sample size or power for the Cochran–Armitage trend test, a test for a
linear trend in a probability of response in J × 2 tables. It can accommodate unbalanced designs and
unequally spaced exposure levels (doses). With equally spaced exposure levels, a continuity correction
is available.

Quick start
Sample size for a test with alternative probabilities of 0.2, 0.3, and 0.4 using default power of 0.8

and significance level α = 0.05
power trend .2 .3 .4

Same as above, but for power of 0.9
power trend .2 .3 .4, power(.9)

Same as above, but for power of 0.7, 0.75, 0.8, 0.85, and 0.9
power trend .2 .3 .4, power(.7(.05).9)

Sample size for a one-sided test
power trend .2 .3 .4, onesided

Same as above, and apply continuity correction
power trend .2 .3 .4, onesided continuity

Power for a total sample size of 240 subjects
power trend .2 .3 .4, n(240)

Same as above, specified as 3 groups of 80 subjects each
power trend .2 .3 .4, npergroup(80)

Power for 100 subjects in group 1, 80 in group 2, and 60 in group 3
power trend .2 .3 .4, n1(100) n2(80) n3(60)

Graph of power against group sample size for group sizes of 70, 80, 90, and 100
power trend .2 .3 .4, npergroup(70(10)100) graph

Menu
Statistics > Power, precision, and sample size
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Syntax

Compute sample size

power trend probspec
[
, power(numlist) options

]
Compute power

power trend probspec, n(numlist)
[

options
]

where probspec is either a matrix matname containing group probabilities or a list of individual group
probabilities:

p1 p2

[
p3 . . . pJ

]
pj , where j = 1, 2, . . . , J , is the alternative group probability of observing a success for subjects
with the jth level of exposure. Each pj may be specified either as one number or as a list of
values in parentheses (see [U] 11.1.8 numlist).

matname is the name of a Stata matrix with J columns containing values of alternative group
probabilities. Multiple rows are allowed, in which case each row corresponds to a different set of J
group probabilities or, equivalently, column j corresponds to numlist for the jth group probabilities.

Alternative probabilities should be strictly monotonic: all increasing or all decreasing.
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power
nfractional allow fractional sample sizes
∗npergroup(numlist) number of subjects per group; implies balanced design
∗n#(numlist) number of subjects in group #
grweights(wgtspec) group weights; default is one for each group, meaning

equal group sizes
exposure(exposspec) strictly increasing exposure levels; default is equally spaced

ordinal values
continuity apply the continuity correction; default is no continuity

correction
onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Iteration

init(#) initial value for sample size for a two-sided test;
default is to use a sample-size estimate for a one-sided test

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.
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wgtspec Description

#1 #2 . . . #J J group weights. Weights must be positive and must be integers unless option
nfractional is specified. Multiple values for each group weight #j can be
specified as a numlist enclosed in parentheses.

matname matrix with J columns containing J group weights. Multiple rows are
allowed, in which case each row corresponds to a different set of J weights
or, equivalently, column j corresponds to a numlist for the jth weight.

exposspec Description

#1 #2 . . . #J J exposure levels. By default, equally spaced exposure levels of 1, 2, . . . , J
are used. Multiple values for each exposure level #j can be specified
as a numlist enclosed in parentheses.

matname matrix with J columns containing J exposure levels. Multiple rows are allowed;
in which case each row corresponds to a different set of J exposure levels
or, equivalently, column j corresponds to a numlist for the jth exposure level.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N total number of subjects N
N per group number of subjects per group N/Ng
N avg average number of subjects per group Navg

N# number of subjects in group # N#

N g number of groups Ng
p# probability of outcome for group # p#

x# exposure level # x#

grwgt# group weight # w#

all display all supported columns

Column beta is shown in the default table in place of column power if option beta() is specified.
Column N per group is shown in the default table only for balanced designs.
Columns N avg and N# are shown in the default table only for unbalanced designs.
Columns x# are shown only when exposure levels are specified using the exposure() option.
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Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS-2] power.

npergroup(numlist) specifies the group size. Only positive integers are allowed. This option implies
a balanced design. npergroup() cannot be specified with n(), n#(), or grweights().

n#(numlist) specifies the number of subjects in the #th group to be used for power determination.
Only positive integers are allowed. All group sizes must be specified. n#() cannot be specified
with n(), npergroup(), or grweights().

grweights(wgtspec) specifies J group weights for an unbalanced design. The weights may be
specified either as a list of values or as a matrix, and multiple sets of weights are allowed; see
wgtspec for details. The weights must be positive and must also be integers unless the nfractional
option is specified. grweights() cannot be specified with npergroup() or n#().

exposure(exposspec) specifies the J strictly increasing exposure levels. The default is to use equally
spaced values of 1, 2, . . . , J .

continuity requests that the continuity correction be applied. This option can be specified only for
equally spaced exposure levels. By default, no continuity correction is applied.

onesided, parallel; see [PSS-2] power.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies the initial value of the sample size for the sample-size computation for a two-sided
test. The default initial value is the sample size for the corresponding one-sided test.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power trend but is not shown in the dialog box:

notitle; see [PSS-2] power.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Using power trend

Alternative ways of specifying probabilities
Computing sample size
Computing power
Testing hypotheses about a trend in J×2 tables
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This entry describes the power trend command and the methodology for power and sample-size
analysis for Cochran–Armitage test for a linear trend in probability of response in J × 2 tables. See
[PSS-2] Intro (power) for a general introduction to power and sample-size analysis and [PSS-2] power
for a general introduction to the power command using hypothesis tests.

Introduction
Studies that examine the relationship between an exposure and a binary outcome have many

biomedical and social science applications. When exposure can be treated as ordinal levels, researchers
are often interested in whether there is a trend, or dose–response relationship, in exposure and a
binary outcome. The data are typically summarized in an ordered J × 2 table,

Binary response

Exposure level Success Failure

x1 m1 n1 −m1
x2 m2 n2 −m2

...
...

...
xJ mJ nJ −mJ

where xj is an ordinal level (table score) or rank score associated with the exposure (dose) received
by group j such that xj−1 < xj , mj is the number of successes in group j and nj is the number
of subjects in group j for each j = 1, 2, . . . , J . For equally spaced exposure levels, the levels are
often assigned ordinal numbers; xj = j, j = 1, 2, . . . , J .

A “success” simply means observing an event of interest. A dermatologist might wish to identify
dosage of a topical antibiotic (ordinal exposure) necessary to cure a skin infection (binary outcome).
A oncologist might conduct a case–control study to see if the number of first- and second-degree
relatives with a BRCA1 gene mutation is associated with the occurrence of breast cancer. An education
researcher might want to know if a higher number of unexcused absences from school is associated
with failing a school grade.

This entry describes power and sample-size analysis for inference using hypothesis testing about
the presence of a linear trend in probability of response in J × 2 tables. The Cochran–Armitage
trend test (Cochran 1954 and Armitage 1955) is commonly used to test for trend in J × 2 tables. It
is based on the linear logit model,

logit(pj) = a+ bxj

where pj is the hypothesized probability of a success in group j, and a and b are unknown coefficients.
These group probabilities can be estimated from our contingency table as p̂j = mj/nj .

The null hypothesis of interest is H0: p1 = p2 = · · · = pJ against the one-sided increasing-trend
alternative Ha: p1 < p2 < · · · < pJ , the one-sided decreasing-trend alternative Ha: p1 > p2 > · · · >
pJ , or the two-sided alternative Ha: p1 < p2 < · · · < pJ or p1 > p2 > · · · > pJ . For the linear
logit model, these hypothesis are equivalent to the null H0: b = 0 against the two-sided alternative
Ha: b 6= 0. If we believe that the probability of a success increases with exposure, the alternative
hypothesis is upper one-sided, Ha: b > 0. If we believe that the probability of a success decreases
with exposure, the alternative hypothesis is lower one-sided, Ha: b < 0. The test statistic for testing
H0: b = 0 is asymptotically normal under the null hypothesis.

Power and sample-size computations are based on the asymptotic distribution of the test statistic.
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Using power trend

power trend computes sample size or power for a Cochran–Armitage trend test in J × 2 tables.
All computations are performed for a two-sided hypothesis test where, by default, the significance
level is set to 0.05. You may change the significance level by specifying the alpha() option. You
can specify the onesided option to request a one-sided test.

To compute the total and individual group sample sizes, you must specify the alternative probabilities
of a success for J levels of exposure and, optionally, the power of the test in the power() option.
The default power is set to 0.8.

To compute power, you must specify the total sample size in the n() option and the alternative
probabilities.

There are multiple ways to specify the alternative probabilities; see Alternative ways of specifying
probabilities.

By default, all computations assume a balanced- or equal-allocation design. You can use the
grweights() option to specify an unbalanced design for power or sample-size computations. For
power computations, you can specify individual group sizes in options n1(), n2(), . . . , nJ() instead
of a combination of n() and grweights() to accommodate an unbalanced design. For a balanced
design, you can also specify the npergroup() option to specify a group size instead of a total sample
size in n().

Computations also assume that exposure levels are equally spaced and no continuity correction is
applied. When the exposure levels are equally spaced, you can use option continuity to request that
the continuity correction be applied. You may specify specific exposure levels in the exposure()
option. There are multiple ways of specifying the levels; any method described in Alternative ways
of specifying probabilities can also be applied to the specification of exposure levels.

Sample-size determination for a two-sided test requires iteration. The default initial values are
sample-size estimates for the corresponding one-sided test. You can use the init() option to specify
your own value. See [PSS-2] power for a description of other options that control the iteration process.

Alternative ways of specifying probabilities

There are multiple ways in which you can supply the group probabilities of success to power
trend.

You may specify each pj following the command line as

power trend p1 p2 . . . pJ
[
, . . .

]
At least two probabilities must be specified.

When you have many groups, you may find it more convenient to first define a Stata matrix as a
row or column vector and use it with power trend. The dimension of the matrix must be at least 2.
For example,

matrix define probmat = (p1, p2,. . ., pJ)

power trend probmat
[
, . . .

]
In some cases, you may wish to examine multiple alternative probabilities for one or more groups.

To do this, you can specify multiple values or a numlist for each of the group probabilities in
parentheses.

power trend (p1,1 p1,2 . . . p1,K1
) (p2,1 p2,2 . . . p2,K2

) . . .
[
, . . .

]
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Each of the numlists may contain different numbers of values, K1 6= K2 6= · · · 6= KJ . power trend
will produce results for all possible combinations of values across numlists. Results are presented in
a table. If instead you would like to treat each specification as a separate scenario, you may specify
the parallel option.

You can accommodate multiple sets of group probabilities in a matrix form by adding a row for
each specification. The columns of a matrix with multiple rows correspond to J group probabilities,
and values within each column j correspond to multiple specifications of the jth group probability
of a success or a numlist for the jth group probability.

For example, the following two specifications for three groups defined by their exposure levels
with two scenarios each are the same:

power trend (p1,1 p1,2) (p2,1 p2,2) (p3,1 p3,2)
[
, . . .

]
and

matrix define probmat = (p1,1, p2,1, p3,1 \ p1,2, p2,2, p3,2)

power trend probmat
[
, . . .

]
In the above specification, if you wish to specify a numlist only for the first group, you may define

your matrix as

matrix define probmat = (p1,1, p2,1, p3,1 \ p1,2, ., .)

and the results of

power trend probmat
[
, . . .

]
will be the same as the results of

power trend (p1,1 p1,2) p2,1 p3,1

[
, . . .

]
In the following sections, we describe the use of power trend accompanied by examples for

computing sample size and power.

Computing sample size

To compute sample size, you must specify the alternative probabilities of a success for each of
the J exposure levels and, optionally, the power of the test in the power() option. A default power
of 0.8 is assumed if power() is not specified.
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Example 1: Sample size for a two-sided trend test

Consider a study investigating the effectiveness of a new topical antibiotic for the treatment of
skin infections.

Suppose that in previous studies of the treatment, we observed the following proportions of
successfully treated cases at different doses. We may hypothesize that these represent the probability
of a successful treatment for each dose.

Doses/day Proportion Successes

1 0.80
2 0.85
3 0.90

We wish to determine the minimum sample size required for a clinical trial designed to detect a
dose–response trend with 80% power using a two-sided 5%-level test.

To compute the required sample size, we specify the values 0.80, 0.85, and 0.90 as the alternative
probabilities after the command name. We omit options alpha(0.05) and power(0.8) because the
specified values are their defaults.

. power trend .80 .85 .90
note: exposure levels are assumed to be equally spaced.

Performing iteration ...

Estimated sample size for a trend test
Cochran--Armitage trend test
H0: b = 0 versus Ha: b != 0; logit(p) = a + b*x

Study parameters:

alpha = 0.0500
power = 0.8000

N_g = 3
p1 = 0.8000
p2 = 0.8500
p3 = 0.9000

Estimated sample sizes:

N = 597
N per group = 199

A total sample of 597 individuals, 199 individuals per group, must be obtained to detect a linear trend
in probability of a successful treatment with 80% power using a two-sided 5%-level Cochran–Armitage
test.

Example 2: Sample size for a one-sided test

Continuing with example 1, suppose that the relevant research question is whether the probability
of a successful treatment increases with the number of doses. In this case, we would choose to use
a one-sided test because we are only interested in an increasing trend.

By specifying the onesided option, we obtain the sample size needed to detect a positive trend
with 80% power using a one-sided 5%-level Cochran–Armitage test.



510 power trend — Power analysis for the Cochran–Armitage trend test

. power trend 0.80 0.85 0.90, onesided
note: exposure levels are assumed to be equally spaced.

Estimated sample size for a trend test
Cochran--Armitage trend test
H0: b = 0 versus Ha: b > 0; logit(p) = a + b*x

Study parameters:

alpha = 0.0500
power = 0.8000

N_g = 3
p1 = 0.8000
p2 = 0.8500
p3 = 0.9000

Estimated sample sizes:

N = 471
N per group = 157

Switching to a one-sided hypothesis decreased our total sample-size requirement to 471 individuals.
Because the doses are equally spaced, it is possible to also perform a continuity correction. If we
wanted this correction, we would have also specified the continuity option.

Example 3: Unbalanced design

Continuing with example 1, we have assumed that the participants will be equally divided among
the treatment groups. Thus, we would randomize 199 participants to each treatment level. Suppose
that we instead plan to have twice as many subjects at the lowest treatment level. We can accommodate
this unbalanced design by specifying the corresponding group weights in the grweights() option.

. power trend 0.80 0.85 0.90, grweights(2 1 1)
note: exposure levels are assumed to be equally spaced.

Performing iteration ...

Estimated sample size for a trend test
Cochran--Armitage trend test
H0: b = 0 versus Ha: b != 0; logit(p) = a + b*x

Study parameters:

alpha = 0.0500
power = 0.8000

N_g = 3
p1 = 0.8000
p2 = 0.8500
p3 = 0.9000

Estimated sample sizes:

N = 600
Average N = 200.0000

N1 = 300
N2 = 150
N3 = 150

The required total sample size for this unbalanced design is 600 with 300 subjects in the group
receiving a single dose per day and 150 in the groups receiving two and three doses per day. The
average number of subjects per group is 200.
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Example 4: Sample size for unequally spaced exposures

It is possible that the groups do not represent equally spaced exposures. Consider an example
from Agresti (2013, 89) on the association between maternal drinking and congenital malformations,
which shows data originally from Graubard and Korn (1987). The data are reported in ranges rather
than actual values.

. use https://www.stata-press.com/data/r18/infants
(Congenital malformation data)

. list, noobs abbreviate(12)

consump cscore infants cases prmalform

0 0.0 17,114 48 0.0028
< 1 0.5 14,502 38 0.0026

1 to 2 1.5 793 5 0.0063
3 to 5 4.0 127 1 0.0079

>= 6 7.0 38 1 0.0263

Suppose we wish to use these data to design a new study to test whether there is an increasing trend
in the probability of congenital malformation as the average number of alcoholic beverages consumed
each week by the mother increases. We will use the onesided option as we did in example 2 to
obtain sample size with 80% power using a one-sided 5%-level Cochran–Armitage test.

To accurately compute the sample size that we will need, we should use the score associated with the
reported range. Agresti (2013) recommends using the midpoint of the range for a Cochran–Armitage
trend test and adopts an arbitrary value of 7 for the last interval in this case.

We can relax the assumption that the exposure levels for alcohol consumption are evenly spaced by
adding the exposure() option. Because we have 5 exposure levels, we use a matrix specification of
alternative probabilities and exposure levels. We can use the mkmat command to create the matrices
rather than retyping the values that we already have in our dataset; see [P] matrix mkmat.

. mkmat prmalform, matrix(p)

. matrix list p

p[5,1]
prmalform

r1 .00280472
r2 .00262033
r3 .00630517
r4 .00787402
r5 .02631579

. mkmat cscore, matrix(exposed)

. matrix list exposed

exposed[5,1]
cscore

r1 0
r2 .5
r3 1.5
r4 4
r5 7

Now, we specify the matrix of probabilities p after the command power trend and the matrix of
exposure levels exposed in option exposure().
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. power trend p, onesided exposure(exposed)

Estimated sample size for a trend test
Cochran--Armitage trend test
H0: b = 0 versus Ha: b > 0; logit(p) = a + b*x

Study parameters:

alpha = 0.0500
power = 0.8000

N_g = 5
p1 = 0.0028 x1 = 0.0000
p2 = 0.0026 x2 = 0.5000
p3 = 0.0063 x3 = 1.5000
p4 = 0.0079 x4 = 4.0000
p5 = 0.0263 x5 = 7.0000

Estimated sample sizes:

N = 1,030
N per group = 206

Warning: Alternative probabilities are not monotonic.

To conduct this study, we would need to recruit a total sample of 1,030 mothers with 206 mothers
at each level of consumption.

For this example, power trend reported a warning message that the specified alternative probabilities
are not monotonic. The power for the test depends on the specific alternative, which is p1 < p2 <
· · · < pJ in this example. Gross departures from the monotonicity assumption may lead to invalid
results. In our example, the violation of this assumption is very mild—the offending probabilities are
p1 = 0.0028 and p2 = 0.0026.

Computing power

To compute power, you must specify the alternative probabilities after the command name and the
total sample size in the n() option.

Example 5: Power of a two-sided Cochran–Armitage trend test

Returning to example 1, suppose that we anticipate obtaining a sample size of only 540 participants.
To compute the corresponding power, we specify the sample size of 540 in n():

. power trend 0.80 0.85 0.90, n(540)
note: exposure levels are assumed to be equally spaced.

Estimated power for a trend test
Cochran--Armitage trend test
H0: b = 0 versus Ha: b != 0; logit(p) = a + b*x

Study parameters:

alpha = 0.0500
N = 540

N per group = 180
N_g = 3
p1 = 0.8000
p2 = 0.8500
p3 = 0.9000

Estimated power:

power = 0.7592

Power decreases to 75.9% with the smaller sample of 540 subjects.
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Example 6: Multiple values of study parameters

We may want to check powers for several sample sizes. Continuing with example 5, we simply
list sample-size values in the option n(numlist); see [U] 11.1.8 numlist.

. power trend 0.80 0.85 0.90, n(540 570 600 630 660)
> table(, labels(N_per_group "N/N_g") formats("%6.2g"))
note: exposure levels are assumed to be equally spaced.

Estimated power for a trend test
Cochran--Armitage trend test
H0: b = 0 versus Ha: b != 0; logit(p) = a + b*x

alpha power N N/N_g N_g p1 p2 p3

.05 .76 540 180 3 .8 .85 .9

.05 .78 570 190 3 .8 .85 .9

.05 .8 600 200 3 .8 .85 .9

.05 .82 630 210 3 .8 .85 .9

.05 .84 660 220 3 .8 .85 .9

To shorten our default table, we specified a shorter label for the N per group column and reduced
the default display format for all table columns by specifying the corresponding options within the
table() option.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

Testing hypotheses about a trend in J× 2 tables

There are several ways to conduct a trend test in Stata. We demonstrate one method here. For
more examples showing the Cochran–Armitage trend test in Stata, see Sribney (1996).

Example 7: Testing hypotheses about trends

Returning to example 4, let’s test whether the proportion of infants with congenital malformations
increases as maternal alcohol consumption per week increases using Agresti’s data. (We converted
these data from wide to long as needed by further analysis.)
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. use https://www.stata-press.com/data/r18/infants2
(Congenital malformation data, long form)

. list, noobs sepby(consump)

consump cscore malform n

0 0.0 Has malformation 17066
0 0.0 No malformation 48

< 1 0.5 Has malformation 14464
< 1 0.5 No malformation 38

1 to 2 1.5 Has malformation 788
1 to 2 1.5 No malformation 5

3 to 5 4.0 Has malformation 126
3 to 5 4.0 No malformation 1

>= 6 7.0 Has malformation 37
>= 6 7.0 No malformation 1

In Stata, we can conduct a trend test by using the tabodds command; see [R] Epitab.

. tabodds malform cscore [fweight=n]

cscore Cases Controls Odds [95% conf. interval]

0 48 17066 0.00281 0.00212 0.00373
.5 38 14464 0.00263 0.00191 0.00361

1.5 5 788 0.00635 0.00263 0.01529
4 1 126 0.00794 0.00111 0.05678
7 1 37 0.02703 0.00371 0.19698

Test of homogeneity (equal odds): chi2(4) = 12.08
Pr>chi2 = 0.0168

Score test for trend of odds: chi2(1) = 6.57
Pr>chi2 = 0.0104

tabodds reports a χ2 value of 6.57 for the trend test. We reject the null hypothesis of no trend at
the 5% significance level; the p-value is 0.0104.

Note that the χ2 statistic reported by tabodds is for a score test for trend of odds. This test is
asymptotically equivalent to the Cochran–Armitage trend test. See Lachin (2011) and Agresti (2013)
for details.
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Stored results
power trend stores the following in r():
Scalars

r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N avg) average sample size
r(N#) number of subjects in group #
r(N per group) number of subjects per group
r(N g) number of groups
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(balanced) 1 for a balanced design, 0 otherwise
r(grwgt#) group weight #
r(p#) probability of a success in group #
r(x#) exposure level for group #
r(continuity) 1 if continuity correction is used, 0 otherwise
r(c) continuity-correction value
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample size for a two-sided test
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) trend
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
Assume that the probability of a success or a positive response, pj , follows a linear trend on the

logistic scale

pj =
ea+bxj

1 + ea+bxj

such that logit(pj) = a+ bxj , where xj denotes the exposure level (dose) for each of the J groups
and xj−1 < xj for j = 1, 2, . . . , J . b is the trend parameter about which we form our hypotheses.
Under the null hypothesis, H0: b = 0.

Power and sample-size computations for this test are based on Nam (1987).

Methods and formulas are presented under the following headings:
Computing power
Computing sample size
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Computing power

Let nj be the sample size at each exposure level for j = 1, 2, . . . , J and n =
∑J
j=1 nj denote

the total sample size. The observed number of successes mj at each of the J exposure levels follows
a binomial distribution; the mjs are assumed to be independent. Let M =

∑J
j=1mj denote the total

response. Then, the average response rate is given by p = M/n and the average nonresponse rate
by q = 1− p.

Let U =
∑J
j=1mjxj denote the total exposure-weighted response and x =

∑J
j=1 njxj/n be

the average exposure level in the sample. Denote the conditional mean of U given M as E0(U |M),
where E0(U |M) = p(

∑J
j=1 njxj). Let U ′ = U − E0(U |M) =

∑J
j=1mj(xj − x).

Given the significance level α and the probability of a type II error β, the power π = 1 − β is
computed as

π =

Φ(ul) for a lower one-sided test
1− Φ(uu) for an upper one-sided test
1− Φ(uu) + Φ(ul) for a two-sided test

(1)

where Φ(·) is the cumulative distribution function of the standard normal distribution. For a one-sided
test,

ul =
−E(U ′ + c) + zα

√
Var0(U ′)√

Var(U ′)
(2a)

and

uu =
−E(U ′ − c)− zα

√
Var0(U ′)√

Var(U ′)
(2b)

In (2a) and (2b), zα is the (α)th quantile of the standard normal distribution and c = (xj+1−xj)/2
in the presence of continuity correction or c = 0 in the absence of continuity correction. The correction
is not available with unequally spaced exposure levels. The power of the two-sided test uses α/2 to
determine the value of z when computing ul in (2a) and uu in (2b).

Under the null hypothesis, p1 = p2 = · · · = pJ . Therefore, we can define a common p =∑J
j=1 njpj/N and q = 1− p. The variance of U ′ under the null is

Var0(U ′) = Var(U ′|H0) = pq

J∑
j=1

nj(xj − x)2

and the variance of U ′ given p1, p2, . . . , pJ is

Var(U ′) =
J∑
j=1

njpjqj(xj − x)2
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Computing sample size

Let n1 denote the sample size of the reference group, the group with the lowest exposure level, and
rj = nj/n1 be the known ratio of sample size of the jth group to that of the reference group. Define
A =

∑J
j=1 rjpj(xj − x), and then sample size for a one-sided test without continuity correction is

given by

n1 =
1

A2

−zα
√√√√√pq


J∑
j=1

rj(xj − x)2

+ z1−β

√√√√ J∑
j=1

rjpjqj(xj − x)2


2

(3)

where zα is the (α)th quantile of the standard normal distribution.

The total sample size is computed as n =
∑J
j=1 nj = n1

∑J
j=1 rj .

The sample-size estimate n1c for the continuity-corrected statistic is found according to Nam (1987),
as follows:

n1c =


n1

4

(
1 +

√
1− 4c

An1

)2

for a lower one-sided test

n1

4

(
1 +

√
1 + 4c

An1

)2

for an upper one-sided test
(4)

For a two-sided hypothesis, n is computed by iteratively solving the two-sided power equation
given in (1) using the one-sided estimates as starting values. Without continuity correction, (3) is
used to obtain the one-sided sample estimates for the starting values; with a continuity correction,
(4) is used.
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Also see
[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] power, graph — Graph results from the power command

[PSS-2] power, table — Produce table of results from the power command

[PSS-5] Glossary
[R] Epitab — Tables for epidemiologists

[R] logit — Logistic regression, reporting coefficients
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power cox — Power analysis for the Cox proportional hazards model

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power cox computes sample size, power, or effect size for survival analyses that use Cox
proportional hazards (PH) models. The results are obtained for the test of the effect of one covariate
(binary or continuous) on time to failure adjusted for other predictors in a PH model. Effect size can
be expressed as a regression coefficient (or log hazard-ratio) or as a hazard ratio. The command can
account for the dependence between the covariate of interest and other model covariates, and it can
adjust computations for censoring and for withdrawal of subjects for the study.

Quick start
Sample size for a test of H0: β1 = 0 versus Ha: β1 6= 0 of a binary covariate in a Cox PH model

given alternative coefficient b1 of 0.4, no censoring, and default power of 0.8 and significance
level α = 0.05

power cox .4

Same as above, specified using hazard ratio of 1.492
power cox, hratio(1.492)

Sample size for a test of a continuous independent variable with b1 of 1.2 and standard deviation of
0.47

power cox 1.2, sd(.47)

Same as above, but for a model with multiple covariates and a squared multiple-correlation coefficient
R2 = 0.2 when the covariate of interest is regressed on all other covariates

power cox 1.2, sd(.47) r2(.2)

Sample size and estimated number of events for a study with censoring, assuming an 80% event rate
power cox .4, eventprob(.8)

Plot required sample size versus coefficient values of 0.2, 0.3, 0.4, 0.5, and 0.6
power cox (.2(.1).6), graph

Sample size assuming 12% dropout of subjects in the study
power cox .4, wdprob(.12)

Power of a test of a binary independent variable given sample size of 200
power cox .4, n(200)

Power of a one-sided test of a continuous independent variable with b1 of 1.2 and standard deviation
of 0.47

power cox 1.2, sd(.47) n(200) onesided

Effect size given power of 0.8 and sample sizes of 120, 130, 140, 150, and 160
power cox, power(.8) n(120(10)160)

519
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Menu
Statistics > Power, precision, and sample size

Syntax

Compute sample size

power cox
[

b1
] [

, power(numlist) options
]

Compute power

power cox
[

b1
]
, n(numlist)

[
options

]

Compute effect size (target regression coefficient)

power cox, n(numlist) power(numlist)
[

options
]

where b1 is the hypothesized regression coefficient (effect size) of a covariate of interest in a Cox
PH model desired to be detected by a test with a prespecified power. b1 may be specified either
as one number or as a list of values in parentheses (see [U] 11.1.8 numlist).
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) sample size; required to compute power or effect size
nfractional allow fractional sample size
∗hratio(numlist) hazard ratio (exponentiated b1) associated with a one-unit

increase in covariate of interest; specify instead of the
regression coefficient b1; default is hratio(0.5)

∗sd(numlist) standard deviation of covariate of interest; default is sd(0.5)
∗r2(numlist) squared coefficient of multiple correlation with other covariates;

default is r2(0)
∗eventprob(numlist) overall probability of an event (failure) of interest; default is

eventprob(1), meaning no censoring
∗failprob(numlist) synonym for eventprob()
∗wdprob(numlist) proportion of subjects anticipated to withdraw from the

study; default is wdprob(0)

effect(effect) specify the type of effect to display; default is
effect(coefficient)

direction(lower|upper) direction of the effect for effect-size determination; default is
direction(lower), which means that the postulated value
of the parameter is smaller than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.

effect Description

coefficient regression coefficient, b1; the default
hratio hazard ratio, exp(b1)
lnhratio log hazard-ratio; synonym for coefficient
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where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N number of subjects N
delta effect size δ
E total number of events (failures) E
b1 regression coefficient β1a

hratio hazard ratio ∆
lnhratio log hazard-ratio ln(∆)
sd standard deviation σ
R2 squared multiple-correlation coefficient R2

Pr E overall probability of an event (failure) pE
Pr w probability of withdrawals pw
target target parameter; synonym for b1
all display all supported columns

Column beta is shown in the default table in place of column power if option beta() is specified.
Column b1 is shown in the default table in place of column hratio when a regression coefficient is specified.
Columns R2 and Pr w are shown in the default table only if specified.

Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS-2] power. The nfractional option is
allowed only for sample-size determination.

hratio(numlist) specifies the hazard ratio (or exponentiated regression coefficient) associated with
a one-unit increase in the covariate of interest when other covariates are held constant. This value
defines an effect size or the minimal clinically significant effect of a covariate on the response to
be detected by a test with a certain power in a Cox PH model.

You can specify an effect size either as the regression coefficient b1, which is the command
argument, or as the hazard ratio in hratio(). The default is hratio(0.5). If you specify
hratio(#), the regression coefficient is computed as b1 = ln(#). If you specify a regression
coefficient b1, the hazard ratio is computed as exp(b1).

This option is not allowed with the effect-size determination.

sd(numlist) specifies the standard deviation of the covariate of interest. The default is sd(0.5).

r2(numlist) specifies the squared multiple-correlation coefficient between the covariate of interest and
other predictors in a Cox PH model. The default is r2(0), meaning that the covariate of interest
is independent of other covariates. This option defines the proportion of variance explained by the
regression of the covariate of interest on other covariates used in the Cox model (see [R] regress).
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eventprob(numlist) specifies the overall probability of a subject experiencing an event of interest
(or failing, or not being censored) in the study. The default is eventprob(1), meaning that all
subjects experience an event (or fail) in the study; that is, no censoring of subjects occurs.

failprob(numlist) is a synonym for eventprob().

wdprob(numlist) specifies the proportion of subjects anticipated to withdraw from a study. The
default is wdprob(0). wdprob() is allowed only with sample-size computation.

effect(effect) specifies the type of the effect size to be reported in the output as delta. effect is
one of coefficient, hratio, or lnhratio. By default, the effect size delta is the regression
coefficient, effect(coefficient).

direction(), onesided, parallel; see [PSS-2] power. direction(lower) is the default.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

The following option is available with power cox but is not shown in the dialog box:

notitle; see [PSS-2] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power cox
Computing sample size

Computing sample size in the absence of censoring
Computing sample size in the presence of censoring
Link to the sample-size and power computation for the log-rank test

Computing power
Computing effect size
Performing analyses using a Cox PH model

This entry describes the power cox command and the methodology for power and sample-size
analysis for survival analyses that use Cox PH models. See [PSS-2] Intro (power) for a general
introduction to power and sample-size analysis, and see [PSS-2] power for a general introduction
to the power command using hypothesis tests. See Survival data in [PSS-2] Intro (power) for an
introduction to power and sample-size analysis for survival data.

Introduction
Consider a survival study for which the goal is to investigate the effect of a covariate of interest,

x1, on time to failure, possibly adjusted for other predictors, x2, x3, . . . , xp, using the Cox PH model
(Cox 1972). The effect is commonly measured as a hazard ratio ∆ associated with a one-unit increase
in x1 when the other covariates x2, x3, . . . , xp are held constant. For a binary predictor x1, hazard
ratio ∆ corresponds to the two categories of x1 when the other covariates are held constant.
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In a Cox PH model, the hazard function is assumed to be

h(t) = h0(t)exp(β1x1 + β2x2 + · · ·+ βpxp)

where no distributional assumption is made about the baseline hazard h0(t). Under this assumption,
the regression coefficient β1 is the log hazard-ratio ln(∆) associated with a one-unit increase in x1

when the other predictors are held constant, and the exponentiated regression coefficient exp(β1) is
the hazard ratio ∆. Therefore, the effect of x1 on time to failure can be investigated by performing
an appropriate test based on the partial likelihood (Hosmer, Lemeshow, and May 2008; Klein and
Moeschberger 2003) for the regression coefficient β1 from a Cox model. Negative values of β1

correspond to the reduction in hazard for a one-unit increase in x1, and, conversely, positive values
correspond to the increase in hazard for a one-unit increase in x1.

power cox provides power and sample-size analysis for a test of the regression coefficient β1 in
a Cox model with the null hypothesis H0: (β1, β2, . . . , βp) = (0, β2, . . . , βp) against the alternative
Ha : (β1, β2, . . . , βp) = (β1a, β2, . . . , βp). The postulated or null coefficient value is zero and a
hypothesized or alternative coefficient value, specified as b1 with power cox, is β1a. (Similarly, ∆a

is a hypothesized or alternative value of the hazard ratio specified in the hratio() option.) The
methods used are derived for the score test of H0 versus Ha. In practice, however, the obtained
results may be used in the context of the Wald test as well because the two tests usually lead to
the same conclusions about the significance of the regression coefficient. Refer to The conditional
versus unconditional approaches in [PSS-2] power exponential for more details about the results based
on conditional and unconditional tests. From now on, we will refer to Ha as Ha : β1 = β1a for
simplicity.

power cox implements the method of Hsieh and Lavori (2000) for the sample-size and power
computation, which reduces to the method of Schoenfeld (1983) for a binary covariate. The sample
size is related to the power of a test through the number of events observed in the study; that is, for a
fixed number of events, the power of a test is independent of the sample size. As a result, the sample
size is estimated as the number of events divided by the overall probability of a subject failing in the
study.

You can use power cox to

• compute required number of events and sample size when you know power and effect size
expressed as a hazard ratio or regression coefficient (log hazard-ratio);

• compute power when you know sample size (number of events) and effect size expressed
as a hazard ratio or regression coefficient (log hazard-ratio); or

• compute effect size and display it as a regression coefficient, a log hazard-ratio, or a hazard
ratio when you know sample size (number of events) and power.

You can also account for the dependence between the covariate of interest and other model
covariates in your analysis, adjust results for censoring, and adjust results for withdrawal of subjects
from the study.

Using power cox

power cox computes sample size, power, or effect size for a test of one regression coefficient in a
Cox PH model, holding coefficients of the other covariates constant. All computations are performed
for a two-sided hypothesis test where, by default, the significance level is set to 0.05. You may change
the significance level by specifying the alpha() option. You can specify the onesided option to
request a one-sided test.
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To compute sample size, you specify an effect size and, optionally, power of the test in the
power() option. The default power is set to 0.8. By default, the computed sample size is rounded
up. You can specify the nfractional option to see the corresponding fractional sample size; see
Fractional sample sizes in [PSS-4] Unbalanced designs for an example. The nfractional option is
allowed only for sample-size determination.

To compute power, you must specify the sample size in the n() option and an effect size.

An effect size may be specified either as a regression coefficient supplied as the command argument
b1 or as a hazard ratio supplied in the hratio() option. If neither is specified, a hazard ratio of 0.5
is assumed.

To compute effect size, which may be expressed either as a regression coefficient (log hazard-ratio)
or hazard ratio, you must specify the sample size in the n() option; the power in the power() option;
and, optionally, the direction of the effect. The direction is lower by default, direction(lower),
which means, for example, that the target regression coefficient is assumed to be negative. This is
equivalent to the hazard ratio being less than one. You can change the direction to upper, which means
that the target regression coefficient is assumed to be positive, by specifying the direction(upper)
option. This is equivalent to the hazard ratio being greater than one.

As we mentioned above, the effect size for power cox may be expressed as a regression
coefficient or, equivalently, a log hazard-ratio, or as a hazard ratio. By default, the effect size, which
is labeled as delta in the output, corresponds to the regression coefficient. You can change this
by specifying the effect() option: effect(coefficient) (the default) reports the regression
coefficient, effect(hratio) reports the hazard ratio, and effect(lnhratio) reports the log
hazard-ratio.

The standard deviation of the covariate of interest is set to 0.5 by default and may be changed by
specifying the sd() option. In the presence of additional covariates in a Cox model, you can use the
r2() option to specify the correlation between the covariate of interest and other covariates in the
model.

All computations assume no censoring. In the presence of censoring, you can use the eventprob()
option to specify an overall probability of an event or failure. When computing sample size, you
can also adjust for withdrawal of subjects from the study by specifying the anticipated proportion of
withdrawals in the wdprob() option.

In the following sections, we describe the use of power cox accompanied by examples for
computing sample size, power, and effect size.

Computing sample size

To compute sample size and number of events, you must specify an effect size (a regression
coefficient or a hazard ratio) and, optionally, the power of the test in the power() option. A default
power of 0.8 is assumed if power() is not specified. A hazard ratio of 0.5 is assumed if an effect
size is not specified.

Computing sample size in the absence of censoring

First, consider a type I study in which all subjects fail by the end of the study (no censoring).
Then the required sample size is the same as the number of events required to be observed in a study.
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Example 1: Sample size for a model with a binary covariate of interest

Consider a survival study for which the goal is to investigate the effect of a treatment on survival
times of subjects. The covariate of interest is binary with levels defining whether a subject receives the
treatment (the experimental group) or a placebo (the control or placebo group). Prior to conducting
the study, investigators need an estimate of the sample size that ensures that a ratio of hazards of the
experimental group to the control group of 0.5 (β1a = ln(0.5) = −0.6931) can be detected with a
power of 80% with a two-sided, 5%-level test. Under 1:1 randomization, a subject has a 50% chance
of receiving the treatment. The corresponding binary covariate follows a Bernoulli distribution with
the probability of a subject receiving a treatment, p, equal to 0.5. As such, the standard deviation of
the covariate is {p(1 − p)}1/2 = 0.5. Because these study parameters correspond to default values
of power cox, to obtain the sample size for the above study, we simply type

. power cox

Estimated sample size for Cox PH regression
Wald test
H0: beta1 = 0 versus Ha: beta1 != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.6931 (coefficient)

hratio = 0.5000
sd = 0.5000

Censoring:

Pr_E = 1.0000

Estimated number of events and sample size:

E = 66
N = 66

Recall that, by default, a hazard ratio of 0.5, corresponding to the regression coefficient of
ln(0.5) = −0.6931, is assumed. From the output, we see that 66 events (failures) are required to be
observed in the study to ensure a power of 80% to detect an alternative Ha: β1 = −0.6931 using
a two-sided test with a 0.05 significance level. Because we have no censoring (Pr E = 1.0000), a
total of 66 subjects is needed in the study to observe 66 events.

Example 2: Alternative ways of specifying effect

In example 1, the effect size delta corresponds to the regression coefficient, the default. We can
use the effect(hratio) option to redefine delta as a hazard ratio.
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. power cox, effect(hratio)

Estimated sample size for Cox PH regression
Wald test
H0: beta1 = 0 versus Ha: beta1 != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.5000 (hazard ratio)

hratio = 0.5000
sd = 0.5000

Censoring:

Pr_E = 1.0000

Estimated number of events and sample size:

E = 66
N = 66

We can also obtain the same results as in example 1 by directly specifying the value of the
coefficient.

. power cox -0.6931

Estimated sample size for Cox PH regression
Wald test
H0: beta1 = 0 versus Ha: beta1 != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.6931 (coefficient)

b1 = -0.6931
sd = 0.5000

Censoring:

Pr_E = 1.0000

Estimated number of events and sample size:

E = 66
N = 66

The specified regression coefficient, b1, is reported in the output instead of the hazard ratio hratio.

Suppose now that the covariate of interest, x1, is continuous. Hsieh and Lavori (2000) extend the
formula of Schoenfeld (1983) for the number of events to the case when a covariate is continuous.
They also relax the assumption of Schoenfeld (1983) about the independence of x1 of other covariates
and provide an adjustment to the estimate of the number of events for possible correlation.

Example 3: Sample size for a model with a continuous covariate of interest

Consider an example from Hsieh and Lavori (2000) of a study of multiple-myeloma patients
treated with alkylating agents (Krall, Uthoff, and Harley 1975). Although in the original study of
multiple-myeloma patients, 17 of a total of 65 patients are censored; here we assume that all patients
die by the end of the study (a type I study, no censoring). Suppose that the covariate of interest, x1,
is the log of the amount of blood urea nitrogen (BUN) measured in a patient. The sample size for a
one-sided, 5%-level test to detect a coefficient (log hazard-ratio) of 1 for a unit increase in x1 with
a power of 80% is required. The standard deviation of x1 is 0.3126. To obtain an estimate of the
sample size, we supply b1, 1, as an argument, the sd(0.3126) option, and the onesided option to
request a one-sided test.
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. power cox 1, sd(0.3126) onesided

Estimated sample size for Cox PH regression
Wald test
H0: beta1 = 0 versus Ha: beta1 > 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.0000 (coefficient)

b1 = 1.0000
sd = 0.3126

Censoring:

Pr_E = 1.0000

Estimated number of events and sample size:

E = 64
N = 64

The estimate of the required number of events and the sample size is 64.

Based on the derivation in Schoenfeld (1983) and Hsieh and Lavori (2000), sample-size estimates
in the above examples may be used if other covariates are also present in the model as long as
these covariates are independent of the covariate of interest. The independence assumption holds for
randomized studies, but it is not true for nonrandomized studies often encountered in practice. Also,
in many studies, the main covariate of interest will often be correlated with other covariates. For
example, age and gender will often be confounded with the covariate of interest, such as smoking.
Below we investigate the effect of the confounding factor on the estimate of the required number of
events.

Example 4: Sample size when covariates are not independent

Continuing with example 3, suppose that we want to adjust the effect of the covariate BUN for
eight other covariates in the model. Hsieh and Lavori (2000) report the coefficient of determination
of R2 = 0.1837 from regression of the log of BUN, x1, on the eight other covariates. We specify this
value in the r2() option.

. power cox 1, sd(0.3126) onesided r2(0.1837)

Estimated sample size for Cox PH regression
Wald test
H0: beta1 = 0 versus Ha: beta1 > 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.0000 (coefficient)

b1 = 1.0000
sd = 0.3126
R2 = 0.1837

Censoring:

Pr_E = 1.0000

Estimated number of events and sample size:

E = 78
N = 78
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The number of events required to be observed in the study increases from 64 to 78 because of the
correlation between BUN and the other covariates. The new estimate is equal to the original estimate
multiplied by the variance inflation factor VIF = 1/(1 − R2). Likewise, the number of subjects
increases from 64 to 78.

Computing sample size in the presence of censoring

In the previous section, we assumed that all subjects experience an event by the end of the study.
In practice, the study often terminates after a fixed time, T . As a result, some subjects may not
experience an event by the end of the study (a type II study). These subjects are censored. To obtain
an estimate of the sample size in the presence of censoring, an estimate of the overall probability
of a subject not being censored is required. The investigator may already have such an estimate
from previous studies, or this probability may be computed as suggested in the literature (Schoenfeld
[1983], Lachin and Foulkes [1986], Barthel et al. [2006], and Barthel, Royston, and Babiker [2005],
also see [PSS-2] power logrank and [PSS-2] power exponential).

Example 5: Sample size in the presence of censoring

Consider the study from example 3. In reality, as mentioned earlier, 17 of a total of 65 patients
survived until the end of the study. The overall deathrate is estimated as 1 − 17/65 = 0.738. We
specify the overall probability of an event in the eventprob() option.

. power cox 1, sd(0.3126) onesided eventprob(0.738)

Estimated sample size for Cox PH regression
Wald test
H0: beta1 = 0 versus Ha: beta1 > 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.0000 (coefficient)

b1 = 1.0000
sd = 0.3126

Censoring:

Pr_E = 0.7380

Estimated number of events and sample size:

E = 64
N = 86

In the presence of censoring, the number of subjects required in the study increases from 64 to 86.
The number of events remains the same (64) because the only change in the study is the presence
of censoring, and censoring is assumed to be independent of failure (event) times.

Example 6: Sample size in the presence of censoring adjusting for other covariates

Continuing with example 5, if we also adjust for the correlation between the log of BUN and other
covariates, we obtain the estimate of the sample size to be 106.
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. power cox, hratio(2.7182) sd(0.3126) onesided eventprob(0.738) r2(0.1837)

Estimated sample size for Cox PH regression
Wald test
H0: beta1 = 0 versus Ha: beta1 > 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.0000 (coefficient)

hratio = 2.7182
sd = 0.3126
R2 = 0.1837

Censoring:

Pr_E = 0.7380

Estimated number of events and sample size:

E = 78
N = 106

In the above example, for no other reason than variety, rather than supplying the coefficient of
1, we used the hratio() option to specify the size of the effect expressed as the hazard ratio
exp(1) = 2.7182.

Technical note
Supplying the coefficient (log hazard-ratio) of 1 or −1 [or, respectively, the hazard ratio of

exp(1) = 2.7182 or exp(−1) = 1/2.7182 = 0.36788] is irrelevant for sample-size and power
determination because it results in the same estimates of sample size and power. However, the sign
of the coefficient (or the value of the hazard ratio being larger or smaller than one) is important at
the analysis stage because it determines the direction of the effect associated with a one-unit increase
of a covariate value.

Often, in practice, subjects may withdraw from a study before it terminates. As a result, the
information about the subjects’ response is lost. The proportion of subjects anticipated to withdraw
from a study may be specified by using wdprob(). Refer to Survival data in [PSS-2] Intro (power)
and Withdrawal of subjects from the study in [PSS-2] power logrank for a more detailed description
and an example.

Link to the sample-size and power computation for the log-rank test

The score test of the regression coefficient of a binary covariate in a Cox model with one binary
predictor is the same (in the absence of tied observations) as the log-rank test comparing survivor
functions of two groups defined by this covariate. Powers of the two tests are the same and so are
the formulas for the number of events (Schoenfeld 1983; Schoenfeld 1981). As such, the required
number of events computed by power cox for the Cox model and the Schoenfeld method of power
logrank for the log-rank test are the same.

Example 7: Using power logrank for a binary covariate

Using power logrank (see [PSS-2] power logrank) for the study described in example 1 yields
the same estimates of 66 for both the required number of events and the required sample size.
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. power logrank, schoenfeld

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
H0: ln(HR) = 0 versus Ha: ln(HR) != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.6931 (log hazard-ratio)

hratio = 0.5000

Censoring:

Pr_E = 1.0000

Estimated number of events and sample sizes:

E = 66
N = 66

N per group = 33

Schoenfeld (1983) demonstrates that the same formula can also be used to compute the required
number of events when other covariates are present in a Cox model, provided that the binary covariate
of interest is independent of these covariates and that the covariates are not extremely unbalanced.
Although the formulas for the number of events are the same whether covariates are present or
not, it is important to adjust for covariates when analyzing the data to avoid loss of power; see
Schoenfeld (1983) for details.

Væth and Skovlund (2004) demonstrate that for a continuous covariate of interest in a Cox model,
the sample-size formula for the log-rank test with the value of the hazard ratio equal to exp(2β1aσ) and
with equal-group allocation may be used to obtain the required sample size. Indeed, by substituting
the above expression for the hazard ratio into the sample-size formula for the log-rank test, one
obtains the sample-size formula derived in Hsieh and Lavori (2000) for a Cox model.

Example 8: Using power logrank for a continuous covariate

For example, we obtain the same estimate of the total number of events as computed in example 3
by using power logrank with the schoenfeld option and with the value of the hazard ratio equal
to exp(2β1aσ) = exp(2× 1× 0.3126) = 1.8686.

. power logrank, hratio(1.8686) onesided schoenfeld

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
H0: ln(HR) = 0 versus Ha: ln(HR) > 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.6252 (log hazard-ratio)

hratio = 1.8686

Censoring:

Pr_E = 1.0000

Estimated number of events and sample sizes:

E = 64
N = 64

N per group = 32
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Computing power

To compute power, you must specify the sample size in the n() option and an effect size (a
regression coefficient or a hazard ratio). A hazard ratio of 0.5 is assumed if an effect size is not
specified.

Example 9: Power determination

In example 6, the required number of patients was estimated to be 106 to ensure a power of 80%
for a 0.05 one-sided test to detect a value of 1 in the regression coefficient. Suppose that we can
recruit only 65 subjects. How does this reduction in sample size affect the power of the test to detect
the alternative Ha: β1 = 1?

. power cox 1, sd(0.3126) onesided r2(0.1837) eventprob(0.738) n(65)

Estimated power for Cox PH regression
Wald test
H0: beta1 = 0 versus Ha: beta1 > 0

Study parameters:

alpha = 0.0500
N = 65

delta = 1.0000 (coefficient)
b1 = 1.0000
sd = 0.3126
R2 = 0.1837

Number of events and censoring:

E = 48
Pr_E = 0.7380

Estimated power:

power = 0.6222

When the sample size decreases from 106 to 65, the corresponding number of events decreases
from 78 to 48, and power decreases from 80% to 62%.

Example 10: Multiple values of study parameters

Suppose we want to investigate the effect of a correlation between a covariate of interest and other
model covariates on power. Continuing with example 9, we can specify a list (see [U] 11.1.8 numlist)
of correlations in the r2() option.

. power cox 1, sd(0.3126) onesided r2(0.1(0.1)0.5) eventprob(0.738) n(65)

Estimated power for Cox PH regression
Wald test
H0: beta1 = 0 versus Ha: beta1 > 0

alpha power N E delta b1 sd R2 Pr_E

.05 .6588 65 48 1 1 .3126 .1 .738

.05 .6147 65 48 1 1 .3126 .2 .738

.05 .5662 65 48 1 1 .3126 .3 .738

.05 .5128 65 48 1 1 .3126 .4 .738

.05 .4547 65 48 1 1 .3126 .5 .738

As the correlation increases, the power decreases.
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For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

Computing effect size

Effect size δ for a test of a coefficient in a Cox PH model is defined as a coefficient (or, equivalently,
a log hazard-ratio) or a hazard ratio, corresponding to a one-unit change in the tested covariate holding
other model covariates constant.

Sometimes, we may be interested in determining the smallest effect that yields a statistically
significant result for prespecified sample size and power. In this case, both power and sample size
must be specified in options power() and n(), respectively. Additionally, you may also choose
the direction of the effect by specifying the direction() option. direction(lower), the default,
assumes β1a < 0 (or ∆a < 1), corresponding to the reduction in hazard for a unit change in a
covariate. direction(upper) assumes β1a > 0 (or ∆a > 1).

Example 11: Effect-size determination

Continuing with example 9, if a power of 62% is unacceptable to investigators, they may want to
determine the smallest value of the regression coefficient that can be detected with a preserved power
of 80%. To obtain this estimate, we specify both the n() and the power() options.

. power cox, sd(0.3126) onesided r2(0.1837) eventprob(0.738) n(65) power(0.8)
> direction(upper)

Estimated target coefficient for Cox PH regression
Wald test
H0: beta1 = 0 versus Ha: beta1 > 0

Study parameters:

alpha = 0.0500
power = 0.8000

N = 65
sd = 0.3126
R2 = 0.1837

Number of events and censoring:

E = 48
Pr_E = 0.7380

Estimated effect size and target coefficient:

delta = 1.2711 (coefficient)
b1 = 1.2711

With only 65 subjects, the smallest change in a coefficient (log hazards) for a one-unit increase in
the log of BUN, which can be detected with a preserved 80% power, is roughly 1.27, corresponding
to a 27% increase in the coefficient of 1 desired to be detected originally in example 6.
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Performing analyses using a Cox PH model

After the data are collected, one can use stcox and test to fit the Cox PH model and perform a
Wald test, as we demonstrate below.

Example 12: Performing a Wald test

We demonstrate how to perform a Wald test for the regression coefficient of the log of BUN
from a Cox model using the data from Krall, Uthoff, and Harley (1975) described in example 3.
myeloma.dta consists of 11 variables, described below.

. use https://www.stata-press.com/data/r18/myeloma
(Multiple myeloma patients)

. describe

Contains data from https://www.stata-press.com/data/r18/myeloma.dta
Observations: 65 Multiple myeloma patients

Variables: 11 11 Feb 2022 19:26

Variable Storage Display Value
name type format label Variable label

time float %9.0g Survival time from diagnosis to
nearest month + 1

died byte %9.0g 0 - Alive, 1 - Dead
lnbun float %9.0g Log BUN at diagnosis
hemo float %9.0g Hemoglobin at diagnosis
platelet byte %9.0g normal Platelets at diagnosis
age byte %9.0g Age (complete years)
lnwbc float %9.0g Log WBC at diagnosis
fracture byte %9.0g present Fractures at diagnosis
lnbm float %9.0g Log % of plasma cells in bone

marrow
protein byte %9.0g Proteinuria at diagnosis
scalcium byte %9.0g Serum calcium (mgm%)

Sorted by:

Before using stcox to fit a Cox model, we need to set up the data by using stset (see [ST] stset).
The analysis-time variable is time, and the failure variable is died.

. stset time, failure(died)

Survival-time data settings

Failure event: died!=0 & died<.
Observed time interval: (0, time]

Exit on or before: failure

65 total observations
0 exclusions

65 observations remaining, representing
48 failures in single-record/single-failure data

1,560.5 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 92

We include all nine covariates in the model and perform a fit by using stcox. Then we perform
a Wald test of H0: β1 = 1 for the coefficient of lnbun using test.
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. stcox lnbun hemo platelet age lnwbc fracture lnbm protein scalcium, nohr

Failure _d: died
Analysis time _t: time

Iteration 0: Log likelihood = -154.85799
Iteration 1: Log likelihood = -146.68114
Iteration 2: Log likelihood = -146.29446
Iteration 3: Log likelihood = -146.29404
Refining estimates:
Iteration 0: Log likelihood = -146.29404

Cox regression with Breslow method for ties

No. of subjects = 65 Number of obs = 65
No. of failures = 48
Time at risk = 1,560.5

LR chi2(9) = 17.13
Log likelihood = -146.29404 Prob > chi2 = 0.0468

_t Coefficient Std. err. z P>|z| [95% conf. interval]

lnbun 1.798354 .6483293 2.77 0.006 .5276519 3.069056
hemo -.1263119 .0718333 -1.76 0.079 -.2671026 .0144789

platelet -.2505915 .5074656 -0.49 0.621 -1.245206 .7440228
age -.0127949 .019475 -0.66 0.511 -.0509653 .0253755

lnwbc .3537259 .7131935 0.50 0.620 -1.044108 1.75156
fracture .3378767 .4072774 0.83 0.407 -.4603722 1.136126

lnbm .3589346 .4860298 0.74 0.460 -.5936663 1.311535
protein .0130672 .0261696 0.50 0.618 -.0382243 .0643587

scalcium .1259479 .1034015 1.22 0.223 -.0767153 .3286112

. test lnbun = 1

( 1) lnbun = 1

chi2( 1) = 1.52
Prob > chi2 = 0.2182

By default, stcox reports estimates of hazard ratios and the two-sided tests of the equality of
a coefficient to zero. We use the nohr option to request estimates of coefficients. From the output
table, a one-sided test of H0: β1 = 0 versus Ha: β1 > 0 is rejected at a 0.05 level (one-sided p-value
is 0.006/2 = 0.003 < 0.05). The estimate of the log-hazard difference associated with a one-unit
increase of lnbun is β̂1 = 1.8. From the test output, we cannot reject the hypothesis of H0: β1 = 1.

For these data, the observed effect size (coefficient) of 1.8 is large enough for the sample size of
65 to be sufficient to reject the null hypothesis of no effect of the BUN on the survival of subjects
(H0: β1 = 0). However, if the goal of the study were to ensure that the test detects the effect size
corresponding to the coefficient of at least 1 with 80% power, a sample of approximately 106 subjects
would have been required.
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Stored results
power cox stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) sample size
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(E) total number of events (failures)
r(hratio) hazard ratio under the alternative hypothesis
r(b1) regression coefficient under the alternative hypothesis
r(sd) standard deviation
r(R2) squared multiple correlation (if specified)
r(Pr E) probability of an event (failure) (if specified)
r(Pr w) proportion of withdrawals (if specified)
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise

Macros
r(type) test
r(method) cox
r(effect) coefficient, hratio, or lnhratio
r(direction) lower or upper
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
Let β1 denote the regression coefficient of the covariate of interest, x1, from a Cox PH model,

possibly in the presence of other covariates, x2, . . . , xp; and let ∆ denote the hazard ratio associated
with a one-unit increase of x1 when other covariates are held constant. Under the PH model,
β1 = ln(∆), where ln(∆) is the change in log hazards associated with a one-unit increase in x1

when other covariates are held constant.

Define E and n to be the total number of events (failures) and the total number of subjects
required in the study; σ to be the standard deviation of x1; pE to be the overall probability of an
event (failure); R2 to be the proportion of variance explained by the regression of x1 on x2, . . . , xp
(or squared multiple-correlation coefficient); pw to be the proportion of subjects withdrawn from a
study (lost to follow-up); α to be the significance level; β to be the probability of a type II error;
and z(1−α/k) and z(1−β) to be the (1− α/k)th and the (1− β)th quantiles of the standard normal
distribution, respectively, with k = 1 for the one-sided test and k = 2 for the two-sided test.

The total number of events required to be observed in a study to ensure a power of 1 − β of
a test to detect the regression coefficient, β1, with a significance level α, according to Hsieh and
Lavori (2000), is

E =
(z1−α/k + z1−β)2

σ2β2
1(1−R2)
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For the case of randomized study and a binary covariate x1, this formula was derived in Schoen-
feld (1983). The formula is an approximation and relies on a set of assumptions such as distinct
failure times, all subjects completing the course of the study (no withdrawal), and a local alternative
under which ln(∆) is assumed to be of order O(n−1/2). The formula is derived for the score test
but may be applied to other tests (Wald, for example) that are based on the partial likelihood of a Cox
model because all of these tests are asymptotically equivalent (Schoenfeld 1983; Hosmer, Lemeshow,
and May 2008; Klein and Moeschberger 2003).

The total sample size required to observe the total number of events, E, is given by

n =
E

pE

If the nfractional option is not specified, the computed sample size is rounded up.

To account for a proportion of subjects, pw, withdrawn from a study, a conservative adjustment
to the total sample size suggested in the literature (Freedman 1982; Machin and Campbell 2005) is
applied as follows:

nw =
n

1− pw

Withdrawal is assumed to be independent of administrative censoring and failure (event) times.

Power is estimated using the formula

1− β = Φ
[
|β1|σ{npE(1−R2)}1/2 − z1−α/k

]
where Φ(·) is the standard normal cumulative distribution function.

The estimate of the regression coefficient for a fixed power, 1 − β, and a sample size, n, is
computed as

β2
1 =

(z1−α/k + z1−β)2

σ2npE(1−R2)

Either of the two values |β1| and −|β1| satisfy the above equation. By default or if direc-
tion(lower) is specified, power cox reports the negative of the two values, which corresponds
to the reduction in a hazard of a failure for a one-unit increase in x1. If direction(upper) is
specified, power cox reports the positive of the two values, which corresponds to the increase in a
hazard of a failure for a one-unit increase in x1.

Similarly, if the effect(hratio) option is used, the corresponding value of the hazard ratio less
than 1 for direction(lower) and greater than 1 for direction(upper) is reported to reflect,
respectively, the reduction or increase in hazard for a one-unit increase in x1.
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power exponential — Power analysis for a two-sample exponential test

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power exponential computes sample size or power for survival analysis comparing two expo-
nential survivor functions by using parametric tests for the difference between hazards or, optionally,
for the difference between log hazards. It accommodates unequal allocation between the two groups,
flexible accrual of subjects into the study, and group-specific losses to follow-up. The accrual dis-
tribution may be chosen to be uniform or truncated exponential over a fixed accrual period. Losses
to follow-up are assumed to be exponentially distributed. Also the computations may be performed
using the conditional or the unconditional approach.

Quick start
Sample size for a test of exponential hazard rates H0: λ2 = λ1 versus Ha: λ2 6= λ1 given control-

group hazard rate h1 = 0.4, experimental-group hazard rate h2 = 0.2, equal group sizes, and no
censoring using default power of 0.8 and significance level α = 0.05

power exponential .4 .2

Same as above, specified using a hazard ratio of 0.5 instead of the experimental-group hazard rate
power exponential .4, hratio(.5)

Same as above, but specify hazard ratios of 0.4, 0.45, 0.5, and 0.55
power exponential .4, hratio(.4(.05).55)

Same as above, but display results in a graph
power exponential .4, hratio(.4(.05).55) graph

Total and per group sample sizes given twice as many observations in the experimental group as in
the control group

power exponential .4 .2, nratio(2)

Sample size with survival probabilities s1 = 0.65 and s2 = 0.8 and reference survival time 2
power exponential .65 .8, time(2)

Same as above, specified using survival probability s1 and a hazard ratio
power exponential .65, time(2) hratio(.52)

Same as above, but for a one-sided test with power of 0.95
power exponential .65, time(2) hratio(.52) onesided power(.95)

Sample size for a test of a log hazard-ratio given h1 = 0.4 and hazard ratio of 0.5
power exponential .4, hratio(.5) loghazard
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Same as above, but specify corresponding survival probabilities s1 and s2 at reference time 2
power exponential .45 .67, time(2) loghazard

Sample size for a design with a 10-year follow-up period and a 1-year accrual period
power exponential .4 .2, fperiod(10) aperiod(1)

Power for a test of H0: λ2 = λ1, with h1 = 0.4, h2 = 0.2, a sample size of 80, and default α = 0.05
power exponential .4 .2, n(80)

Power for a test of the log hazard-ratio with α = 0.01
power exponential .4, hratio(.5) loghazard n(200) alpha(.01)

Menu
Statistics > Power, precision, and sample size

Syntax

Compute sample size

Specify hazard rates

power exponential
[

h1

[
h2

] ] [
, power(numlist) options

]
Specify survival probabilities

power exponential s1

[
s2

]
, time(#)

[
power(numlist) options

]
Compute power

Specify hazard rates

power exponential
[

h1

[
h2

] ]
, n(numlist)

[
options

]
Specify survival probabilities

power exponential s1

[
s2

]
, time(#) n(numlist)

[
options

]
where

h1 is the hazard rate in the control group;

h2 is the hazard rate in the experimental group;

s1 is the survival probability in the control group at reference (base) time t; and

s2 is the survival probability in the experimental group at reference (base) time t.

h1, h2 and s1, s2 may each be specified either as one number or as a list of values in parentheses
(see [U] 11.1.8 numlist).
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options Description

Main
∗time(numlist) reference time t for survival probabilities s1 and s2
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1), meaning

equal group sizes
nfractional allow fractional sample sizes
∗hratio(numlist) hazard ratio (effect size) of the experimental to the control

group; default is hratio(0.5); may not be combined
with lnhratio() or hdifference()

∗lnhratio(numlist) log hazard-ratio (effect size) of the experimental to the control
group; may not be combined with hratio()
or hdifference()

∗hdifference(numlist) difference between the experimental-group and control-group
hazard rates (effect size); may not be combined with
hratio() or lnhratio()

loghazard power or sample-size computation for the test of the
difference between log hazards; default is the test of the
difference between hazards

unconditional power or sample-size computation using the
unconditional approach

effect(effect) specify the type of effect to display; default is method specific
onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)
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Accrual/Follow-up
∗studytime(numlist) duration of the study; if not specified, the study is assumed to

continue until all subjects experience an event (fail)
∗fperiod(numlist) length of the follow-up period; if not specified, the

study is assumed to continue until all subjects experience an
event (fail)

∗aperiod(numlist) length of the accrual period; default is aperiod(0),
meaning no accrual

∗aprob(numlist) proportion of subjects accrued by time ta under
truncated exponential accrual; default is aprob(0.5)

∗aptime(numlist) proportion of the accrual period, ta/aperiod(), by
which proportion of subjects in aprob() is accrued; default
is aptime(0.5)

∗atime(numlist) reference accrual time ta by which the proportion of
subjects in aprob() is accrued; default value is
0.5×aperiod()

∗ashape(numlist) shape of the truncated exponential accrual distribution;
default is ashape(0), meaning uniform accrual

∗lossprob(numlist) proportion of subjects lost to follow-up by time
losstime() in the control and the experimental groups;
default is lossprob(0), meaning no losses to follow-up

∗lossprob1(numlist) proportion of subjects lost to follow-up by time losstime()
in the control group; default is lossprob1(0), meaning
no losses to follow-up in the control group

∗lossprob2(numlist) proportion of subjects lost to follow-up by time losstime()
in the experimental group; default is lossprob2(0),
meaning no losses to follow-up in the experimental group

∗losstime(numlist) reference time tL by which the proportion of subjects
specified in lossprob(), lossprob1(), or lossprob2()
is lost to follow-up; default is losstime(1)

∗losshaz(numlist) loss hazard rates in the control and the experimental
groups; default is losshaz(0), meaning no losses to
follow-up

∗losshaz1(numlist) loss hazard rates in the control group; default is losshaz1(0),
meaning no losses to follow-up in the control group

∗losshaz2(numlist) loss hazard rates in the experimental group; default is
losshaz2(0), meaning no losses to follow-up in the
experimental group
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Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Reporting

show display group-specific numbers of events and, in the presence
of loss to follow-up, numbers of losses

show(showspec) display group-specific numbers of events, numbers of losses,
and event probabilities

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.

effect Description

hratio hazard ratio
lnhratio log hazard-ratio
hdifference difference between hazard rates
lnhdifference difference between log hazard-rates (equivalent to

log hazard-ratio)
difference synonym for hdifference

showspec Description

events numbers of events
losses numbers of losses
eventprobs event probabilities
all all the above

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).
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column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N total number of subjects N
N1 number of subjects in the control group N1

N2 number of subjects in the experimental group N2

nratio ratio of sample sizes, experimental to control N2/N1

delta effect size δ
s1 survival probability in the control group S1(t)
s2 survival probability in the experimental group S2(t)
time reference survival time t
h1 hazard rate in the control group λ1

h2 hazard rate in the experimental group λ2

hdiff difference between hazard rates λ2 − λ1

hratio hazard ratio ∆
lnhratio log hazard-ratio ln(∆)
studytime duration of a study T
fperiod follow-up period f
aperiod accrual period r
aprob proportion of subjects accrued by time atime

(or by aptime×100% of accrual period) pa
aptime proportion of an accrual period by which

aprob×100% of subjects are accrued ta/r
atime reference accrual time ta
ashape shape of the accrual distribution γ
E0 total number of events under H0 E0

E01 number of events in the control group under H0 E01

E02 number of events in the experimental group under H0 E02

Ea total number of events under Ha Ea
Ea1 number of events in the control group under Ha Ea1

Ea2 number of events in the experimental group under Ha Ea2

Pr E01 control-group probability of an event under H0 Pr E01

Pr E02 experimental-group probability of an event under H0 Pr E02

Pr Ea1 control-group probability of an event under Ha Pr Ea1

Pr Ea2 experimental-group probability of an event under Ha Pr Ea2

lossprob proportion of subjects lost to follow-up in the
control and experimental groups L(tL)

lossprob1 proportion of subjects lost to follow-up in the
control group L1(tL)

lossprob2 proportion of subjects lost to follow-up in the
experimental group L2(tL)
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losstime reference loss-to-follow-up time tL
losshaz loss hazard rate in the control and experimental groups η
losshaz1 loss hazard rate in the control group η1

losshaz2 loss hazard rate in the experimental group η2

L0 total number of losses under H0 L0

L01 number of losses in the control group under H0 L01

L02 number of losses in the experimental group under H0 L02

La total number of losses under Ha La
La1 number of losses in the control group under Ha La1

La2 number of losses in the experimental group under Ha La2

target target parameter; synonym for h2 or hratio
all display all supported columns

Column beta is shown in the default table in place of column power if option beta() is specified.
Column hratio is shown in the default table if option hratio() is specified or implied by the command.
Columns nratio and lnhratio are shown in the default table if the corresponding options are specified.
Columns h1, h2, s1, and s2 are available and are shown in the default table when the corresponding command

arguments are specified.
Columns time, studytime, fperiod, aperiod, aprob, aptime, atime, ashape, losshaz, losshaz1, losshaz2,

lossprob, lossprob1, lossprob2, and losstime are available and are shown in the default table when the
corresponding options are specified.

Columns containing numbers of events, numbers of losses, and probabilities of an event are displayed if specified or
if respective options show(events), show(losses), or show(eventprobs) are specified. If show is specified,
numbers of events and losses are displayed. If show(all) is specified, numbers of events, numbers of losses, and
probabilities are displayed.

Options

� � �
Main �

time(#) specifies a fixed time t (reference survival time) such that the proportions of subjects in
the control and experimental groups still alive past this time point are as specified in s1 and s2.
If this option is specified, the input parameters s1 and s2 are the survival probabilities S1(t) and
S2(t). Otherwise, the input parameters are assumed to be hazard rates λ1 and λ2 given as h1 and
h2, respectively.

alpha(), power(), beta(), n(), n1(), n2(), nratio(), nfractional; see [PSS-2] power.

hratio(numlist) specifies the hazard ratio (effect size) of the experimental group to the control group.
The default is hratio(0.5). This value typically defines the clinically significant improvement
of the experimental procedure over the control procedure desired to be detected by a test with a
certain power. If h1 and h2 (or s1 and s2) are given, hratio() is not allowed and the hazard
ratio is computed as h2/h1 [or ln(s2)/ ln(s1)]. Also see Alternative ways of specifying effect for
various specifications of an effect size.

This option is not allowed with the effect-size determination and may not be combined with
lnhratio() or hdifference().

lnhratio(numlist) specifies the log hazard-ratio (effect size) of the experimental group to the control
group. This value typically defines the clinically significant improvement of the experimental
procedure over the control procedure desired to be detected by a test with a certain power. If h1

and h2 (or s1 and s2) are given, lnhratio() is not allowed and the log hazard-ratio is computed
as ln(h2/h1) [or ln{ ln(s2)/ ln(s1)}]. Also see Alternative ways of specifying effect for various
specifications of an effect size.
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This option is not allowed with the effect-size determination and may not be combined with
hratio() or hdifference().

hdifference(numlist) specifies the difference between the experimental-group hazard rate and the
control-group hazard rate. It requires that the control-group hazard rate, the command argument
h1, is specified. hdifference() provides a way of specifying an effect size; see Alternative ways
of specifying effect for details.

This option is not allowed with the effect-size determination and may not be combined with
hratio() or lnhratio().

loghazard requests sample-size or power computation for the test of the difference between log
hazards (or the log hazard-ratio test). This option implies uniform accrual. By default, the test of
the difference between hazards is assumed.

unconditional requests that the unconditional approach be used for sample-size or power com-
putation; see The conditional versus unconditional approaches and Methods and formulas for
details.

effect(effect) specifies the type of the effect size to be reported in the output as delta. effect is one
of hratio, lnhratio, hdifference, or lnhdifference. By default, the effect size delta is a
hazard ratio, effect(hratio), for a hazard-ratio test and a log hazard-ratio, effect(lnhratio),
for a log hazard-ratio test (when schoenfeld is specified).

onesided, parallel; see [PSS-2] power.

� � �
Accrual/Follow-up �

studytime(numlist) specifies the duration of the study, T . By default, it is assumed that subjects
are followed up until the last subject experiences an event (fails). The (minimal) follow-up period
is defined as the length of the period after the recruitment of the last subject to the study until the
end of the study. If r is the length of an accrual period and f is the length of the follow-up period,
then T = r + f . You can specify only two of the three options studytime(), fperiod(), and
aperiod().

fperiod(numlist) specifies the follow-up period of the study, f . By default, it is assumed that
subjects are followed up until the last subject experiences an event (fails). The (minimal) follow-up
period is defined as the length of the period after the recruitment of the last subject to the study
until the end of the study. If T is the duration of a study and r is the length of an accrual
period, then the follow-up period is f = T − r. You can specify only two of the three options
studytime(), fperiod(), and aperiod().

aperiod(numlist) specifies the accrual period, r, during which subjects are to be recruited into the
study. The default is aperiod(0), meaning no accrual. You can specify only two of the three
options studytime(), fperiod(), and aperiod().

aprob(numlist) specifies the proportion of subjects expected to be accrued by time t∗ according to
the truncated exponential distribution. The default is aprob(0.5). This option is useful when the
shape parameter is unknown but the proportion of accrued subjects at a certain time is known.
aprob() is often used in conjunction with aptime() or atime(). This option may not be specified
with ashape() or loghazard and requires specifying a nonzero accrual period in aperiod().

aptime(numlist) specifies the proportion of the accrual period, t∗/r, by which the proportion of
subjects specified in aprob() is expected to be accrued according to the truncated exponential
distribution. The default is aptime(0.5). This option may not be combined with atime(),
ashape(), or loghazard and requires specifying a nonzero accrual period in aperiod().
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atime(numlist) specifies the time point t∗, reference accrual time, by which the proportion of subjects
specified in aprob() is expected to be accrued according to the truncated exponential distribution.
The default value is 0.5 × r. This option may not be combined with aptime(), ashape(), or
loghazard and requires specifying a nonzero accrual period in aperiod(). The value in atime()
may not exceed the value in aperiod().

ashape(numlist) specifies the shape, γ, of the truncated exponential accrual distribution. The default
is ashape(0), meaning uniform accrual. This option is not allowed in conjunction with loghazard
and requires specifying a nonzero accrual period in aperiod().

lossprob(numlist) specifies the proportion of subjects lost to follow-up by time losstime() in
the control and the experimental groups. The default is lossprob(0), meaning no losses to
follow-up. This option requires specifying aperiod() or fperiod() and may not be combined
with lossprob1(), lossprob2(), losshaz(), losshaz1(), or losshaz2().

lossprob1(numlist) specifies the proportion of subjects lost to follow-up by time losstime() in
the control group. The default is lossprob1(0), meaning no losses to follow-up in the control
group. This option requires specifying aperiod() or fperiod() and may not be combined with
lossprob(), losshaz(), losshaz1(), or losshaz2().

lossprob2(numlist) specifies the proportion of subjects lost to follow-up by time losstime() in
the experimental group. The default is lossprob2(0), meaning no losses to follow-up in the
experimental group. This option requires specifying aperiod() or fperiod() and may not be
combined with lossprob(), losshaz(), losshaz1(), or losshaz2().

losstime(numlist) specifies the time at which the proportion of subjects specified in lossprob()
or lossprob1() and lossprob2() is lost to follow-up, also referred to as the reference loss
to follow-up time. The default is losstime(1). This option requires specifying lossprob(),
lossprob1(), or lossprob2().

losshaz(numlist) specifies an exponential hazard rate of losses to follow-up common to both the
control and the experimental groups. The default is losshaz(0), meaning no losses to follow-
up. This option requires specifying aperiod() or fperiod() and may not be combined with
lossprob(), lossprob1(), lossprob2(), losshaz1(), or losshaz2().

losshaz1(numlist) specifies an exponential hazard rate of losses to follow-up, η1, in the control
group. The default is losshaz1(0), meaning no losses to follow-up in the control group. This
option requires specifying aperiod() or fperiod() and may not be combined with lossprob(),
lossprob1(), lossprob2(), or losshaz().

losshaz2(numlist) specifies an exponential hazard rate of losses to follow-up, η2, in the experimental
group. The default is losshaz2(0), meaning no losses to follow-up in the experimental group. This
option requires specifying aperiod() or fperiod() and may not be combined with lossprob(),
lossprob1(), lossprob2(), or losshaz().

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.
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� � �
Reporting �

show and show(showspec) specify to display additional output containing the numbers of events,
losses to follow-up, and event probabilities. If show is specified, group-specific numbers of events
and, in the presence of losses to follow-up, group-specific numbers of losses to follow-up are
displayed for the null and alternative hypotheses. With the table output, the numbers are displayed
as additional columns.

showspec may contain any combination of events, losses, eventprobs, and all. events
displays the group-specific numbers of events under the null and alternative hypotheses. losses,
if present, displays group-specific numbers of losses under the null and alternative hypotheses.
eventprobs displays group-specific event probabilities under the null and alternative hypotheses.
all displays all the above.

The following option is available with power exponential but is not shown in the dialog box:

notitle; see [PSS-2] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power exponential

Alternative ways of specifying effect
Computing sample size

Computing sample size in the absence of censoring
Computing sample size in the presence of censoring
Nonuniform accrual
Exponential losses to follow-up

The conditional versus unconditional approaches
Link to the sample-size and power computation for the log-rank test
Computing power
Testing hypotheses about two exponential survivor functions

This entry describes the power exponential command and the methodology for power and
sample-size analysis for a two-sample comparison of exponential survivor functions. See [PSS-2] Intro
(power) for a general introduction to power and sample-size analysis and [PSS-2] power for a general
introduction to the power command using hypothesis tests. See Survival data in [PSS-2] Intro (power)
for an introduction to power and sample-size analysis for survival data.

Introduction
Let S1(t) and S2(t) be the exponential survivor functions with hazard rates λ1 and λ2 in the

control and experimental groups, respectively. Define δ to be the treatment effect that can be expressed
as a difference, ψ = λ2 − λ1, between hazard rates or as the log of the hazard ratio (a difference
between log hazard-rates), ln(∆) = ln(λ2/λ1) = ln(λ2)− ln(λ1). Negative values of the treatment
effect δ imply the superiority of the experimental treatment over the standard (control) treatment.
Denote r and T to be the length of the accrual period and the total duration of the study, respectively.
Then, the follow-up period f is f = T − r.

Consider a study designed to compare the exponential survivor functions, S1(t) = e−λ1t and
S2(t) = e−λ2t, of the two treatment groups. The disparity in survivor functions may be tested using
the hazards λ1 and λ2 for the exponential model. Depending on the definition of the treatment effect
δ, two test statistics based on the difference and on the log ratio of the hazards may be used to conduct
tests of the difference between survivor functions using respective null hypotheses, H0: ψ = 0 and
H0: ln(∆) = 0.
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The basic formula for the sample-size and power calculations for the test of H0: ψ = 0 is proposed
by Lachin (1981). He also derives the equation relating the sample size and power allowing for
uniform accrual of subjects into the study over the period from 0 to r. Lachin and Foulkes (1986)
extend this formula to truncated exponential accrual over the interval 0 to r and exponential losses
to follow-up over the interval 0 to T .

The simplest method for the sample-size and power calculations for the test of H0: ln(∆) = 0
is presented by George and Desu (1974). Rubinstein, Gail, and Santner (1981) extend their method
to account for uniform accrual and exponential losses to follow-up and apply it to planning the
duration of a survival study. The formula that relates the sample size and power for this test and
takes into account the uniform accrual and exponential losses to follow-up is formulated by Lakatos
and Lan (1992), based on the derivations of Rubinstein, Gail, and Santner (1981).

You can use power exponential to

• compute required number of events and sample size when you know power and effect size;
or

• compute power when you know sample size (number of events) and effect size.

You can also supply effect size as hazard rates, survival probabilities, hazard ratio, or log hazard-
ratio; adjust results for censoring; adjust results for uniform or exponential accrual; adjust results for
group-specific exponentially distributed losses to follow-up; and compute results using the conditional
or unconditional approach.

Using power exponential

power exponential computes sample size or power for a test comparing two exponential
survivor functions. All computations are performed for a two-sided hypothesis test where, by default,
the significance level is set to 0.05. You may change the significance level by specifying the alpha()
option. You can specify the onesided option to request a one-sided test. By default, all computations
assume a balanced- or equal-allocation design; see [PSS-4] Unbalanced designs for a description of
how to specify an unbalanced design.

To compute a total sample size, you specify an effect size and, optionally, the power of the test in
the power() option. The default power is set to 0.8. By default, the computed sample size is rounded
up. You can specify the nfractional option to see the corresponding fractional sample size; see
Fractional sample sizes in [PSS-4] Unbalanced designs for an example. The nfractional option is
allowed only for sample-size determination.

To compute power, you must specify the total sample size in the n() option and an effect size.

An effect size may be specified as a hazard ratio in option hratio(), as a log hazard-ratio in
option lnhratio(), or as a difference between hazard rates in option hdifference(). By default,
a hazard ratio of 0.5 is assumed. For a fixed-duration study, the control-group hazard rate h1 or the
control-group survival probability s1 must also be specified. See Alternative ways of specifying effect
below for details.

Instead of the total sample size n(), you can specify individual group sizes in n1() and n2() or
specify one of the group sizes and nratio() when computing power or effect size. See Two samples
in [PSS-4] Unbalanced designs for more details.

If the time() option is specified, the command’s input parameters are the values of survival
probabilities in the control (or the less favorable) group, S1(t), and in the experimental group, S2(t),
at a fixed time, t (reference survival time), specified in time(), given as s1 and s2, respectively.
Otherwise, the input parameters are assumed to be the values of the hazard rates in the control group,
λ1, and in the experimental group, λ2, given as h1 and h2, respectively. If survival probabilities are
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specified, they are converted to hazard rates by using the formula for the exponential survivor function
and the value of time t in t().

By default, the estimates of sample sizes or power for the test of the difference between hazards
are reported. This may be changed to the test versus the difference between log hazards by using
the loghazard option. The default conditional approach may be replaced with the unconditional
approach by using unconditional; see The conditional versus unconditional approaches.

If the duration of a study (T ) in option studytime(), the length of a follow-up period (f ) in
option fperiod(), or the length of an accrual period (r) in option aperiod() is not specified, then
the study is assumed to continue until all subjects experience an event (failure), regardless of how
much time is required. If only studytime() is specified or only fperiod() is specified, the length
of the accrual period is assumed to be zero and the follow-up period equals the duration of the study.
If only aperiod() is specified, the length of the follow-up is assumed to be zero and the duration
of the study equals the length of the accrual period (continuous accrual until the end of the study). If
either aperiod() or fperiod() is specified with studytime(), the other one is computed using
the relationship T = r + f . If both aperiod() or fperiod() are specified, a fixed-duration study
of length T = r + f is assumed.

If an accrual period of length r is specified in the aperiod() option, uniform accrual over the
period [0, r] is assumed. The accrual distribution may be changed to truncated exponential when
the shape parameter is specified in ashape(). The combination of the aprob() and aptime() (or
atime()) options may be used in place of the ashape() option to request the desired shape of the
truncated exponential accrual. For examples, see Nonuniform accrual.

To take into account exponential losses to follow-up, the losshaz() or lossprob() and
losstime() options may be used. Instead of specifying losses common to both groups, you can use
options losshaz1() and losshaz2() or lossprob1() and lossprob2() to specify group-specific
losses to follow-up. For examples, see Exponential losses to follow-up.

Alternative ways of specifying effect

power exponential provides several ways to specify the disparity between the control-group
and experimental-group survivor functions for sample-size and power determinations. You can specify
group hazard rates or group survival probabilities at a fixed time t directly. If survival probabilities
are specified, they are converted to hazard rates by using the formula for the exponential survivor
function and the value of time t. Alternatively, you can specify the control-group hazard rate or the
control-group survival probability and an effect size expressed as a hazard ratio, a log hazard-ratio,
or a difference between the two hazard rates. The corresponding experimental-group hazard rate will
then be computed using the specified values of the control-group hazard rate and effect size.

By default, power exponential performs computation assuming a hazard ratio of 0.5. You
can use the hratio() option to specify a different value for the hazard ratio or you can use the
lnhratio() option to specify an effect size as a log hazard-ratio. If a control-group hazard rate
or survival probability is specified, you can also specify an effect size as a difference between the
experimental-group and control-group hazard rates in option hdifference().

For a fixed-duration study when not all subjects experience an event by the end of the study,
a control-group hazard rate or a control-group survival probability at time t must be specified in
addition to an effect size.
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You specify the control-group hazard rate h1 following the command name. You can use any of
the three options mentioned above to specify an effect size. The experimental-group hazard rate is
then computed using the specified values of the control-group hazard rate and effect size.

power exponential h1

[
, hratio() | lnhratio() | hdifference() . . .

]
Alternatively, you can specify the experimental-group hazard rate h2 directly.

power exponential h1 h2

[
, . . .

]
Instead of the control-group hazard rate, you can specify the control-group survival probability s1

at time t; the reference time t must be specified in option time().

power exponential s1 , time(#)
[
hratio() | lnhratio() | hdifference() . . .

]
Similarly to hazard rates, you can specify the experimental-group survival probability at time t

instead of an effect size.

power exponential s1 s2 , time(#)
[
. . .
]

The displayed effect size delta corresponds to the difference between hazard rates (or the hazard
ratio if the control-group hazard is not specified) for the hazard-difference test and to the log hazard-
ratio for the log hazard-ratio (or log hazard-difference) test when the loghazard option is specified.
You can change this by specifying the effect() option: effect(hratio) reports the hazard ratio,
effect(lnhratio) reports the log hazard-ratio, and effect(hdifference) reports the difference
between the experimental-group and control-group hazard rates.

In the following sections, we describe the use of power exponential accompanied by examples
for computing sample size and power.

Computing sample size

To compute sample size and number of events, you must specify an effect size and, optionally,
the power of the test in the power() option. A default power of 0.8 is assumed if power() is not
specified. A hazard ratio of 0.5 is assumed if an effect size is not specified. See Alternative ways of
specifying effect for various ways of specifying an effect size.

Consider the following two types of survival studies: the first type, a type I study, is when
investigators have enough resources to monitor the subjects until all of them experience an event
(failure) and the second type, a type II study, is when the study terminates after a fixed period of
time, regardless of whether all subjects experienced an event by that time.

Computing sample size in the absence of censoring

In this subsection we explore sample-size estimates using different approximations for a type I
study. Examples of sample-size determination for a type II study are presented in the next subsection.

In survival studies, the requirement for the sample size is based on the requirement to observe a
certain number of events (failures) to ensure a prespecified power of a test to detect a difference in
survivor functions. For a type I study, the number of subjects required for the study is the same as
the number of events required to be observed in the study because all subjects experience an event
by the end of the study.
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Example 1: Sample size using the Lachin method

Consider an example from Lachin (1981, 107). A clinical trial is to be conducted to compare the
survivor functions in the control and the experimental groups with a one-sided exponential test, based
on the difference between hazards, of the superiority of a new treatment (Ha: ψ < 0) for a disease
with moderate levels of mortality. Subjects in the control group receive a standard treatment and
subjects in the experimental group receive a new treatment. From previous studies the yearly hazard
rate for the standard treatment was found to be λ1 = 0.3, corresponding to 50% survival after 2.3
years. The investigators would like to know how many subjects are required to detect a reduction in
hazard to λ2 = 0.2 (Ha: ψ = −0.1), which corresponds to an increase in survival to 63% at 2.3
years, with 90% power, equal-sized groups, and a significance level, α, of 0.05.

To obtain the estimate of the sample size for the above study, we supply hazard rates 0.3 and 0.2
as arguments and specify the power(0.9) option for 90% power and the onesided option for a
one-sided test.

. power exponential 0.3 0.2, power(0.9) onesided
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)

Survival information:

h1 = 0.3000
h2 = 0.2000

Estimated sample sizes:

N = 218
N per group = 109

From the output, a total of 218 events (subjects) must be observed (recruited) in a study to ensure
a power of 90% of a one-sided exponential test to detect a 13% increase in survival probability of
subjects in the experimental group with α = 0.05. Our estimate of 218 of the total number of subjects
(109 per group) required for the study is the same as the one reported in Lachin (1981, 107).

Example 2: Sample size using the George–Desu method

Example 1 reports the sample size obtained using the approximation of Lachin (1981) for the test
based on the hazard difference. To obtain the sample size using the approximation of George and
Desu (1974), for the equivalent alternative Ha: ln(∆) = −0.4055 (a test based on the log of the
hazard ratio), we need to specify the loghazard option.
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. power exponential 0.3 0.2, power(0.9) onesided loghazard
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, log hazard-ratio, conditional
H0: ln(HR) = 0 versus Ha: ln(HR) < 0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.4055 (log hazard-ratio)

Survival information:

h1 = 0.3000
h2 = 0.2000

Estimated sample sizes:

N = 210
N per group = 105

The George–Desu method yields a slightly smaller estimate (210) of the total number of events
(subjects). George and Desu (1974) studied the accuracy of the two approximations based on ψ and
ln(∆) and concluded that the former is slightly conservative; that is, it gives slightly larger sample-size
estimates. The latter was found to be accurate to one or two units of the exact solution for equal-sized
groups.

Technical note
The approach from example 2 may also be used to obtain an approximation to the sample size

or power for the exact F test of equality of two exponential mean analysis (life) times (using the
relation between a mean and a hazard rate of the exponential distribution, µ = 1/λ).

For example, the sample size of 210 obtained above may be used as an approximation to the
number of subjects required in a study of which the goal is to detect an increase in a mean analysis
(life) time of the experimental group from 3.33 = 1/0.3 to 5 = 1/0.2 by using the one-sided 5%-level
F test with 90% power.

The test statistic of the F test is a ratio of two sample means from two exponential distributions
that has an exact F distribution. The George–Desu method is based on the normal approximation of
the distribution of the log of this test statistic. George and Desu (1974) studied this approximation
for equal-sized groups and some common values of significance levels, powers, and hazard ratios and
found it to be accurate to one or two units of the exact solution.

Example 3: Alternative ways of specifying effect

In Alternative ways of specifying effect, we described various ways in which the survival information
of the groups can be supplied to power exponential. Here we demonstrate several examples.

In example 1, we specified the survival information by supplying the control-group and experimental-
group hazard rates.

Instead of the experimental-group hazard rate, we can specify the difference between hazards in
the hdifference() option and obtain identical results.
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. power exponential 0.3, power(0.9) onesided hdifference(-0.1)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)

Survival information:

h1 = 0.3000
h2 = 0.2000

h2 - h1 = -0.1000

Estimated sample sizes:

N = 218
N per group = 109

We can redisplay the effect size delta as a hazard ratio instead of the hazard difference:

. power exponential 0.3, power(0.9) onesided hdifference(-0.1) effect(hratio)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = 0.6667 (hazard ratio)

Survival information:

h1 = 0.3000
h2 = 0.2000

h2 - h1 = -0.1000

Estimated sample sizes:

N = 218
N per group = 109

We can specify the hazard ratio of 0.2/0.3 = 0.66667 in the hratio() option instead of
hdifference(-0.1).

. power exponential 0.3, power(0.9) onesided hratio(0.6667)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)

Survival information:

h1 = 0.3000
h2 = 0.2000

hratio = 0.6667

Estimated sample sizes:

N = 218
N per group = 109
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We can obtain the same results from power exponential if we specify the control-group survival
probability of 0.5 at time t = 2.3.

. power exponential 0.5, time(2.3) power(0.9) onesided hratio(0.6667)
note: input parameters are survival probabilities.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1004 (hazard difference)

Survival information:

h1 = 0.3014 s1 = 0.5000
h2 = 0.2009 s2 = 0.6299

hratio = 0.6667 t = 2.3000

Estimated sample sizes:

N = 218
N per group = 109

We can also specify the experimental-group survival probability of 0.63 at time t = 2.3 directly
instead of specifying the hazard ratio.

. power exponential 0.5 0.63, time(2.3) power(0.9) onesided
note: input parameters are survival probabilities.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1005 (hazard difference)

Survival information:

h1 = 0.3014 s1 = 0.5000
h2 = 0.2009 s2 = 0.6300

t = 2.3000

Estimated sample sizes:

N = 218
N per group = 109

Example 4: Unbalanced design

By default, power exponential computes sample size for a balanced- or equal-allocation design.
If we know the allocation ratio of subjects between the groups, we can compute the required sample
size for an unbalanced design by specifying the nratio() option.

In example 1, we assumed the same numbers of subjects in the two groups. Suppose that we
anticipate to recruit twice as many subjects in the experimental group, that is, n2/n1 = 2. We specify
the nratio(2) option to compute the required sample size for the specified unbalanced design.
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. power exponential 0.3 0.2, power(0.9) onesided nratio(2)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)
N2/N1 = 2.0000

Survival information:

h1 = 0.3000
h2 = 0.2000

Estimated sample sizes:

N = 242
N1 = 81
N2 = 161

N2/N1 = 1.9877

We need a total of 242 subjects—81 in the control group and 161 in the experimental group.

When different from the specified allocation rate, power exponential also displays the actual
allocation rate corresponding to the reported rounded group sample sizes. If you wish, you can
specify the nfractional option to see sample sizes without rounding; see Fractional sample sizes
in [PSS-4] Unbalanced designs for more information.

Also see Two samples in [PSS-4] Unbalanced designs for more examples of unbalanced designs
for two-sample tests.

Computing sample size in the presence of censoring

Often in practice, investigators may not have enough resources to continue a study until all subjects
experience an event and, therefore, plan to terminate the study after a fixed period, T . Some subjects
may not experience an event by the end of the study, in which case the (administrative) censoring
of subjects occurs. In the presence of censoring, the number of subjects required in a study will be
larger than the number of events required to be observed in the study.

We investigate how terminating the study after some fixed period, T , before all subjects experience
an event affects the requirements for the sample size. The duration of a study is divided into two
phases: an accrual phase of a length r, during which subjects are recruited to the study, and a
follow-up phase of a length f , during which subjects are followed up until the end of the study and
no new subjects enter the study. The duration of a study, T , is the sum of the lengths of the two
phases.

Consider the following study designs. In the first study design, A, each subject is followed up for
a length of time T . Here the minimum follow-up time f is equal to T , and, consequently, r = 0. In
practice, however, subjects will often enter the study at random times and will be followed up until
the end of a study at time T , in which case the subjects observed later will have a shorter follow-up
than subjects who entered the study at the beginning. Therefore, the minimum follow-up time f will
be less than T , and r will be equal to T − f . In this case the length of the accrual period, r, must
be taken into account in the computations. In the presence of an accrual period, subjects may be
recruited continuously during a period of length T (r = T, f = 0) for the second study design, B.
Or subjects may be recruited for a fixed period, r, and then followed up for a period of time, f ,
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during which no new subjects enter the trial, so that the total duration of study is T = r + f (the
third design, C).

Example 5: Sample size in the presence of accrual and follow-up periods

Continuing with example 1, assume that the investigators have resources to continue the study for
only 5 years, T = 5. We specify the duration of the study in the studytime() option, and we tabulate
sample-size values for different lengths of an accrual period specified as a list (see [U] 11.1.8 numlist)
in aperiod(). For simplicity, we use the table() option to obtain a table containing only columns
power, N, aperiod, fperiod, h1, h2, and alpha.

. power exponential 0.3 0.2, power(0.9) onesided aperiod(0(1)5) studytime(5)
> table(power N aperiod fperiod h1 h2 alpha)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

power N aperiod fperiod h1 h2 alpha

.9 304 0 5 .3 .2 .05

.9 322 1 4 .3 .2 .05

.9 344 2 3 .3 .2 .05

.9 378 3 2 .3 .2 .05

.9 426 4 1 .3 .2 .05

.9 502 5 0 .3 .2 .05

Note: Uniform accrual; 50% accrued by 50% of accrual period.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

The first and the last entries of the above table correspond to the extreme cases of no accrual
(design A) and no follow-up (design B), respectively. When aperiod() is specified, a uniform
accrual is assumed that implies, for example, that 50% of the subjects will be recruited once 50% of
the accrual period has elapsed.

For design A, the estimate of the sample size, 304, is larger than the earlier estimate of 218 from
example 1. That is, if the study in example 1 terminates after 5 years, the requirement for the sample
size increases by 39% to ensure that the same number of 218 events is observed.

By trying different values of the follow-up period, we may find that a 30-year follow-up is required
if the investigators can recruit no more than 218 subjects: 30 years is required to observe an event
for all subjects in this study.
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. power exponential 0.3 0.2, power(0.9) onesided fperiod(30)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)

Accrual and follow-up information:

duration = 30.0000
follow-up = 30.0000

Survival information:

h1 = 0.3000
h2 = 0.2000

Estimated sample sizes:

N = 218
N per group = 109

Returning to our table, for designB, instead of being monitored for 5 years, subjects are continuously
recruited throughout those 5 years; the total sample size increases from 304 to 502. The reason for
such an increase is that the average analysis time (the time when a subject is at risk of a failure)
decreases from 5 to 2.5 and, therefore, reduces the probability of a subject failing by the end of the
study.

In general, the estimates of the total sample size steadily increase as the length of the follow-up
decreases. That is, the presence of a follow-up period reduces the requirement for the number of
subjects in the study. For example, a clinical trial with a 3-year uniform accrual and a 2-year follow-up
needs a total of 378 subjects (189 per group) compared with the total of 502 subjects required for a
study with no follow-up and a 5-year accrual.

Example 6: Uniform accrual

In example 5, we investigated the effect of the length of accrual on sample size for a type II
study when not all subjects experience an event by the end of the study. We specified the length
of the accrual period in option aperiod() and the duration of the study in option studytime().
When aperiod() is specified, the accrual distribution is assumed to be uniform, that is, 10% of the
subjects are expected to be recruited once 10% of the accrual period has elapsed, 25% of subjects are
expected to be recruited once 25% of the accrual period has elapsed, 50% of subjects are expected to
be recruited once 50% of the accrual period has elapsed, and so on. Let’s compute the sample size
for a study with a 3-year uniform accrual and a 2-year follow-up. We use options aperiod() and
fperiod() to specify the accrual and follow-up periods, respectively.
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. power exponential 0.3 0.2, power(0.9) onesided aperiod(3) fperiod(2)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)

Accrual and follow-up information:

duration = 5.0000
follow-up = 2.0000

accrual = 3.0000 (uniform)

Survival information:

h1 = 0.3000
h2 = 0.2000

Estimated sample sizes:

N = 378
N per group = 189

The required total sample size is 378 with 189 subjects per group. This is the same sample size we
obtained in the table from example 5 with the corresponding values of the accrual and follow-up
periods.

Nonuniform accrual

In the presence of an accrual period, power exponential performs computations assuming
uniform accrual over the period of time r, specified in aperiod(). The assumption of uniform
accrual may be relaxed by requesting a truncated exponential accrual over the interval 0 to r with
shape γ as specified in ashape(#). If an estimate of γ is unavailable, the proportion of subjects
expected to be recruited, G(t∗), may be specified in aprob() along with either the fixed time by
which the subjects were recruited, t∗, in option atime() or the elapsed proportion of the accrual
period, t∗/r, in option aptime(). This information is used to find the corresponding γ by using

G(t∗) = {1− exp(−γt∗)}/{1− exp(−γr)}

Also see Cleves, Gould, and Marchenko (2016, sec. 16.2) for more information, and see Methods
and formulas for technical details.

Example 7: Truncated exponential entry distribution

Continuing with example 6, we investigate the influence of nonuniform accrual on the estimate of
the sample size for a study with a 3-year accrual and a 2-year follow-up. Suppose that the recruitment
of subjects to the study is slow for most of the accrual period and increases rapidly toward the end
of the recruitment. Consider an extreme case of such an accrual corresponding to shape parameter
−6. The graph of a uniform entry distribution and an exponential entry distribution with shape −6
truncated over [0, 3] is given below.
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From the above graph, the accrual of subjects is extremely slow during most of the recruitment
period, with 70% of subjects being recruited within the last few months of a 3-year accrual period.
Stated another way, according to the graph, only 30% of subjects are expected to be recruited during
the first 2.8 years.

To obtain the estimate of the sample size for this study, we type

. power exponential 0.3 0.2, power(0.9) onesided aperiod(3) fperiod(2) ashape(-6)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)

Accrual and follow-up information:

duration = 5.0000
follow-up = 2.0000

accrual = 3.0000 (exponential)
accrual(%) = 50.00 (by time t*)

t* = 2.8845 (96.15% of accrual)

Survival information:

h1 = 0.3000
h2 = 0.2000

Estimated sample sizes:

N = 516
N per group = 258

and conclude that 516 subjects have to be recruited to this study. This sample size ensures 90% power
of a one-sided, 5%-level test to detect a reduction in hazard from 0.3 to 0.2 when the accrual of
subjects follows the considered truncated exponential distribution. For this extreme case of a negative
truncated exponential entry distribution (the concave entry distribution), the estimate of the sample,
516, increases substantially compared with an estimate of 378 from example 6, which assumes a
uniform entry distribution. On the other hand, a truncated exponential distribution with positive values
of the shape parameter (convex entry distribution) will reduce the requirement for the sample size
when compared with uniform accrual.
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Suppose that we do not know (or do not wish to guess) the value of the shape parameter. The
only information available to us from the above graph is that 30% of the subjects are expected to be
recruited in the first 2.8 years. We submit this information in the aprob() and atime() options, as
shown below, and obtain the same estimate of 516 for sample size.

. power exponential 0.3 0.2, power(0.9) onesided aperiod(3) fperiod(2)
> aprob(0.3) atime(2.8)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)

Accrual and follow-up information:

duration = 5.0000
follow-up = 2.0000

accrual = 3.0000 (exponential)
accrual(%) = 30.00 (by time t*)

t* = 2.8000 (93.33% of accrual)

Survival information:

h1 = 0.3000
h2 = 0.2000

Estimated sample sizes:

N = 516
N per group = 258

Another way we can supply the information about accrual is by specifying a percentage of subjects
expected to be recruited by a certain percentage of the accrual period. For example, and equivalent
to the above specification, 30% of subjects are expected to be recruited after 93.33% of the accrual
period has elapsed. We submit this information in the aprob() and aptime() options, and we again
obtain the same estimate of 516 for sample size.

. power exponential 0.3 0.2, power(0.9) onesided aperiod(3) fperiod(2)
> aprob(0.3) aptime(0.9333)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)

Accrual and follow-up information:

duration = 5.0000
follow-up = 2.0000

accrual = 3.0000 (exponential)
accrual(%) = 30.00 (by time t*)

t* = 2.7999 (93.33% of accrual)

Survival information:

h1 = 0.3000
h2 = 0.2000

Estimated sample sizes:

N = 516
N per group = 258
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Exponential losses to follow-up

Apart from administrative censoring, subjects may not experience an event by the end of the study
because of being lost to follow-up for various reasons. See Survival data in [PSS-2] Intro (power) and
[PSS-5] Glossary for a more detailed description. Rubinstein, Gail, and Santner (1981) and Lachin
and Foulkes (1986) extend sample-size and power computations to take into account exponentially
distributed losses to follow-up. In addition to being exponentially distributed, losses to follow-up are
assumed to be independent of the survival times.

Example 8: Exponential losses to follow-up

Suppose that in example 6, in the study with a 3-year uniform accrual and a 2-year follow-up,
yearly loss hazards in the control and the experimental groups are 0.2. A loss hazard rate common
to both groups can be specified in option losshaz().

. power exponential 0.3 0.2, power(0.9) onesided aperiod(3) fperiod(2)
> losshaz(0.2) show
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)

Accrual and follow-up information:

duration = 5.0000
follow-up = 2.0000

accrual = 3.0000 (uniform)

Survival information:

h1 = 0.3000
h2 = 0.2000

Loss-to-follow-up information:

lh1 = 0.2000
lh2 = 0.2000

Estimated expected number of events:

E|Ha = 213 E|H0 = 216
E1|Ha = 121 E1|H0 = 108
E2|Ha = 92 E2|H0 = 108

Estimated expected number of losses to follow-up:

L|Ha = 173 L|H0 = 172
L1|Ha = 81 L1|H0 = 86
L2|Ha = 92 L2|H0 = 86

Estimated sample sizes:

N = 500
N per group = 250

The sample size required for a one-sided, 5%-level test to detect a reduction in hazard from 0.3
to 0.2 with 90% power increases from 378 (see example 6) to 500. We observe that for the extreme
case of losses to follow-up, sample size increases significantly. A conservative adjustment commonly
applied in practice is n(1 + pL), where pL is the expected proportion of losses to follow-up in both
groups combined. For this example, pL may be computed as 0.5(0.369+0.324) ≈ 0.35 from table 2 of
Lachin and Foulkes (1986). Then the conservative estimate of the sample size is 378(1+0.35) = 510,
which is slightly greater than 500, the actual required sample size.
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We also requested that additional information about the expected number of events and losses
to follow-up under the null and under the alternative hypothesis be displayed by using the show
option. From the above output, a total of 173 subjects (81 from the control group and 92 from the
experimental group) are expected to be lost in the study with exponentially distributed losses with
yearly rates of 0.2 in each group under the alternative hypothesis.

If the proportion of subjects lost to follow-up by a fixed period in each group is available, it can
be supplied by using the lossprob() and losstime() options rather than loss to follow-up rates.
For example, in the above study approximately 33%, 1− exp(−0.2× 2) ≈ 0.33, of subjects in each
group are lost at time 2 (years). We can obtain the same estimates of sample sizes by typing

. power exponential 0.3 0.2, power(0.9) onesided aperiod(3) fperiod(2)
> lossprob(0.33) losstime(2)

(output omitted )

The conditional versus unconditional approaches

Denote δ to be the effect size, and denote λ̂1 and λ̂2 to be the maximum likelihood estimates of
the respective hazard-rate parameters. Consider the two effect-size estimators based on the difference
between the hazard rates, λ̂2 − λ̂1, and based on the log of the hazard ratio, ln(λ̂2/λ̂1). Both
estimators are asymptotically normal under the null and under the alternative hypothesis.

We adopt Chow et al. (2018, 156) terminology when referring to the conditional and unconditional
tests. The conditional test is the test that uses the constraint λ2 = λ1 (conditional on H0) when
computing the variance of the effect-size estimator under the null. The unconditional test is the test
that does not use the above constraint when computing the variance of the effect-size estimator under
the null. The score and the Wald tests are each one of the examples of conditional and unconditional
tests, respectively. Chow et al. (2018) note that neither of the two tests (conditional or unconditional)
is always more powerful than the other under the alternative hypothesis. Therefore, there is no definite
recommendation of which one is preferable in practice.

The conditional approach relies on the following relationship between sample size and power,
given in Lachin (1981), to compute estimates of required sample size or power,

|δ| = z1−α {Var(δ,H0)}1/2 + z1−β {Var(δ,Ha)}1/2

where z1−α and z1−β are the (1−α)th and the (1−β)th quantiles of the standard normal distribution,
and Var(δ,H0) and Var(δ,Ha) are the asymptotic variances under the null and under the alternative,
respectively, of the effect-size estimator, δ̂. This approach uses the variance of the estimator conditional
on the hypothesis type.

The unconditional approach replaces Var(δ,H0) with Var(δ,Ha) in the above and uses the variance
under the alternative to compute the estimates of sample size and power:

|δ| = (z1−α + z1−β) {Var(δ,Ha)}1/2

Therefore, the resulting formulas based on the two approaches are different.

Lakatos and Lan (1992) formulate the sample-size formula for the log hazard-ratio test based
on the method of Rubinstein, Gail, and Santner (1981). This formula is based on the unconditional
approach. Lachin and Foulkes (1986) provide the sample-size formula for the test of the log of the
hazard ratio that uses the conditional approach. They also present both conditional and unconditional
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versions of formulas for the test based on the difference between hazards. As noted by Lachin and
Foulkes (1986), sample sizes estimated based on the unconditional approach will be larger than the
estimates based on the conditional approach for equal-sized groups.

Both approaches are available with power exponential; the conditional is the default and the
unconditional may be requested by specifying the unconditional option. Refer to Methods and
formulas for the formulas underlying these approaches.

Example 9: Sample size using the Rubinstein–Gail–Santner method

Consider the following scenario in Lakatos and Lan (1992, table I). A 10-year survival study with a
1-year accrual period and a 9-year follow-up is conducted to compare the survivor functions of the two
groups by using a two-sided, 0.05 exponential test based on the log of the hazard ratio. The probability
of surviving to the end of a study for subjects in the control group is 0.8 [S1(t) = 0.8, t = 10].
Subjects are recruited uniformly over the interval [0, 1]. Lakatos and Lan (1992) report an estimate
of 664 for the sample size required to detect a change in the hazard of the experimental group
corresponding to the hazard ratio ∆ = 0.5 with 90% power by using the Rubinstein–Gail–Santner
(1981) method. To obtain the estimates according to this method, we need to specify both loghazard
and unconditional.

. power exponential 0.8, t(10) power(0.9) aperiod(1) fperiod(9) loghazard
> unconditional
note: input parameters are survival probabilities.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, log hazard-ratio, unconditional
H0: ln(HR) = 0 versus Ha: ln(HR) != 0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.6931 (log hazard-ratio)

Accrual and follow-up information:

duration = 10.0000
follow-up = 9.0000

accrual = 1.0000 (uniform)

Survival information:

h1 = 0.0223 s1 = 0.8000
h2 = 0.0112 s2 = 0.8944

hratio = 0.5000 t = 10.0000

Estimated sample sizes:

N = 664
N per group = 332

Because the default value of the hazard ratio is 0.5, we omit the hratio(0.5) option in the above.
From the output, we obtain the same estimate of 664 of the sample size as reported in Lakatos and
Lan (1992).

In the absence of censoring, the estimates of the sample size or power based on the test of log of
the hazard ratio are the same for the conditional and the unconditional approaches. For example, both

. power exponential 0.8, t(10) power(0.9) loghazard
(output omitted )

and
. power exponential 0.8, t(10) power(0.9) loghazard unconditional

(output omitted )
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produce the same estimate of the sample size (88). The asymptotic variance of maximum likelihood
estimates of the log of the hazard ratio does not depend on hazard rates when there is no censoring
and, therefore, does not depend on the type of hypothesis, Var(δ̂, H0) = Var(δ̂, Ha) = 2/N .

Link to the sample-size and power computation for the log-rank test

Example 10: Sample size using the Freedman and the Schoenfeld methods

Continuing with examples 1 and 2, Lachin (1981, 106) gives another approximation to obtain the
estimate of the sample size under the equal-group allocation. This approximation coincides with the
formula derived by Freedman (1982) for the number of events in the context of the log-rank test. We
can obtain such an estimate by using power logrank and by specifying the hazard ratio of 0.66667
computed earlier.

. power logrank, hratio(0.66667) power(0.9) onesided

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = 0.6667 (hazard ratio)

hratio = 0.6667

Censoring:

Pr_E = 1.0000

Estimated number of events and sample sizes:

E = 216
N = 216

N per group = 108

The estimate, 216, of the sample size is the same as given in Lachin (1981, 107) and is slightly
smaller than the estimate, 218, obtained in example 1 and larger than the estimate, 210, obtained
using the George–Desu method in example 2.

The approximation due to George and Desu (1974) is the same as the approximation to the number
of events derived by Schoenfeld (1981) in application to the log-rank test. We can confirm that by
typing

. power logrank, hratio(0.66667) power(0.9) onesided schoenfeld

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
H0: ln(HR) = 0 versus Ha: ln(HR) < 0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.4055 (log hazard-ratio)

hratio = 0.6667

Censoring:

Pr_E = 1.0000

Estimated number of events and sample sizes:

E = 210
N = 210

N per group = 105
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We obtain the same estimate of 210 as when using power exponential with the loghazard option
in example 2.

Computing power

Sometimes the number of subjects available for enrollment into the study is limited. In such cases,
the researchers may want to investigate with what power they can detect a desired treatment effect
for a given sample size.

To compute power, you must specify the sample size in the n() option and an effect size. A hazard
ratio of 0.5 is assumed if an effect size is not specified. Also see Alternative ways of specifying effect
for various ways of specifying an effect size.

Example 11: Power determination

We verify the power computation for the study from example 9. We expect the power estimate to
be close to 0.9.

The only thing we change in the power exponential command from example 9 is replacing the
power(0.9) option with the n(664) option.

. power exponential 0.8, t(10) n(664) aperiod(1) fperiod(9)
> loghazard unconditional
note: input parameters are survival probabilities.

Estimated power for two-sample comparison of survivor functions
Exponential test, log hazard-ratio, unconditional
H0: ln(HR) = 0 versus Ha: ln(HR) != 0

Study parameters:

alpha = 0.0500
N = 664

N per group = 332
delta = -0.6931 (log hazard-ratio)

Accrual and follow-up information:

duration = 10.0000
follow-up = 9.0000

accrual = 1.0000 (uniform)

Survival information:

h1 = 0.0223 s1 = 0.8000
h2 = 0.0112 s2 = 0.8944

hratio = 0.5000 t = 10.0000

Estimated power:

power = 0.9000

We obtain the estimate of power 0.9.
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Testing hypotheses about two exponential survivor functions

Example 12: Using streg to perform the log hazard-ratio test

In this example, we demonstrate the importance of sample-size computations to ensure a high power
of a test to detect a difference between exponential survivor functions. We consider an asymptotic
Wald (or normal z) test to test whether the log of the hazard ratio is zero.

Continuing with example 11, suppose that the investigators have only 100 subjects available for
the study. As we see below, the power to detect a 50% risk reduction in a hazard of the experimental
group (the hazard ratio of 0.5) decreases from 90% to 24%:

. power exponential 0.8, t(10) n(100) aperiod(1) fperiod(9)
> loghazard unconditional
note: input parameters are survival probabilities.

Estimated power for two-sample comparison of survivor functions
Exponential test, log hazard-ratio, unconditional
H0: ln(HR) = 0 versus Ha: ln(HR) != 0

Study parameters:

alpha = 0.0500
N = 100

N per group = 50
delta = -0.6931 (log hazard-ratio)

Accrual and follow-up information:

duration = 10.0000
follow-up = 9.0000

accrual = 1.0000 (uniform)

Survival information:

h1 = 0.0223 s1 = 0.8000
h2 = 0.0112 s2 = 0.8944

hratio = 0.5000 t = 10.0000

Estimated power:

power = 0.2414

To demonstrate the implication of this reduction, consider the following example. We generate the
data according to the study from example 11 with the following code:

program simdata
args n h1 h2 r
set obs ‘n’
generate double entry = ‘r’*runiform()
generate double u = runiform()
/* random allocation to two groups of equal sizes */
generate double u1 = runiform()
generate double u2 = runiform()
sort u1 u2, stable
generate byte drug = (_n<=‘n’/2)
/* exponential failure times with rates h1 and h2 */
generate double failtime = entry - ln(1-u)/‘h1’ if drug==0
replace failtime = entry - ln(1-u)/‘h2’ if drug==1

end

. clear

. set seed 234

. quietly simdata 100 0.0223 0.0112 1
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The entry times of subjects are generated from a uniform [0, 1) distribution and stored in variable
entry. The subjects are randomized to two groups of equal size of 50 subjects each. The survival
times are generated from exponential distribution with the hazard rate of − ln(0.8)/10 = 0.0223 in
the control group, drug = 0, and the hazard rate of 0.5×0.0223 = 0.0112 in the experimental group,
drug = 1, conditional on subjects’ entry times in entry.

Before analyzing these survival data, we need to set up the data properly using stset. The
failure-time variable is failtime. The study terminates at t = 10, so we use exit(time 10) with
stset to specify that all failure times past 10 are to be treated as censored. Because subjects enter
the study at random times (entry) and become at risk of a failure upon entering the study, we also
specify the origin(entry) option to ensure that the analysis time is adjusted for the entry times.
For more details, see [ST] stset.

. stset failtime, exit(time 10) origin(entry)

Survival-time data settings

Failure event: (assumed to fail at time=failtime)
Observed time interval: (origin, failtime]

Exit on or before: time 10
Time for analysis: (time-origin)

Origin: time entry

100 total observations
0 exclusions

100 observations remaining, representing
7 failures in single-record/single-failure data

921.825 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 9.990494

To perform the log hazard-ratio test, we fit an exponential regression model on drug by using
streg (see [ST] streg). We can express the log of the hazard ratio in terms of regression coefficients as
follows: ln(∆) = ln(λ2/λ1) = ln {exp(β0 + β1)/exp(β0)} = β1, where β0 and β1 are the estimated
coefficients for the constant and drug in the regression model. Then the test of H0: ln(∆) = 0 may
be rewritten in terms of a coefficient on drug as H0: β1 = 0. This test is part of the standard output
after streg.
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. streg drug, distribution(exponential) nohr

Failure _d: 1 (meaning all fail)
Analysis time _t: (failtime-origin)

Origin: time entry
Exit on or before: time 10

Iteration 0: Log likelihood = -29.718762
Iteration 1: Log likelihood = -29.049311
Iteration 2: Log likelihood = -29.014323
Iteration 3: Log likelihood = -29.014222
Iteration 4: Log likelihood = -29.014222

Exponential PH regression

No. of subjects = 100 Number of obs = 100
No. of failures = 7
Time at risk = 921.8249

LR chi2(1) = 1.41
Log likelihood = -29.014222 Prob > chi2 = 0.2352

_t Coefficient Std. err. z P>|z| [95% conf. interval]

drug .9428118 .83666 1.13 0.260 -.6970117 2.582635
_cons -5.453234 .7071068 -7.71 0.000 -6.839137 -4.06733

From the output table above, the p-value for a two-sided test of the coefficient for drug, 0.260, is
greater than 0.05. On that basis, we do not have evidence to reject the null hypothesis of no difference
between the two exponential survivor functions. Therefore, we make an incorrect decision because
we simulated the data with different group hazard rates. If we were to repeat this, say, 100 times,
using different datasets simulated according to the alternative Ha : ln(∆) = ln(0.5) = −0.6931
(see [R] simulate), for roughly 76 of them we would have failed to reject the null hypothesis of no
difference (a type II error). Therefore, more subjects are required to be able to detect the log of the
hazard ratio of −0.4055 in this study.
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Example 13: Using results from streg to perform the Wald test of hazard difference

We obtain the power of the test based on the difference between hazards for the study in example 12
(omit the loghazard option from the syntax of power exponential).

. power exponential 0.8, t(10) n(100) aperiod(1) fperiod(9) unconditional
note: input parameters are survival probabilities.

Estimated power for two-sample comparison of survivor functions
Exponential test, hazard difference, unconditional
H0: h2 = h1 versus Ha: h2 != h1

Study parameters:

alpha = 0.0500
N = 100

N per group = 50
delta = -0.0112 (hazard difference)

Accrual and follow-up information:

duration = 10.0000
follow-up = 9.0000

accrual = 1.0000 (uniform)

Survival information:

h1 = 0.0223 s1 = 0.8000
h2 = 0.0112 s2 = 0.8944

hratio = 0.5000 t = 10.0000

Estimated power:

power = 0.2458

We obtain a power estimate of 0.2458, which is close to 0.2414 from example 12.

To test the difference between hazard rates by using the Wald test, we express this difference in
terms of coefficients, λ2−λ1 = exp(β0){exp(β1)− 1}, and we use testnl ([R] testnl) after streg
to perform the nonlinear hypothesis test of H0: exp(β0){exp(β1)− 1} = 0.

. testnl exp(_b[_cons])*(exp(_b[drug])-1) = 0

(1) exp(_b[_cons])*(exp(_b[drug])-1) = 0

chi2(1) = 1.35
Prob > chi2 = 0.2451

We obtain the same conclusions from the Wald test based on the difference between hazards as
in example 12. That is, based on the p-value of 0.2451, we fail to reject the null hypothesis of no
difference between hazards of two groups (or miss the alternative Ha: ψ = −0.0112 corresponding
to reduction in hazard from roughly 0.02 to 0.01) for the data from example 12.

Often in practice, to test the disparity in two exponential survivor functions, the log-rank test is
used instead of the hazard-difference test. Also the Wald (or the score) test from the Cox model is
used instead of the exponential log hazard-ratio test. Refer to [ST] sts test and [ST] stcox for examples
on how to perform these tests (also see [PSS-2] power logrank and [PSS-2] power cox).

Sometimes the estimates of sample size and power obtained under the assumption of the exponential
model are used as an approximation to the results used in a more general context of the log-rank
test or the Cox proportional hazards model. Refer to Lachin (2011, 483–484) for the rationale behind
this. Also see Lakatos and Lan (1992) for a discussion of the circumstances under which sample-size
estimates obtained assuming the exponential model may be inaccurate when used with more general
proportional hazards models.
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Stored results
power exponential stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
r(nratio) ratio of sample sizes, N2/N1
r(nratio a) actual ratio of sample sizes
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(hratio) hazard ratio
r(lnhratio) log hazard-ratio
r(hdiff) difference between hazard rates
r(h1) hazard in the control group (if specified)
r(h2) hazard in the experimental group
r(s1) survival probability in the control group (if specified)
r(s2) survival probability in the experimental group (if specified)
r(time) reference survival time (if time() is specified)
r(aperiod) length of the accrual period (if specified)
r(fperiod) length of the follow-up period (if specified)
r(studytime) duration of the study (if specified)
r(ashape) shape parameter (if aperiod() is specified)
r(aprob) shape parameter (if aprob() is specified)
r(aptime) proportion of accrual period (if aptime() is specified)
r(atime) reference accrual time (if atime() is specified)
r(losshaz) loss hazard rate in both groups (if specified)
r(losshaz1) loss hazard in the control group (if specified)
r(losshaz2) loss hazard in the experimental group (if specified)
r(lossprob) proportions of subjects lost to follow-up in both groups (if lossprob() is specified)
r(losstime) reference loss to follow-up time (if losstime() is specified)
r(unconditional) 1 if unconditional is specified, 0 otherwise
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise

Macros
r(type) test
r(method) exponential
r(test) hazard difference or log-hazard difference
r(accrual) uniform or exponential
r(effect) hratio, lnhratio, hdifference, or lnhdifference
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats
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Matrices
r(pss table) table of results
r(Pr vec) 1×4 matrix of probabilities of an event (when computed)
r(Ea vec) 1×3 matrix of expected number of events under the alternative (when computed)
r(E0 vec) 1×3 matrix of expected number of events under the null (when computed)
r(La vec) 1×3 matrix of expected number of losses under the alternative (when computed)
r(L0 vec) 1×3 matrix of expected number of losses under the null (when computed)

Methods and formulas
By default, power exponential computes the sample size required to achieve a specified power

to detect a difference between hazard rates, ψa = λ2a − λ1a, using the method of Lachin (1981).
If loghazard is specified, the sample size required to detect a log of the hazard ratio ln(∆a) =
ln(λ2a/λ1a) with specified power is reported using the formula derived by George and Desu (1974).
In the presence of an accrual period, the methods of Lachin and Foulkes (1986) or (for uniform
accrual only) Rubinstein, Gail, and Santner (1981) (if loghazard and unconditional are specified)
are used.

In addition to the notation given in Introduction, denote n, n1, and n2 to be the total number
of subjects required for the study, the number of subjects in the control group, and the number
of subjects in the experimental group, respectively. Let R = n2/n1 denote the ratio of sample
sizes of the experimental group to the control group. Let p1 = n1/n = 1/(1 + R) and p2 =
n2/n = 1 − p1 = R/(1 + R) be the proportions of subjects allocated to the control and the
experimental groups; γ be the shape parameter of the truncated exponential distribution with p.d.f.
g(z) = γexp(−γz)/{1 − exp(−γr)}, 0 ≤ z ≤ r, γ 6= 0; η1 and η2 be the loss hazards in the
control and the experimental groups; and z(1−α/k) and z(1−β) be the (1−α/k)th and the (1− β)th
quantiles of the standard normal distribution, with k = 1 for the one-sided test and k = 2 for the
two-sided test. Denote λ = p1λ1 + p2λ2. Recall that the difference between hazards is denoted by
ψ = λ2 − λ1 and the hazard ratio is denoted by ∆ = λ2/λ1.

If survival probabilities S1(t) and S2(t) at a fixed time t are specified rather than hazard rates,
the hazard rates are computed as λi = − ln{Si(t)}/t, i = 1, 2. If loss to follow-up probabilities
L1(tL) and L2(tL) at a fixed time tL are given instead of loss to follow-up hazard rates, the loss
hazard rates are computed as ηi = − ln{1− Li(tL)}/tL, i = 1, 2.

All formulas below are derived under the assumption of exponential survival distributions with
hazard rates in the control and the experimental groups λ1 and λ2, respectively, and rely on large-sample
properties of the maximum likelihood estimates of λ1 and λ2.

Denote ξo = ζ(λ, γ, η1)p−1
1 + ζ(λ, γ, η2)p−1

2 and ξa = ζ(λ1, γ, η1)p−1
1 + ζ(λ2, γ, η2)p−1

2 .

The formula for the sample-size calculation using the conditional approach is

n =

(
z1−α/kξ

1/2
o + z1−βξ

1/2
a

)2

δ2

and using the unconditional approach is

n =
(z1−α/k + z1−β)2ξa

δ2

where ζ(λ, γ, η) = λ2/pE if δ = ψ, ζ(λ, γ, η) = 1/pE if δ = ln(∆), and pE is to be defined later.
λ and η denote a failure hazard rate and a loss to follow-up hazard rate.



power exponential — Power analysis for a two-sample exponential test 573

In the absence of censoring, the overall probability of an event (failure), pE , is set to 1. Here
the resulting formula for the sample size for the log hazard-ratio test depends only on the ratio of
hazards and not on the individual group hazard rates. The resulting sample size formula for the test
of the difference may also be rewritten as a function of the ratio of hazards only. Therefore, under
no censoring, for a fixed value of the hazard ratio ∆ = λ2/λ1, the estimates of the sample size (or
power) will be constant with respect to varying hazard rates λ1 and λ2.

In the presence of censoring, when each subject is followed up for a fixed period f = T ,

pE = pE(λ, η) =
λ

λ+ η
[1− exp{−(λ+ η)T}]

In the presence of an accrual period, the probability of an event is defined as

pE = pE(λ, η) =
λ

(λ+ η)

[
1− exp{−(λ+ η)(T − r)} − exp{−(λ+ η)T}

(λ+ η)r

]
or

pE = pE(λ, γ, η) =
λ

(λ+ η)

(
1 +

γexp{−(λ+ η)T}[1− exp{(λ+ η − γ)r}]
(λ+ η − γ){1− exp(−γr)}

)
under uniform or truncated exponential accrual with shape γ over [0, r], respectively. Uniform accrual
is assumed for |γ| < 10−6.

The formulas are obtained from Lachin (1981), Lachin and Foulkes (1986), and Lakatos and
Lan (1992). To avoid division by 0 in the case λ+ η = γ, the probability of an event is taken to be
the limit of the above expression, pE = limλ+η−>γpE(λ, γ, η).

The number of subjects required to be recruited in each group is obtained as n1 = n/(1 +R) and
n2 = nR/(1 +R). If nfractional is not specified, sample sizes are rounded to integer values; see
Fractional sample sizes in [PSS-4] Unbalanced designs for details.

The expected number of events and losses to follow-up are computed as suggested by Lachin and
Foulkes (1986). Under the null hypothesis,

EH0
= n1pE(λ, γ, η1) + n2pE(λ, γ, η2)

LH0
= n1(η1/λ)pE(λ, γ, η1) + n2(η2/λ)pE(λ, γ, η2)

and under the alternative hypothesis,

EHa = n1pE(λ1, γ, η1) + n2pE(λ2, γ, η2)

LHa = n1(η1/λ1)pE(λ1, γ, η1) + n2(η2/λ2)pE(λ2, γ, η2)

For unconditional tests, the expected number of events and losses to follow-up under the null is
computed by setting λ = λ1. The estimates of the expected number of events and losses to follow-up
in each group are rounded to the nearest integer.

To obtain the estimate of the power, 1−β, the formulas for the sample size are solved for z(1−β)

and the normal cumulative distribution function is used to obtain the corresponding probability 1−β.
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To obtain the unknown shape parameter, γ, of a truncated exponential entry distribution, an iterative
procedure is used to solve the equation

pa = G(ta) =
1− exp(−γta)

1− exp(−γr)

for a given proportion of subjects pa recruited at a given time, ta, for ta ∈ [0, r].
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power logrank — Power analysis for the log-rank test

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power logrank computes sample size, power, or effect size for survival analysis comparing
survivor functions in two groups by using the log-rank test. The results can be obtained using the
Freedman or Schoenfeld approaches. Effect size can be expressed as a hazard ratio or as a log hazard-
ratio. The command supports unbalanced designs, and provides options to account for administrative
censoring, uniform accrual, and withdrawal of subjects from the study. For power and sample-size
analysis in a cluster randomized design, see [PSS-2] power logrank, cluster.

Quick start
Sample size for the log-rank test of H0: ∆ = 0 versus Ha: ∆ 6= 0 using the Freedman method for

alternative hazard ratio ∆a = 0.76 without censoring and with default power of 0.8 and significance
level α = 0.05

power logrank, hratio(.76)

Same as above, but use Schoenfeld’s method
power logrank, hratio(.76) schoenfeld

Sample size for censored design with survival probabilities surv1 = 0.3 and surv2 = 0.4
power logrank .3 .4

Same as above, specified as surv1 = 0.3 and hazard ratio of 0.76
power logrank .3, hratio(.76)

Same as above, but for hazard ratios of 0.65, 0.7, 0.75, and 0.8
power logrank .3, hratio(.65(.05).8)

Same as above, but show results in a graph of hazard ratio versus sample size
power logrank .3, hratio(.65(.05).8) graph

Sample size for a one-sided test with α = 0.01
power logrank .3, hratio(.76) onesided alpha(.01)

Sample size adjusted for 10% withdrawal from the study
power logrank .3, hratio(.76) wdprob(.1)

Power for a design with censoring and a sample size of 300
power logrank .3 .4, n(300)

Same as above, but specify twice as many observations in the experimental group
power logrank .3 .4, n(300) nratio(2)

575
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Effect size for a design without censoring, sample size of 300, power of 0.8, and default α = 0.05
power logrank, n(300) power(.8)

Same as above, but for a censored design with control-group survival probability of 0.3
power logrank .3, n(300) power(.8)

Menu
Statistics > Power, precision, and sample size

Syntax

Compute sample size

power logrank
[

surv1

[
surv2

] ] [
, power(numlist) options

]

Compute power

power logrank
[

surv1

[
surv2

] ]
, n(numlist)

[
options

]

Compute effect size

power logrank
[

surv1

]
, n(numlist) power(numlist)

[
options

]

where surv1 is the survival probability in the control (reference) group at the end of the study t∗ and
surv2 is the survival probability in the experimental (comparison) group at the end of the study t∗.
surv1 and surv2 may each be specified either as one number or as a list of values in parentheses
(see [U] 11.1.8 numlist).
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1), meaning

equal group sizes
nfractional allow fractional sample sizes
∗hratio(numlist) hazard ratio of the experimental to the control group; default is

hratio(0.5)
∗lnhratio(numlist) log hazard-ratio of the experimental to the control group
schoenfeld use the formula based on the log hazard-ratio

in calculations; default is to use the formula based
on the hazard ratio

effect(effect) specify the type of effect to display; default is method-specific
direction(lower|upper) direction of the effect for effect-size determination; default is

direction(lower), which means that the postulated value
of the parameter is smaller than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Censoring

simpson(# # # |matname) survival probabilities in the control group at three
specific time points to compute the probability of an event
(failure), using Simpson’s rule under uniform accrual

st1(varnames varnamet) variables varnames, containing survival probabilities in
the control group, and varnamet, containing respective time
points, to compute the probability of an event (failure),
using numerical integration under uniform accrual

∗wdprob(numlist) proportion of subjects anticipated to withdraw from the
study; default is wdprob(0)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph
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Iteration

init(#) initial value for effect size
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

cluster perform computations for a CRD;
see [PSS-2] power logrank, cluster

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
cluster and notitle do not appear in the dialog box.

effect Description

hratio hazard ratio
lnhratio log hazard-ratio

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N total number of subjects N
N1 number of subjects in the control group N1

N2 number of subjects in the experimental group N2

nratio ratio of sample sizes, experimental to control N2/N1

delta effect size δ
E total number of events (failures) E
hratio hazard ratio ∆
lnhratio log hazard-ratio ln(∆)
s1 survival probability in the control group S1(T )
s2 survival probability in the experimental group S2(T )
Pr E overall probability of an event (failure) pE
Pr w probability of withdrawals pw
target target parameter; hratio or lnhratio
all display all supported columns
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Column beta is shown in the default table in place of column power if specified.
Column lnhratio is shown in the default table in place of column hratio if specified.
Columns s1 and s2 are available only when specified.
Columns nratio and Pr w are shown in the default table if specified.

Options

� � �
Main �

alpha(), power(), beta(), n(), n1(), n2(), nratio(), nfractional; see [PSS-2] power.

hratio(numlist) specifies the hazard ratio (effect size) of the experimental group to the control group.
The default is hratio(0.5). This value typically defines the clinically significant improvement
of the experimental procedure over the control procedure desired to be detected by the log-rank
test with a certain power.

You can specify an effect size either as a hazard ratio in hratio() or as a log hazard-ratio
in lnhratio(). The default is hratio(0.5). If both arguments surv1 and surv2 are specified,
hratio() is not allowed and the hazard ratio is instead computed as ln(surv2)/ ln(surv1).

This option is not allowed with the effect-size determination and may not be combined with
lnhratio().

lnhratio(numlist) specifies the log hazard-ratio (effect size) of the experimental group to the control
group. This value typically defines the clinically significant improvement of the experimental
procedure over the control procedure desired to be detected by the log-rank test with a certain
power.

You can specify an effect size either as a hazard ratio in hratio() or as a log hazard-ratio
in lnhratio(). The default is hratio(0.5). If both arguments surv1 and surv2 are specified,
lnhratio() is not allowed and the log hazard-ratio is computed as ln{ ln(surv2)/ ln(surv1)}.
This option is not allowed with the effect-size determination and may not be combined with
hratio().

schoenfeld requests calculations using the formula based on the log hazard-ratio, according to
Schoenfeld (1981). The default is to use the formula based on the hazard ratio, according to
Freedman (1982).

effect(effect) specifies the type of the effect size to be reported in the output as delta. effect is one
of hratio or lnhratio. By default, the effect size delta is a hazard ratio, effect(hratio),
for a hazard-ratio test and a log hazard-ratio, effect(lnhratio), for a log hazard-ratio test
(when schoenfeld is specified).

direction(), onesided, parallel; see [PSS-2] power. direction(lower) is the default.

� � �
Censoring �

simpson(# # # |matname) specifies survival probabilities in the control group at three specific time
points to compute the probability of an event (failure) using Simpson’s rule under the assumption
of uniform accrual. Either the actual values or a 1× 3 matrix, matname, containing these values
can be specified. By default, the probability of an event is approximated as an average of the failure
probabilities 1−s1 and 1−s2; see Methods and formulas. simpson() may not be combined with
st1() and may not be used if command argument surv1 or surv2 is specified. This option is not
allowed with effect-size computation.
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st1(varnames varnamet) specifies variables varnames, containing survival probabilities in the control
group, and varnamet, containing respective time points, to compute the probability of an event
(failure) using numerical integration under the assumption of uniform accrual; see [R] dydx. The
minimum and the maximum values of varnamet must be the length of the follow-up period and
the duration of the study, respectively. By default, the probability of an event is approximated as
an average of the failure probabilities 1−s1 and 1−s2; see Methods and formulas. st1() may
not be combined with simpson() and may not be used if command argument surv1 or surv2 is
specified. This option is not allowed with effect-size computation.

wdprob(numlist) specifies the proportion of subjects anticipated to withdraw from the study. The
default is wdprob(0). wdprob() is allowed only with sample-size computation.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies an initial value for the estimated hazard ratio or, if schoenfeld is specified, for
the estimated log hazard-ratio during the effect-size determination.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following options are available with power logrank but are not shown in the dialog box:

cluster; see [PSS-2] power logrank, cluster.

notitle; see [PSS-2] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power logrank
Computing sample size

Computing sample size in the absence of censoring
Computing sample size in the presence of censoring

Withdrawal of subjects from the study
Including information about subject accrual
Computing power
Computing effect size
Testing a hypothesis about two survivor functions using the log-rank test

This entry describes the power logrank command and the methodology for power and sample-size
analysis for a two-sample comparison of survivor functions using the log-rank test. See [PSS-2] Intro
(power) for a general introduction to power and sample-size analysis and [PSS-2] power for a general
introduction to the power command using hypothesis tests. See Survival data in [PSS-2] Intro (power)
for an introduction to power and sample-size analysis for survival data. For power and sample-size
analysis in a cluster randomized design, see [PSS-2] power logrank, cluster.
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Introduction
Consider a survival study comparing the survivor functions in two groups using the log-rank

test. Let S1(t) and S2(t) denote the survivor functions of the control and the experimental groups,
respectively. The key assumption of the log-rank test is that the hazard functions are proportional.
That is, h2(t) = ∆h1(t) for any t or, equivalently, S2(t) = {S1(t)}∆, where ∆ is the hazard ratio.
If ∆ < 1, the survival in the experimental group is higher relative to the survival in the control
group; the new treatment is superior to the standard treatment. If ∆ > 1, then the standard treatment
is superior to the new treatment. Under the proportional-hazards assumption, the test of the equality
of the two survivor functions H0: S1(t) = S2(t) versus Ha: S1(t) 6= S2(t) is equivalent to the test
H0: ∆ = 1 versus Ha: ∆ 6= 1 or H0: ln(∆) = 0 versus Ha: ln(∆) 6= 0.

The methods implemented in power logrank for power and sample-size analysis relate the power
of the log-rank test directly to the number of events observed in the study. Depending on whether
censoring occurs in a study, the required number of subjects is either equal to the number of events
or is computed using the estimates of the number of events and the combined probability of an event
(failure). Thus, in the presence of censoring, in addition to the number of events, the probability of a
subject not being censored (failing) needs to be estimated to obtain the final estimate of the required
number of subjects in the study.

To determine the required number of events, the investigator must specify the size or significance
level, α, and the clinically significant difference between the two treatments (effect size) to be detected
by the log-rank test, Ha : ∆ = ∆a, with prespecified power 1 − β. The effect size, a difference
between the two treatments, is usually expressed as a hazard ratio, ∆a, using the hratio() option.
Alternatively, you may specify an effect size as a log hazard-ratio, ln(∆a), in the lnhratio()
option.

When all subjects fail by the end of the study (no censoring), a type I study, the information
above is sufficient to obtain the number of subjects required in the study. Often, in practice, not all
subjects fail by the end of the study, in which case censoring of subjects occurs (a type II study).
Here the estimates of the survival probabilities in the control and experimental groups are necessary
to estimate an overall probability of an event and, then, the required sample size.

power logrank supports two methods, those of Freedman (1982) and Schoenfeld (1981), to obtain
the estimates of the number of events or power (see also Marubini and Valsecchi [1995, 127, 134]
and Collett [2015, 473, 479]). The final estimates of the sample size are based on the approximation
of the probability of an event due to Freedman (1982), the default, or in the presence of uniform
accrual, due to Schoenfeld (1983) (see also Collett 2015).

You can use power logrank to

• compute required number of events and sample size when you know power and effect size
(expressed as a hazard ratio or log hazard-ratio);

• compute power when you know sample size (number of events) and effect size (expressed
as a hazard ratio or log hazard-ratio); or

• compute effect size (hazard ratio or log hazard-ratio) and experimental-group survival when
you know sample size (number of events) and power.

You can also choose between the Freedman or Schoenfeld computational approaches, adjust results
for administrative censoring, adjust results for uniform accrual of subjects to the study, and adjust
results for withdrawal of subjects from the study.



582 power logrank — Power analysis for the log-rank test

Using power logrank

power logrank computes sample size, power, or effect size for the log-rank test comparing the
survivor functions in two groups. All computations are performed for a two-sided hypothesis test
where, by default, the significance level is set to 0.05. You may change the significance level by
specifying the alpha() option. You can specify the onesided option to request a one-sided test.
By default, all computations assume a balanced- or equal-allocation design; see [PSS-4] Unbalanced
designs for a description of how to specify an unbalanced design.

To compute a total sample size, you specify an effect size and optionally power of the test in the
power() option. The default power is set to 0.8. By default, the computed sample size is rounded
up. You can specify the nfractional option to see the corresponding fractional sample size; see
Fractional sample sizes in [PSS-4] Unbalanced designs for an example. The nfractional option is
allowed only for sample-size determination.

To compute power, you must specify the total sample size in the n() option and an effect size.

An effect size may be specified either as a hazard ratio supplied in the hratio() option or as a
log hazard-ratio supplied in the lnhratio() option. If neither is specified, a hazard ratio of 0.5 is
assumed.

To compute an effect size, which may be expressed either as a hazard ratio or as a log hazard-ratio,
you must specify the total sample size in the n() option; the power in the power() option; and,
optionally, the direction of the effect. The direction is lower by default, direction(lower), which
means that the target hazard ratio is assumed to be less than one or that target log hazard-ratio is
negative. In other words, the experimental treatment is presumed to be an improvement over the
control treatment. If you want to change the direction to upper, corresponding to the target hazard
ratio being greater than one, use direction(upper).

Instead of the total sample size n(), you can specify individual group sizes in n1() and n2(), or
specify one of the group sizes and nratio() when computing power or effect size. Also see Two
samples in [PSS-4] Unbalanced designs for more details.

As we mentioned earlier, the effect size for power logrank may be expressed as a hazard ratio or
as a log hazard-ratio. By default, the effect size, which is labeled as delta in the output, corresponds
to the hazard ratio for the Freedman method and to the log hazard-ratio for the Schoenfeld method.
You can change this by specifying the effect() option: effect(hratio) (the default) reports the
hazard ratio and effect(lnhratio) reports the log hazard-ratio.

By default, all computations assume no censoring. In the presence of administrative censoring, you
must specify a survival probability at the end of the study in the control group as the first command
argument. You can also specify a survival probability at the end of the study in the experimental
group as the second command argument. Otherwise, it will be computed using the specified hazard
ratio or log hazard-ratio and the control-group survival probability. To accommodate an accrual period
under the assumption of uniform accrual, survival information may instead be supplied in option
simpson() or in option st1(); see Including information about subject accrual for details.

When computing sample size, you can adjust for withdrawal of subjects from the study by specifying
the anticipated proportion of withdrawals in the wdprob() option.

By default, power logrank performs computations for a hazard-ratio test. Use the schoenfeld
option to request computations for a log-hazard-ratio test.

In the presence of censoring, effect-size determination requires iteration. The default initial value
of the estimated hazard ratio or, if schoenfeld is specified, of log hazard-ratio is obtained based on
the formula assuming no censoring. This value may be changed by specifying the init() option.
See [PSS-2] power for the descriptions of other options that control the iteration procedure.
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In the following sections, we describe the use of power logrank accompanied by examples for
computing sample size, power, and effect size.

Computing sample size

To compute sample size and number of events, you must specify an effect size (a hazard ratio or
a log hazard-ratio) and, optionally, the power of the test in the power() option. A default power of
0.8 is assumed if power() is not specified. A hazard ratio of 0.5 is assumed if an effect size is not
specified.

Computing sample size in the absence of censoring

We demonstrate several examples of how to use power logrank to obtain the estimates of sample
size and number of events using Freedman (1982) and Schoenfeld (1981) methods for uncensored
data (a type I study when no censoring of subjects occurs).

Example 1: Number of events (failures) using Freedman method

Consider a survival study to be conducted to compare the survivor function of subjects receiving a
treatment (the experimental group) to the survivor function of those receiving a placebo or no treatment
(the control group) using the log-rank test. Suppose that the study continues until all subjects fail
(no censoring). The investigator wants to know how many events need to be observed in the study
to achieve a power of 80% of a two-sided log-rank test with α = 0.05 to detect a 50% reduction in
the hazard of the experimental group (∆a = 0.5). Because the default settings of power logrank
are power(0.8), alpha(0.05), and hratio(0.5), to obtain the estimate of the required number
of events for the above study using the Freedman method (the default), we simply type

. power logrank

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.5000 (hazard ratio)

hratio = 0.5000

Censoring:

Pr_E = 1.0000

Estimated number of events and sample sizes:

E = 72
N = 72

N per group = 36

From the output, a total of 72 events (failures) must be observed to achieve the required power of
80%. Because all subjects experience an event by the end of the study (Pr E=1.0000), the number of
subjects required to be recruited to the study is equal to the number of events. That is, the investigator
needs to recruit a total of 72 subjects (36 per group) to the study.
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Example 2: Number of events (failures) using Schoenfeld method

Following example 1, we can request the Schoenfeld method by specifying the schoenfeld option.

. power logrank, schoenfeld

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
H0: ln(HR) = 0 versus Ha: ln(HR) != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.6931 (log hazard-ratio)

hratio = 0.5000

Censoring:

Pr_E = 1.0000

Estimated number of events and sample sizes:

E = 66
N = 66

N per group = 33

We obtain a slightly smaller estimate (66) of the total number of events and subjects.

Technical note
Freedman (1982) and Schoenfeld (1981) derive the formulas for the number of events based on

the asymptotic distribution of the log-rank test statistic. Freedman (1982) uses the asymptotic mean
and variance of the log-rank test statistic expressed as a function of the true hazard ratio, ∆, whereas
Schoenfeld (1981) (see also Collett [2015, 474]) bases the derivation on the asymptotic mean of the
log-rank test statistic as a function of the true log hazard-ratio, ln(∆). We label the corresponding
approaches as “Freedman method” and “Schoenfeld method” in the output.

For values of the hazard ratio close to one, the two methods tend to give similar results. In general,
the Freedman method gives higher estimates than the Schoenfeld method. The performance of the
Freedman method was studied by Lakatos and Lan (1992) and was found to slightly overestimate the
sample size under the assumption of proportional hazards. Hsieh (1992) investigated the performance
of the two methods under unequal allocation and concluded that Freedman’s formula predicts the
highest power for the log-rank test when the sample-size ratio of the two groups equals the reciprocal
of the hazard ratio. Schoenfeld’s formula predicts highest powers when sample sizes in the two groups
are equal.
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Example 3: Unbalanced design

By default, power logrank computes sample size for a balanced- or equal-allocation design. If
we know the allocation ratio of subjects between the groups, we can compute the required sample
size and number of events for an unbalanced design by specifying the nratio() option.

Continuing with example 1, we anticipate being able to recruit twice as many subjects in the
experimental group; that is, n2/n1 = 2. We specify the nratio(2) option to compute the required
sample size for the specified unbalanced design.

. power logrank, nratio(2)

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.5000 (hazard ratio)

hratio = 0.5000
N2/N1 = 2.0000

Censoring:

Pr_E = 1.0000

Estimated number of events and sample sizes:

E = 63
N = 63

N1 = 21
N2 = 42

We need a total of 63 subjects—21 in the control group and 42 in the experimental group.

Also see Two samples in [PSS-4] Unbalanced designs for more examples of unbalanced designs
for two-sample tests.

Computing sample size in the presence of censoring

Because of constraints on costs and time, it is often infeasible to continue the study until all
subjects experience an event. Instead, the study terminates at some prespecified point in time. As a
result, some subjects may not experience an event by the end of the study; that is, administrative
censoring of subjects occurs. This increases the requirement on the number of subjects in the study
to ensure that a certain number of events is observed.

In the presence of censoring (for a type II study), Freedman (1982) assumes the following. The
analysis occurs at a fixed time t∗ after the last patient was accrued, and all information about subject
follow-up beyond time t∗ is excluded. To minimize an overestimation of the sample size because
of neglecting this information, the author suggests choosing t∗ as the minimum follow-up time, f ,
beyond which the frequency of occurrence of events is low (the time at which, say, 85% of the
total events expected are observed). Under this assumption, the number of required subjects does not
depend on the rates of accrual and occurrence of events but only on the proportions of patients in the
two treatment groups, s1 and s2, surviving after f . See Including information about subject accrual
about how to compute the sample size in the presence of a long accrual.

If censoring of subjects occurs, the probability of a subject not being censored needs to be estimated
to obtain an accurate estimate of the required sample size. The assumption above justifies a simple
procedure, suggested by Freedman (1982) and used by default by power logrank, to compute
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this probability using the estimates of survival probabilities at the end of the study in the control
and the experimental groups. Therefore, for a type II study (under administrative censoring), these
probabilities must be supplied to power logrank.

Example 4: Sample size in the presence of censoring using Freedman method

Consider an example from Machin et al. (2009, 91) of a study of patients with resectable colon
cancer. The goal of the study was to compare the efficacy of the drug levamisole against a placebo
with respect to relapse-free survival, using a one-sided log-rank test with a significance level of 5%.
The investigators anticipated a 10% increase (from 50% to 60%, with a respective hazard ratio of
0.737) in the survival of the experimental group with respect to the survival of the control (placebo)
group at the end of the study. They wanted to detect this increase with a power of 80%. To obtain
the required sample size, we enter the survival probabilities 0.5 and 0.6 as arguments and specify the
onesided option to request a one-sided test.

. power logrank 0.5 0.6, onesided

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7370 (hazard ratio)

hratio = 0.7370

Censoring:

s1 = 0.5000
s2 = 0.6000

Pr_E = 0.4500

Estimated number of events and sample sizes:

E = 270
N = 600

N per group = 300

From the above output, the investigators would have to observe a total of 270 events (relapses) to
detect a 26% decrease in the hazard (∆a = 0.737) of the experimental group relative to the hazard of
the control group with a power of 80% using a one-sided log-rank test with α = 0.05. They would
have to recruit a total of 600 patients (300 per group) to observe that many events.

In contrast, in the absence of censoring, only 270 subjects would have been required to detect a
decrease in hazard corresponding to ∆a = 0.737:



power logrank — Power analysis for the log-rank test 587

. power logrank, hratio(0.737) onesided

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7370 (hazard ratio)

hratio = 0.7370

Censoring:

Pr_E = 1.0000

Estimated number of events and sample sizes:

E = 270
N = 270

N per group = 135

Example 5: Sample size in the presence of censoring using Schoenfeld method

If we wanted to use the Schoenfeld method to calculate sample size for the study described in
example 4, we could type

. power logrank 0.5 0.6, onesided schoenfeld

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
H0: ln(HR) = 0 versus Ha: ln(HR) < 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.3052 (log hazard-ratio)

hratio = 0.7370

Censoring:

s1 = 0.5000
s2 = 0.6000

Pr_E = 0.4500

Estimated number of events and sample sizes:

E = 266
N = 590

N per group = 295

We find that 590 subjects are required in the study to observe a total of 266 events to ensure a power
of 80%.

See the technical note in Computing sample size in the absence of censoring for a brief comparison
of the Freedman and Schoenfeld methods.
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Example 6: Alternative ways of specifying effect

If we wish, we can redefine effect size delta in example 4 to be a log hazard-ratio by specifying
the effect() option.

. power logrank 0.5 0.6, onesided effect(lnhratio)

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.3052 (log hazard-ratio)

hratio = 0.7370

Censoring:

s1 = 0.5000
s2 = 0.6000

Pr_E = 0.4500

Estimated number of events and sample sizes:

E = 270
N = 600

N per group = 300

The effect size delta now contains the value of the log hazard-ratio.

Continuing with example 4, instead of the estimate of the survival probability in the experimental
group, we may have an estimate of the hazard ratio ∆a. For example, the estimate of the hazard
ratio in this example is 0.737. We can specify the value of the hazard ratio in the hratio() option
instead of specifying the experimental-group survival probability 0.6.

. power logrank 0.5, onesided hratio(0.737)

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7370 (hazard ratio)

hratio = 0.7370

Censoring:

s1 = 0.5000
s2 = 0.6000

Pr_E = 0.4500

Estimated number of events and sample sizes:

E = 270
N = 600

N per group = 300
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Alternatively, instead of the hazard ratio we can specify the log hazard-ratio in option lnhratio().

. power logrank 0.5, onesided lnhratio(-0.3052)

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7370 (hazard ratio)

ln(hratio) = -0.3052

Censoring:

s1 = 0.5000
s2 = 0.6000

Pr_E = 0.4500

Estimated number of events and sample sizes:

E = 270
N = 600

N per group = 300

The results are identical to the prior results. The estimate of the log hazard-ratio is now displayed in
the output instead of the hazard ratio.

Withdrawal of subjects from the study

Under administrative censoring, the subject is known to have experienced either of the two outcomes
by the end of the study: survival or failure. Often, in practice, subjects may withdraw from the study
before it terminates and therefore may not experience an event by the end of the study (or be censored)
for nonadministrative reasons. Withdrawal of subjects from a study may greatly affect the estimate of
the sample size and must be accounted for in the computations. Refer to Survival data in [PSS-2] Intro
(power) and [PSS-5] Glossary for a formal definition of withdrawal.

Freedman (1982) suggests a conservative adjustment for the estimate of the sample size in the
presence of withdrawal, which is implemented in power logrank. Withdrawal is assumed to be
independent of failure (event) times and administrative censoring.

The proportion of subjects anticipated to withdraw from a study may be specified by using
wdprob().
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Example 7: Withdrawal of subjects from the study

Continuing with example 4, suppose that a withdrawal rate of 10% is expected in the study of
colon cancer patients. To account for this, we also specify wdprob(0.1).

. power logrank 0.5 0.6, onesided wdprob(0.1)

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7370 (hazard ratio)

hratio = 0.7370

Censoring and withdrawal:

s1 = 0.5000
s2 = 0.6000

Pr_E = 0.4500
Pr_w = 0.1000

Estimated number of events and sample sizes:

E = 270
N = 666

N per group = 333

The estimate of the total sample size using the Freedman method increases from 600 to 666 when
the withdrawal rate is assumed to be 10%. The adjustment of the estimate of the sample size for
the withdrawal of subjects is conservative. It assumes equal withdrawals from each group; that is,
10% of subjects are lost by the end of the study in each group. This adjustment affects only the
estimates of the sample sizes but not the number of events. This is because withdrawal is assumed
to be independent of event times, and the ratio of subjects surviving until the end of the study in the
two groups does not change under equal withdrawals.

Including information about subject accrual

Many clinical studies have an accrual period of r, during which the subjects are recruited to the
study, and a follow-up period of f = T − r, during which the subjects are followed until the end of
the study, T , and no new subjects enter the study. The information about the duration of the accrual
and follow-up periods affects the probability of a subject experiencing an event or failing during the
study.

Freedman (1982) suggests approximating the combined event-free probability as an average of
the survival probabilities in the control and the experimental groups at the minimum follow-up time,
t∗ = f (the default approach used in power logrank). However, for a long accrual of subjects, this
approach may overestimate the required number of subjects, often seriously, because it does not take
into account the information about subject follow-up beyond time f . Here Freedman (1982) proposes
to use the survival probabilities at the average follow-up time, defined as t∗ = (f +T )/2 = f + 0.5r,
instead of the minimum follow-up time, f .

Alternatively, Schoenfeld (1983) (see also Collett [2015, 479]) presents a formula for the required
number of subjects allowing for uniform accrual (entry, recruitment) over [0, r] and a follow-up period,
f . This information is incorporated into the formula for the probability of an event (or failure). The
formula involves the integrals of the survivor functions of the control and the experimental groups.
Schoenfeld (1983) suggests approximating the integral by using Simpson’s rule, which requires the
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estimates of the survivor function at three specific time points: f , 0.5r + f , and T = r + f . It is
sufficient to provide the estimates of these three survival probabilities, S1(f), S1(0.5r + f), and
S1(T ), for the control group only. The corresponding survival probabilities of the experimental group
are automatically computed using the value of the hazard ratio in hratio() (or log hazard-ratio in
lnhratio()) and the proportional-hazards assumption.

The three estimates of the survival probabilities of the control group may be supplied by using
the simpson() option to adjust the estimates of the sample size or power for uniform entry and
a follow-up period. If the estimate of the survivor function over an array of values in the range
[f, T ] is available from a previous study, it can be supplied using the st1() option to form a more
accurate approximation of the probability of an event using numerical integration (see [R] dydx).
Here the value of the length of the accrual period is needed for the computation. It is computed as the
difference between the maximum and the minimum values of the time variable varnamet, supplied
using st1(), that is, r = T − f = max(varnamet)− min(varnamet).

For more information, see Cleves, Gould, and Marchenko (2016, sec. 16.2).

Example 8: Sample size in the presence of accrual and follow-up periods

Consider an example described in Collett (2015, 482) of a survival study of chronic active hepatitis.
A new treatment is to be compared with a standard treatment with respect to the survival times of
the patients with this disease. The investigators want to detect a change in a hazard ratio of 0.57
with 90% power and a 5% two-sided significance level. Also subjects are to be entered into the study
uniformly over a period of 18 months and then followed for 24 months. From the Kaplan–Meier
estimate of the survivor function available for the control group, the survival probabilities at f = 24,
0.5r + f = 33, and T = 42 months are 0.70, 0.57, and 0.45, respectively.

. power logrank, hratio(0.57) power(0.9) schoenfeld simpson(0.7 0.57 0.45)
note: probability of an event is computed using Simpson’s rule with

S1(f) = 0.70, S1(f+r/2) = 0.57, S1(T) = 0.45
S2(f) = 0.82, S2(f+r/2) = 0.73, S2(T) = 0.63

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
H0: ln(HR) = 0 versus Ha: ln(HR) != 0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.5621 (log hazard-ratio)

hratio = 0.5700

Censoring:

Pr_E = 0.3514

Estimated number of events and sample sizes:

E = 134
N = 380

N per group = 190

Collett (2015, 309) reports the required number of events to be 133, which, apart from rounding,
agrees with our estimate of 134. In a later example, Collett (2003, 309) uses the number of events,
rounded to 140, to compute the required sample size as 140/0.35 = 400, where 0.35 is the estimate of
the combined probability of an event. By hand, without rounding the number of events, we compute
the required sample size as 133/0.35 = 380 and obtain the same estimate of the total sample size as
in the output.
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Using the average follow-up time suggested by Freedman (1982), we obtain the following:
. power logrank 0.57, hratio(0.57) power(0.9) schoenfeld

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
H0: ln(HR) = 0 versus Ha: ln(HR) != 0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.5621 (log hazard-ratio)

hratio = 0.5700

Censoring:

s1 = 0.5700
s2 = 0.7259

Pr_E = 0.3521

Estimated number of events and sample sizes:

E = 134
N = 378

N per group = 189

We specify the survival probability in the control group at t∗ = 0.5r + f = 0.5× 18 + 24 = 33
as S1(33) = 0.57 and the hazard ratio of 0.57 (coincidentally). The survival probability in the
experimental group is S2(33) = S1(33)∆ = 0.570.57 = 0.726. Here we obtain the estimate of
the sample size, 378, which is close to the estimate of 380 computed using the more complicated
approximation. In this example, the two approximations produce similar results, but this may not
always be the case.

The approximation suggested by Schoenfeld (1983) and Collett (2015) is considered to be more
accurate because it takes into account information about the patient survival beyond the average
follow-up time. In general, the Freedman (1982) and Schoenfeld (1983) approximations tend to give
similar results when {S̃(f) + S̃(T )}/2 ≈ S̃(0.5r + f); see Methods and formulas for a formal
definition of S̃(·).

If we use the survival probability in the control group, S1(24) = 0.7, at a follow-up time
t∗ = f = 24 instead of the average follow-up time t∗ = 33 in the presence of an accrual period,

. power logrank 0.7, hratio(0.57) power(0.9) schoenfeld

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
H0: ln(HR) = 0 versus Ha: ln(HR) != 0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.5621 (log hazard-ratio)

hratio = 0.5700

Censoring:

s1 = 0.7000
s2 = 0.8160

Pr_E = 0.2420

Estimated number of events and sample sizes:

E = 134
N = 550

N per group = 275

we obtain the estimate of the total sample size of 550, which is substantially greater than the previously
estimated sample sizes of 380 and 378.
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Computing power

Sometimes the number of subjects available for the enrollment into the study is limited. In such
cases, the researchers may want to investigate with what power they can detect a desired treatment
effect for a given sample size.

To compute power, you must specify the sample size in the n() option and an effect size (a hazard
ratio or a log hazard-ratio). A hazard ratio of 0.5 is assumed if an effect size is not specified.

Example 9: Power determination

Recall the colon cancer study described in example 4. Suppose that only 100 subjects are available
to be recruited to the study. We find out how this affects the power to detect a hazard ratio of 0.737.

. power logrank 0.5, hratio(0.737) onesided n(100)

Estimated power for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

Study parameters:

alpha = 0.0500
N = 100

N per group = 50
delta = 0.7370 (hazard ratio)

hratio = 0.7370

Number of events and censoring:

E = 46
s1 = 0.5000
s2 = 0.6000

Pr_E = 0.4500

Estimated power:

power = 0.2646

The power to detect an alternative Ha: ∆ = 0.737 decreased from 0.8 to 0.2646 when the sample
size decreased from 600 to 100 (the number of events decreased from 270 to 46).

Example 10: Multiple values of study parameters

Continuing with example 9, suppose we want to consider a range of sample sizes. We can specify
a list (see [U] 11.1.8 numlist) of sample sizes in the n() option. For simplicity, we display only
power, sample size, and number of events in the table.

. power logrank 0.5, hratio(0.737) onesided n(100(100)600) table(power N E)

Estimated power for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

power N E

.2646 100 46

.4174 200 91

.5455 300 136

.6505 400 181

.7344 500 226

.8004 600 271
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As the sample size increases, the power increases. The decrease in sample size reduces the number
of events observed in the study and therefore changes the estimates of the power. If the number of
events were fixed, power would have been independent of the sample size, provided that all other
parameters were held constant, because the formulas relate power directly to the number of events
and not the number of subjects.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

Computing effect size

Effect size δ for the log-rank test comparing two survivor functions is defined as a hazard ratio (or
a log hazard-ratio) of the experimental group to the control group. This value typically defines the
clinically significant improvement of the experimental procedure over the control procedure desired
to be detected by the log-rank test with a certain power.

Sometimes, we may be interested in determining the smallest effect that yields a statistically
significant result for prespecified sample size and power. In this case, both power and sample size
must be specified in options power() and n(), respectively. Additionally, you may also choose the
direction of the effect by specifying the direction() option. direction(lower) is the default,
and it assumes ∆a < 1 [or ln(∆a) < 0]. You can use direction(upper) to compute ∆a > 1 [or
ln(∆a) > 0].

Example 11: Effect-size determination

Continuing with example 10, we can find that the value of the hazard ratio that can be detected
for a fixed sample size of 100 with 80% power is approximately 0.42, corresponding to an increase
in survival probability from 0.5 to roughly 0.75.

. power logrank 0.5, onesided n(100) power(0.8)

Performing iteration ...

Estimated hazard ratio for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

Study parameters:

alpha = 0.0500
power = 0.8000

N = 100
N per group = 50

Number of events and censoring:

E = 38
s1 = 0.5000
s2 = 0.7455

Pr_E = 0.3772

Estimated effect size and hazard ratio:

delta = 0.4237 (hazard ratio)
hratio = 0.4237

Under the censoring information, power logrank also reports the experimental-group survival rate
at the end of the study corresponding to the computed hazard ratio—s2=0.7455 in our example.
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Testing a hypothesis about two survivor functions using the log-rank test

Example 12: Using the log-rank test to detect a change in survival in two groups

Similarly to example 4, consider the generated dataset drug.dta, consisting of variables drug (a
drug type) and failtime (a time to failure).

. use https://www.stata-press.com/data/r18/drug
(Patient survival in drug trial)

. tabulate drug

Treatment
type Freq. Percent Cum.

Placebo 50 33.33 33.33
Drug A 50 33.33 66.67
Drug B 50 33.33 100.00

Total 150 100.00

. by drug, sort: summarize failtime

-> drug = Placebo

Variable Obs Mean Std. dev. Min Max

failtime 50 1.03876 .5535538 .1687701 2.382302

-> drug = Drug A

Variable Obs Mean Std. dev. Min Max

failtime 50 1.191802 .5927507 .2366922 2.277536

-> drug = Drug B

Variable Obs Mean Std. dev. Min Max

failtime 50 1.717314 .8350659 .5511715 3.796102

Failure times of the control group (Placebo) were generated from the Weibull distribution with
λw = 0.693 and p = 2 (see [ST] streg); failure times of the two experimental groups, Drug A and
Drug B, were generated from Weibull distributions with hazard functions proportional to the hazard of
the control group in ratios 0.737 and 0.42, respectively. The Weibull family of survival distributions is
chosen arbitrarily, and the Weibull parameter, λw, is chosen such that the survival at 1 year, t = 1, is
roughly equal to 0.5. Subjects are randomly allocated to one of the three groups in equal proportions.
Subjects with failure times greater than t = 1 will be censored at t = 1.

Before analyzing these survival data, we need to set up the data using stset. After that, we
can use sts test, logrank to test the survivor functions separately for Drug A against Placebo
and Drug B against Placebo by using the log-rank test. See [ST] stset and [ST] sts test for more
information about these two commands.
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. stset failtime, exit(time 1)

Survival-time data settings

Failure event: (assumed to fail at time=failtime)
Observed time interval: (0, failtime]

Exit on or before: time 1

150 total observations
0 exclusions

150 observations remaining, representing
59 failures in single-record/single-failure data

128.985 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 1

. sts test drug if drug!=2, logrank

Failure _d: 1 (meaning all fail)
Analysis time _t: failtime

Exit on or before: time 1

Equality of survivor functions
Log-rank test

Observed Expected
drug events events

Placebo 25 22.17
Drug A 21 23.83

Total 46 46.00

chi2(1) = 0.70
Pr>chi2 = 0.4028

. sts test drug if drug!=1, logrank

Failure _d: 1 (meaning all fail)
Analysis time _t: failtime

Exit on or before: time 1

Equality of survivor functions
Log-rank test

Observed Expected
drug events events

Placebo 25 16.61
Drug B 13 21.39

Total 38 38.00

chi2(1) = 7.55
Pr>chi2 = 0.0060

From the results from sts test for the Drug A group, we fail to reject the null hypothesis of no
difference between the survivor functions in the two groups; given our simulated data, the test made
a type II error. On the other hand, for the Drug B group the one-sided p-value of 0.003, computed
as 0.006/2 = 0.003, suggests that the null hypothesis of nonsuperiority of the experimental treatment
be rejected at the 0.005 significance level. We correctly conclude that the data provide the evidence
that Drug B is superior to the Placebo.

Results from sts test, logrank for the two experimental groups agree with findings from
examples 9 and 11. For the sample size of 100, the power of the log-rank test to detect the hazard
ratio of 0.737 (10% increase in survival) is low (26%), whereas this sample size is sufficient for the
test to detect a change in a hazard of 0.42 (25% increase in survival) with approximately 80% power.
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Here we simulated our data from the alternative hypothesis and therefore can determine whether
the correct decision or a type II error was made by the test. In practice, however, there is no way
to determine the accuracy of the decision from the test. All we know is that in a long series of
trials, there is a 5% chance that a particular test will incorrectly reject the null hypothesis, a 74%
[(1− 0.25)× 100% given the power of 0.2646 obtained in example 9] chance that the test will miss
the alternative Ha: ∆ = 0.737, and a 20% [(1− 0.8)× 100% given the power of 0.8 in example 11]
chance that the test will miss the alternative Ha: ∆ = 0.42.

Stored results
power logrank stores the following in r():
Scalars

r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
r(nratio) ratio of sample sizes, N2/N1
r(nratio a) actual ratio of sample sizes
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(E) total number of events (failures)
r(hratio) hazard ratio
r(lnhratio) log hazard-ratio
r(s1) survival probability in the control group (if specified)
r(s2) survival probability in the experimental group (if specified)
r(Pr E) probability of an event (failure)
r(Pr w) proportion of withdrawals
r(t min) minimum time (if st1() is specified)
r(t max) maximum time (if st1() is specified)
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for hazard ratio or log hazard-ratio
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) logrank
r(test) Freedman or Schoenfeld
r(effect) hratio or lnhratio
r(survvar) name of the variable containing survival probabilities (if st1() is specified)
r(timevar) name of the variable containing time points (if st1() is specified)
r(direction) lower or upper
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results
r(simpmat) control-group survival probabilities (if simpson() is specified)
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Methods and formulas
Let S1(t) and S2(t) denote the survivor functions of the control and the experimental groups and

∆(t) = ln{S2(t)}/ ln{S1(t)} denote the hazard ratio at time t of the experimental to the control
groups. Thus, for a given constant hazard ratio ∆, the survivor function of the experimental group at
any time t > 0 may be computed as S2(t) = {S1(t)}∆ under the assumption of proportional hazards.
Define E and n to be the total number of events and the total number of subjects required for the
study, respectively; pw to be the proportion of subjects withdrawn from the study (lost to follow-up);
and z(1−α/k) and z(1−β) to be the (1− α/k)th and the (1− β)th quantiles of the standard normal
distribution, respectively, with k = 1 for the one-sided test and k = 2 for the two-sided test. Let R
be the allocation ratio to the experimental group with respect to the control group, that is, n2 = Rn1.

The total number of events required to be observed in a study to ensure a power of π = 1− β of
the log-rank test to detect the hazard ratio ∆ with significance level α, according to Freedman (1982),
is

E =
1

R
(z1−α/k + z1−β)2

(
R∆ + 1

∆− 1

)2

and, according to Schoenfeld (1983) and Collett (2015, 473), is

E =
1

R
(z1−α/k + z1−β)2

{
1 +R

ln(∆)

}2

Both formulas are approximations and rely on a set of assumptions such as distinct failure times, all
subjects completing the course of the study (no withdrawal), and a constant ratio, R, of subjects at
risk in two groups at each failure time.

The total sample size required to observe the total number of events, E, is given by

n =
E

pE

The number of subjects required to be recruited in each group is obtained as n1 = n/(1 + R)
and n2 = nR/(1 +R). If nfractional is not specified, sample sizes and the number of events are
rounded to integer values; see Fractional sample sizes in [PSS-4] Unbalanced designs for details.

By default, the probability of an event (failure), pE , is approximated as suggested by Freed-
man (1982),

pE = 1− S1(t∗) +RS2(t∗)

1 +R

where t∗ is the minimum follow-up time, f , or, in the presence of an accrual period, the average
follow-up time, (f + T )/2 = f + 0.5r.

If simpson() is specified, the probability of an event is approximated using Simpson’s rule as
suggested by Schoenfeld (1983):

pE = 1− 1

6

{
S̃(f) + 4S̃(0.5r + f) + S̃(T )

}
where S̃(t) = {S1(t) + RS2(t)}/(1 + R) and f , r, and T = f + r are the follow-up period, the
accrual period, and the total duration of the study, respectively.
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The methods do not incorporate time explicitly but rather use it to determine values of the survival
probabilities S1(t) and S2(t) used in the computations.

If st1() is used, the integral in the expression for the probability of an event

pE = 1− 1

r

∫ T

f

S̃(t)dt

is computed numerically using cubic splines (see [R] dydx). The value of r is computed as the
difference between the maximum and the minimum values of varnamet in st1(), r = T − f =
max(varnamet)− min(varnamet).

To account for the proportion of subjects, pw, withdrawn from the study (lost to follow-up), a
conservative adjustment to the total sample size is applied as follows:

nw =
n

1− pw

Equal withdrawal rates are assumed in the adjustment of the group sample sizes for the withdrawal
of subjects. Equal withdrawals do not affect the estimates of the number of events, provided that
withdrawal is independent of event times and the ratio of subjects at risk in two groups remains
constant at each failure time.

The power for each method is estimated using the formula

π = 1− β = Φ{|ψ|−1(RnpE)1/2 − z1−α/k}

where Φ(·) is the standard normal cumulative distribution function; ψ = (R∆ + 1)/(∆ − 1) or
ψ = (1 +R)/ ln(∆) if the schoenfeld option is specified.

The estimate of the hazard ratio (or log hazard-ratio) for fixed power and sample size is computed
(iteratively for censoring) using the formulas for the sample size given above. The value of the hazard
ratio (log hazard-ratio) corresponding to the reduction in a hazard of the experimental group relative
to the control group is reported by default.
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[PSS-2] power, table — Produce table of results from the power command

[PSS-5] Glossary
[ADAPT] gsdesign logrank — Group sequential design for a log-rank test

[ST] stcox — Cox proportional hazards model

[ST] sts test — Test equality of survivor functions

https://doi.org/10.2307/2531021
https://doi.org/10.2307/2530299


Title

power logrank, cluster — Power analysis for the log-rank test, CRD

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

power logrank, cluster computes group-specific numbers of clusters, group-specific cluster
sizes, power, or the hazard ratio for the log-rank test comparing survivor functions in two groups
in a cluster randomized design (CRD). Without censoring, the survival input parameter is the hazard
ratio; otherwise, the survival input parameters are the control-group and experimental-group survival
probabilities.

power logrank, cluster computes group-specific numbers of clusters given cluster sizes, power,
and survival parameters. It also computes group-specific cluster sizes given numbers of clusters, power,
and survival parameters. Alternatively, it computes power given numbers of clusters, cluster sizes,
and survival parameters, or it computes the hazard ratio given numbers of clusters, cluster sizes,
power, and, in the presence of censoring, the control-group survival probability. See [PSS-2] power
logrank for a general discussion of power and sample-size analysis for the log-rank test. Also see
[PSS-2] power for a general introduction to the power command using hypothesis tests.

Quick start
Numbers of clusters for uncensored design with alternative hazard ratio ∆a = 0.76 for the log-rank

test of H0: ∆ = 1 versus Ha: ∆ 6= 1 given a cluster size of 5 in both groups and using default
intraclass correlation of 0.5, power of 0.8, and significance level α = 0.05

power logrank, m1(5) m2(5) hratio(0.76)

Same as above, but use intraclass correlation of 0.4
power logrank, m1(5) m2(5) hratio(0.76) rho(0.4)

Assume cluster sizes vary with an average cluster size of 5 and a coefficient of variation of 0.6
power logrank, m1(5) m2(5) hratio(0.76) cvcluster(0.6)

Group-specific numbers of clusters using ratio of experimental clusters to control clusters of 0.5
power logrank, m1(5) m2(5) hratio(0.76) kratio(0.5)

Cluster sizes for censored design with control- and experimental-group survival probabilities of 0.3
and 0.4 for the log-rank test of H0: ∆ = 1 versus Ha: ∆ 6= 1 with 200 clusters in both groups
using default intraclass correlation of 0.5, power of 0.8, and significance level α = 0.05

power logrank 0.3 0.4, k1(200) k2(200)

Power for 50 clusters of size 5 in the control group and 50, 100, 150, or 200 clusters of size 5 in
the experimental group with results shown in a power plot

power logrank 0.3 0.4, k1(50) k2(50(50)200) m1(5) m2(5) graph

Hazard ratio and experimental-group survival probability with power of 0.8
power logrank 0.3, k1(50) k2(50) m1(5) m2(5) power(0.8)

601
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Menu
Statistics > Power, precision, and sample size

Syntax

Compute numbers of clusters

power logrank
[

surv1

[
surv2

] ]
, {mspec | nspec cluster }

[
options

]

Compute cluster sizes

power logrank
[

surv1

[
surv2

] ]
, kspec

[
options

]

Compute power

power logrank
[

surv1

[
surv2

] ]
, kspec {mspec | nspec }

[
options

]

Compute effect size

power logrank
[

surv1

]
, kspec {mspec | nspec } power(numlist)

[
options

]

where surv1 is the survival probability in the control (reference) group at the end of the study t∗ and
surv2 is the survival probability in the experimental (comparison) group at the end of the study t∗.
surv1 and surv2 may each be specified either as one number or as a list of values in parentheses
(see [U] 11.1.8 numlist).

mspec is one of

m1() m2()

m1()
[
mratio()

]
m2()

[
mratio()

]
nspec is one of

n1() n2()

n1()
[
nratio()

]
n2()

[
nratio()

]
kspec is one of

k1() k2()

k1()
[
kratio()

]
k2()

[
kratio()

]
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options Description

Main

cluster perform computations for a CRD; implied by k1(), k2(),
m1(), or m2()

∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗k1(numlist) number of clusters in the control group
∗k2(numlist) number of clusters in the experimental group
∗kratio(numlist) cluster ratio, K2/K1; default is kratio(1)
∗m1(numlist) cluster size of the control group
∗m2(numlist) cluster size of the experimental group
∗mratio(numlist) cluster-size ratio, M2/M1; default is mratio(1)
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) sample-size ratio, N2/N1; default is nratio(1)

nfractional allow fractional numbers of clusters, cluster sizes, and
sample sizes

∗hratio(numlist) hazard ratio of the experimental to the control group; default is
hratio(0.5)

∗lnhratio(numlist) log hazard-ratio of the experimental to the control group
∗rho(numlist) intraclass correlation; default is rho(0.5)
∗cvcluster(numlist) coefficient of variation for cluster sizes
direction(lower|upper) direction of the effect for effect-size determination; default is

direction(lower), which means that the postulated value
of the parameter is smaller than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph
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Iteration

init(#) initial value for hazard ratio
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
K1 number of clusters in the control group K1

K2 number of clusters in the experimental group K2

kratio ratio of numbers of clusters, experimental to control K2/K1

M1 cluster size of the control group M1

M2 cluster size of the experimental group M2

mratio ratio of cluster sizes, experimental to control M2/M1

N total number of observations N
N1 number of observations in the control group N1

N2 number of observations in the experimental group N2

nratio ratio of sample sizes, experimental to control N2/N1

delta effect size δ
E total number of events (failures) E
hratio hazard ratio ∆
lnhratio log hazard-ratio ln(∆)
s1 survival probability in the control group S1(T )
s2 survival probability in the experimental group S2(T )
Pr E overall probability of an event (failure) pE
rho intraclass correlation ρ
CV cluster coefficient of variation for cluster sizes CVcl

target target parameter; hratio
all display all supported columns
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Column beta is shown in the default table in place of column power if specified.
Column N is shown in the table if specified.
Columns N1 and N2 are shown in the default table if n1() or n2() is specified.
Column lnhratio is shown in the default table in place of column hratio if specified.
Columns s1 and s2 are available only when specified.
Columns nratio and CV cluster are shown in the default table if specified.

Options

� � �
Main �

cluster specifies that computations should be performed for a CRD. This option is implied when
the k1(), k2(), m1(), or m2() option is specified. cluster is required to compute the numbers
of clusters when nspec is used to specify sample sizes instead of mspec for cluster sizes.

alpha(), power(), beta(); see [PSS-2] power.

k1(numlist) specifies the number of clusters in the control group.

k2(numlist) specifies the number of clusters in the experimental group.

kratio(numlist) specifies the ratio of the numbers of clusters of the experimental group relative to
the control group, K2/K1. The default is kratio(1), meaning equal numbers of clusters in the
two groups.

m1(numlist) specifies the cluster size of the control group. m1() may contain noninteger values.

m2(numlist) specifies the cluster size of the experimental group. m2() may contain noninteger values.

mratio(numlist) specifies the ratio of cluster sizes of the experimental group relative to the control
group, M2/M1. The default is mratio(1), meaning equal cluster sizes in the two groups.

n1(), n2(), nratio(); see [PSS-2] power.

nfractional; see [PSS-2] power. The nfractional option displays fractional (without rounding)
values of the numbers of clusters, cluster sizes, and sample sizes.

hratio(), lnhratio(); see [PSS-2] power logrank.

rho(numlist) specifies the intraclass correlation. The default is rho(0.5).

cvcluster(numlist) specifies the coefficient of variation for cluster sizes. This option is used with
varying cluster sizes.

direction(), onesided, parallel; see [PSS-2] power. direction(lower) is the default.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.
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� � �
Iteration �

init(#) specifies the initial value for the hazard ratio.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following option is available with power logrank, cluster but is not shown in the dialog box:

notitle; see [PSS-2] power.

Remarks and examples
Remarks are presented under the following headings:

Using power logrank, cluster
Computing numbers of clusters
Computing cluster sizes
Computing power
Computing effect size
Compare two survivor functions with clustered data

power logrank, cluster requests that computations for the power logrank command be done
for a CRD. In a CRD, groups of subjects or clusters are randomized instead of individual subjects,
so the sample size is determined by the numbers of clusters and the cluster sizes. The sample-size
determination thus consists of the determination of the numbers of clusters given cluster sizes or the
determination of cluster sizes given the numbers of clusters. For a general discussion of using power
logrank, see [PSS-2] power logrank. The discussion below is specific to the CRD.

Using power logrank, cluster

If you specify the cluster option, include k1() or k2() to specify the number of clusters
or include m1() or m2() to specify the cluster size, the power logrank command will perform
computations for the log-rank test in a CRD. The computations for a CRD are based on the Freedman
method; see Introduction in [PSS-2] power logrank for details.

All computations are performed for a two-sided hypothesis test where, by default, the significance
level is set to 0.05. You may change the significance level by specifying the alpha() option. You
can specify the onesided option to request a one-sided test. By default, all computations assume
a balanced or equal-allocation design, meaning equal numbers of clusters and cluster sizes in both
groups; see [PSS-4] Unbalanced designs for a description of how to specify an unbalanced design.

To compute the number of clusters in both groups, you must provide cluster sizes for both groups.
There are multiple ways to supply cluster sizes, but the most common is to specify the cluster size of
the control group in the m1() option and the cluster size of the experimental group in the m2() option.
See mspec and nspec under Syntax for other specifications. When nspec is specified, the cluster
option is also required to request that power logrank perform computations for a CRD. The number
of clusters is assumed to be equal in the two groups, but you can change this by specifying the ratio
of the numbers of clusters in the experimental to the control group in the kratio() option. Other
parameters are specified as described in Using power logrank in [PSS-2] power logrank.

To compute the cluster sizes in both groups, you must provide the numbers of clusters in both
groups. There are several ways to supply the numbers of clusters; see kspec under Syntax. The most
common is to specify the numbers of clusters in the control group and the experimental group in
the k1() and k2() options, respectively. Equal cluster sizes are assumed in the two groups, but you
can change this by specifying the ratio of the cluster sizes in the experimental to that of the control
group in the mratio() option. Other parameters are specified as described in Using power logrank
in [PSS-2] power logrank.
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The power and effect-size determination is the same as described in Using power logrank in
[PSS-2] power logrank, but the sample-size information is supplied as the numbers of clusters kspec
and either cluster sizes using mspec or, less commonly, sample sizes using nspec.

All computations assume an intraclass correlation of 0.5. You can change this by specifying the
rho() option. Also, all clusters are assumed to be of the same size unless the coefficient of variation
for cluster sizes is specified in the cvcluster() option.

By default, the computed numbers of clusters, cluster sizes, and sample sizes are rounded up.
However, you can specify the nfractional option to see the corresponding fractional values; see
Fractional sample sizes in [PSS-4] Unbalanced designs for an example. If the cvcluster() option is
specified when computing cluster sizes, then cluster sizes represent average cluster sizes and are thus
not rounded. When sample sizes are specified using nspec, fractional cluster sizes may be reported
to accommodate the specified numbers of clusters and sample sizes.

Some of power logrank, cluster’s computations require iteration; see Methods and formulas
for details and [PSS-2] power for the descriptions of options that control the iteration procedure.

Computing numbers of clusters

To compute the numbers of clusters in each group, you must either provide the cluster size for each
group using mspec or specify the cluster option and provide the sample sizes of both groups using
nspec. The most common method is to use mspec of m1() and m2(). A hazard ratio of 0.5 is assumed
but may be changed by specifying the hratio() option. If there is censoring, the control-group
survival probability surv1 must be specified, and the experimental-group survival probability surv2

may be specified instead of the hazard ratio.

Example 1: Numbers of clusters for the log-rank test with no censoring in a CRD

Consider an example from Xie and Waksman (2003). A researcher would like to study the time
it takes diabetic foot ulcers to heal completely (the event of interest). Patients enrolled in the study
may have multiple ulcers, and all existing ulcers will be treated. Suppose that at the end of the study,
all ulcers are expected to be healed. Patients, the clustering unit, are randomly assigned equally to
the control group with the usual treatment and the experimental group with the new treatment. The
researcher is interested in detecting a hazard ratio, experimental group to control group, of 1.79 for
healing. For the planned study, the researcher assumes about 3 ulcers per patient in each group with
an intraclass correlation of 0.3.

To compute the numbers of patients in each group required to detect a hazard ratio of 1.79 with
80% power using a 5%-level two-sided test, we type
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. power logrank, hratio(1.79) m1(3) m2(3) rho(0.3)

Estimated numbers of clusters for two-sample comparison of survivor functions
Cluster randomized design, log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.7900 (hazard ratio)

hratio = 1.7900

Cluster design:

M1 = 3
M2 = 3

rho = 0.3000

Number of events and censoring:

E = 157
Pr_E = 1.0000

Estimated numbers of clusters and sample sizes:

K1 = 27
K2 = 27
N1 = 81
N2 = 81

We find that 27 patients per group are required to detect a hazard ratio of 1.79 with 80% power using
a 5%-level two-sided test.

Example 2: Numbers of clusters for the log-rank test with censoring in a CRD

Unlike example 1, suppose that 70% of the ulcers in the control group and 50% in the experimental
group are not healed at the end of the study. Because there is censoring, we specify the survival
probabilities of 0.7 and 0.5 as command arguments.
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. power logrank 0.7 0.5, m1(3) m2(3) rho(0.3)

Estimated numbers of clusters for two-sample comparison of survivor functions
Cluster randomized design, log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.9434 (hazard ratio)

hratio = 1.9434

Cluster design:

M1 = 3
M2 = 3

rho = 0.3000

Number of events and censoring:

E = 123
s1 = 0.7000
s2 = 0.5000

Pr_E = 0.4000

Estimated numbers of clusters and sample sizes:

K1 = 51
K2 = 51
N1 = 153
N2 = 153

We find that 51 patients per group are required to detect a decrease in the survival rate or an increase
in the healing rate of ulcers from 0.7 to 0.5 with 80% power using a 5%-level two-sided test.

Example 3: Numbers of clusters for the log-rank test in a CRD, varying cluster sizes

Continuing with example 2, we now want to account for the fact that the numbers of ulcers may
vary among patients. We assume a coefficient of variation of 0.4. To compute the numbers of clusters
when cluster sizes vary, we specify the coefficient of variation of the numbers of ulcers of 0.4 in the
cvcluster() option.
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. power logrank 0.7 0.5, m1(3) m2(3) rho(0.3) cvcluster(0.4)

Estimated numbers of clusters for two-sample comparison of survivor functions
Cluster randomized design, log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.9434 (hazard ratio)

hratio = 1.9434

Cluster design:

Average M1 = 3.0000
Average M2 = 3.0000

rho = 0.3000
CV_cl = 0.4000

Number of events and censoring:

E = 134
s1 = 0.7000
s2 = 0.5000

Pr_E = 0.4000

Estimated numbers of clusters and sample sizes:

K1 = 56
K2 = 56
N1 = 168
N2 = 168

The required number of patients in each group is 56, which is larger than the required number of
patients of 51 in example 2. When the numbers of ulcers vary among patients, we need more patients
to achieve the same power.

Computing cluster sizes

To compute cluster sizes in both groups, you must provide the numbers of clusters in both groups
by using kspec. The most common method is to specify the numbers of clusters in the control and
experimental groups in the k1() and k2() options, respectively. As for the determination of the
numbers of clusters, a hazard ratio of 0.5 is assumed but may be changed by specifying the hratio()
option. If there is censoring, the control-group survival probability surv1 must be specified, and the
experimental-group survival probability surv2 may be specified instead of the hazard ratio.

Example 4: Cluster sizes for the log-rank test in a CRD

Continuing with example 2, suppose that we are designing a new study and planning to recruit 100
patients, with 50 patients in each group. Given other study parameters from example 2, we compute
the number of ulcers we would expect to see from each patient to achieve the power of 80% by
specifying 50 clusters in the k1() and k2() options.
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. power logrank 0.7 0.5, k1(50) k2(50) rho(0.3)

Estimated cluster sizes for two-sample comparison of survivor functions
Cluster randomized design, log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.9434 (hazard ratio)

hratio = 1.9434

Cluster design:

K1 = 50
K2 = 50

rho = 0.3000

Number of events and censoring:

E = 77
s1 = 0.7000
s2 = 0.5000

Pr_E = 0.4000

Estimated cluster sizes and sample sizes:

M1 = 4
M2 = 4
N1 = 200
N2 = 200

To achieve the desired power of 80%, with 100 patients, we will need to observe 4 ulcers per patient.

Computing power

To compute power in a CRD, you supply the sample-size information as the numbers of clusters
by using kspec along with either the cluster sizes by using mspec or, less commonly, the sample sizes
by using nspec. The most common method is to specify the k1(), k2(), m1(), and m2() options.
A hazard ratio of 0.5 is assumed but may be changed by specifying the hratio() option. If there is
censoring, the control-group survival probability surv1 must be specified, and the experimental-group
survival probability surv2 may be specified instead of the hazard ratio.

Example 5: Power for the log-rank test in a CRD

Continuing with example 2, suppose that we can recruit 100 patients (50 patients per group)
and observe 3 ulcers per patient and we want to compute power for this design. Given other study
parameters from example 2, we compute power by specifying 50 clusters in the k1() and k2()
options and 3 as the cluster size in the m1() and m2() options.
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. power logrank 0.7 0.5, k1(50) k2(50) m1(3) m2(3) rho(0.3)

Estimated power for two-sample comparison of survivor functions
Cluster randomized design, log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1

Study parameters:

alpha = 0.0500
delta = 1.9434 (hazard ratio)

hratio = 1.9434

Cluster design:

K1 = 50
K2 = 50
M1 = 3
M2 = 3
N1 = 150
N2 = 150

rho = 0.3000

Number of events and censoring:

E = 120
s1 = 0.7000
s2 = 0.5000

Pr_E = 0.4000

Estimated power:

power = 0.7927

The computed power is about 79%.

Example 6: Multiple values of study parameters

To investigate the effect of the number of clusters in the experimental group on power, we can
specify a list of numbers of clusters in the k2() option:

. power logrank 0.7 0.5, k1(50) k2(10(20)90) m1(3) m2(3) rho(0.3) table(power K2)

Estimated power for two-sample comparison of survivor functions
Cluster randomized design, log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1

power K2

.4603 10

.7157 30

.7927 50

.8276 70

.8472 90

In this example, we also specified the table(power K2) option to list only the two columns that
vary. As expected, as the number of clusters increases, the power tends to get closer to 1.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.



power logrank, cluster — Power analysis for the log-rank test, CRD 613

Computing effect size

Effect size δ for the log-rank test is the hazard ratio. To compute effect size in a CRD, you
supply the sample-size information as the numbers of clusters by using kspec along with either
the cluster sizes by using mspec or, less commonly, the sample sizes by using nspec. The most
common method is to specify the k1(), k2(), m1(), and m2() options. In addition, power and, in
the presence of censoring, control-group survival probability must be specified. You must also decide
on the direction of the effect, which is specified in the direction() option. For the default, lower,
meaning ∆ < 1, power logrank, cluster uses direction(lower). For upper, meaning ∆ > 1,
specify direction(upper).

Example 7: Effect size for the log-rank test in a CRD

Continuing with example 5, we may be interested in finding the minimum value of the hazard
ratio that can be detected with a sample of 50 patients per group, with about 3 ulcers per patient,
and with 80% power. To compute this, we specify the control-group survival probability of 0.7 as
the command argument and required options k1(50), k2(50), m1(3), m2(3), and power(0.8). We
continue to use rho(0.3). In this example, we want to detect an effect in the upper direction. That
is, we believe the rate of healing in the experimental group is greater than in the control group, so we
expect a hazard ratio greater than 1. Therefore, we need to specify the direction(upper) option.

. power logrank 0.7, k1(50) k2(50) m1(3) m2(3) power(0.8) rho(0.3)
> direction(upper)

Performing iteration ...

Estimated hazard ratio for two-sample comparison of survivor functions
Cluster randomized design, log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1; HR > 1

Study parameters:

alpha = 0.0500
power = 0.8000

Cluster design:

K1 = 50
K2 = 50
M1 = 3
M2 = 3
N1 = 150
N2 = 150

rho = 0.3000

Number of events and censoring:

E = 121
s1 = 0.7000
s2 = 0.4980

Pr_E = 0.4010

Estimated effect size and hazard ratio:

delta = 1.9546 (hazard ratio)
hratio = 1.9546

The minimum detectable value of the hazard ratio is about 1.95.
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Compare two survivor functions with clustered data

To compare two survivor functions nonparametrically, we can use the sts test command to
perform, for example, the log-rank test. sts test, however, assumes independent data. We can
compare the survivor functions of the two groups semiparametrically while accounting for correlated
observations by using a Cox proportional hazards model with clustered standard errors. The Cox
model assumes proportional hazards, so testing the equality of two survivor functions reduces to
testing that the ratio of the corresponding hazard functions, the hazard ratio, is equal to one. So we can
include an identifier of the two groups in the Cox model as the covariate and test the corresponding
hazard ratio against one or, equivalently, the log hazard-ratio (coefficient) against zero.

In this section, we briefly demonstrate the stcox command with clustered standard errors to
compare two groups with survival-time clustered data.

Example 8: Comparing two survivor functions with clustered data using stcox

Consider eartubes.dta containing durations of ventilating tubes from Le and Lindgren (1996).
To prevent frequent ear infections in infants and young children, a surgical procedure of inserting
ventilating tubes in the ears is often recommended. In this study, children with ventilating tubes in
both ears were assigned to either a treatment group (receiving a steroid treatment postsurgery) or a
control group (receiving no postsurgery intervention). We want to compare the duration of ventilating
tubes for children in the two groups. Because durations of ventilating tubes within a child, from the
left and right ears, will be correlated, we cluster on the child identifier, childid, in our analysis.

We first declare our survival-time data with the stset command and then use the stcox command
with the vce(cluster childid) option to fit a Cox model with a treatment variable identifying the
two groups as the covariate.

. use https://www.stata-press.com/data/r18/eartubes
(Ventilating tubes life data (Le and Lindgren (1996)))

. stset time, failure(status)

Survival-time data settings

Failure event: status!=0 & status<.
Observed time interval: (0, time]

Exit on or before: failure

156 total observations
0 exclusions

156 observations remaining, representing
144 failures in single-record/single-failure data

1,373.8 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 33
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. stcox i.treatment, vce(cluster childid)

Failure _d: status
Analysis time _t: time

Iteration 0: Log pseudolikelihood = -590.59936
Iteration 1: Log pseudolikelihood = -588.43049
Iteration 2: Log pseudolikelihood = -588.42903
Refining estimates:
Iteration 0: Log pseudolikelihood = -588.42903

Cox regression with Breslow method for ties

No. of subjects = 156 Number of obs = 156
No. of failures = 144
Time at risk = 1,373.8

Wald chi2(1) = 3.55
Log pseudolikelihood = -588.42903 Prob > chi2 = 0.0594

(Std. err. adjusted for 78 clusters in childid)

Robust
_t Haz. ratio std. err. z P>|z| [95% conf. interval]

treatment
treatment .7026351 .1315461 -1.89 0.059 .486821 1.014122

The estimated hazard ratio is 0.7, and the test of log hazard-ratio (or coefficient) of treatment
against zero has a p-value = 0.059. We do not have sufficient statistical evidence to conclude that
the durations of ventilating tubes of the two groups are different, at least at the 5% significance level

Suppose that we want to use the results of this study to design a new study. We want to determine
how many children we need in the study. To compute the required number of children or clusters,
we need the number of observations per cluster in each group and the estimates of the hazard ratio,
of the intraclass correlation, and of the survival rate in the control group at the end of the study.

We can use the estimate of 0.7 for the hazard ratio from stcox. Suppose that we are planning to
stop our new study after 12 months. We can use the sts list command to estimate the control-group
survival rate at 12 months based on these data,

. sts list if treatment==0, at(12 12)

Failure _d: status
Analysis time _t: time

Kaplan--Meier survivor function

Beg. Survivor Std.
Time total Fail function error [95% conf. int.]

12 15 56 0.2035 0.0484 0.1184 0.3049
12 15 0 0.2035 0.0484 0.1184 0.3049

Note: Survivor function is calculated over full data and evaluated at
indicated times; it is not calculated from aggregates shown at left.

The estimated survival rate after 12 months is about 0.2.

To account for clustered data, we need to specify an intraclass correlation in our PSS computations.
We can compute a rough estimate of the intraclass correlation assuming a parametric Weibull model
as described by Canette (2016). Also see Xie and Waksman (2003) for a nonparametric estimation
of the intraclass correlation. For these data, the two methods provide similar values of 0.12 and 0.14,
respectively.

We can compute the required number of clusters for a range of intraclass correlation values between
0.04 and 0.2, for example. We specify this range of intraclass correlation values to straddle the rough
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estimates of 0.12 and 0.14. We specify the control-group survival rate of 0.2 as the command argument,
the hazard ratio of 0.7 in the hratio() option, and because each child has ventilating tubes in both
ears, we specify 2 in the m1() and m2() options in the power logrank command below. We also
specify the table(rho K1) option to list only the columns that vary in the table.

. power logrank 0.2, hratio(0.7) m1(2) m2(2) rho(0.04(0.02)0.2) table(rho K1)

Estimated numbers of clusters for two-sample comparison of survivor functions
Cluster randomized design, log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1

rho K1

.04 89

.06 91

.08 93
.1 94

.12 96

.14 98

.16 100

.18 101
.2 103

The required number of clusters varies between 89 and 103, with the values of 96 and 98 corresponding
to our rough estimates of the intraclass correlation of 0.12 and 0.14.

Stored results
power logrank, cluster stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(K1) number of clusters in the control group
r(K2) number of clusters in the experimental group
r(kratio) ratio of numbers of clusters, K2/K1
r(M1) cluster size of the control group
r(M2) cluster size of the experimental group
r(mratio) ratio of cluster sizes, M2/M1
r(N) total sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
r(nratio) ratio of sample sizes, N2/N1
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(E) total number of events (failures)
r(hratio) hazard ratio
r(lnhratio) log hazard-ratio
r(s1) survival probability in the control group (if specified)
r(s2) survival probability in the experimental group (if specified)
r(Pr E) probability of an event (failure)
r(rho) intraclass correlation
r(CV cluster) coefficient of variation for cluster sizes
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for estimated parameter
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r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) logrank
r(design) CRD
r(test) Freedman
r(direction) lower or upper
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
The computation in a CRD uses the Freedman method based on the asymptotic distribution of the

log-rank test statistic. See Methods and formulas in [PSS-2] power logrank for the common notation.

In a CRD, let K1 and K2 be the numbers of clusters in the control and experimental groups,
respectively, and M1 and M2 be the cluster sizes of the control and experimental groups, respectively.
For unequal cluster sizes, we assume that the cluster sizes are independent and identically distributed
and are small relative to the number of clusters. We have n1 = K1M1 and n2 = K2M2. Let R be
the ratio of the numbers of observations, Rk be the ratio of the numbers of clusters, K2/K1, and
Rm be the ratio of the cluster sizes, M2/M1. Let n = n1 + n2 be the total number of observations,
K = K1 +K2 be the total number of clusters, ρ be the intraclass correlation, CVcl be the coefficient
of variation, and M be the average cluster size

M =
M1K1 +M2K2

K

Define ψ as
ψ = (R∆ + 1)/(∆− 1)

The total number of events required to be observed in a CRD study to ensure a power of π = 1−β
of the log-rank test to detect the hazard ratio ∆ with significance level α, according to Xie and
Waksman (2003), is

E =
1

R
(z1−α/k + z1−β)2

(
R∆ + 1

∆− 1

)2 [
1 + ρ{M(1 + CV2

cl)− 1}
]

(1)

where k = 1 for the one-sided test and k = 2 for the two-sided test.

The required total number of clusters is approximately

K =
E

pEM
(2)
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where pE = 1− (S1 +RS2)/(1 +R) is the event probability with S1 and S2 defined as the survival
probabilities in the control and the experimental groups at the end of the study. Without censoring,
pE = 1. Given Rk, we can compute K1 = K/(1 +Rk) and K2 = KRk/(1 +Rk).

Given K1 and K2, we can compute the average cluster size M as

M =
1− ρ

RKpE/{(z1−α/k − zβ)ψ}2 − ρ(1 + CV2
cl)

We can then compute M1 = KM/(K1 +RmK2) and M2 = M1Rm.

The power is estimated using the formula

π = 1− β = Φ
{
|ψ|−1(RnpE/[1 + ρ{M(1 + CV2

cl)− 1}])1/2 − z1−α/k
}

where Φ(·) is the standard normal cumulative distribution.

Without censoring, the hazard ratio ∆ is computed as

∆ =


1− R+1√

Rn/({z1−α/k−zβ}2[1+ρ{M(1+CV2
cl)−1}])+R

when ∆ < 1

1 + R+1√
Rn/({z1−α/k−zβ}2[1+ρ{M(1+CV2

cl)−1}])−R
when ∆ > 1

With censoring, the hazard ratio ∆ is computed iteratively based on (1) and (2).

References
Canette, I. 2016. In the spotlight: Intraclass correlations after multilevel survival models. Stata News, vol. 31, no. 2.

https://www.stata.com/stata-news/news31-2/intraclass-correlations/.

Gallis, J. A., F. Li, H. Yu, and E. L. Turner. 2018. cvcrand and cptest: Commands for efficient design and analysis
of cluster randomized trials using constrained randomization and permutation tests. Stata Journal 18: 357–378.

Le, C. T., and B. R. Lindgren. 1996. Duration of ventilating tubes: A test for comparing two clustered samples of
censored data. Biometrics 52: 328–334. https://doi.org/10.2307/2533170.

Xie, T., and J. Waksman. 2003. Design and sample size estimation in clinical trials with clustered survival times as
the primary endpoint. Statistics in Medicine 22: 2835–2846. https://doi.org/10.1002/sim.1536.

Also see
[PSS-2] power logrank — Power analysis for the log-rank test

[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] power, graph — Graph results from the power command

[PSS-2] power, table — Produce table of results from the power command

[PSS-5] Glossary
[ST] stcox — Cox proportional hazards model

[ST] sts test — Test equality of survivor functions

https://www.stata.com/stata-news/news31-2/intraclass-correlations/
http://www.stata-journal.com/article.html?article=st0526
http://www.stata-journal.com/article.html?article=st0526
https://doi.org/10.2307/2533170
https://doi.org/10.1002/sim.1536


[PSS-3] Precision and
sample-size analysis

619



Title

Intro (ciwidth) — Introduction to precision and sample-size analysis for confidence intervals

Description Remarks and examples References Also see

Description
Precision and sample-size (PrSS) analysis is essential for designing a statistical study that uses

confidence intervals (CIs) for inference. It investigates the optimal allocation of study resources to
increase the likelihood of the successful achievement of a study objective. PrSS analysis provides an
estimate of the sample size required to achieve the desired precision of a CI in a future study.

For power and sample-size analysis for hypothesis tests, see [PSS-2] Intro (power).

Remarks and examples
Remarks are presented under the following headings:

Precision and sample-size analysis
Confidence intervals
Components of PrSS analysis

Confidence level
CI width
Probability of CI width
Sample size
One-sided versus two-sided CIs

Sensitivity analysis
An example of PrSS analysis in Stata

This entry describes the statistical methodology for PrSS and its terminology that will be used
throughout the manual. For a list of supported PrSS methods and the description of the software, see
[PSS-3] ciwidth. For more information about PrSS analysis, see Meeker, Hahn, and Escobar (2017),
Dixon and Massey (1983), Zar (2010), and Chow et al. (2018), to name a few.

For power and sample-size analysis for hypothesis tests, see [PSS-2] Intro (power).

Precision and sample-size analysis

Precision and sample-size (PrSS) analysis is a key component in designing a statistical study that
uses confidence intervals (CIs) for inference. It investigates the optimal allocation of study resources
to increase the likelihood of the successful achievement of a study objective.

How many subjects do we need in a study to achieve a CI of a desired width? A study with too few
subjects may have a CI that is too wide to be useful in practice. A study with too many subjects may
offer little gain and will thus waste time and resources. Given limited resources, what is the largest
CI width that can be expected for an anticipated number of subjects? PrSS analysis helps answer these
questions and more. In what follows, when we refer to PrSS analysis, we imply any of these goals.

We consider PrSS analysis of a future study as opposed to a study that has already happened.

In the context of PrSS analysis, a CI is the inferential method used to evaluate research objectives
of a study. PrSS analysis is provided for CIs for one mean, the difference between two means, and
more. See [PSS-3] ciwidth for a full list of methods.

Before we discuss the components of PrSS analysis, let us first revisit the basics of CIs.

620
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Confidence intervals
Consider a study in which the research objective is to estimate a population parameter of interest θ.

For example, suppose we want to estimate the mean lifetime of all the bulbs in a factory. The entire
population is rarely available in a study. Instead, a sample x = (x1, x2, . . . , xn) of a particular size
n is randomly selected from a population, and the parameter of interest is estimated from this sample.
In our bulb lifetime example, we can measure only the lifetime of a few bulbs to make inferences
about the mean lifetime of all the bulbs in the factory. Continuing with our example, we can use the
sample mean θ̂ as an estimate of the mean lifetime of all bulbs. But what if we select a different
random sample? Would we obtain the same sample-mean estimate? Given the random nature of the
sample, our new estimate will most likely be different. But how much different? In other words,
we want to know how precise our sample-mean estimate is given the stochastic nature of a random
sample.

In contrast to a single point estimate such as a sample mean, a CI provides an interval estimate
for θ that incorporates the precision of the single estimate. Specifically, a 100(1− α)% CI for θ is
formed as an interval [ll(x), ul(x)] such that Pr {ll(x) ≤ θ ≤ ul(x)|θ} ≥ 1 − α, for 0 ≤ α ≤ 1.
1−α, or expressed as a percentage 100(1−α)%, is known as a confidence coefficient or confidence
level. ll = ll(x) and ul = ul(x) are confidence limits or confidence bounds, and they depend on the
observed data x. A 100(1 − α)% CI is constructed such that, in a repeated independent sampling,
it is guaranteed to contain the true parameter value 100(1 − α)% of the times. Note that for the
observed sample x, the probability that the observed CI [ll , ul ] contains the true parameter value is
either 0 or 1, and we do not know which. Therefore, a CI is often interpreted as a plausible range of
values for θ.

CIs can be two sided or one sided. A two-sided CI has finite confidence limits. For a one-sided
CI, one of the confidence limits is infinite. Specifically, an upper one-sided CI has ll = −∞ and is
of the form (−∞, ul ]. A lower one-sided CI has ul =∞ and is of the form [ll ,∞).

CIs are formed around a point estimate of the parameter of interest. For instance, a normal-based
100(1− α)% two-sided CI for one population mean has the form[

θ − z1−α/2
σ√
n
, θ + z1−α/2

σ√
n

]
where θ is the sample mean, σ is the population standard deviation, and z1−α/2 is the (1− α/2)th
quantile of the standard normal distribution. The width of the CI can be used to measure the degree
of precision of the point estimate.

For a two-sided CI, the width w is defined as the difference between the upper and lower limits,
w = ul − ll . For an upper one-sided CI, the width is defined as the difference between the upper
confidence limit and the point estimate, w = ul − θ̂. For a lower one-sided CI, the width is defined as
the difference between the point estimate and the lower confidence limit, w = θ̂ − ll . For instance,
for the above normal-based mean CI, w = 2zα/2σ/

√
n for a two-sided CI and w = zα/2σ/

√
n for

a one-sided CI. A half-width w/2, also known as a margin of error, is also used as a measure of
precision for a symmetric CI. In our PrSS analysis, we will use the CI width as a measure of CI
precision and will use the two terms (CI precision and CI width) interchangeably.

Typically, CIs depend on the sample size, confidence level, point estimate of the parameter of interest,
and potentially on other method-dependent parameters such as the population standard deviation in
our normal-based CI. As the sample size increases, the CI width becomes smaller. The CI becomes
narrower and thus has a higher precision. As the confidence level increases, the CI width becomes
larger and the CI becomes wider.

To compute CIs in Stata, use ci, mean, proportion, cc, to name a few.
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There is a strong correspondence between CIs and hypothesis tests. A 100(1 − α)% CI can be
obtained by inverting the acceptance region of the corresponding level α test. In other words, a
100(1−α)% CI provides the entire range of hypothetical values for a parameter of interest that cannot
be rejected by the test at a significance level of α. Despite the strong correspondence between CIs and
hypothesis tests, PrSS analysis and PSS analysis will not necessarily lead to the same requirements for
the sample size. A hypothesis test compares the parameter of interest with a single value, whereas
a CI provides a range of plausible values. Thus, for the same significance level, the sample-size
requirements for the CI will generally be larger than for the hypothesis test.

Next, we review concepts specific to PrSS analysis.

Components of PrSS analysis

The main goal of PrSS analysis is to help plan a study such that the chosen CI method has a desired
precision. When the CI precision depends on unknown parameters that need to be estimated from the
data, its value will vary from one random sample to another. To ensure that a CI in a future sample
achieves at least the desired precision, PrSS analysis must account for the sampling variability of the
CI precision. To address this, PrSS incorporates the probability of CI width. This is the probability
that a future CI will have a width no larger than the target width. In what follows, we will use the
CI width to measure the CI precision.

You can think of PrSS analysis analogously to power and sample-size analysis with the confidence
level playing the role of the significance level, the probability of CI width playing the role of power,
and the CI width playing the role of the effect size.

The goal of PrSS analysis can be achieved in several ways. You can

• compute sample size directly given the specified confidence level, CI width, probability of
CI width, and other study parameters;

• evaluate the CI width that can be achieved for a specific sample size given a confidence
level, probability of CI width, and other study parameters;

• evaluate the probability of CI width that can be achieved for a specific sample size and CI
width given a confidence level and other study parameters; or

• evaluate the sensitivity of the sample-size requirements to various study parameters.

The main components of PrSS analysis are

• confidence level, 100(1− α);

• CI width, w;

• probability of CI width, Pr(w); and

• sample size, n.

Below we describe each of the main components of PrSS analysis in more detail.

Confidence level

We denote the confidence level by 100(1−α), where α is between 0 and 1, inclusively. You can
think of α as the significance level for the corresponding hypothesis test. Researchers typically set the
significance level to a small value such as 0.01 or 0.05 to protect the null hypothesis, which usually
represents a state for which an incorrect decision is more costly. Similarly, the typical confidence
levels are 90%, 95%, etc. The most frequently used level is 95%, and it is also the default confidence
level for the ciwidth command.
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CI width

For a two-sided CI, the CI width is the distance from the upper limit to the lower limit. For an
upper one-sided CI, the CI width is the distance from the upper limit to the point estimate. For a
lower one-sided CI, the CI width is the distance from the point estimate to the lower limit. CI width is
commonly used as a measure of the CI precision. The larger the CI width, the wider and less precise
the CI.

For some methods, the lower and upper limits of a two-sided CI are symmetric around the point
estimate. In this case, the half-width, also called the margin of error, is used to measure the CI
precision.

The CI width is an increasing function of the confidence level. So, as we increase the confidence
level, the CI becomes wider. The CI width is generally a decreasing function of the sample size.

Probability of CI width

One of the main goals of PrSS analysis is to estimate the required sample size such that, in a
new study, the estimated CI will have a certain width. During PrSS analysis, a researcher specifies the
desired CI width, and the sample size is computed based on this width for a given confidence level.
The CI width often depends on other study parameters such as a standard deviation in a CI for one
mean. Unless we know the values of all study parameters that affect the CI width, the width will
generally vary from one sample to another.

For example, the population standard deviation is used to define the width of a one-mean CI. When
the population standard deviation is unknown, its estimate, a sample standard deviation, is used in the
computations. This estimate will be different between different random samples. Thus, the CI width
will be different. To obtain a reliable estimate of the required sample size, the sampling variability
of the CI width must be accounted for in the computations.

Kupper and Hafner (1989) recommend that PrSS analysis incorporates what we call a probability
of CI width, denoted as Pr(w). This is a probability that the width of a CI in a future study will
not exceed a prespecified target value. You can think of the probability of CI width as the analog of
power in power and sample-size analysis. As with power, the values of probability of CI width close
to 1 such as 0.9 and 0.95 are commonly used in PrSS analysis.

See Kupper and Hafner (1989) and Meeker, Hahn, and Escobar (2017) for more information.

Sample size

Sample size is usually the main component of interest in PrSS analysis. The sample size required
to successfully achieve the objective of a study is determined given a specified confidence level, CI
width, probability of CI width, and other study parameters. The higher the desired confidence level,
the larger the sample size required, with everything else being equal. To achieve a narrower CI, a
larger sample size is required, with everything else being equal. The higher the probability of CI
width, the larger the required sample size.

When you compute sample size, the actual probability of CI width (probability of CI width
corresponding to the obtained sample size) will most likely be different from the probability of CI
width you requested because sample size is an integer. In the computation, the resulting fractional
sample size that corresponds to the requested probability of CI width is usually rounded to the nearest
integer. To be conservative and to ensure that the actual probability of CI width is at least as large
as the requested one, the sample size is rounded up. For sample-size computations that do not use
probability of CI width, such as the case of a known population standard deviation for a one-mean
CI, the above applies to the specified CI width.
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For two-sample designs, fractional sample sizes may arise when you specify a given sample size
to compute CI precision. For example, to accommodate an odd total sample size of, say, 51 in a
balanced two-sample design, each individual sample size must be 25.5. To be conservative, sample
sizes are rounded down on input. The actual sample sizes in our example would be 25 and 25 for a
total of 50. See Fractional sample sizes in [PSS-4] Unbalanced designs for details about sample-size
rounding.

For two samples, the allocation of subjects between groups also affects the estimates of CI width
and probability of CI width.

One-sided versus two-sided CIs

Two-sided CIs are commonly used in analysis. But there are scenarios where the major interest is
only in the lower or upper limit. For example, we may want to know the lower limit for the mean
lifetime of bulbs to ensure that, with high certainty, customers will not get bulbs that last less than a
year on average, given a 95% confidence level.

For a symmetric two-sided CI, the true value of the parameter of interest has an equal probability
of being located outside the lower and upper limits. In this case, by simply changing the confidence
level, you can get two-sided confidence limits when computing a one-sided CI and vice versa. For
example, the 90% upper confidence limit for a two-sided CI is the upper limit for the 95% one-sided
CI.

Sensitivity analysis

Because of limited resources, it may not always be feasible to conduct a study under the original
ideal specification. In this case, you may vary study parameters to find an appropriate balance between
the desired CI width, probability of CI width, sample size, available resources, and the objective of
the study. For example, a researcher may decide to lower the desired confidence level or probability
of CI width to decrease the required sample size. In some situations, it may not be possible to reduce
the required sample size, in which case more resources must be acquired before the study can be
conducted.

CI precision is a function of all the components we described in the previous section—none of the
components can be viewed in isolation. For this reason, it is important to perform sensitivity analysis,
which investigates CI precision for various specifications of study parameters, and refine the sample-
size requirements based on the findings prior to conducting a study. Tables of sample-size values
(see [PSS-3] ciwidth, table) and graphs of sample-size and CI precision curves (see [PSS-3] ciwidth,
graph) may be useful for this purpose.

An example of PrSS analysis in Stata

Consider a study of math scores from the SAT exam, similar to the one we discussed in [PSS-2] Intro
(power). Suppose that now the investigators would like to measure the average SAT math score. Prior
to conducting the study, investigators would like to estimate the sample size required for the two-sided
95% CI for the average SAT score to have a width no larger than 20 points. We can use the ciwidth
onemean command to estimate the sample size for this study; see [PSS-3] ciwidth onemean for more
examples.

The investigators do not know the actual value of the standard deviation of the scores, but they do
not anticipate it to be larger than the national value of 117 points. As we mentioned in Probability
of CI width, the CI width of a one-mean CI depends on the standard deviation. Because we assume
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an unknown standard deviation, the CI width may vary from one study to another. We must account
for this sampling variability when estimating the sample size. To ensure that the CI will have a width
of at most 20 points, we must also specify the probability of achieving the target CI width.

Below we demonstrate PrSS analysis of this example interactively by typing the commands; see
[PSS-3] GUI (ciwidth) for point-and-click analysis of this example.

We specify the values of the standard deviation, probability of CI width, and CI width in the
corresponding sd(), probwidth(), and width() options. ciwidth onemean assumes a 95%-level
two-sided CI, so we do not need to specify any additional options.

. ciwidth onemean, probwidth(.9) width(20) sd(117)

Performing iteration ...

Estimated sample size for a one-mean CI
Student’s t two-sided CI

Study parameters:

level = 95.00
Pr_width = 0.9000

width = 20.0000
sd = 117.0000

Estimated sample size:

N = 569

We find that a sample of 569 subjects is required to obtain a two-sided 95% CI for the mean SAT
score that with a 90% probability will have a width no larger than 20 points.

Suppose investigators can enroll 600 subjects, and they would like to estimate the corresponding
probability of obtaining the same target CI width as before. To compute the probability of CI width, we
need to specify the sample size, so we modify the command above by replacing the probwidth(.9)
option with the n(600) option.

. ciwidth onemean, n(600) width(20) sd(117)

Estimated probability of width for a one-mean CI
Student’s t two-sided CI

Study parameters:

level = 95.00
N = 600

width = 20.0000
sd = 117.0000

Estimated probability of width:

Pr_width = 0.9887

For a larger sample of 600 subjects, the probability of obtaining a CI width no larger than 20 increases
to 99%.

Investigators would also like to estimate how narrow a CI width they can obtain with a 90%
certainty, given a sample of 600 subjects. To compute the CI width, we specify both the probability
of CI width in the probwidth() option and the sample size in the n() option.
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. ciwidth onemean, probwidth(.9) n(600) sd(117)

Estimated width for a one-mean CI
Student’s t two-sided CI

Study parameters:

level = 95.00
N = 600

Pr_width = 0.9000
sd = 117.0000

Estimated width:

width = 19.4499

We obtain a CI width of about 19 points.

Continuing their analysis, investigators want to assess the impact of different sample sizes on CI
width. They wish to estimate CI width for a range of sample sizes between 400 and 600, in increments
of 50.

To display the results graphically, we specify the graph option. We abbreviate the range of sample
sizes as numlist in the n() option.

. ciwidth onemean, probwidth(.9) n(400(50)600) sd(117) graph
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Parameters: 100(1-α) = 95, pwidth = .9, σ = 117

Student's t two-sided CI

Estimated width for a one-mean CI

The default graph plots the estimated CI width on the y axis and the requested sample size on the x
axis. Note how CI width decreases as the sample size increases.

For multiple values of parameters, the results are automatically displayed in a table. However,
when we specify the graph option, as we did above, the tabular output is suppressed. We can choose
to display the results in a table as well by specifying the table option:

. ciwidth onemean, probwidth(.9) n(400(50)600) sd(117) graph table
(output omitted )

The ciwidth command performs PrSS analysis for a number of CIs; see [PSS-3] ciwidth and
method-specific entries for more examples. You can also add your own methods to the ciwidth
command as described in [PSS-3] ciwidth usermethod.
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Title

GUI (ciwidth) — Graphical user interface for precision and sample-size analysis

Description Menu Remarks and examples Also see

Description
This entry describes the graphical user interface (GUI) for the ciwidth command. See [PSS-3] ci-

width for a general introduction to the ciwidth command.

Menu
Statistics > Power, precision, and sample size

Remarks and examples
Remarks are presented under the following headings:

PSS Control Panel
Example using PSS Control Panel

PSS Control Panel

You can perform PrSS analysis interactively by typing the ciwidth command or by using a
point-and-click GUI available via the PSS Control Panel.

The PSS Control Panel can be accessed by selecting Statistics > Power, precision, and sample
size from the Stata menu. It includes a tree-view organization of the PSS, PrSS, and group sequential
design methods.

628
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The left pane organizes the methods, and the right pane displays the methods corresponding to the
selection in the left pane. On the left, the methods are organized by the type of population parameter,
such as mean or proportion; the type of outcome, such as continuous or binary; the type of analysis,
such as hypothesis test or confidence interval; and the type of sample, such as one sample or two
samples. You click on one of the methods shown in the right pane to launch the dialog box for that
method.

By default, methods are organized by Population parameter. We can find the method we want
to use by looking for it in the right pane, or we can narrow down the type of method we are looking
for by selecting one of the expanded categories in the left pane.
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For example, if we are interested in means, we can click on Means within Population parameter
to see all methods for means in the right pane.

We can expand Means to further narrow down the choices by clicking on the symbol to the left of
Means.
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Or we can choose a method by the type of analysis by expanding Confidence interval and selecting,
for example, CI for a paired-means difference:
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We can also locate methods by searching the titles of methods. You specify the search string of
interest in the Filter box at the top right of the PSS Control Panel. For example, if we type “mean” in
the Filter box while keeping the focus on Confidence interval, only CI methods with a title containing
“mean” will be listed in the right pane.
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We can specify multiple words in the Filter box, and only methods with all the specified words
in their titles will appear. For example, if we type “two means”, only methods with the words “two”
and “means” in their titles will be shown:

The search is performed within the group of methods selected by the choice in the left pane. In
the above example, the search was done within Confidence interval. When you search all methods,
whether you select Population parameter, Outcome, or Sample in the left pane, the same set of
methods appears in the right pane but in the order determined by the selected category.

Example using PSS Control Panel

In An example of PrSS analysis in Stata of [PSS-3] Intro (ciwidth), we performed PrSS analysis
interactively by typing commands. We replicate the analysis by using the PSS Control Panel and
dialog boxes.

We first launch the PSS Control Panel from the Statistics > Power, precision, and sample size
menu. We then narrow down to the desired dialog box by first choosing Confidence interval in the
left pane and then choosing CI for one mean. In the right pane, we see the corresponding CI method.
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We invoke the dialog box by clicking on the corresponding method title in the right pane. The
following appears:
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Following the example from An example of PrSS analysis in Stata in [PSS-3] Intro (ciwidth), we
now compute sample size. The first step is to choose which parameter to compute. The Compute
drop-down box specifies Sample size, so we leave it unchanged. The next step is to specify the
confidence level. The default confidence level is already set to our desired value of 95%, so we leave
it unchanged. We fill the Probability of CI width box with the value 0.9 and the CI width box with
the value 20. We then specify a standard deviation of 117. We leave everything else unchanged and
click on the Submit button to obtain results.

The following command is displayed in the Results window and executed:

. ciwidth onemean, probwidth(.9) width(20) sd(117)

Performing iteration ...

Estimated sample size for a one-mean CI
Student’s t two-sided CI

Study parameters:

level = 95.00
Pr_width = 0.9000

width = 20.0000
sd = 117.0000

Estimated sample size:

N = 569

We can verify that the command and results are exactly the same as what we specified in An example
of PrSS analysis in Stata of [PSS-3] Intro (ciwidth).

Continuing our PrSS analysis, we can enroll 600 subjects and would like to estimate the corresponding
probability of CI width given the same CI width. We return to the dialog box and select Probability
of CI width under Compute. To compute the probability of CI width, we need to specify the sample
size of 600 and leave the other specifications unchanged.
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The following command is issued after we click on the Submit button:

. ciwidth onemean, n(600) width(20) sd(117)

Estimated probability of width for a one-mean CI
Student’s t two-sided CI

Study parameters:

level = 95.00
N = 600

width = 20.0000
sd = 117.0000

Estimated probability of width:

Pr_width = 0.9887

Instead of the probability of CI width, we can also compute the CI width given the same sample
size of 600 and the earlier probability of CI width of 0.9. We return to our dialog box and simply
select CI width under Compute.
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The following command is issued after we click on the Submit button:

. ciwidth onemean, probwidth(.9) n(600) sd(117)

Estimated width for a one-mean CI
Student’s t two-sided CI

Study parameters:

level = 95.00
N = 600

Pr_width = 0.9000
sd = 117.0000

Estimated width:

width = 19.4499

To produce the graph from An example of PrSS analysis in Stata, we first select CI width under
Compute. Then we specify the numlist for sample size in the respective box:
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Then we select the Graph tab and check the Graph the results box:
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We click on the Submit button and obtain the following command and graph:

. ciwidth onemean, probwidth(.9) n(400(50)600) sd(117) graph
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Parameters: 100(1-α) = 95, pwidth = .9, σ = 117

Student's t two-sided CI

Estimated width for a one-mean CI

Also see
[PSS-3] ciwidth — Precision and sample-size analysis for CIs

[PSS-3] Intro (ciwidth) — Introduction to precision and sample-size analysis for confidence intervals

[PSS-5] Glossary



Title

ciwidth — Precision and sample-size analysis for CIs

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas Also see

Description
The ciwidth command performs precision and sample-size analysis (PrSS) for CIs. You can

compute sample size given CI width (or precision) and probability of CI width. Alternatively, you can
compute CI width given sample size and probability of CI width. You can also compute probability of
CI width given sample size and CI width. You can display results in a table ([PSS-3] ciwidth, table)
and on a graph ([PSS-3] ciwidth, graph).

For power and sample-size analysis for hypothesis tests, see [PSS-2] power.

Menu
Statistics > Power, precision, and sample size

Syntax
Compute sample size

ciwidth method . . . , width(numlist) probwidth(numlist)
[

ciwidth options
]

Compute CI width

ciwidth method . . . , probwidth(numlist) n(numlist)
[

ciwidth options
]

Compute probability of CI width

ciwidth method . . . , width(numlist) n(numlist)
[

ciwidth options
]

method Description

One sample

onemean CI for one mean
onevariance CI for one variance

Two independent samples

twomeans CI for comparing two means from independent samples

Two paired samples

pairedmeans CI for comparing two means from paired samples

User-defined methods

usermethod Add your own method to ciwidth

640
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ciwidth options Description

Main
∗level(numlist) confidence level; default is level(95)
∗alpha(numlist) significance level; default is alpha(0.05)
∗probwidth(numlist) probability of CI width; required to compute sample size

and CI width
∗width(numlist) CI width; required to compute sample size and probability

of CI width
∗n(numlist) total sample size; required to compute CI width and probability

of CI width
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1), meaning

equal group sizes
compute(N1 | N2) solve for N1 given N2 or for N2 given N1

nfractional allow fractional sample sizes
lower lower one-sided CI; default is two-sided CI
upper upper one-sided CI; default is two-sided CI
onesided synonym for option upper

parallel treat number lists in starred options or in command arguments as
parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-3] ciwidth, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-3] ciwidth, graph

Iteration

init(#) initial value for sample size; default is to use a closed-form
normal approximation

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

Options n1(), n2(), nratio(), and compute() are available only for two-independent-samples methods.
Iteration options are available only with computations requiring iteration.
collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.
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Options

� � �
Main �

level(numlist) specifies the confidence level, as a percentage, for CIs. The default is level(95) or
as set by set level; see [R] level. If alpha() is specified, this value is set to be 100(1−alpha()).
Only one of level() or alpha() may be specified.

alpha(numlist) sets the significance level. Only one of level() or alpha() may be specified.

probwidth(numlist) specifies the probability of obtaining a CI with the width no larger than a target
CI width. The target CI width is either computed by the command or specified in option width().
This option is required to compute sample size and CI width.

width(numlist) specifies the target CI width, which represents the precision of the CI. This option is
required to compute sample size and probability of CI width. For a two-sided CI, CI width is the
distance between the upper and lower limits. For a one-sided CI, it is the distance from the limit
to the estimate of the parameter of interest, such as a sample mean.

n(numlist) specifies the total number of subjects in the study to be used to compute the CI width
and probability of CI width.

n1(numlist) specifies the number of subjects in the control group to be used to compute the CI width
and probability of CI width.

n2(numlist) specifies the number of subjects in the experimental group to be used to compute the
CI width and probability of CI width.

nratio(numlist) specifies the sample-size ratio of the experimental group relative to the control
group, N2/N1, for two-sample CIs. The default is nratio(1), meaning equal allocation between
the two groups.

compute(N1 | N2) requests that the ciwidth command compute one of the group sample sizes given
the other one, instead of the total sample size, for two-sample CIs. To compute the control-group
sample size, you must specify compute(N1) and the experimental-group sample size in n2().
Alternatively, to compute the experimental-group sample size, you must specify compute(N2)
and the control-group sample size in n1().

nfractional specifies that fractional sample sizes be allowed. When this option is specified, fractional
sample sizes are used in the intermediate computations and are also displayed in the output.

Also see the description and the use of options n(), n1(), n2(), nratio(), and nfractional
for two-sample CIs in Fractional sample sizes of [PSS-4] Unbalanced designs.

lower specifies a lower one-sided CI and may not be combined with option upper. The default is a
two-sided CI.

upper specifies an upper one-sided CI and may not be combined with option lower. The default is
a two-sided CI.

onesided is a synonym for upper, which specifies an upper one-sided CI.

parallel requests that computations be performed in parallel over the lists of numbers specified for
at least two study parameters as command arguments, starred options allowing numlist, or both.
That is, when parallel is specified, the first computation uses the first value from each list of
numbers, the second computation uses the second value, and so on. If the specified number lists
are of different sizes, the last value in each of the shorter lists will be used in the remaining
computations. By default, results are computed over all combinations of the number lists.

For example, let a1 and a2 be the list of values for one study parameter, and let b1 and b2 be
the list of values for another study parameter. By default, ciwidth will compute results for all
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possible combinations of the two values in the two study parameters: (a1, b1), (a1, b2), (a2, b1),
and (a2, b2). If parallel is specified, ciwidth will compute results for only two combinations:
(a1, b1) and (a2, b2).

� � �
Table �

notable, table, and table() control whether or not results are displayed in a tabular format.
table is implied if any number list contains more than one element. notable is implied with
graphical output—when either the graph or the graph() option is specified. table() is used to
produce custom tables. See [PSS-3] ciwidth, table for details.

saving(filename
[
, replace

]
) creates a Stata data file (.dta file) containing the table values

with variable names corresponding to the displayed columns. replace specifies that filename be
overwritten if it exists. saving() is only appropriate with tabular output.

� � �
Graph �

graph and graph() produce graphical output; see [PSS-3] ciwidth, graph for details.

The following options control an iteration procedure used by the ciwidth command for solving
nonlinear equations.

� � �
Iteration �

init(#) specifies an initial value for the sample size when iteration is used to compute the sample
size. The default is to use a closed-form normal approximation to compute an initial sample size.

iterate(#) specifies the maximum number of iterations for the Newton method. The default is
iterate(500).

tolerance(#) specifies the tolerance used to determine whether successive parameter estimates have
converged. The default is tolerance(1e-12). See Convergence criteria in [M-5] solvenl( ) for
details.

ftolerance(#) specifies the tolerance used to determine whether the proposed solution of a
nonlinear equation is sufficiently close to 0 based on the squared Euclidean distance. The default
is ftolerance(1e-12). See Convergence criteria in [M-5] solvenl( ) for details.

log and nolog specify whether an iteration log is to be displayed. The iteration log is suppressed
by default. Only one of log, nolog, dots, or nodots may be specified.

dots and nodots specify whether a dot is to be displayed for each iteration. The iteration dots are
suppressed by default. Only one of dots, nodots, log, or nolog may be specified.

The following option is available with ciwidth but is not shown in the dialog box:

notitle prevents the command title from displaying.
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Remarks and examples
Remarks are presented under the following headings:

Using the ciwidth command
Specifying multiple values of study parameters

PrSS analysis for CIs for one population parameter
PrSS analysis for CIs comparing two independent samples
PrSS analysis for CIs comparing paired samples
Tables of results
Sample-size and other curves
Add your own methods to ciwidth

This section describes how to perform PrSS analysis for CIs using the ciwidth command. For a
software-free introduction to PrSS analysis, see [PSS-3] Intro (ciwidth).

Using the ciwidth command

The ciwidth command computes sample size, CI width, and probability of CI width for various
CIs. You can also add your own methods to the ciwidth command as described in [PSS-3] ciwidth
usermethod.

By default, all computations are performed for a two-sided CI, and the confidence level is set to
95%. You may change the confidence level by specifying the level() option. Alternatively, you can
specify the significance level in the alpha() option. You can specify the upper and lower options
to request upper and lower one-sided CIs.

To compute sample size, you must specify the CI width in the width() option and the probability
of CI width in the probwidth() option. To compute CI width, you must specify the sample size in
the n() option and the probability of CI width in the probwidth() option. You can also compute
the probability of CI width given the sample size in n() and CI width in width(). For some CIs, you
must also specify target values for parameters of interest as command arguments, such as a target
variance for ciwidth onevariance.

The probwidth() option is analogous to the power() option in power and sample-size analysis.
It accounts for the sampling variability of the CI width. For example, for CIs for means, the CI width
depends on the variance, which is commonly estimated from the sample and may vary from one
sample to another. To limit the impact of this sample-to-sample variability on the CI precision, you
can use the probwidth() option to specify the probability that the width of a future CI will not
exceed a target value. Without this adjustment, the results are generally conditional on the future
data having the same variance as the one used for PrSS analysis and may underestimate the estimated
sample size and CI width.

For CIs comparing two independent samples, you can compute one of the group sizes given the
other one instead of the total sample size. In this case, you must specify the label of the group size
you want to compute in the compute() option and the value of the other group size in the respective
n#() option. For example, if we wanted to find the size of the second group given the size of the
first group, we would specify the combination of options compute(N2) and n1(#).

A balanced design is assumed by default for two-independent-samples CIs, but you can request
an unbalanced design. For example, you can specify the allocation ratio n2/n1 between the two
groups in the nratio() option or the individual group sizes in the n1() and n2() options. See
[PSS-4] Unbalanced designs for more details about various ways of specifying an unbalanced design.

For sample-size determination, the reported integer sample sizes may not correspond exactly to the
specified CI width and probability of CI width because of rounding. To obtain conservative results, the
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ciwidth command rounds up the sample size to the nearest integer so that the corresponding CI width
is no larger than the requested one and the probability of CI width is no smaller than the requested
one. You can specify the nfractional option to obtain the corresponding fractional sample size.

Some of ciwidth’s computations require iteration. The defaults chosen for the iteration procedure
should be sufficient for most situations. In a rare situation when you may want to modify the defaults,
the ciwidth command provides options to control the iteration procedure. The most commonly used
is the init() option for supplying an initial value of the estimated parameter. This option can be
useful in situations where the computations are sensitive to the initial values. If you are performing
computations for many combinations of various study parameters, you may consider reducing the
default maximum number of iterations of 500 in the iterate() option so that the command is
not spending time on calculations in difficult-to-compute regions of the parameter space. By default,
ciwidth suppresses the iteration log. If desired, you can specify the log option to display the
iteration log or the dots option to display iterations as dots to monitor the progress of the iteration
procedure.

The ciwidth command can produce results for one study scenario or for multiple study scenarios
when multiple values of the parameters are specified; see Specifying multiple values of study parameters
below for details.

For a single result, ciwidth displays results as text. For multiple results or if the table option
is specified, ciwidth displays results in a table. You can also display multiple results on a graph
by specifying the graph option. Graphical output suppresses the table of the results; use the table
option to also see the tabular output. You can customize the default tables and graphs by specifying
suboptions within the respective options table() and graph(); see [PSS-3] ciwidth, table and
[PSS-3] ciwidth, graph for details.

You can also save the tabular output to a Stata dataset by using the saving() option.

Specifying multiple values of study parameters

The ciwidth command can produce results for one study scenario or for multiple study scenarios
when multiple values of the parameters are supplied to the supported options. The options that support
multiple values specified as numlist are marked with a star in the syntax diagram.

For example, the n() option supports multiple values. You can specify multiple sample sizes as
individual values, n(100 150 200), or as a range of values, n(100(50)200); see [U] 11.1.8 numlist
for other specifications.

In addition to options, you may specify multiple values of command arguments, values specified
after the command name. For example, let #1 be the command argument in

. ciwidth onevariance #1, . . .

If we want to specify multiple values for the command arguments, we must enclose these values
in parentheses. For example,

. ciwidth onevariance (1 1.5), . . .

or, more generally,

. ciwidth onevariance (numlist), . . .

When multiple values are specified in multiple options or for multiple command arguments, the
ciwidth command computes results for all possible combinations formed by the values from every
option and command argument. In some cases, you may want to compute results in parallel for
specific sets of values of the specified parameters. To request this, you can specify the parallel
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option. If the specified number lists are of varying sizes, numlist with the maximum size determines
the number of final results produced by ciwidth. The last value from numlist of smaller sizes will
be used in the subsequent computations.

For example,

. ciwidth onevariance (1 1.5), n(100 200) . . .

is equivalent to

. ciwidth onevariance 1, n(100) . . .

. ciwidth onevariance 1.5, n(100) . . .

. ciwidth onevariance 1, n(200) . . .

. ciwidth onevariance 1.5, n(200) . . .

When the parallel option is specified,

. ciwidth onevariance (1 1.5), n(100 200) parallel . . .

is equivalent to

. ciwidth onevariance 1, n(100) . . .

. ciwidth onevariance 1.5, n(200) . . .

When the parallel option is specified and numlist is of different sizes, the last value of the
shorter numlist is used in the subsequent computations. For example,

. ciwidth onevariance (1 1.5 2), n(100 200) parallel . . .

is equivalent to

. ciwidth onevariance 1, n(100) . . .

. ciwidth onevariance 1.5, n(200) . . .

. ciwidth onevariance 2, n(200) . . .

PrSS analysis for CIs for one population parameter

The ciwidth command provides PrSS analysis for two types of one-sample CIs. ciwidth onemean
performs PrSS analysis for a CI for one population mean, and ciwidth onevariance performs PrSS
analysis for a CI for one population variance.

ciwidth onemean provides PrSS computations for a one-mean CI. You can perform computations
assuming a known or unknown population standard deviation and adjust the results for a finite
population. See [PSS-3] ciwidth onemean.

ciwidth onevariance provides PrSS computations for a one-variance CI. You can perform
computations in the variance or standard-deviation metric. See [PSS-3] ciwidth onevariance.

Below we show a quick example of PrSS analysis for a one-mean CI. See the individual entries
for more examples.
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Example 1: PrSS analysis for a one-mean CI

A group of pediatricians would like to study the exposure of infants to television. They are
interested in estimating a CI for the average number of hours of television watched by infants per day.
Before conducting a study, the pediatricians would like to determine how many infants they need to
enroll in the study so that the CI width is not too large. They hypothesize that the average number
of hours that infants spend watching television has a standard deviation of 0.8 hours. The group of
pediatricians would like to compute the sample size required to produce a two-sided 95% CI with a
width of 0.5 hours given this study parameter.

We use ciwidth onemean to compute the required sample size. We specify the standard deviation
of 0.8 in the sd() option and the CI width of 0.5 in the width() option. However, this CI width can
vary from sample to sample because samples tend to have different variances. To adjust the results
for the sampling variability, we can use the probwidth() option to specify the probability that the
width of the CI does not exceed our target value.

To be 96% certain that the CI width in a future study will be no larger than 0.5 hours, we
specify probwidth(0.96). By default, the confidence level is 95%, so we do not need to specify
the level(95) option.

. ciwidth onemean, sd(0.8) probwidth(0.96) width(0.5)

Performing iteration ...

Estimated sample size for a one-mean CI
Student’s t two-sided CI

Study parameters:

level = 95.00
Pr_width = 0.9600

width = 0.5000
sd = 0.8000

Estimated sample size:

N = 56

The pediatricians need to enroll 56 infants in the study to be 96% certain that the 95% CI will be no
wider than 0.5 for the average number of hours of television that infants watch per day.

All ciwidth commands have a similar output format. Information about the type of CI is displayed
first. The input and implied values of the study parameters are displayed next under Study parameters.
The estimated parameters, in this case the sample size, are displayed last.

Now suppose that we come across a pilot study reporting that infants watch an average of 2.5
hours of television per day, with a standard deviation of 0.8 hours. Now that the value of our standard
deviation is known, rather than hypothesized, we can specify the knownsd option. With this option
specified, ciwidth onemean will perform computations for a normal two-sided CI.

. ciwidth onemean, sd(0.8) width(0.5) knownsd

Estimated sample size for a one-mean CI
Normal two-sided CI

Study parameters:

level = 95.00
width = 0.5000

sd = 0.8000

Estimated sample size:

N = 40

Now that our standard deviation is known, the required sample size is smaller.
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Let’s suppose that we anticipate on having 50 infants in the study, and we want to see how the
probability of obtaining the target CI width of 0.5 changes with this sample size. We now specify the
n(50) option in addition to the CI width and standard deviation.

. ciwidth onemean, sd(0.8) n(50) width(0.5)

Estimated probability of width for a one-mean CI
Student’s t two-sided CI

Study parameters:

level = 95.00
N = 50

width = 0.5000
sd = 0.8000

Estimated probability of width:

Pr_width = 0.8501

With a sample of 50 infants, we are 85% certain that the CI width in a future study will be no larger
than 0.5 hours, given a standard deviation of 0.8 for the average number of hours of television that
infants watch per day. As expected, a smaller sample size leads to less certainty about the CI width.

PrSS analysis for CIs comparing two independent samples

The ciwidth twomeans command provides PrSS analysis for CIs comparing the means from
two independent samples. You can perform computations assuming known or unknown and equal or
unequal population standard deviations. See [PSS-3] ciwidth twomeans.

Below we show a quick example of PrSS analysis for the CI comparing two means. See the
individual entry for more examples.

Example 2: PrSS analysis for a two-means difference CI

A pharmaceutical company would like to conduct a study to compare a new weight-loss drug with
an older drug. Investigators are planning to compare the average weight loss in the two drugs by
constructing a CI for the difference between the means of the two groups. The average weight loss
for people taking the old drug for 3 months has a standard deviation of 5.5 pounds. The new drug
is expected to produce greater weight loss, with a smaller standard deviation of 5 pounds for the
same period of time. Investigators want to find out how many subjects they need to recruit to obtain
a two-sided 95% CI for a difference between the two means with a target width of 6 pounds.

We use ciwidth twomeans to perform the PrSS analysis. We specify the control- and experimental-
group standard deviations in the respective sd1() and sd2() options, along with the knownsds
option. We also specify the target CI width of 6 pounds in the width() option.

. ciwidth twomeans, sd1(5.5) sd2(5) width(6) knownsds

Estimated sample sizes for a two-means-difference CI
Normal two-sided CI

Study parameters:

level = 95.00
width = 6.0000

sd1 = 5.5000
sd2 = 5.0000

Estimated sample sizes:

N = 48
N per group = 24
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We need a sample of 48 subjects, 24 per group. Notice that our results assume that a future study
will have the same standard deviations, 5.5 and 5, in the two groups.

PrSS analysis for CIs comparing paired samples

ciwidth pairedmeans provides PrSS analysis for a CI for a difference between the means from two
paired samples. You can perform computations assuming a known or unknown population standard
deviation of the paired differences and adjust for a finite population. See [PSS-3] ciwidth pairedmeans.
Below we show a quick example of using ciwidth pairedmeans.

Example 3: PrSS analysis for a CI comparing paired means

A forester would like to study the effects of a fertilizer treatment on heights of Virginia pine trees.
The trees are planted in pairs with only one of them receiving the fertilizer treatment. The average
height of untreated trees is 27.5 feet, with a standard deviation of 4.5 feet. The fertilizer treatment
is expected to increase the average height to 30 feet, with the same standard deviation of 4.5 feet.
The correlation between the paired-tree heights is expected to be 0.4. The forester would like to
know how many pairs of pine trees need to be planted to produce a two-sided 95%-level CI for the
difference between the two means with a target width of 2 feet. The forester also wants to be at least
90% certain that the produced CI will have the width no larger than 2 feet.

We use ciwidth pairedmeans for our PrSS analysis. We supply the common value of standard
deviations in the sd() option and the correlation of 0.4 in the corr() option. We also specify the CI
width of 2 in the width() option and the probability of CI width of 0.9 in the probwidth() option.

. ciwidth pairedmeans, sd(4.5) corr(0.4) probwidth(0.9) width(2)

Performing iteration ...

Estimated sample size for a paired-means-difference CI
Student’s t two-sided CI assuming sd1 = sd2 = sd

Study parameters:

level = 95.0000 sd = 4.5000
Pr_width = 0.9000 corr = 0.4000

width = 2.0000
sd_d = 4.9295

Estimated sample size:

N = 113

The forester needs 113 pairs of pine trees to be 90% certain that the obtained two-sided 95% CI will
have the width as narrow as 2 feet.

Note that the estimates of the means, 27.5 and 30 feet, do not affect the computation of the required
sample size. We mention the average height of the trees for context of their standard deviations,
which are used for the computation.
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Tables of results
When ciwidth is used to perform computations for a single set of study parameters, the results

can be displayed either as text or in a table. The default is to display the results as text:
. ciwidth onemean, width(0.5) probwidth(0.9)

Performing iteration ...

Estimated sample size for a one-mean CI
Student’s t two-sided CI

Study parameters:

level = 95.00
Pr_width = 0.9000

width = 0.5000
sd = 1.0000

Estimated sample size:

N = 77

You can specify the table option to display the results in a table:
. ciwidth onemean, width(0.5) probwidth(0.9) table

Performing iteration ...

Estimated sample size for a one-mean CI
Student’s t two-sided CI

level N Pr_width width sd

95 77 .9 .5 1

For multiple sets of study parameters, when command arguments or options contain number lists,
the results are automatically displayed in a table:

. ciwidth onemean, width(0.4 0.45 0.5) probwidth(0.9)

Performing iteration ...

Estimated sample size for a one-mean CI
Student’s t two-sided CI

level N Pr_width width sd

95 116 .9 .4 1
95 93 .9 .45 1
95 77 .9 .5 1

In this example, we specified multiple sample sizes.

Default tables can be modified by specifying the table() option. For example, we can change
the column labels:

. ciwidth onemean, width(0.4 0.45 0.5) probwidth(0.9) table(, labels(N "Sample
> size"))

Performing iteration ...

Estimated sample size for a one-mean CI
Student’s t two-sided CI

level Sample size Pr_width width sd

95 116 .9 .4 1
95 93 .9 .45 1
95 77 .9 .5 1
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Or we can select which columns we want to display:

. ciwidth onemean, width(0.4 0.45 0.5) probwidth(0.9) table(N width)

Performing iteration ...

Estimated sample size for a one-mean CI
Student’s t two-sided CI

N width

116 .4
93 .45
77 .5

The order of displayed columns follows the specified order. For more examples, see [PSS-3] ciwidth,
table.

Sample-size and other curves

During the planning stage of a study, it is difficult to decide on the number of subjects to enroll
on the basis of only one set of study parameters. It is common to investigate the effect of various
study scenarios on CI precision or sample size. We can plot the estimated CI width, probability of
CI width, or sample size versus one of the study parameters. The ciwidth command provides the
graph and graph() options to produce such curves.

More precisely, when graph is specified, the estimated parameter such as CI width or sample size
is plotted on the y axis, and the varying parameter is plotted on the x axis.

For example, we compute the sample size and plot it as a function of CI width for a range of CI
width values between 0.4 and 0.5 with a step size of 0.01:

. ciwidth onemean, width(0.4(0.01)0.5) probwidth(0.96) graph
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Or we can compute CI width and plot it as a function of sample size:

. ciwidth onemean, n(50(5)100) probwidth(0.96) graph
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We can produce curves for multiple values of multiple parameters, such as the sample variances
and the CI widths in this example:

. ciwidth onevariance (2 3 4 5), width(2 4) probwidth(0.96) graph
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The above graphs are the default graphs produced by ciwidth, graph. Similarly to tabular output,
you can customize graphical output by specifying the graph() option.
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For example, in the above, we could plot the sample size versus sample variances by using the
graph(xdimension(v)) option.

. ciwidth onevariance (2 3 4 5), width(2 4) probwidth(0.96)
> graph(xdimension(v))
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By default, when a graph is produced, the tabular output is suppressed. You can specify the table
option if you also want to see results in a table.

For more examples, see [PSS-3] ciwidth, graph.

Add your own methods to ciwidth

The ciwidth command provides several built-in methods, but sometimes, you may want to
compute sample size or CI width yourself. For example, you may need to do this by simulation, or
you may want to use a method that is not available in any software package. ciwidth makes it easy
for you to add your own method. All you need to do is to write a program that computes sample
size, probability of CI width, or CI width, and the ciwidth command will do the rest for you. It
will deal with the support of multiple values in options and with automatic generation of graphs and
tables of results.

See A quick example and More examples: Compute probability of CI width for a one-proportion
CI in [PSS-3] ciwidth usermethod for examples.

Stored results
ciwidth stores the following in r():

Scalars
r(level) confidence level
r(alpha) significance level
r(N) total sample size
r(N a) actual sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
r(nratio) ratio of sample sizes, N2/N1
r(nratio a) actual ratio of sample sizes
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided CI, 0 otherwise
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r(Pr width) probability of CI width
r(Pr width a) actual probability of CI width (for sample-size determination when probwidth() specified)
r(width) CI width
r(width a) actual CI width (for sample-size determination of some methods)
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for estimated parameter
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) ci
r(method) the name of the specified ciwidth method
r(onesidedci) upper or lower (for a one-sided CI)
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Also see Stored results in the method-specific manual entries for the full list of stored results.

Methods and formulas
By default, the ciwidth command rounds sample sizes to integers and uses integer values in the

computations. To ensure conservative results, the command rounds down the input sample sizes and
rounds up the output sample sizes. See Fractional sample sizes in [PSS-4] Unbalanced designs for
details.

Some of ciwidth’s methods require iteration, such as a sample-size determination for a Student’s
t CI in ciwidth onemean. The methods use the Mata function solvenl(), and its Newton’s method
described in Newton-type methods in [M-5] solvenl( ), to solve nonlinear equations.

See Methods and formulas in the method-specific manual entries for details.

Also see
[PSS-3] Intro (ciwidth) — Introduction to precision and sample-size analysis for confidence intervals

[PSS-5] Glossary
[R] ci — Confidence intervals for means, proportions, and variances
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Description Syntax Remarks and examples References Also see

Description
The ciwidth command allows you to add your own methods to ciwidth and produce tables and

graphs of results automatically.

Syntax
Compute sample size

ciwidth usermethod . . . , width(numlist)
[
probwidth(numlist) ciwidthopts useropts

]
Compute CI width

ciwidth usermethod . . . , nspec
[
probwidth(numlist) ciwidthopts useropts

]
Compute probability of CI width

ciwidth usermethod . . . , nspec width(numlist)
[

ciwidthopts useropts
]

usermethod is the name of the method you would like to add to the ciwidth command. When naming
your ciwidth methods, you should follow the same convention as for naming the programs you
add to Stata—do not pick “nice” names that may later be used by Stata’s official methods. The
length of usermethod may not exceed 14 characters.

useropts are the options supported by your method usermethod.

nspec contains n(numlist) for a one-sample CI or any of the sample-size options of ciwidthopts such
as n1(numlist) and n2(numlist) for a two-sample CI.

collect is allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples

Adding your own methods to ciwidth is easy. Suppose you want to add a method called mymethod
to ciwidth. Simply

1. write an r-class program called ciwidth cmd mymethod that computes sample size, prob-
ability of CI width, or CI width and follows ciwidth’s convention for naming common
options and storing results; and

2. place the program where Stata can find it.

You are done. You can now use mymethod within ciwidth like any other official ciwidth method.

655
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Remarks are presented under the following headings:

A quick example
Steps for adding a new method to the ciwidth command
Convention for naming options and storing results
Allowing multiple values in method-specific options
Customizing default tables

Setting supported columns
Modifying the default table columns
Modifying the look of the default table
Example continued

Customizing default graphs
Other settings
Handling parsing more efficiently
More examples: Compute probability of CI width for a one-proportion CI

Step 1: Program to simulate the data and compute the CI width
Step 2: Estimating probability of CI width using simulation
Step 3: Adding probability of CI width computation to ciwidth
Step 4: Computing exact probability of CI width

Initializer’s s() return settings

A quick example

Before we discuss the technical details in the following sections, let’s try an example. Let’s write a
program to compute CI width for a one-mean normal-based CI given sample size, standard deviation,
and confidence level. For simplicity, we assume a two-sided CI. We will call our new method mymean.
(Note that this method is available in the official ciwidth onemean command when you specify the
knownsd option.)

We create an ado-file called ciwidth cmd mymean.ado that contains the following Stata program:

// evaluator
program ciwidth_cmd_mymean, rclass

version 18.0
/* parse options */
syntax, n(integer) /// sample size

[ Level(cilevel) /// confidence level
Stddev(real 1) ] /// standard deviation

/* compute CI width */
tempname width
scalar ‘width’ = 2*invnormal(1/2+‘level’/200)*‘stddev’/sqrt(‘n’)
/* store results */
return scalar level = ‘level’
return scalar N = ‘n’
return scalar width = ‘width’
return scalar stddev = ‘stddev’

end

Our ado-program consists of three sections: the syntax command for parsing options, the CI width
computation, and stored or returned results. The three sections work as follows:

The ciwidth cmd mymean program has two of ciwidth’s common options, level() for
confidence level and n() for sample size, and it has its own option, stddev(), with the
minimum abbreviation s() and default value of 1, to specify a standard deviation.

After the options are parsed, the CI width is computed and stored in a temporary scalar
‘width’.
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Finally, the resulting CI width and other results are stored in return scalars. Following
ciwidth’s convention for naming commonly returned results, the confidence level is stored
in r(level), the sample size in r(N), and the computed CI width in r(width). The
program additionally stores the standard deviation in r(stddev).

We can now use mymean within ciwidth as we would any other existing method of ciwidth:

. ciwidth mymean, level(95) n(10) stddev(0.25)

Estimated width
Two-sided CI

level N width

95 10 .3099

We can check our result using the official ciwidth onemean:

. ciwidth onemean, level(95) n(10) sd(0.25) knownsd

Estimated width for a one-mean CI
Normal two-sided CI

Study parameters:

level = 95.00
N = 10

sd = 0.2500

Estimated width:

width = 0.3099

We can compute results for multiple sample sizes by specifying multiple values in the n() option.
Note that our ciwidth cmd mymean program accepts only one value at a time in n(). When a
numlist is specified in the ciwidth command’s n() option, ciwidth automatically handles that
numlist for us.

. ciwidth mymean, level(95) n(10 20) stddev(0.25)

Estimated width
Two-sided CI

level N width

95 10 .3099
95 20 .2191

We can also compute results for multiple sample sizes and confidence levels without any additional
effort on our part:

. ciwidth mymean, level(90 95) n(10 20) stddev(0.25)

Estimated width
Two-sided CI

level N width

90 10 .2601
90 20 .1839
95 10 .3099
95 20 .2191



658 ciwidth usermethod — Add your own methods to the ciwidth command

We can even produce a graph by merely specifying the graph option:

. ciwidth mymean, level(90 95) n(10(10)100) stddev(0.25) graph
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The above is just a simple example. Your program can be as complicated as you would like: you
can even use simulations to compute your results; see More examples: Compute probability of CI
width for a one-proportion CI. You can also customize your tables and graphs with a little extra effort.

Steps for adding a new method to the ciwidth command

Suppose you want to add your own method, usermethod, to the ciwidth command. Here is an
outline of the steps to follow:

1. Create the evaluator, an r-class program called ciwidth cmd usermethod and defined
by the ado-file ciwidth cmd usermethod.ado, that performs precision and sample-size
computations and follows ciwidth’s convention for naming options and storing results.

2. Optionally, create an initializer, an s-class program called ciwidth cmd usermethod init
and defined by the ado-file ciwidth cmd usermethod init.ado, that specifies information
about table columns, options that may allow a numlist, and so on.

3. Optionally, create a parser, a program called ciwidth cmd usermethod parse and defined
by the ado-file ciwidth cmd usermethod parse.ado, that checks the syntax of user-
specific options, useropts.

4. Place all of your programs where Stata can find them.

You can now use your usermethod with ciwidth:

. ciwidth usermethod . . .

You may also use programs within ciwidth that are not defined by an ado-file (that is, they were
defined in a do-file or by hand).
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Convention for naming options and storing results

For the ciwidth command to automatically recognize its common options, you must ensure that
you follow ciwidth’s naming convention for these options in your program. For example, ciwidth
specifies the confidence level in the level() option with minimum abbreviation of l(). You need
to ensure that you use the same option with the same abbreviation in your evaluator to specify the
confidence level. The same applies to all of ciwidth’s common options described in [PSS-3] ciwidth.

You can specify additional method-specific options, but ciwidth will not know about them unless
you make it aware of them; see Allowing multiple values in method-specific options for details.

Unlike ciwidth’s official methods, user-defined methods do not require specifying the prob-
width() option by default because some computations, such as our earlier normal-based one-mean CI
example, may not need the probability of CI width. The probability of CI width is often needed when
the computation of the width depends on unknown parameters that are themselves estimated from the
data. For instance, if the standard deviation is not known a priori, the computation of the CI width for
a one-mean CI incorporates the uncertainty about the specified standard deviation because its estimate
may vary from one sample to another. The specified probability of CI width is used to ensure that the
estimated CI width is no larger than the desired width of a future CI with the prespecified probability.
This is the default method of ciwidth onemean. Also see More examples: Compute probability of
CI width for a one-proportion CI for an example of computing probability of CI width.

To produce tables and graphs of results, you must ensure that your evaluator follows ciwidth’s
convention for storing results. ciwidth’s commonly stored results are described in Stored results
of [PSS-3] ciwidth. For example, the value for a confidence level should be stored in the scalar
r(level), the value for a total sample size in the scalar r(N), the value for CI width in the scalar
r(width), the value for probability of CI width, if available, in the scalar r(Pr width), and so on.

You can also store additional method-specific results, but ciwidth will not know about them
unless you make it aware of them; see Customizing default tables for details.

Allowing multiple values in method-specific options

By default, the ciwidth command accepts multiple values only within its common options. If
you want to allow multiple values in the method-specific options useropts, you need to let ciwidth
know about them. This is done via the initializer.

To allow the specification of multiple values, or a numlist, in method-specific options, you need
to list the names of the options with proper abbreviations in an s-class macro s(prss numopts)
within the ciwidth cmd usermethod init program.

Recall our earlier example in which we added the mymean method, calculating the CI width of a
two-sided normal CI for one-sample mean, to ciwidth. We computed CI widths for multiple values
of confidence level and sample size. What if we would also like to specify multiple values of standard
deviation in the stddev() option of mymean? If we do this now, we will receive an error message,

. ciwidth mymean, level(95) n(10) stddev(0.25 0.5)
option stddev() incorrectly specified
r(198);

because the stddev() option is not allowed to include numlist by the evaluator and is not one
of ciwidth’s common options. To make ciwidth recognize this option as one allowing numlist,
we need to specify this in the initializer. Following the guidelines, we create an ado-file called ci-
width cmd mymean init.ado and specify the name of the stddev() option (with the corresponding
abbreviation) in the s-class macro s(prss numopts) within the ciwidth cmd mymean init pro-
gram.
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// initializer
program ciwidth_cmd_mymean_init, sclass

version 18.0
sreturn clear
sreturn local prss_numopts "Stddev"

end

We now can specify multiple standard deviations:

. ciwidth mymean, level(95) n(10) stddev(0.25 0.5)

Estimated width
Two-sided CI

level N width

95 10 .3099
95 10 .6198

Customizing default tables

The ciwidth command with user-defined methods always displays results in a table. By default,
it displays columns level or alpha (whichever is specified), N, and width, which contain the
confidence level, the sample size, and the CI width, respectively. If option probwidth() or both
options n() and width() are specified, the Pr width column is also shown in the default table
following the N column. See Setting supported columns and Modifying the default table columns for
details on how to customize the default table columns.

The default column labels are the column names, and the default formats are %7.4g for level,
alpha, width, and Pr width and %7.0gc for N. These and other settings controlling the look of
the default table can be changed as described in Modifying the look of the default table.

You can always use the table() option to customize your table. However, if you want to modify
how the table looks by default, you need to follow the steps described in the following sections:

Setting supported columns
Modifying the default table columns
Modifying the look of the default table
Example continued

Setting supported columns

The ciwidth command automatically supports a number of columns, such as level, alpha,
width, Pr width, N, etc. The supported columns are the columns that can be accessed within
ciwidth’s options table() and graph().

Most of the time, you will have additional columns, usercolnames, which you will want ciwidth to
support. To make ciwidth recognize the columns as supported columns, you must list the names of the
additional columns, usercolnames, in an s-class macro s(prss colnames) in the initializer. Columns
usercolnames will then be added to ciwidth’s list of supported columns. Columns usercolnames will
also be displayed in the default table unless s(prss tabcolnames) or s(prss alltabcolnames)
is set.

If you want to reset ciwidth’s list of supported columns, that is, to specify all the supported
columns manually, you should use the s(prss allcolnames) macro. The supported columns will
then include only the ones you listed in the macro. If you specify s(prss allcolnames), you
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must remember to include ciwidth’s main columns N, width, level, Pr width (if applicable) in
your list. Otherwise, you may not be able to use some of ciwidth’s functionality, such as default
graphs. If s(prss colnames) is specified together with s(prss allcolnames), the former will be
ignored. The specified supported columns will be automatically displayed in the default table unless
s(prss alltabcolnames) is set.

The values corresponding to the specified columns must be stored by the evaluator in r() scalars
with the same names as the column names. For example, the value for column level is stored in
r(level), the value for column width is stored in r(width), and the value for column N is stored
in r(N).

Any column not listed in s(prss colnames) or s(prss allcolnames) will not be available
within the ciwidth command. For example, any reference to such a column within ciwidth’s options
table() and graph() will result in an error.

Modifying the default table columns

By default, ciwidth displays the specified supported columns. If you want to display only a subset of
those columns, you can use either s(prss tabcolnames) or s(prss alltabcolnames) to specify
the columns to be displayed. You specify additional columns to be displayed in s(prss tabcolnames)
and a complete list of the displayed columns in s(prss alltabcolnames). If you specify
s(prss tabcolnames), the displayed columns will include level or alpha (whichever is specified
with the command), N, Pr width (if applicable), width and the additional columns you specified.
If you specify s(prss alltabcolnames), only the columns listed in this macro will be displayed.
One situation when you may want to do this is if you want to change the order in which the columns
are displayed by default. If you specify both macros, s(prss tabcolnames) will be ignored. You
can specify only the names of supported columns in these macros.

Modifying the look of the default table

The default table column labels are the column names. You can change this by specifying your
own column labels in the s(prss collabels) macro. The labels must be properly quoted if they
contain spaces or quotes. The labels must be specified for all columns listed in s(prss colnames)
or s(prss allcolnames).

The default column formats are %7.0gc for sample sizes and %7.4g for all other columns. You can
change this by specifying your own column formats in the s(prss colformats) macro. The formats
must be quoted and specified for all columns listed in s(prss colnames) or s(prss allcolnames).

The default column widths are the widths of the default formats plus one. You can specify your
own column widths in the s(prss colwidths) macro. The widths must be specified for all columns
listed in s(prss colnames) or s(prss allcolnames).

Example continued

Continuing our mymean example, we want to add a column containing the specified standard
deviation to the list of supported columns. The specified standard deviation is stored in r(stddev) in
the mymean evaluator, so the name of our column is stddev. We specify it in s(prss colnames)
in our initializer as follows:
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// initializer
program drop ciwidth_cmd_mymean_init
program ciwidth_cmd_mymean_init, sclass

version 18.0
sreturn clear
sreturn local prss_numopts "Stddev"
sreturn local prss_colnames "stddev" // <-- new line

end

We rerun our command now and see that the stddev column is added to the default table:

. ciwidth mymean, level(95) n(10) stddev(0.25)

Estimated width
Two-sided CI

level N width stddev

95 10 .3099 .25

We can also change the default column label of the stddev column to “Std. dev.”. Note that we
can do this within ciwidth’s option table(), but if we want this label to show up automatically
in the default table, we should specify it in the initializer. We specify the column label in the
s(prss collabels) macro.

// initializer
program drop ciwidth_cmd_mymean_init
program ciwidth_cmd_mymean_init, sclass

version 18.0
sreturn clear
sreturn local prss_numopts "sd"
sreturn local prss_colnames "stddev"
sreturn local prss_collabels ‘""Std. dev.""’ // <-- new line

end

The column containing standard deviation now has the new label

. ciwidth mymean, level(95) n(10) stddev(0.25)

Estimated width
Two-sided CI

level N width Std. dev.

95 10 .3099 .25

Customizing default graphs

By default, ciwidth plots the estimated CI width on the y axis and the specified sample size on
the x axis or the estimated sample size on the y axis and the specified CI width on the x axis. See
[PSS-3] ciwidth, graph for details about other default settings.

You can overwrite the default column labels displayed on the graph by specifying the
s(prss colgrlabels) macro. The specification of the graph labels is the same as the specifi-
cation of table column labels.

You can also overwrite the default symbols that are used to label the results on the graph by
specifying the new symbols in the macro s(prss colgrsymbols). The symbols must be specified
for all columns listed in s(prss colnames) or s(prss allcolnames).
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Other settings

If your method supports command arguments, the arguments specified directly following the method
name, you can specify their corresponding column names in the s(prss argnames) macro. You
can then refer to these arguments as arg1, arg2, and so on, when producing tables or graphs.

ciwidth usermethod uses the following generic titles: “Estimated sample size” for sample-size
determination, “Estimated width” for CI width determination, and “Estimated probability of width”
for probability of CI width determination. You can extend these titles to be more specific to your
method by adding text in the s(prss title) macro. For example, if s(prss title) contains “for
my CI”, the resulting titles will be “Estimated sample size for my CI”, “Estimated width for my CI”,
and “Estimated probability of width for my CI”.

ciwidth usermethod uses the following generic subtitles: “Two-sided CI” for a two-sided CI,
“One-sided upper CI” when the upper option is specified, and “One-sided lower CI” when the lower
option is specified. You can change the default subtitle by specifying the s(prss subtitle) macro.

The steps for adding your own two-sample methods are the same as those for adding one-sample
methods, except you may need to set the s(prss samples) macro to contain twosample in the
initializer. If any of the two-sample options n1(), n2(), and nratio() are specified, ciwidth
automatically recognizes the method as a two-sample method. If these options are not used and
you need the method to be recognized as a two-sample method, you must set s(prss samples)
to twosample. If you do not want ciwidth to respect the two-sample options, you should set
s(prss samples) to onesample.

Handling parsing more efficiently

The ciwidth command checks its common options, but you are responsible for checking your
method-specific options, useropts, or their interaction with ciwidth’s common options. You can
certainly do this in your evaluator. However, the checks will then be performed each time your
evaluator is called. You can instead perform all of your checks once within the parser.

Your parser may be an s-class command and may set any of the s() results typically specified
in the initializer. This may be useful, for example, for building the columns displayed in the default
table dynamically, depending on which options were specified. If all desired s() results are set in
the parser, you do not need an initializer.

More examples: Compute probability of CI width for a one-proportion CI

For some CIs, the expressions for the required sample size or CI width may not be available or
difficult to compute. In such cases, you can use simulation to obtain the results. And you can turn
your simulation program into a user-defined ciwidth method. Huber (2019a) and Huber (2019b)
describe how to compute power by simulation and integrate the simulation program in the power
command. The same principles apply to the simulation of CI width or probability of CI width and its
integration in the ciwidth command.

The ciwidth command does not provide precision and sample-size analysis for CIs for proportions.
The width of CIs for proportions depends on the estimates of proportions. Its estimation thus needs
to account for the uncertainty in the proportion estimates. There are no closed-form solutions to
compute the required sample size or width for CIs for proportions that incorporate the probability of
CI width. But we can compute the probability of CI width for a given sample size and target width
using simulation. We can then vary the sample sizes to see which ones correspond to high values
of the probability of CI width for the desired CI width. Let’s do this for the binomial CI for one
proportion.
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We can estimate the probability of CI width as the proportion of times the width of the CI computed
from simulated samples is less than or equal to the desired CI width for a given sample size and
probability of success. Our steps are to 1) create a program that simulates the data and computes the
width of the estimated CI; 2) run the program multiple times and compute the probability of CI width;
and 3) add our computations to ciwidth as a new method. We can actually compute the probability
of CI width exactly, without the simulation, for the binomial CI. So we compare our simulation results
with the exact computation in step 4.

Step 1: Program to simulate the data and compute the CI width

We start with a simple program myonepropsim below.

program myonepropsim, rclass
version 18.0
args n p level
clear
set obs ‘n’
generate byte y = rbinomial(1, ‘p’)
ci proportions y, level(‘level’)
return scalar w = r(ub)-r(lb)

end

Our program requires three arguments: n for sample size, p for proportion estimate, and level for
confidence level. It generates ‘n’ observations for the binary outcome y from a Bernoulli distribution
with a specified probability of success ‘p’. (‘’ refers to the specified values for the arguments.)
It uses the ci proportions command ([R] ci) to estimate the proportion of successes (y==1) and
its binomial CI. It then computes and stores in the return scalar r(w) the estimated CI width—the
difference between the upper and lower CI bounds stored by ci proportions in return scalars r(ub)
and r(lb), respectively.

Let’s run our program. Suppose that we want to simulate 50 Bernoulli observations with a low
success probability of 0.1 and compute the width of the corresponding 95% two-sided binomial CI
for the proportion of successes. Because we randomly generate the data, we use set seed prior to
calling myonepropsim for reproducibility.

. set seed 1234

. myonepropsim 50 0.1 95
Number of observations (_N) was 0, now 50.

Binomial exact
Variable Obs Proportion Std. err. [95% conf. interval]

y 50 .18 .0543323 .0857621 .3143694

.

. return list

scalars:
r(w) = .2286073331759869

From the stored results, the estimated CI width, r(w), is 0.23.

Step 2: Estimating probability of CI width using simulation

Suppose that our target CI width is 0.2. To estimate the probability of CI width, we need to call
our myonepropsim program multiple times and compute the proportion of times the estimated CI
width was less than or equal to our target width of 0.2.
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Stata has a handy command to run simulations—simulate ([R] simulate).

. set seed 1234

. simulate w=r(w), reps(100): myonepropsim 50 0.1 95

Command: myonepropsim 50 0.1 95
w: r(w)

Simulations (100): .........10.........20.........30.........40.........50.....
> ....60.........70.........80.........90.........100 done

. count if w <= 0.2
75

. display r(N)/100

.75

simulate runs myonepropsim 100 times, as specified by simulate’s reps() option, and stores
the computed CI widths in the w variable, as requested by the w=r(w) specification. We then count
the number of observations of w that are less than or equal to 0.2 and estimate the probability of CI
width to be 0.75.

Step 3: Adding probability of CI width computation to ciwidth

Our final step is to combine all of our computations in a single program and integrate it
into the ciwidth command. Following ciwidth’s convention, we call our new program ci-
width cmd myonepropsim.

program ciwidth_cmd_myonepropsim, rclass
version 18.0
/* parse command arguments and options */
syntax anything(name=p), /// proportion estimate

n(integer) /// sample size
Width(real) /// target CI width
[ Level(cilevel) /// confidence level
reps(integer 100) qui ]

/* compute probability of CI width using simulation */
display as txt _n "Computing Pr(width) for n=‘n’ and width=‘w’ ..."
‘qui’ simulate w=r(w), reps(‘reps’): myonepropsim ‘n’ ‘p’ ‘level’
quietly count if w <= ‘width’
/* store results */
return scalar Pr_width = r(N)/‘reps’
return scalar level = ‘level’
return scalar N = ‘n’
return scalar width = ‘width’
return scalar p = ‘p’

end

As in A quick example, we use syntax to parse options. We have three new options. The width()
option, with the minimum abbreviation w(), is one of ciwidth’s common options; it specifies the
target CI width. The reps() option is specific to our method—it specifies the number of replications
for the simulation, with the default of 100 replications. Finally, qui suppresses the output from the
simulate command that we display by default.

In addition to options, our program requires that the proportion estimate be specified as a command
argument. We could have specified it as an option, say, proportion(real), but here we wanted to
demonstrate how to handle arguments with user-defined ciwidth methods. Also, official ciwidth
methods typically specify estimates of parameters of interest, such as proportion, as command
arguments, which are specified following the command name.
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The block after syntax includes our earlier simulate command to which we now pass the content
of the specified command argument and options instead of the hard-coded values. We also compute
the estimate of probability of CI width and store it in the r(Pr width) scalar, following ciwidth’s
naming convention for the common stored results; see Stored results of [PSS-3] ciwidth. We also
store other results in the corresponding return scalars.

Let’s recompute the probability of CI width from Step 2: Estimating probability of CI width using
simulation but now using ciwidth myonepropsim.

. set seed 1234

. ciwidth myonepropsim 0.1, n(50) width(0.2)

Computing Pr(width) for n=50 and width=.2 ...

Command: myonepropsim 50 .1 95
w: r(w)

Simulations (100): .........10.........20.........30.........40.........50.....
> ....60.........70.........80.........90.........100 done

Estimated probability of width
Two-sided CI

level N Pr_width width

95 50 .75 .2

We obtain the same estimate of 0.75. We used the default value of the level() option, which is
level(95) or as set by set level; see [R] level.

Notice that our default table now contains the Pr width column. Because we specified both
n() and width(), ciwidth recognized this as the case for computing probability of CI width and
automatically added its column to the default table. However, we are missing the proportion estimate
in our default table. ciwidth is not aware of user-defined command arguments until we specify them
in the initializer.

program ciwidth_cmd_myonepropsim_init, sclass
version 18.0
sreturn clear
sreturn local prss_argnames = "p"
sreturn local prss_colnames = "p"
sreturn local prss_subtitle = "Two-sided binomial CI"

end

We list the name of the stored result containing the proportion estimate in macro prss argnames
to allow the specification of multiple values for the proportion and in macro prss colnames to add
the proportion column to the default table. We also specify a more descriptive subtitle to be used in
the output.
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If we rerun our previous command (with the qui option to suppress the output from the simulate
command),

. set seed 1234

. ciwidth myonepropsim 0.1, n(50) width(0.2) qui

Computing Pr(width) for n=50 and width=.2 ...

Estimated probability of width
Two-sided binomial CI

level N Pr_width width p

95 50 .75 .2 .1

we will now see the proportion column in the table and the new subtitle.

The estimated probability of CI width of 0.75 is somewhat low. We can specify multiple sample
sizes to find an acceptable value of probability of CI width.

. set seed 1234

. ciwidth myonepropsim 0.1, n(50 70 100) width(0.2) qui

Computing Pr(width) for n=50 and width=.2 ...

Computing Pr(width) for n=70 and width=.2 ...

Computing Pr(width) for n=100 and width=.2 ...

Estimated probability of width
Two-sided binomial CI

level N Pr_width width p

95 50 .75 .2 .1
95 70 1 .2 .1
95 100 1 .2 .1

We can further explore the sample sizes between 50 and 70:

. set seed 1234

. ciwidth myonepropsim 0.1, n(50(5)70) width(0.2) qui

Computing Pr(width) for n=50 and width=.2 ...

Computing Pr(width) for n=55 and width=.2 ...

Computing Pr(width) for n=60 and width=.2 ...

Computing Pr(width) for n=65 and width=.2 ...

Computing Pr(width) for n=70 and width=.2 ...

Estimated probability of width
Two-sided binomial CI

level N Pr_width width p

95 50 .75 .2 .1
95 55 .78 .2 .1
95 60 .97 .2 .1
95 65 .98 .2 .1
95 70 1 .2 .1
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Finally, we can compute probability of CI widths for sample sizes between 55 and 60 and plot the
results in addition to the table. We also specify more replications to obtain more precise estimates of
the probability of CI width.

. set seed 1234

. ciwidth myonepropsim 0.1, n(55(1)60) width(0.2) qui reps(1000) table graph

Computing Pr(width) for n=55 and width=.2 ...

Computing Pr(width) for n=56 and width=.2 ...

Computing Pr(width) for n=57 and width=.2 ...

Computing Pr(width) for n=58 and width=.2 ...

Computing Pr(width) for n=59 and width=.2 ...

Computing Pr(width) for n=60 and width=.2 ...

Estimated probability of width
Two-sided binomial CI

level N Pr_width width p

95 55 .801 .2 .1
95 56 .885 .2 .1
95 57 .9 .2 .1
95 58 .874 .2 .1
95 59 .93 .2 .1
95 60 .927 .2 .1
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Parameters: 100(1-α) = 95, w = .2, p = .1

Two-sided binomial CI

Estimated probability of width

For example, the sample size of 57 corresponds to the probability of 0.9 that the width of a future
95% two-sided binomial CI for one proportion will not exceed 0.2 given the proportion estimate of
0.1.

The probability of CI width is typically a monotonically increasing function of the sample size.
However, similarly to the power of the binomial test, the probability of CI width for the binomial CI
may not be monotonic with respect to the sample size, as we see in this example, because of the
discrete nature of the binomial distribution.

Of course, because we use simulation, if we rerun ciwidth myonepropsim with a different seed,
we will get different results. The results, however, should be comparable provided the number of
replications is sufficiently large.
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Step 4: Computing exact probability of CI width

We can compute the probability of CI width for the binomial CI more easily by using the exact
formula

Pr(w) =

n∑
k=0

binomialp(n, k, p)× I(wk,n ≤ wtarget)

where binomialp(n, k, p) is the probability of observing k successes in n trials with the success
probability p; wtarget is the target CI width; wk,n is the width of the binomial CI computed given k
observed successes in n trials; and the indicator function

I(wk,n ≤ wtarget) =
{

1, if wk,n ≤ wtarget

0, otherwise

The ciwidth cmd myoneprop program below uses the formula above to compute the probability
of CI width.

program ciwidth_cmd_myoneprop, rclass
version 18.0
/* parse command arguments and options */
syntax anything(name=p), /// proportion estimate

n(integer) /// sample size
Width(real) /// target CI width
[ Level(cilevel) ] /// confidence level

/* compute probability of CI width using exact formula */
tempname Pr_width
scalar ‘Pr_width’ = 0
forvalues k = 0/‘n’ {

quietly cii proportions ‘n’ ‘k’, level(‘level’)
if (r(ub)-r(lb) <= ‘width’) {

scalar ‘Pr_width’ = ‘Pr_width’ + binomialp(‘n’,‘k’,‘p’)
}

}
/* store results */
return scalar Pr_width = ‘Pr_width’
return scalar level = ‘level’
return scalar N = ‘n’
return scalar width = ‘width’
return scalar p = ‘p’

end

This program is similar to our earlier ciwidth cmd myonepropsim program but without the reps()
and qui options and using the exact formula instead of simulation to compute the probability of CI
width. Also, instead of using ci proportions, which estimates the binomial CI from the data, we
use its immediate version, cii proportions, which uses the numbers supplied in ‘n’ and ‘k’ to
compute the CI; see [U] 19 Immediate commands for a general discussion of immediate commands.

We followed ciwidth’s naming convention for the ciwidth cmd myoneprop program, so we
can use myoneprop with ciwidth. Let’s compute the exact probability of CI width for sample sizes,
n, between 55 and 60 given the target CI width, wtarget, of 0.2 and probability of success, p, of 0.1,
using the default 95% confidence level.
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. ciwidth myoneprop 0.1, n(55(1)60) width(0.2)

Estimated probability of width
Two-sided CI

level N Pr_width width

95 55 .8196 .2
95 56 .897 .2
95 57 .888 .2
95 58 .8785 .2
95 59 .9334 .2
95 60 .9269 .2

Our results are similar to the simulation results from the last table in Step 3: Adding probability of
CI width computation to ciwidth. We can match the exact results even more closely if we use more
replications, say, 10,000, during simulation.

Initializer’s s() return settings

The following s() results may be set by the initializer or parser:

Macros
s(prss samples) onesample for a one-sample CI or twosample for a two-sample CI
s(prss colnames) columns to be added to the default supported columns
s(prss allcolnames) all supported columns
s(prss tabcolnames) columns to be added to the default table
s(prss alltabcolnames) all columns to be displayed in the default table
s(prss collabels) labels for the specified columns
s(prss colformats) formats for the specified columns
s(prss colwidths) widths for the specified columns
s(prss colgrlabels) labels to be used to label columns on the graph
s(prss colgrsymbols) symbols to be used to label columns on the graph
s(prss argnames) column names containing command arguments
s(prss title) method-specific title
s(prss subtitle) subtitle

References
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. 2019b. Calculating power using Monte Carlo simulations, part 2: Running your simulation using power.
The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2019/01/29/calculating-power-using-monte-carlo-
simulations-part-2-running-your-simulation-using-power/.
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ciwidth, graph — Graph results from the ciwidth command

Description Quick start Menu Syntax
Suboptions Remarks and examples Also see

Description
The graph() option of ciwidth specifies that results of the ciwidth command be graphed.

While there are many options for controlling the look of the graph, you will often merely need
to specify the graph option with your ciwidth command.

Quick start
Graph of sample-size estimates versus the specified list of CI width values

ciwidth onemean, probwidth(0.9) width(0.5(0.5)2) graph

Graph of sample-size estimates versus the specified list of confidence levels
ciwidth onemean, level(80(5)90) probwidth(0.9) width(0.5) graph

Same as above, but use significance level as the x axis
ciwidth onemean, level(80(5)90) probwidth(0.9) width(0.5) ///

graph(xdimension(alpha))

Graph of probability of CI width versus the specified list of CI width values
ciwidth onemean, n(10) width(0.5(0.5)2) graph

Add labels for distinct values on the y axis
ciwidth onemean, n(10) width(0.5(0.5)2) graph(yvalues)

Same as above, but display the probability of CI width with only three decimal points
ciwidth onemean, n(10) width(0.5(0.5)2) ///

graph(yvalues ylabel(,format(%4.3f)))

Graph of CI width versus the specified list of sample sizes at each confidence level
ciwidth onemean, level(90 95) n(30(5)45) probwidth(0.9) graph

Same as above, but produce a separate subgraph for each confidence level
ciwidth onemean, level(90 95) n(30(5)45) probwidth(0.9) ///

graph(bydimension(level))

Menu
Statistics > Power, precision, and sample size

671
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Syntax

Produce default graph

ciwidth . . ., graph . . .

Graph sample size against CI width

ciwidth . . ., graph(y(N) x(width)) . . .

Graph sample size against probability of CI width

ciwidth . . ., graph(y(N) x(Pr width)) . . .

Graph CI width against sample size

ciwidth . . ., graph(y(width) x(N)) . . .

Graph probability of CI width against sample size

ciwidth . . ., graph(y(Pr width) x(N)) . . .

Produce other custom graphs

ciwidth . . ., graph(graphopts) . . .
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graphopts Description

Main

ydimension(dimlist
[
, dimopts

]
) use dimlist to define y axis

xdimension(dimlist
[
, dimopts

]
) use dimlist to define x axis

plotdimension(dimlist
[
, dimopts

]
) create plots for groups in dimlist

bydimension(dimlist
[
, dimopts

]
) create subgraphs for groups in dimlist

graphdimension(dimlist
[
, dimopts

]
) create graphs for groups in dimlist

horizontal swap x and y axes
schemegrid do not apply default x and y grid lines
name(name | stub

[
, replace

]
) name of graph, or stub if multiple graphs

Labels

yregular place regularly spaced ticks and labels on the y axis
xregular place regularly spaced ticks and labels on the x axis
yvalues place ticks and labels on the y axis for each distinct value
xvalues place ticks and labels on the x axis for each distinct value
collabels(colspec) change default labels for columns
nolabels label groups with their values, not their labels
allsimplelabels forgo column label and equal signs in all labels
nosimplelabels include column label and equal signs in all labels
eqseparator(string) replace equal sign separator with string
separator(string) separator for labels when multiple columns are specified

in a dimension
noseparator do not use a separator
format(% fmt) format for converting numeric values to labels

Plot

plotopts(plot options) affect rendition of all plots
plot#opts(plot options) affect rendition of #th plot
recast(plottype) plot all plots using plottype

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall, By

twoway options any options documented in [G-3] twoway options
byopts(byopts) how subgraphs are combined, labeled, etc.
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dimlist may contain any of the following columns:

column Description

level confidence level
alpha significance level
N total number of subjects
N1 number of subjects in the control group
N2 number of subjects in the experimental group
nratio ratio of sample sizes, experimental to control
Pr width probability of CI width
width CI width
method columns columns specific to the method specified with ciwidth

colspec is

column "label"
[

column "label"
[
. . .
] ]

dimopts Description

labels(lablist) list of quoted strings to label each level of the dimension
elabels(elablist) list of enumerated labels
nolabels label groups with their values, not their labels
allsimplelabels forgo column name and equal signs in all labels
nosimplelabels include column name and equal signs in all labels
eqseparator(string) replace equal sign separator with string in the dimension
separator(string) separator for labels when multiple columns are specified

in the dimension
noseparator do not use a separator
format(% fmt) format for converting numeric values to labels

where lablist is defined as

"label"
[
"label"

[
. . .
] ]

elablist is defined as

# "label"
[

# "label"
[
. . .
] ]

and the #s are the levels of the dimension.

plot options Description

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position
cline options change look of the line
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Suboptions

The following are suboptions within the graph() option of the ciwidth command.

� � �
Main �

ydimension(), xdimension(), plotdimension(), bydimension(), and graphdimension()
specify the dimension to be used for the graph’s y axis, x axis, plots, by() subgraphs, and graphs.

The default dimensions are based on your analysis. The y dimension is the parameter being
estimated: sample size, CI width, or probability of CI width. If there is only one column containing
multiple values, this column is plotted on the x dimension. Otherwise, the x dimension is CI
width for sample-size determination and sample size when estimating CI width and probability of
CI width. Other columns that contain multiple values are used as plot dimensions. See Default
graphs below for details. You may override the defaults and explicitly control which columns are
used on each dimension of the graph using these dimension suboptions.

Each of these suboptions supports suboptions that control the labeling of the dimension—axis
labels for ydimension() and xdimension(), plot labels for plotdimension(), subgraph titles
for bydimension(), and graph titles for graphdimension().

For examples using the dimension suboptions, see Changing default graph dimensions below.

ydimension(dimlist
[
, dimopts

]
) specifies the columns for the y axis in dimlist and controls

the content of those labels with dimopts.

xdimension(dimlist
[
, dimopts

]
) specifies the columns for the x axis in dimlist and controls

the content of those labels with dimopts.

plotdimension(dimlist
[
, dimopts

]
) specifies in dimlist the columns whose levels determine

the plots and optionally specifies in dimopts the content of the plots’ labels.

bydimension(dimlist
[
, dimopts

]
) specifies in dimlist the columns whose levels determine

the by() subgraphs and optionally specifies in dimopts the content of the subgraphs’ titles.

graphdimension(dimlist
[
, dimopts

]
) specifies in dimlist the columns whose levels determine

the graphs and optionally specifies in dimopts the content of the graphs’ titles.

See the definition of columns in graph in [PSS-5] Glossary.

horizontal reverses the default x and y axes. By default, the values computed by ciwidth are
plotted on the y axis, and the x axis represents one of the other columns. Specifying horizontal
swaps the axes.

One common use is to put sample size on the x axis even when it is the value computed by
ciwidth. This suboption can also be useful with the long labels produced when the parallel
option is specified with ciwidth.

See Parallel plots below for an example of the horizontal suboption.

schemegrid specifies that x and y grid lines not always be drawn on the ciwidth graph. Instead,
whether grid lines are drawn will be determined by the current scheme.

name(name | stub
[
, replace

]
) specifies the name of the graph or graphs. If the graphdimension()

suboption is specified, then the argument of name() is taken to be stub, and graphs named stub1,
stub2, . . . are created.

replace specifies that existing graphs of the same name may be replaced.

If name() is not specified, default names are used, and the graphs may be replaced by subsequent
ciwidth graphs or other graphing commands.
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� � �
Labels �

All the suboptions listed under the Labels tab may be specified directly within the graph() option. All
of them except yregular, xregular, yvalues, and xvalues may be specified as dimopts within
ydimension(), xdimension(), plotdimension(), bydimension(), and graphdimension().
When suboptions are specified in one of the dimension options, only the labels for that dimension are
affected. When suboptions are specified outside the dimension options, all labels on all dimensions
are affected. Specifications within the dimension options take precedence.

yregular and yvalues specify how tick marks and labels are to be placed on the y axis.

yregular specifies that regularly spaced ticks and labels be placed on the y axis.

yvalues specifies that a tick and label be placed for each distinct value.

If neither is specified, an attempt is made to choose the most reasonable option based on your
results. Labeling may also be specified using the standard graph twoway axis labeling rules and
options.

xregular and xvalues do the same for tick marks and labels to be placed on the x axis.

collabels(colspec) specifies labels to be used on the graph for the specified columns. For example,
collabels(N "N") specifies that wherever the column N is used on a graph—axis label, plot
label, graph title, legend title, etc.—“N” be shown rather than the default label “Sample size”.

Multiple columns may be relabeled by typing, for example,

collabels(N "N" v "Variance")

and SMCL tags for Greek characters and other typesetting can be used by typing, for example,

collabels(alpha "{&alpha}" N1 "N{sub:1}")

See the definition of columns in graph in [PSS-5] Glossary.

nolabels specifies that value labels not be used to construct graph labels and titles for the levels in
the dimension. By default, if a column in a dimension has value labels, those labels are used to
construct labels and titles for axis ticks, plots, subgraphs, and graphs.

allsimplelabels and nosimplelabels control whether a graph’s labels and titles include just
the values of the columns or also include column labels and equal signs. The default depends on
whether the dimension is an axis dimension or one of the plot, by, and graph dimensions. It also
depends on whether the values for the level of the dimension are labeled. An example of a simple
label is “alpha” or “.05” and of a nonsimple label is “alpha=.05”.

In ciwidth, graph simple labels are almost universally best for x and y axes and also best for
most plot labels. Labels with an equal sign are typically preferred for subgraph and graph titles.
These are the defaults used by ciwidth, graph. The allsimplelabels and nosimplelabels
suboptions let you override the default labeling.

allsimplelabels specifies that all titles and labels use just the value or value label of the column.

nosimplelabels specifies that all titles and labels include dimname= before the value or value
label.

eqseparator(string) specifies a custom separator between column labels and values in labels. Use
string in place of the default equal sign. This option is for use with nosimplelabels.

separator(string) and noseparator control the separator between label sections when more than
one column is used to specify a dimension. The default separator is a comma followed by a space,
but no separator may be requested with noseparator, or the default may be changed to any
string with separator().
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For example, if bydimension(a b) is specified, the subgraph labels in our graph legend might be
“a=1, b=1”, “a=1, b=2”, . . . . Specifying separator(:) would create labels “a=1:b=1”, “a=1:b=2”,
. . . .

format(% fmt) specifies how numeric values are to be formatted for display as axis labels, labels on
plots, and titles on subgraphs and graphs.

� � �
Plot �

plotopts(plot options) affects the rendition of all plots. The plot options can affect the size and
color of markers, whether and how the markers are labeled, and whether and how the points are
connected; see [G-3] marker options, [G-3] marker label options, and [G-3] cline options.

These settings may be overridden for specific plots by using the plot#opts() suboption.

plot#opts(plot options) affects the rendition of the #th plot. The plot options can affect the size
and color of markers, whether and how the markers are labeled, and whether and how the points
are connected; see [G-3] marker options, [G-3] marker label options, and [G-3] cline options.

recast(plottype) specifies that results be plotted using plottype. plottype may be scatter, line,
connected, area, bar, spike, dropline, or dot; see [G-2] graph twoway. When recast()
is specified, the plot-rendition options appropriate to the specified plottype may be used in lieu
of plot options. For details on those suboptions, follow the appropriate link from [G-2] graph
twoway.

You may specify recast() within a plotopts() or plot#opts() suboption. It is better, however,
to specify it as documented here, outside those suboptions. When it is specified outside those
suboptions, you have greater access to the plot-specific rendition suboptions of your specified
plottype.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

If multiple graphs are drawn by a single ciwidth command or if plot specifies plots with multiple
y variables, for example, scatter y1 y2 x, then the graph’s legend will not clearly identify all
the plots and will require customization using the legend() suboption; see [G-3] legend options.

� � �
Y axis, X axis, Titles, Legend, Overall, By �

twoway options are any of the options documented in [G-3] twoway options. These include options
for titling the graph (see [G-3] title options); for saving the graph to disk (see [G-3] saving option);
for controlling the labeling and look of the axes (see [G-3] axis options); for controlling the look,
contents, position, and organization of the legend (see [G-3] legend options); for adding lines
(see [G-3] added line options) and text (see [G-3] added text options); and for controlling other
aspects of the graph’s appearance (see [G-3] twoway options).

The label() suboption of the legend() option has no effect on ciwidth, graph. Use the
order() suboption instead.

byopts(byopts) affects the appearance of the combined graph when bydimension() is specified or
when the default graph has subgraphs, including the overall graph title, the position of the legend,
and the organization of subgraphs. See [G-3] by option.
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Remarks and examples
ciwidth, graph produces sample-size curves and other graphical output from the ciwidth

command. These graphs are useful for visualizing the results of sensitivity analysis, which investigates
the effect of varying study parameters on sample size and CI width. The true values of study parameters
are usually unknown. PrSS uses best guesses for these values. It is important to evaluate the sensitivity
of the computed sample size to the chosen values of study parameters. For example, to evaluate
variability of sample-size values, you can compute sample sizes for various ranges of values for the
parameters of interest and display the resulting sample sizes in a table (see [PSS-3] ciwidth, table) or
plot them on a graph.

Remaining remarks are presented under the following headings:

Using ciwidth, graph
Graph symbols
Default graphs
Changing default graph dimensions
Changing the look of graphs
Parallel plots

Using ciwidth, graph

In most cases, you will probably be satisfied with the graphs that ciwidth produces by default
when you specify the graph option. For other cases, ciwidth, graph() offers many options for
you to produce the graph you desire.

Think of ciwidth, graph() as graphing the columns of ciwidth, table. One of the columns
will be placed on the x axis, another will be placed on the y axis, and, if you have more columns
with varying values, separate plots will be created for each. Similarly, we use the terms “column
symbol”, “column name”, and “column label” to refer to symbols, names, and labels that appear in
tables when tabular output is requested.

By default, ciwidth, graph plots the column corresponding to the estimated parameter on the
y axis: N, when sample size is computed; width, when CI width is computed; and Pr width when
probability of CI width is computed. When there is only one varying column, the x axis uses this
column by default. When there are multiple varying columns, the default x axis depends on what is
being computed.

If sample size is computed (sample-size determination), the default x axis is CI width if CI width
varies. If CI width does not vary, the sample size is plotted against one of the other varying parameters.

If CI width is computed (precision determination), the default x axis is the sample size if sample
size varies. If the sample size does not vary, CI width is plotted against one of the other varying
parameters.

If probability of CI width is computed, the default x axis is the sample size if sample size varies.
If the sample size does not vary, probability of CI width is plotted against one of the other varying
parameters.

ciwidth, graph() provides great flexibility for customizing graphical output. You can make
minor changes such as modifying the graph or axes titles or modifying the line color and style, or
you can completely redesign the graph by changing the axes and style of the graph. The Graph Editor
can also be used for additional customization; see [G-1] Graph Editor.

When you produce a graph, the table of results is suppressed. You can request that the table be
displayed in addition to the graph by specifying the table option with graph().
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Graph symbols

Whenever space allows, such as on y and x axes, graphical output displays extended column labels,
which include column labels and column symbols in parentheses. In other cases, such as in legend
labels or by graph titles, graphical output includes only column (parameter) symbols for readability.

The following common symbols are used. See the documentation entry of the specified ciwidth
method for additional symbols specific to that method.

Symbol Description

100(1− α) confidence level
α significance level
N total sample size
N1 sample size of the control group
N2 sample size of the experimental group
N2/N1 ratio of sample sizes, experimental to control
pwidth probability of CI width
w CI width
method symbols symbols specific to the method specified with ciwidth

Default graphs

We start with a demonstration of several default graphs and then show how you can produce
custom graphs in the subsequent sections.

In what follows, we graph the results of PrSS analysis for a one-mean CI; see [PSS-3] ciwidth
onemean.

Example 1: Sample-size curves

When we compute sample size given a range of CI widths, ciwidth, graph plots sample size
on the y axis and CI width on the x axis.

. ciwidth onemean, width(0.5(0.25)2) probwidth(0.9) graph
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Figure 1.

As expected, sample size decreases as CI width increases.
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The default axis labels include column labels and column symbols in parentheses. The labels can
be changed, as we show in example 5. The values of constant parameters are displayed in the note
titled “Parameters”: confidence level 100(1 − α) is 95, probability of CI width pwidth is 0.9, and
standard deviation σ is 1.

In addition to varying CI width, we may compute sample sizes for different standard deviations.

. ciwidth onemean, width(0.5(0.25)2) probwidth(0.9) sd(1 2) graph

0

100

200

300

S
am

pl
e 

si
ze

 (
N

)

.5 .75 1 1.25 1.5 1.75 2
CI width (w)

1
2

Standard deviation (σ)

Parameters: 100(1-α) = 95, pwidth = .9

Student's t two-sided CI

Estimated sample size for a one-mean CI

Figure 2.

For a given CI width, the larger the standard deviation, the larger the sample size.

ciwidth, graph displays two sample-size curves corresponding to the specified standard deviation
values as shown on the legend. The first curve is displayed in navy, and the second curve is displayed
in maroon. The default colors of the lines and, in general, the overall look of the graph are determined
by the current graph scheme. The scheme used here is stgcolor; see [G-2] set scheme for details.
We also show how to change the default look of the curves in example 6.

We can obtain sample-size curves for varying values of several parameters. ciwidth, graph plots
a separate curve for each unique combination of the values of the parameters (except the parameter
used as the x axis) on one plot. Alternatively, you can display curves on separate plots (by graphs)
or even on separate graphs; see example 4.

If we specify only one CI width in the previous figure, the values of the standard deviation will
be plotted on the x axis. You can try this yourself if you would like.

Example 2: CI precision curves

Instead of sample-size curves, we can plot estimated CI widths for a range of sample-size values
to get an idea of how the sample size affects the CI precision.
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. ciwidth onemean, n(10(2)40) probwidth(0.9) graph
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Figure 3.

The CI width decreases as the sample size increases. The larger the sample size, the more precise the
CI.

This graph has the same overall look as figure 1, except CI width is plotted on the y axis and
sample size is plotted on the x axis.

We may want to investigate how other study parameters, such as the standard deviation, affect the
CI precision.

. ciwidth onemean, n(10(2)40) probwidth(0.9) sd(1 2) graph
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Figure 4.

The larger the standard deviation, the larger the CI width and thus the lower the CI precision.

When multiple study parameters each contain multiple values, as in the above figure, the default
x axis for sample-size curves is the CI width, provided that the CI width parameter varies, and for
precision curves is the sample size, provided it varies. You can plot a different parameter on the x
axis, for instance the standard deviation; in example 3, we demonstrate how to change the default
axes.
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Changing default graph dimensions

So far, we have demonstrated the graphs that ciwidth, graph produces by default. In this section,
we demonstrate how you can modify the default graphs with ciwidth, graph() and its suboptions.

Example 3: Changing default graph axes

The default y axis corresponds to the computed study parameter—sample size for sample-size
determination and CI width for precision determination. You would rarely need to change the dimensions
when computing these parameters. On the other hand, probabilities are also plotted by default on
the y axis when computing probability of CI width, but because of the likely limited range for this
parameter, you may want to change the dimensions for these computations.

In figure 4, by default, the CI width is plotted against varying values of the sample size, and a
separate curve is plotted for each of the varying values of the standard deviation. We can change the
default x axis by specifying the xdimension() suboption (abbreviated to x()) within ciwidth’s
graph() option. In this example, we specified fewer sample sizes and more standard deviations to
obtain a more readable graph.

. ciwidth onemean, n(10 25 40) probwidth(0.9) sd(1(0.2)2) graph(x(sd))
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Figure 5.

The x axis now contains the values of the standard deviation, and a separate curve is now plotted for
each sample size.

When the xdimension() suboption is specified, the x axis is replaced with the specified column,
and the column corresponding to the default x axis is used as a plot dimension.
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Example 4: By graphs and multiple graphs

In figure 4, we plotted multiple CI precision curves corresponding to different standard deviation
values on one graph. Alternatively, we can produce a separate plot for each of the standard deviation
values by specifying the column sd in the bydimension() suboption (abbreviated to by()) within
ciwidth’s graph() option.

. ciwidth onemean, n(10(2)40) probwidth(0.9) sd(1 2) graph(by(sd))
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Figure 6.

For examples of how to modify the look of a by graph, see example 7.

In the presence of many varying parameters, even by graphs may look crowded. In this case, you
may consider producing multiple by graphs. In the example above, suppose that we also want to vary
the confidence level. We add the level(90 95) option to the previous command.

. ciwidth onemean, n(10(2)40) probwidth(0.9) sd(1 2) level(90 95) graph(by(sd))
(output omitted )

The above command produces a graph containing two by graphs. Each by graph contains two plots,
with each plot corresponding to unique values of the confidence level. We leave this for you to verify.

Instead, we can request that a separate graph be produced for each of the confidence levels
by specifying the graphdimension(level) suboption (abbreviated to graph()) within ciwidth’s
graph() option:
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. ciwidth onemean, n(10(2)40) probwidth(0.9) sd(1 2) level(90 95)
> graph(by(sd) graph(level))
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Figure 7.

Changing the look of graphs

Reasonable defaults for axis labels are chosen based on your results. You can modify the defaults
by using any of ciwidth, graph()’s labeling suboptions or graph twoway’s axis label options;
see [G-3] axis label options.

Example 5: Modifying axis labels

Rather than placing ticks and labels at equally spaced values, as in figure 3, we can request that
ticks and labels be placed on the y and x axes for each distinct value.
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. ciwidth onemean, n(10(2)20) probwidth(0.9)
> graph(yvalues xvalues ylabel(, format(%4.3f)))
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Figure 8.

In this example, to improve readability, we changed the default format of the values on the y axis to
show only three decimal points by using ylabel(, format(%4.3f)).

We can use ylabel() and xlabel() to add text labels for some of the axis values. For example,
suppose that our budget is 30 subjects. We can use xlabel() to label the sample-size value of 30
as “Budgeted”.

. ciwidth onemean, n(10(2)40) probwidth(0.9) graph(xlabel(30 "Budgeted", add))
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Figure 9.
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We can use ytitle() and xtitle() to change the axis titles.

. ciwidth onemean, n(10(2)20) probwidth(0.9) graph(ytitle("CI width")
> xtitle("Sample size") title("Estimated width") subtitle("") note(""))
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Figure 10.

In addition to modifying the axis titles, we also shortened the default title and suppressed the default
subtitle and note.

You may find the collabels() suboption useful to override the default column labels. The
specified column labels will be used wherever the corresponding column is used on the graph.

For example, change the default labels of the CI width and sample-size columns from figure 4 to
“CI width” and “N”, respectively, as follows:

. ciwidth onemean, n(10(2)40) sd(1 2) probwidth(0.9)
> graph(collabels(N "N" width "CI width"))
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Figure 11.

When plotting multiple curves, by default, only the numeric values are used to label each plot in
the legend. This is the simplest form of a label, but we can be more explicit and label each plot with
the parameter symbol, an equal sign, and the value it takes on for each plot. We do this with the
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nosimplelabels suboption (abbreviated to nosimple) below. And to save space, we can suppress
the legend title, which is included by default, by specifying an empty string.

. ciwidth onemean, n(10(2)40) sd(1 2) probwidth(0.9)
> graph(nosimple legend(title("")))
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Figure 12.

The nosimple option will use an equal sign as the separator, but if we wanted to use another
symbol (say, a colon), we could modify the command to something like the following:

ciwidth onemean, n(10(2)40) sd(1 2) probwidth(0.9) ///
graph(nosimple legend(title("")) eqsep(" : "))

Example 6: Plot options

We can use the plotopts() and plot#opts() suboptions within graph() to modify the default
look of the plotted lines. If there are multiple curves, the plotopts() suboption will apply changes
to all curves. Use the corresponding plot#opts() suboption to change the look of only the #th
curve. In the example below, we demonstrate how to use these suboptions.

We can label each data point on the graph with its corresponding sample-size value by specifying
mlabel() within the plotopts() suboption, as shown below. We use mlabpos() to place the
marker labels at the one o’clock position. See [G-3] marker label options for more details about
these options.
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. ciwidth onemean, width(0.5(0.5)2) probwidth(0.9)
> graph(plotopts(mlabel(N) mlabpos(1)))
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Figure 13.

For plots containing multiple curves, such as figure 4, the plotopts() suboption controls the
look of all curves. For example, we can change the marker symbol from the default solid circle to a
solid triangle.

. ciwidth onemean, n(10(2)40) probwidth(0.9) sd(1 2)
> graph(plotopts(msymbol(T)))
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To control the look of each curve, we can use multiple plot#opts() suboptions. For example,
we can request that the curves corresponding to the same standard deviation be plotted using the
same color:

. ciwidth onemean, n(10(2)40) probwidth(0.9) sd(1 2) level(90 95)
> graph(plot3opts(color(navy)) plot4opts(color(maroon)))
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Figure 15.

Example 7: Modifying the look of by-graphs

The look of by graphs is controlled by the byopts() suboption specified within ciwidth’s
graph() option.

In figure 6, we plotted the CI width for two standard deviation values using the same y axis. To
allow the scales of the two by graphs to differ, we specify yrescale within the byopts() suboption.

. ciwidth onemean, n(10(2)40) probwidth(0.9) sd(1 2)
> graph(by(sd) byopts(yrescale))
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Figure 16.
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We can also specify suboptions within byopts() to change the overall graph title and subtitle.

. ciwidth onemean, n(10(2)40) probwidth(0.9) sd(1 2)
> graph(by(sd) byopts(yrescale title("Width vs sample size") subtitle("")))
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Figure 17.

Note that if you use title() and subtitle() outside byopts(), you will change the title and
subtitle of the individual by graphs and not the overall graph.

We could vary the probability of CI width by typing

ciwidth onemean, n(10(2)40) probwidth(0.7 0.9) sd(1 2) ///
graph(by(sd) byopts(yrescale title("Width vs sample size") subtitle("")))

so that a legend indicating which line corresponds to each probability of CI width would appear on
the right side of the graph. In by-graphs, this legend can make each graph appear tall and narrow.
We can then include scheme(stcolor alt) within the graph() option to create this graph using
a scheme that puts the legend at the bottom, allowing more width for each graph.
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. ciwidth onemean, n(10(2)40) probwidth(0.7 0.9) sd(1 2)
> graph(by(sd) scheme(stcolor_alt)
> byopts(yrescale title("Width vs sample size") subtitle("")))
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Figure 18.

Parallel plots

Sometimes, you may be interested in comparing sample sizes for parallel sets of parameters, that
is, parameters that vary in parallel instead of being nested. In this situation, the results represent a
collection of data points rather than a curve, and they are displayed on the graph as a scatterplot
without connecting points.
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For such parallel plots, the default display of the results on the x axis may be cumbersome. A
more appealing look may be a graph that swaps the y and x axes, the horizontal graph. Such a look
may be achieved by specifying the horizontal suboption within graph().

. ciwidth onemean, width(0.5(0.1)2) probwidth(0.9) sd(1(0.1)1.9)
> parallel graph(x(width sd) horizontal nosimplelabels ytitle(""))

w=.5, σ=1
w=.6, σ=1.1
w=.7, σ=1.2
w=.8, σ=1.3
w=.9, σ=1.4
w=1, σ=1.5

w=1.1, σ=1.6
w=1.2, σ=1.7
w=1.3, σ=1.8
w=1.4, σ=1.9
w=1.5, σ=1.9
w=1.6, σ=1.9
w=1.7, σ=1.9
w=1.8, σ=1.9
w=1.9, σ=1.9

w=2, σ=1.9

20 40 60 80
Sample size (N)

Parameters: 100(1-α) = 95, pwidth = .9

Student's t two-sided CI

Estimated sample size for a one-mean CI

Figure 19.

To improve the look of the horizontal graph, we specified the nosimplelabels suboption to request
that the labels on the y axis include the parameter symbol; we also suppressed the y-axis title.

Also see
[PSS-3] ciwidth — Precision and sample-size analysis for CIs

[PSS-3] ciwidth, table — Produce table of results from the ciwidth command



Title

ciwidth, table — Produce table of results from the ciwidth command

Description Quick start Menu Syntax
Suboptions Remarks and examples Stored results Also see

Description
ciwidth, table displays results in a tabular format. table is implied if any of the ciwidth

command’s arguments or options contain more than one element. The table option is useful if you
are producing graphs and would like to see the table as well or if you are producing results one case
at a time using a loop and wish to display results in a table. The notable option suppresses table
results; it is implied with the graphical output of ciwidth, graph; see [PSS-3] ciwidth, graph.

Quick start
Sample size required to achieve a target CI width of 1 with a 90% probability for a one-sample mean,

in tabular format
ciwidth onemean, width(1) probwidth(0.9) table

Same as above, but change column labels of N and sd to Sample size and Std. dev., respectively
ciwidth onemean, width(1) probwidth(0.9) ///

table(, labels(N "Sample size" sd "Std. dev."))

Menu
Statistics > Power, precision, and sample size
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Syntax

Produce default table

ciwidth . . ., table . . .

Suppress table

ciwidth . . ., notable . . .

Produce custom table

ciwidth . . ., table(
[

colspec
] [

, tableopts
]
) . . .

where colspec is

column
[
:label

] [
column

[
:label

] [
. . .
] ]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

tableopts Description

Table

add add columns to the default table
labels(labspec) change default labels for specified columns; default labels are column

names
widths(widthspec) change default column widths; default is specific to each column
formats(fmtspec) change default column formats; default is specific to each column
noformat do not use default column formats
separator(#) draw a horizontal separator line every # lines; default is separator(0),

meaning no separator lines
divider draw divider lines between columns
byrow display rows as computations are performed; seldom used

noheader suppress table header; seldom used
continue draw a continuation border in the table output; seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.
noheader and continue are not shown in the dialog box.
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column Description

level confidence level
alpha significance level
N total number of subjects
N1 number of subjects in the control group
N2 number of subjects in the experimental group
nratio ratio of sample sizes, experimental to control
Pr width probability of CI width
width CI width
all display all supported columns

method columns columns specific to the method specified with ciwidth

By default, the following columns are displayed:
level, width, and N are always displayed;
N1 and N2 are displayed for two-sample methods;
additional columns specific to each ciwidth method may be displayed.

Suboptions
The following are suboptions within the table() option of the ciwidth command.� � �

Table �
add requests that the columns specified in colspec be added to the default table. The columns are

added to the end of the table.

labels(labspec) specifies the labels to be used in the table for the specified columns. labspec is

column "label"
[

column "label"
[
. . .
] ]

labels() takes precedence over the specification of column labels in colspec.

widths(widthspec) specifies column widths. The default values are the widths of the default column
formats plus one. If the noformat option is used, the default for each column is nine. The column
widths are adjusted to accommodate longer column labels and larger format widths. widthspec is
either a list of values including missing values (numlist) or

column #
[

column #
[
. . .
] ]

For the value-list specification, the number of specified values may not exceed the number of
columns in the table. A missing value (.) may be specified for any column to indicate the default
width. If fewer widths are specified than the number of columns in the table, the last width specified
is used for the remaining columns.

The alternative column-list specification provides a way to change widths of specific columns.

formats(fmtspec) specifies column formats. The default is %7.0gc for integer-valued columns and
%7.4g for real-valued columns. fmtspec is either a string value-list of formats that may include
empty strings or a column list:

column "fmt"
[

column "fmt"
[
. . .
] ]

For the value-list specification, the number of specified values may not exceed the number of
columns in the table. An empty string ("") may be specified for any column to indicate the default
format. If fewer formats are specified than the number of columns in the table, the last format
specified is used for the remaining columns.

The alternative column-list specification provides a way to change formats of specific columns.
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noformat requests that the default formats not be applied to the column values. If this suboption is
specified, the column values are based on the column width.

separator(#) specifies how often separator lines should be drawn between rows of the table. The
default is separator(0), meaning that no separator lines should be displayed.

divider specifies that divider lines be drawn between columns. The default is no dividers.

byrow specifies that table rows be displayed as computations are performed. By default, the table is
displayed after all computations are performed. This suboption may be useful when the computation
of each row of the table takes a long time.

The following suboptions are available but are not shown in the dialog box:

noheader prevents the table header from displaying. This suboption is useful when the command is
issued repeatedly, such as within a loop.

continue draws a continuation border at the bottom of the table. This suboption is useful when the
command is issued repeatedly, such as within a loop.

Remarks and examples
Remarks are presented under the following headings:

Using ciwidth, table
Default tables
Modifying default tables
Custom tables

ciwidth, table displays results from the ciwidth command in a table. This is useful for
sensitivity analysis, which investigates the effect of varying study parameters on CI precision, sample
size, or other components of the study. The true values of study parameters are usually unknown. PrSS
analysis uses best guesses for these values. It is important to evaluate the sensitivity of the computed CI
precision or sample size to the chosen values of study parameters. For example, to evaluate variability
of CI width, you can compute CI widths for various ranges of values for the parameters of interest
and display the resulting widths in a table or plot them on a graph (see [PSS-3] ciwidth, graph).

Using ciwidth, table

If you specify the table option or include more than one element in command arguments or in
options allowing multiple values, the ciwidth command displays results in a tabular form. If desired,
you can suppress the table by specifying the notable option. The table option is useful if you are
producing graphical output or if you are producing results one case at a time, such as within a loop,
and wish to display results in a table; see example 4 below.

Each method specified with the ciwidth command has its own default table. Among the columns
that are always included in the default table are confidence level (level), CI width (width), and total
sample size (N).

Depending on the method and study design, additional columns are also included by default. For
example, ciwidth onemean has an additional column for standard deviation.

You can build your own table by specifying the columns and, optionally, their labels in the table()
option. You can also add columns to the default table by specifying add within ciwidth’s table()
option. The columns are displayed in the order they are specified. Each method provides its own list
of supported columns; see the description of the table() option for each method. You can further
customize the table by specifying various suboptions within ciwidth’s table() option.
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The default column labels are the column names. You can provide your own column labels in colspec
or by specifying table()’s suboption labels(). Labels containing spaces should be enclosed in
quotes, and labels containing quotes should be enclosed in compound quotes. The labels() suboption
is useful for changing the labels of existing columns; see example 2 below for details.

The default formats are %7.4g for real-valued columns and %7.0gc for integer-valued columns.
If the noformat suboption is specified, the default column widths are nine characters. You can
use formats() to change the default column formats and widths() to change the default column
widths. The formats() and widths() suboptions provide two alternative specifications, a value-list
specification or a column-list specification. The value-list specification accepts a list of values—strings
for formats and numbers for widths—corresponding to each column of the displayed table. Empty
strings ("") for formats and missing values (.) for widths are allowed and denote the default values. It
is an error to specify more values than the number of displayed columns. If fewer values are specified,
then the last value specified is used for the remaining columns. The column-list specification includes
a list of pairs containing a column name followed by the corresponding value of the format or width.
This specification is useful if you want to modify the formats or the widths of only selected columns.
For column labels or formats exceeding the default column width, the widths of the respective columns
are adjusted to accommodate the column labels and the specified formats.

If you specify the noformat suboption, the default formats are ignored, and the format of a column
is determined by the column width: if the column width is #, the displayed format is %(# − 2).0g.
For example, if the column width is 9, the displayed format is %7.0g.

You may further customize the look of the table by using separator(#) to include separator lines
after every # lines and by using the divider suboption to include divider lines between columns.

The noheader and continue suboptions are useful when you are building your own table within
a loop; see example 4 in Custom tables.

In what follows, we demonstrate the default and custom tables of the results from PrSS analysis for
a one-mean CI and a one-variance CI; see [PSS-3] ciwidth onemean and [PSS-3] ciwidth onevariance.

Default tables

If there is only one set of results, the ciwidth command displays those results as text. When the
ciwidth command has multiple sets of results, they are automatically displayed in a table. You can
also specify the table option at any time to request that results be displayed in a table.

The displayed columns are specific to the chosen method of analysis and to the options specified
with the command. The columns that always appear in the table include the confidence level (level),
CI width (width), and total sample size (N).

Example 1: Default tables from ciwidth onemean

Suppose we want to explore the required sample size to achieve a certain precision for a one-mean
CI. Below we estimate the required sample size for obtaining the target CI widths no larger than 1,
2, and 3 with a probability of CI width of 0.9. See [PSS-3] ciwidth onemean for details.



698 ciwidth, table — Produce table of results from the ciwidth command

. ciwidth onemean, width(1 2 3) probwidth(0.9) sd(2)

Performing iteration ...

Estimated sample size for a one-mean CI
Student’s t two-sided CI

level N Pr_width width sd

95 77 .9 1 2
95 24 .9 2 2
95 14 .9 3 2

As we mentioned earlier, the level, width, and N columns are displayed in the default table. Column
Pr width is also displayed in the default table whenever probwidth() is specified. The ciwidth
onemean command additionally displays the standard deviation column.

Modifying default tables

We can modify labels, widths, and formats of the default columns by specifying the corresponding
suboptions within the table() option. We can also add columns to the default table by using
table()’s suboption add.

Example 2: Modifying default tables from ciwidth onemean

We can change the default labels of all or selected columns by using the labels() suboption
within ciwidth’s table() option. For example, we can change the labels of the sample-size columns
and standard deviation columns of the first table in example 1 to “Sample size” and “Std. dev.”,
respectively.

. ciwidth onemean, width(1 2 3) probwidth(0.9) sd(2)
> table(, labels(N "Sample size" sd "Std. dev."))

Performing iteration ...

Estimated sample size for a one-mean CI
Student’s t two-sided CI

level Sample size Pr_width width Std. dev.

95 77 .9 1 2
95 24 .9 2 2
95 14 .9 3 2
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We can also change default column formats and widths by using the formats() and widths()
suboptions.

. ciwidth onemean, width(1 2 3) probwidth(0.9) sd(2)
> table(, labels(N "Sample size" sd "Std. dev.") widths(N 14 sd 14)
> formats(width "%7.5f"))

Performing iteration ...

Estimated sample size for a one-mean CI
Student’s t two-sided CI

level Sample size Pr_width width Std. dev.

95 77 .9 1.00000 2
95 24 .9 2.00000 2
95 14 .9 3.00000 2

For this table, we changed the default column widths of the sample-size and standard deviation
columns to 14. We also changed the format of the width column from the default, %7.4g, to %7.5f.

Example 3: Modifying default tables from ciwidth onevariance

We can also add columns to the default table by using table()’s suboption add. In the ciwidth
onevariance example below, the default columns are level, N, Pr width, width, and v.

. ciwidth onevariance 1, width(1 2) probwidth(0.9)

Performing iteration ...

Estimated sample size for a one-variance CI
Chi-squared two-sided CI

level N Pr_width width v

95 57 .9 1 1
95 23 .9 2 1

We can also add the standard deviation column, s, to the table:

. ciwidth onevariance 1, width(1 2) probwidth(0.9) table(s, add)

Performing iteration ...

Estimated sample size for a one-variance CI
Chi-squared two-sided CI

level N Pr_width width v s

95 57 .9 1 1 1
95 23 .9 2 1 1
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Custom tables
You can use the table() option to build custom tables, with the columns you want in the order

you want. You can also build a table within a foreach or forvalues loop.

Example 4: Building table using a loop

Some options of ciwidth commands may not allow the numlist specification. In this case, you
can build a table manually by using a loop with either foreach (see [P] foreach) or forvalues (see
[P] forvalues). One way to do this is to write a program that loops over parameters of interest. We
demonstrate a program that loops over varying values of the variance of ciwidth onevariance.
You can easily adapt this program to meet your needs.

program dotable
args var
numlist "‘var’" // expand the numeric list in macro var
local var "‘r(numlist)’"
local nvals : list sizeof var
local i 1
foreach val of local var { // loop over numeric values in var

if (‘i’==1) {
ciwidth onevariance ‘val’, width(2) probwidth(0.9) ///

table(, continue)
}
else if (‘i’<‘nvals’) {

ciwidth onevariance ‘val’, width(2) probwidth(0.9) ///
table(, noheader continue) notitle

}
else {

ciwidth onevariance ‘val’, width(2) probwidth(0.9) ///
table(, noheader) notitle

}
local ++i

}
end

The dotable program accepts one argument, var, which may contain one or more numeric values
of the variance specified as numlist. The program uses combinations of continue, noheader, and
notitle to display a table. The first call to ciwidth onevariance requests that the table be displayed
without the bottom line by specifying the continue suboption within table(). The subsequent calls
(except the last) specify the continue suboption, the notitle option with ciwidth onevariance,
and noheader within the table() option to request that neither the output before the table nor the
table header be displayed. The last call omits the continue suboption so that the bottom line is
displayed.
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As a result, we obtain the following table:

. dotable "1(0.2)2"

Performing iteration ...

Estimated sample size for a one-variance CI
Chi-squared two-sided CI

level N Pr_width width v

95 23 .9 2 1
95 29 .9 2 1.2
95 35 .9 2 1.4
95 41 .9 2 1.6
95 49 .9 2 1.8
95 57 .9 2 2

Stored results
ciwidth, table stores the following in r() in addition to other results stored by ciwidth:

Scalars
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise

Macros
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Also see
[PSS-3] ciwidth — Precision and sample-size analysis for CIs

[PSS-3] ciwidth, graph — Graph results from the ciwidth command



Title

ciwidth onemean — Precision analysis for a one-mean CI

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

ciwidth onemean computes sample size, CI width, and probability of CI width for a CI for
a population mean. It can compute sample size for a given CI width and probability of CI width.
Alternatively, it can compute CI width for a given sample size and probability of CI width. It can also
compute probability of CI width for a given sample size and CI width. Also see [PSS-3] ciwidth for
PrSS analysis for other CI methods.

For power and sample-size analysis for a one-sample mean test, see [PSS-2] power onemean.

Quick start
Sample size for a two-sided 95% CI for a population mean given a CI width of 5 and a standard

deviation of 12, with the probability of CI width of 0.9
ciwidth onemean, width(5) probwidth(0.9) sd(12)

Same as above, but for an upper one-sided CI with a 90% confidence level
ciwidth onemean, width(5) probwidth(0.9) sd(12) level(90) upper

Sample size for a two-sided 95% CI for a population mean given a CI width of 5, assuming a known
population standard deviation of 12

ciwidth onemean, width(5) sd(12) knownsd

CI width for sample sizes of 50, 60, 70, and 80, given a probability of CI width of 0.9
ciwidth onemean, n(50(10)80) probwidth(0.9) sd(12)

Same as above, but display results in a graph of CI width versus sample size
ciwidth onemean, n(50(10)80) probwidth(0.9) sd(12) graph

Probability that the width of a two-sided 95% CI is no larger than 5 for a sample size of 100
ciwidth onemean, n(100) width(5) sd(12)

Menu
Statistics > Power, precision, and sample size
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Syntax

Compute sample size

ciwidth onemean, width(numlist) probwidth(numlist)
[

options
]

Compute CI width

ciwidth onemean, probwidth(numlist) n(numlist)
[

options
]

Compute probability of CI width

ciwidth onemean, width(numlist) n(numlist)
[

options
]

options Description

Main
∗level(numlist) confidence level; default is level(95)
∗alpha(numlist) significance level; default is alpha(0.05)
∗probwidth(numlist) probability of CI width; required to compute sample size

and CI width
∗width(numlist) CI width; required to compute sample size and probability

of CI width
∗n(numlist) sample size; required to compute CI width and probability

of CI width
nfractional allow fractional sample sizes
∗sd(numlist) standard deviation; default is sd(1)

knownsd request computation assuming a known standard deviation;
default is to assume an unknown standard deviation

∗fpc(numlist) finite population correction (FPC) as a sampling rate or
as a population size

lower lower one-sided CI; default is two-sided CI
upper upper one-sided CI; default is two-sided CI
onesided synonym for option upper

parallel treat number lists in starred options or in command arguments as
parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)
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Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-3] ciwidth, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-3] ciwidth, graph

Iteration

init(#) initial value for sample size; default is to use a closed-form
normal approximation

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

level confidence level 100(1− α)
alpha significance level α
N number of subjects N
Pr width probability of CI width pwidth

width CI width w
sd standard deviation σ
fpc FPC as population size Npop

FPC as sampling rate γ
all display all supported columns

Column alpha is shown in the default table in place of column level if alpha() is specified.
Column fpc is shown in the default table if fpc() is specified.
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Options

� � �
Main �

level(), alpha(), probwidth(), width(), n(), nfractional; see [PSS-3] ciwidth. probwidth()
may not be combined with knownsd. The nfractional option is allowed only for sample-size
determination.

sd(numlist) specifies the population standard deviation or its estimate. The default is sd(1). By
default, sd() specifies an estimate for the unknown population standard deviation. If knownsd is
specified, sd() specifies the known value for the population standard deviation.

knownsd requests that the standard deviation be treated as known in the computation. By default,
the standard deviation is treated as unknown, and the computation is performed for a Student’s
t-based CI. If knownsd is specified, the computation is performed for a normal-based CI. knownsd
may not be combined with probwidth() and is not allowed when computing the probability of
CI width.

fpc(numlist) requests that a finite population correction be used in the computation. If fpc() has
values between 0 and 1, it is interpreted as a sampling rate, n/N , where N is the total number of
units in the population. When sample size n is specified, if fpc() has values greater than n, it is
interpreted as a population size, but it is an error to have values between 1 and n. For sample-size
determination, fpc() with a value greater than 1 is interpreted as a population size. It is an error
for fpc() to have a mixture of sampling rates and population sizes.

lower, upper, onesided, parallel; see [PSS-3] ciwidth.

� � �
Table �

table, table(), notable; see [PSS-3] ciwidth, table.

saving(); see [PSS-3] ciwidth.

� � �
Graph �

graph, graph(); see [PSS-3] ciwidth, graph. Also see the column table for a list of symbols used
by the graphs.

� � �
Iteration �

init(#) specifies an initial value for the sample size when iteration is used to compute the sample
size. The default is to use a closed-form normal approximation to compute an initial sample size.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-3] ciwidth.

The following option is available with ciwidth onemean but is not shown in the dialog box:

notitle; see [PSS-3] ciwidth.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using ciwidth onemean
Computing sample size
Computing CI width
Computing probability of CI width
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This entry describes the ciwidth onemean command and the methodology for PrSS analysis for
a CI for a population mean. See [PSS-3] Intro (ciwidth) for a general introduction to PrSS analysis,
and see [PSS-3] ciwidth for a general introduction to the ciwidth command. For PSS analysis for
hypothesis tests, see [PSS-2] power.

Introduction
Mean estimation is one of the most popular statistical analyses. Schools may measure the mean

test score for their students. Factories may measure the mean strength of new alloys or the mean
lifetime of bulbs. CIs are often used for inference about the population mean µ. They provide the
ranges for plausible values for the mean based on a random sample from a population of interest.
The wider the ranges, the less precise the CI.

The precision of a CI is commonly measured by its width w or, for a symmetric CI such as the
CI for a population mean, by its half-width d, also known as the margin of error. For example, a
two-sided one-mean CI is formed as [µ̂ − d, µ̂ + d], where µ̂ is the mean point estimate. The CI
width, the distance between the upper and lower limits, is w = 2d; it does not depend on the mean
estimate. The smaller the d or w the more precise the CI.

In PrSS analysis, it is usually of interest to determine the sample size that would be sufficient for a
CI to have a prespecified width in a future study. Generally, larger sample sizes lead to more precise
CIs. To compute the required sample size, we need to know the expression for w. The expression for
w depends on various assumptions.

Suppose that we have a random sample of n i.i.d. observations from a normal distribution with
mean µ and standard deviation σ. If we know a population standard deviation σ, w = 2z1−α/2σ/

√
n,

where z1−α/2 is the (1− α/2)th quantile of the standard normal distribution. If we do not know a
σ and estimate it from the sample using the sample standard deviation s, w = 2tn−1,1−α/2 s/

√
n,

where tn−1,1−α/2 is the (1 − α/2)th quantile of the Student’s t distribution with n − 1 degrees
of freedom. 100(1 − α)% is the confidence level of a CI. Using the relationship between CIs and
hypothesis tests, a 100(1−α)% one-mean CI can be viewed as a set of hypothetical values of a mean
that cannot be rejected by the corresponding one-sample mean test at the significance level α.

In the case of an unknown standard deviation, the CI width w depends on the sample estimate s of
the standard deviation and thus will vary from one sample to another. To ensure that, in a future study,
a CI has the desired width, this sampling variability of w must be accounted for when computing the
required sample size. Kupper and Hafner (1989) introduce what we call the probability of CI width
that specifies the probability of a future CI to have the width of no larger than some prespecified CI
width for a given sample size. This probability is defined based on the assumption of a χ2 distribution
for the sample variance s2; see Methods and formulas for details.

The random sample is typically drawn from an infinite population. When the sample is drawn
from a population of a fixed size, sampling variability must be adjusted for a finite population size.

You can use ciwidth onemean to perform PrSS analysis for a CI for a population mean. We
discuss the command details in the next section.

Using ciwidth onemean

ciwidth onemean computes sample size, CI width, or probability of CI width for a one-mean CI.
By default, a two-sided CI is assumed, and the confidence level is set to 95%. You may change the
confidence level by specifying the level() option. Alternatively, you can specify the significance
level in the alpha() option. You can specify the upper and lower options to request upper and
lower one-sided CIs.
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To compute sample size, you must specify the CI width in the width() option and the probability
of CI width in the probwidth() option. To compute CI width, you must specify the sample size in
the n() option and the probability of CI width in the probwidth() option. You can also compute
the probability of CI width given the sample size in n() and CI width in width().

For CIs for means, the CI width does not depend on the mean point estimate, the sample mean,
so it is not needed in the computations.

By default, all computations assume an unknown standard deviation and use a default value of 1
as the estimate of the standard deviation. You may specify other values for the standard deviation in
the sd() option. For a known standard deviation, you can specify the knownsd option to request a
normal-based CI instead of the default Student’s t-based CI. In this case, the sd() option specifies
the actual population standard deviation.

By default, the computed sample size is rounded up. You can specify the nfractional option
to see the corresponding fractional sample size; see Fractional sample sizes in [PSS-4] Unbalanced
designs for an example. The nfractional option is allowed only for sample-size determination.

Some of ciwidth onemean’s computations require iteration. For example, when the standard
deviation is unknown, the sample-size computation requires iteration. The default initial value of the
estimated sample size is obtained by using a closed-form normal approximation. It may be changed
by specifying the init() option. See [PSS-3] ciwidth for the descriptions of other options that control
the iteration procedure.

All computations assume an infinite population. For a finite population, use the fpc() option to
specify a sampling rate or a population size.

In the following sections, we describe the use of ciwidth onemean accompanied by examples
for computing sample size, CI width, and probability of CI width.

Computing sample size

To compute the sample size required for a one-mean CI to have the width no larger than a target
width, you must specify the target CI width in the width() option and the desired probability of
achieving the target CI width in the probwidth() option.

Example 1: Sample size for a one-mean CI

Consider an example from Meeker, Hahn, and Escobar (2017, 152) of an experiment that measures
the mean tensile strength of a new alloy. The number of specimens needed to be tested is of interest.
We assume that the strength follows a normal distribution and the true population standard deviation
is unknown. We use a conservative estimate of 2,500 kg for it in this example. We want to compute
the sample size required for the two-sided 95% CI for the mean tensile strength to have the width
of no larger than 3,000 kg. In addition to the sample size, the CI width depends on the standard
deviation. Because we assume an unknown standard deviation, the CI width may vary from one study
to another. We must account for this sampling variability when estimating the sample size. So, to
ensure that the CI will have the width of at most 3,000 kg, we must also specify the probability of
achieving the target CI width. If we do not, our results will be based on the assumption that a future
sample will have the standard deviation of 2,500 kg, which may not be a realistic assumption given
an unknown standard deviation. In our example, we will use the probability of CI width of 0.96. To
compute the sample size, we type



708 ciwidth onemean — Precision analysis for a one-mean CI

. ciwidth onemean, sd(2500) probwidth(0.96) width(3000)

Performing iteration ...

Estimated sample size for a one-mean CI
Student’s t two-sided CI

Study parameters:

level = 95.00
Pr_width = 0.9600

width = 3000.0000
sd = 2500.0000

Estimated sample size:

N = 20

We find that a sample of 20 specimens is required to obtain a two-sided 95% CI for the mean that,
with a probability of 0.96, will have the width of no more than 3,000 kg.

As we mentioned in Using ciwidth onemean and as is also indicated in the output, sample-size
computation requires iteration when the standard deviation is unknown. The iteration log is suppressed
by default, but you can display it by specifying the log option.

Example 2: Known variance

If we know the population standard deviation, we can use the knownsd option to compute results
for a normal z-based CI. Because we assume a known standard deviation, the probwidth() option
is not needed. In fact, it is not allowed in combination with knownsd.

. ciwidth onemean, sd(2500) width(3000) knownsd

Estimated sample size for a one-mean CI
Normal two-sided CI

Study parameters:

level = 95.00
width = 3000.0000

sd = 2500.0000

Estimated sample size:

N = 11

The output now indicates that the computation is based on a normal CI instead of the default Student’s
t CI. We find that a smaller sample of 11 subjects is required for the mean CI to achieve the same CI
width as in example 1 when the standard deviation is known.

Computing CI width

To compute the CI width, you must specify the sample size in the n() option and the desired
probability of achieving the target CI width in the probwidth() option.

Example 3: Precision of a one-mean CI

Continuing with example 1, we can compute the CI width for a given sample size. Suppose we
want to compute the CI width corresponding to the sample size of 20 from example 1. We replace
the width(3000) option with the n(20) option:
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. ciwidth onemean, sd(2500) probwidth(0.96) n(20)

Estimated width for a one-mean CI
Student’s t two-sided CI

Study parameters:

level = 95.00
N = 20

Pr_width = 0.9600
sd = 2500.0000

Estimated width:

width = 2990.8196

The estimated CI width is about 2,991 kg and is smaller than the width of 3,000 kg used in example 1.
The actual sample size corresponding to the CI width of 3,000 is slightly smaller than 20. You can
see this by specifying the nfractional option in example 1 to report a fractional sample size.
By default, ciwidth methods round the actual sample size up to the nearest integer. The CI width
corresponding to a larger sample size will be smaller.

Example 4: One-sided CI

You can specify the upper or lower option to request an upper or lower one-sided CI. Continuing
with example 3, we estimate the CI width for an upper 95% CI.

. ciwidth onemean, sd(2500) probwidth(0.96) n(20) upper

Estimated width for a one-mean CI
Student’s t upper CI

Study parameters:

level = 95.00
N = 20

Pr_width = 0.9600
sd = 2500.0000

Estimated width:

width = 1235.4192

The upper bound for the mean tensile strength of a new alloy is about 1,235 kg from its point estimate.

Example 5: Multiple values of study parameters

To investigate the effect of the sample size on the CI width, we can specify a list of sample sizes
in the n() option:

. ciwidth onemean, sd(2500) probwidth(0.96) n(10(10)50)

Estimated width for a one-mean CI
Student’s t two-sided CI

level N Pr_width width sd

95 10 .96 5003 2500
95 20 .96 2991 2500
95 30 .96 2289 2500
95 40 .96 1912 2500
95 50 .96 1669 2500
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As expected, when the sample size increases, the CI width decreases. The decrease is particularly
prominent when the sample size increases from 10 to 20.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-3] ciwidth, table. If you wish to produce sample-size
and other curves, see [PSS-3] ciwidth, graph.

Computing probability of CI width

To compute the probability that the width of a future CI will be no larger than the specified width,
you must specify the sample size in the n() option and the target CI width in the width() option.

Example 6: Computing probability of CI width for a one-mean CI

Continuing with example 1, we may also want to know the probability that the CI width in a future
study will be no larger than a prespecified value for a given sample size. To compute the probability
of CI width, we specify the sample size of 20 in n() and the CI width of 3,000 in width(). We use
the same estimate of 2,500 for the standard deviation.

. ciwidth onemean, sd(2500) n(20) width(3000)

Estimated probability of width for a one-mean CI
Student’s t two-sided CI

Study parameters:

level = 95.00
N = 20

width = 3000.0000
sd = 2500.0000

Estimated probability of width:

Pr_width = 0.9619

The estimated probability is about 96%, which is consistent with what we used in example 1.

Stored results
ciwidth onemean stores the following in r():

Scalars
r(level) confidence level
r(alpha) significance level
r(N) sample size
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided CI, 0 otherwise
r(Pr width) probability of CI width
r(Pr width a) actual probability of CI width (for sample-size determination when probwidth() specified)
r(width) CI width
r(width a) actual CI width (for sample-size determination when knownsd specified)
r(sd) standard deviation
r(knownsd) 1 if option knownsd is specified, 0 otherwise
r(fpc) finite population correction (if specified)
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample size
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r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) ci
r(method) onemean
r(onesidedci) upper or lower (for a one-sided CI)
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
Let x = (x1, . . . , xn) be a random sample of i.i.d. observations from a normal population with

mean µ and variance σ2. A general two-sided CI is defined as [ll(x), ul(x)], a lower one-sided CI
as [ll(x),∞), and an upper one-sided CI as (−∞, ul(x)], where ll(x) = ll and ul(x) = ul are the
respective lower and upper confidence limits. Let w be the CI width.

Let

x =
1

n

n∑
i=1

xi and s2 =
1

n− 1

n∑
i=1

(xi − x)2

be the sample mean and the sample variance, respectively.

A two-sided CI for the population mean µ is constructed as

[x− w/2, x+ w/2]

where w/2 is the half-width or margin of error.

Lower and upper one-sided CIs are constructed as

[x− w,∞)

(−∞, x+ w]

We use the CI width w as our measure of CI precision. Let 100(1− α)% denote the confidence
level, where 0 ≤ α ≤ 1 is the corresponding significance level.

The formulas below are based on Kupper and Hafner (1989), Ryan (2013), Dixon and Massey (1983),
Zar (2010), and Chow et al. (2018).

Methods and formulas are presented under the following headings:

Known standard deviation
Unknown standard deviation
Finite population size
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Known standard deviation

In the case of a known standard deviation, the sampling distribution of the statistic z =
√
n(x−µ)/σ

follows the standard normal distribution. Let z1−α be the (1− α)th quantile of the standard normal
distribution.

Based on the normal distribution of z, the corresponding two-sided, lower, and upper CIs are[
x− z1−α/2

σ√
n
, x+ z1−α/2

σ√
n

]
[
x− z1−α

σ√
n
,∞
)

(
−∞, x+ z1−α

σ√
n

]
The corresponding CI width is

w =

{
2z1−α/2σ√

n
for a two-sided CI

z1−ασ√
n

for lower and upper one-sided CIs
(1)

The sample size n is computed by inverting (1):

n =


(

2z1−α/2σ

w

)2

for a two-sided CI( z1−ασ
w

)2
for lower and upper one-sided CIs

(2)

Unknown standard deviation
In the case of an unknown standard deviation, an unbiased estimator s is used in place of σ

in the definition of a z statistic from Known standard deviation. The sampling distribution of the
corresponding statistic t =

√
n(x − µ)/s follows a Student’s t distribution with n − 1 degrees of

freedom. Let tn−1,1−α be the (1− α)th quantile of the Student’s t distribution with n− 1 degrees
of freedom.

The corresponding two-sided, lower, and upper CIs are[
x− tn−1,1−α/2

s√
n
, x+ tn−1,1−α/2

s√
n

]
[
x− tn−1,1−α

s√
n
,∞
)

(
−∞, x+ tn−1,1−α

s√
n

]
The CI width depends on the sample standard deviation s, which will vary between random

samples. To account for the sampling variability of s and consequently of the CI width, Kupper and
Hafner (1989) consider the probability of CI width, Pr(w), such that
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Pr
(

2tn−1,1−α/2
s√
n
≤ w

)
≥ Pr(w) (3)

The above is for a two-sided CI, but a similar expression can be constructed for a one-sided CI. Pr(w)
is the probability that the width of a future CI will not exceed some prespecified width w.

Formula (3) can be rewritten as

Pr

{
(n− 1)s2

σ2
≥ n(n− 1)w2

4σ2t2n−1,1−α/2

}
≥ Pr(w) (4)

When data x are normally distributed, the sampling distribution of the statistic (n− 1)s2/σ2 is a
χ2 distribution with n− 1 degrees of freedom. Then, using (4), we can compute the probability of
CI width as follows:

Pr(w) =


χ2
n−1

{
n(n−1)w2

4σ2t2
n−1,1−α/2

}
for a two-sided CI

χ2
n−1

{
n(n−1)w2

σ2t2
n−1,1−α

}
for lower and upper one-sided CIs

(5)

where χ2
n−1 (·) is the c.d.f. of a χ2 distribution with n− 1 degrees of freedom.

We can compute the CI width from (5) as follows:

w =


2tn−1,1−α/2σ

√
χ2

n−1,Pr(w)

n(n−1) for a two-sided CI

tn−1,1−ασ

√
χ2

n−1,Pr(w)

n(n−1) for lower and upper one-sided CIs

(6)

where χ2
n−1,p is the pth quantile of a χ2 distribution with n− 1 degrees of freedom.

We solve for the sample size iteratively using (6) with initial values obtained from (2).

Finite population size

The above formulas assume that the random sample is drawn from an infinite population. In cases
when the size of the population is known, we need to make the following adjustment to the standard
deviation,

σfpc = σ

√(
1− n

N

)
where σfpc is the population standard deviation adjusted for finite population size.

If the nfractional option is not specified, the computed sample size is rounded up.
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ciwidth twomeans — Precision analysis for a two-means-difference CI

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

ciwidth twomeans computes sample size, CI width, and probability of CI width for a CI for a
difference between two means from independent samples. It can compute sample size for a given CI
width and probability of CI width. Alternatively, it can compute CI width for a given sample size and
probability of CI width. It can also compute probability of CI width for a given sample size and CI
width. Also see [PSS-3] ciwidth for PrSS analysis for other CI methods.

For power and sample-size analysis for a two-sample mean test, see [PSS-2] power twomeans.

Quick start
Sample size required for a two-sided 95% CI for the difference between two means to have a width

no larger than 12 with a probability of 90%, assuming a common standard deviation of 9
ciwidth twomeans, width(12) probwidth(0.9) sd(9)

Same as above, but for an upper one-sided CI

ciwidth twomeans, width(12) probwidth(0.9) sd(9) upper

Sample size required for a two-sided 95% CI for the difference between two means to have a width
no larger than 12, with known control- and experimental-group standard deviations of 7 and 10,
respectively

ciwidth twomeans, width(12) sd1(7) sd2(10) knownsds

CI width for a total sample size of 74 with balanced group sizes, given a 90% probability that the CI
width will be no larger than the estimated value

ciwidth twomeans, n(74) probwidth(0.9) sd(9)

Same as above, but for sample sizes of 45 and 30 in groups 1 and 2, respectively
ciwidth twomeans, n1(45) n2(30) probwidth(0.9) sd(9)

Probability that the CI width is no larger than 12 for a sample size of 50
ciwidth twomeans, width(12) n(50) sd(9)

Menu
Statistics > Power, precision, and sample size

715
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Syntax

Compute sample size

ciwidth twomeans, width(numlist) probwidth(numlist)
[

options
]

Compute CI width

ciwidth twomeans, probwidth(numlist) n(numlist)
[

options
]

Compute probability of CI width

ciwidth twomeans, width(numlist) n(numlist)
[

options
]

options Description

Main
∗level(numlist) confidence level; default is level(95)
∗alpha(numlist) significance level; default is alpha(0.05)
∗probwidth(numlist) probability of CI width; required to compute sample size

and CI width
∗width(numlist) CI width; required to compute sample size and probability

of CI width
∗n(numlist) total sample size; required to compute CI width and probability

of CI width
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1), meaning

equal group sizes
compute(N1 | N2) solve for N1 given N2 or for N2 given N1

nfractional allow fractional sample sizes
∗sd(numlist) common standard deviation of the control and the

experimental groups assuming equal standard deviations in
both groups; default is sd(1)

∗sd1(numlist) standard deviation of the control group; requires sd2() and
knownsds

∗sd2(numlist) standard deviation of the experimental group; requires sd1() and
knownsds

knownsds request computation assuming known standard deviations for
both groups; default is to assume unknown standard
deviations

lower lower one-sided CI; default is two-sided CI
upper upper one-sided CI; default is two-sided CI
onesided synonym for option upper

parallel treat number lists in starred options or in command arguments as
parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)
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Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-3] ciwidth, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-3] ciwidth, graph

Iteration

init(#) initial value for sample size; default is to use a closed-form
normal approximation

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

level confidence level 100(1− α)
alpha significance level α
N total number of subjects N
N1 number of subjects in the control group N1

N2 number of subjects in the experimental group N2

nratio ratio of sample sizes, experimental to control N2/N1

Pr width probability of CI width pwidth

width CI width w
sd common standard deviation σ
sd1 control-group standard deviation σ1

sd2 experimental-group standard deviation σ2

all display all supported columns

Column alpha is shown in the default table in place of column level if alpha() is specified.
Columns nratio, sd, sd1, and sd2 are shown in the default table if the corresponding options are specified.
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Options

� � �
Main �

level(), alpha(), probwidth(), width(), n(), n1(), n2(), nratio(), compute(), nfrac-
tional; see [PSS-3] ciwidth. probwidth() may not be combined with sd1(), sd2(), and
knownsds.

sd(numlist) specifies the common standard deviation of the control and the experimental groups
assuming equal standard deviations in both groups. The default is sd(1).

sd1(numlist) specifies the standard deviation of the control group. If you specify sd1(), you must
also specify sd2() and knownsds. sd1() may not be combined with probwidth().

sd2(numlist) specifies the standard deviation of the experimental group. If you specify sd2(), you
must also specify sd1() and knownsds. sd2() may not be combined with probwidth().

knownsds requests that standard deviations of each group be treated as known in the computation.
By default, standard deviations are treated as unknown, and the computation is performed for a
Student’s t-based CI. If knownsds is specified, the computation is performed for a normal-based
CI. knownsds may not be combined with probwidth() and is not allowed when computing the
probability of CI width.

lower, upper, onesided, parallel; see [PSS-3] ciwidth.

� � �
Table �

table, table(), notable; see [PSS-3] ciwidth, table.

saving(); see [PSS-3] ciwidth.

� � �
Graph �

graph, graph(); see [PSS-3] ciwidth, graph. Also see the column table for a list of symbols used
by the graphs.

� � �
Iteration �

init(#) specifies the initial value for the estimated sample size for sample-size determination. The
estimated sample size is either the control-group size n1 or, if compute(N2) is specified, the
experimental-group size n2. The default is to use a closed-form normal approximation to compute
an initial sample size.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-3] ciwidth.

The following option is available with ciwidth twomeans but is not shown in the dialog box:

notitle; see [PSS-3] ciwidth.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Using ciwidth twomeans
Computing sample size
Computing CI width
Computing probability of CI width
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This entry describes the ciwidth twomeans command and the methodology for PrSS analysis
for a CI for a difference between two means from independent samples. See [PSS-3] Intro (ciwidth)
for a general introduction to PrSS analysis, and see [PSS-3] ciwidth for a general introduction to the
ciwidth command. For PSS analysis for hypothesis tests, see [PSS-2] power.

Introduction
The analysis of means is one of the most commonly used approaches in many statistical studies.

Many applications lead to the study of two independent means, such as studies comparing the average
mileage of foreign and domestic cars, the average SAT scores obtained from two different coaching
classes, the average yields of a crop using two different fertilizers, and so on. The two populations
of interest are assumed to be independent. We are interested in a CI for the difference µD = µ2−µ1

between the two means µ2 and µ1. The wider the ranges of the CI are, the less precise it is.

The precision of a CI is commonly measured by its width w or, for a symmetric CI such as the
CI for the mean difference, by its half-width d, also known as the margin of error. For example, a
two-sided two-means-difference CI is formed as [µ̂D − d, µ̂D + d], where µ̂D is the point estimate
of the mean difference. The CI width, the distance between the upper and lower limits, is w = 2d; it
does not depend on the means difference estimate. The smaller the d or w the more precise the CI.

In PrSS analysis, it is usually of interest to determine the sample size that would be sufficient for a
CI to have a prespecified width in a future study. Generally, larger sample sizes lead to more precise
CIs. To compute the required sample size, we need to know the expression for w. The expression for
w depends on various assumptions.

Similarly to the width of a one-mean CI, the CI width w of a two-means-difference CI depends on
sample estimates of standard deviations, in the case of unknown standard deviations. Therefore, w
will vary from one sample to another. To ensure that a CI has the desired width in a future study, this
sampling variability of w must be accounted for when computing the required sample size. Kupper
and Hafner (1989) introduce what we call the probability of CI width, which specifies the probability
of a future CI to have the width of no larger than some prespecified CI width for a given sample size.
See Methods and formulas for details.

You can use ciwidth twomeans to perform PrSS analysis for a CI for the difference between two
independent means. We discuss the command details in the next section.

Using ciwidth twomeans

ciwidth twomeans computes sample size, CI width, or probability of CI width for a two-means-
difference CI. By default, a two-sided CI is assumed, and the confidence level is set to 95%. You may
change the confidence level by specifying the level() option. Alternatively, you can specify the
significance level in the alpha() option. You can specify the upper and lower options to request
upper and lower one-sided CIs. By default, all computations assume a balanced- or equal-allocation
design; see [PSS-4] Unbalanced designs for a description of how to specify an unbalanced design.

To compute total sample size, you must specify the CI width in the width() option and the
probability of CI width in the probwidth() option. To compute CI width, you must specify the
sample size in the n() option and the probability of CI width in the probwidth() option. You can
also compute the probability of CI width given the sample size in n() and CI width in width().

Instead of the total sample size, you can compute one of the group sizes given the other one. To
compute the control-group sample size, you must specify the compute(N1) option and the sample
size of the experimental group in the n2() option. Likewise, to compute the experimental-group
sample size, you must specify the compute(N2) option and the sample size of the control group in
the n1() option.
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For CIs for means, the CI width does not depend on the mean point estimates, the sample means,
so they are not needed in the computations.

By default, all computations are performed for a two-sample CI that assumes equal and unknown
standard deviations. By default, the common standard deviation is set to one but may be changed by
specifying the sd() option. To specify a known common standard deviation, use the knownsds option.
To specify different standard deviations, use the respective sd1() and sd2() options. These options
must be specified together and in combination with knownsds; they may not be used in combination
with sd(). When sd1() and sd2() are specified, the computations are based on a normal z-based
CI. The sd1(), sd2(), and knownsds options may not be combined with probwidth().

Instead of the total sample size n(), you can specify individual group sizes in n1() and n2(),
or specify one of the group sizes and nratio() when computing CI width or effect size. Also see
Two samples in [PSS-4] Unbalanced designs for more details.

By default, the computed sample size is rounded up. You can specify the nfractional option
to see the corresponding fractional sample size; see Fractional sample sizes in [PSS-4] Unbalanced
designs for an example. The nfractional option is allowed only for sample-size determination.

Some of ciwidth twomeans’s computations require iteration. For example, when standard devia-
tions are equal but unknown, the sample-size computation requires iteration. The default initial value
of the estimated sample size is obtained by using a closed-form normal approximation. It may be
changed by specifying the init() option. See [PSS-3] ciwidth for the descriptions of other options
that control the iteration procedure.

In the following sections, we describe the use of ciwidth twomeans accompanied by examples
for computing sample size, CI width, and probability of CI width.

Computing sample size

To compute the sample size required for a two-means-difference CI to have the width no larger
than a target width, you must specify the target CI width in the width() option and the desired
probability of achieving the target CI width in the probwidth() option.

Example 1: Sample size for a two-means-difference CI

Similarly to the study in [PSS-2] power twomeans, we want to investigate the effects of smoking
on lung function of males. In that entry, we tested the means of the forced expiratory volume (FEV),
measured in liters (L), across smokers and nonsmokers, where better lung function implied higher
values of FEV. Here, we wish to estimate the CI for the difference between the mean FEV of the two
groups.

We are designing a new study for this objective, and we wish to find out how many subjects we
need to enroll so that the width of a two-sided 95% CI for the mean FEV difference is no larger than
0.5 L with a probability of 0.96.
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Assuming equal numbers of subjects in each group and a common standard deviation of 1, we
compute the required sample size:

. ciwidth twomeans, probwidth(0.96) width(0.5)

Performing iteration ...

Estimated sample sizes for a two-means-difference CI
Student’s t two-sided CI assuming sd1 = sd2 = sd

Study parameters:

level = 95.00
Pr_width = 0.9600

width = 0.5000
sd = 1.0000

Estimated sample sizes:

N = 286
N per group = 143

We need a total sample of 286 subjects, 143 per group.

The default computation is for the case of equal and unknown standard deviations, as indicated
by the output. You can specify the knownsds option to request the computation assuming known
standard deviations, but note that knownsds cannot be used in conjunction with probwidth().

Example 2: Computing one of the group sizes

Suppose we anticipate a sample of 120 nonsmoking subjects. We wish to compute the required
number of subjects in the smoking group, leaving all other study parameters unchanged from example 1.
We specify the number of subjects in the nonsmoking group in the n1() option and specify the
compute(N2) option.

. ciwidth twomeans, probwidth(0.96) width(0.5) n1(120) compute(N2)

Performing iteration ...

Estimated sample sizes for a two-means-difference CI
Student’s t two-sided CI assuming sd1 = sd2 = sd

Study parameters:

level = 95.00
Pr_width = 0.9600

width = 0.5000
sd = 1.0000
N1 = 120

Estimated sample sizes:

N = 296
N2 = 176

We need a sample of 176 smoking subjects given a sample of 120 nonsmoking subjects.

Example 3: Unbalanced design

By default, ciwidth twomeans computes sample size for a balanced- or equal-allocation design.
If we know the allocation ratio of subjects between the groups, we can compute the required sample
size for an unbalanced design by specifying the nratio() option.
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Continuing with example 1, suppose that we anticipate on recruiting twice as many smokers as
nonsmokers; that is, n2/n1 = 2. We specify the nratio(2) option to compute the required sample
size for the specified unbalanced design.

. ciwidth twomeans, probwidth(0.96) width(0.5) nratio(2)

Performing iteration ...

Estimated sample sizes for a two-means-difference CI
Student’s t two-sided CI assuming sd1 = sd2 = sd

Study parameters:

level = 95.00
Pr_width = 0.9600

width = 0.5000
sd = 1.0000

N2/N1 = 2.0000

Estimated sample sizes:

N = 321
N1 = 107
N2 = 214

We need a total sample size of 321 subjects, which is larger than the required total sample size for
the corresponding balanced design from example 1.

Also see Two-samples in [PSS-4] Unbalanced designs for more examples of unbalanced designs.

Computing CI width

To compute the CI width, you must specify the sample size in the n() option and the desired
probability of achieving the target CI width in the probwidth() option.

Example 4: Computing CI width for a two-means-difference CI

Suppose that we have enough resources to enroll 250 subjects in our study on FEV across smokers
and nonsmokers. Further suppose that we would like to be 96% certain that the width of a future CI
for this sample size will be no larger than the value we estimate. Given these parameters, we compute
the CI width as follows:

. ciwidth twomeans, probwidth(0.96) n(250)

Estimated width for a two-means-difference CI
Student’s t two-sided CI assuming sd1 = sd2 = sd

Study parameters:

level = 95.00
N = 250

N per group = 125
Pr_width = 0.9600

sd = 1.0000

Estimated width:

width = 0.5373

The estimated width for a future two-sided 95% CI for the mean difference between the smoking and
nonsmoking groups is 0.54, given other parameters.
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Computing probability of CI width

To compute the probability that the width of a future CI will be no larger than the specified width,
you must specify the sample size in the n() option and the target CI width in the width() option.

Example 5: Computing probability of CI width for a two-means-difference CI

Continuing with example 1, suppose that we have only enough resources to enroll a total of 250
subjects, instead of the 286 we computed before. Assuming equal-sized groups, and given this smaller
sample size, we would like to know the probability of obtaining the target CI width of 0.5 for a
two-sided 95% CI:

. ciwidth twomeans, width(0.5) n(250)

Estimated probability of width for a two-means-difference CI
Student’s t two-sided CI assuming sd1 = sd2 = sd

Study parameters:

level = 95.00
N = 250

N per group = 125
width = 0.5000

sd = 1.0000

Estimated probability of width:

Pr_width = 0.5427

The estimated probability, given the total sample size of 250, is 54% and is rather low.

Example 6: Multiple values of study parameters

As a variation of example 5, we would like to see how increasing the sample size, from the 250
we specified above, affects the probability of achieving a target CI width of 0.5. We compute the
probability of CI width for a range of sample sizes between 250 and 300, with the step size of 10,
by specifying the corresponding numlist in the n() option.

. ciwidth twomeans, width(0.5) n(250(10)300)

Estimated probability of width for a two-means-difference CI
Student’s t two-sided CI assuming sd1 = sd2 = sd

level N N1 N2 Pr_width width sd

95 250 125 125 .5427 .5 1
95 260 130 130 .7129 .5 1
95 270 135 135 .8467 .5 1
95 280 140 140 .9316 .5 1
95 290 145 145 .9749 .5 1
95 300 150 150 .9925 .5 1

Assuming a balanced design, the probability of CI width increases from 54% to 99% as the sample
size increases from 250 to 300, given a target CI width of 0.5.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-3] ciwidth, table. If you wish to produce sample-size
and other curves, see [PSS-3] ciwidth, graph.
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Example 7: One-sided CI

By default, ciwidth twomeans performs computations based on a two-sided CI. You can specify
the upper or lower option to request either an upper or lower one-sided CI.

Suppose we want to know the probability of achieving a smaller target CI width of 0.25 for an
upper one-sided 95% CI for the difference between FEV means, given a smaller sample size of 200.

. ciwidth twomeans, width(0.25) n(200) upper

Estimated probability of width for a two-means-difference CI
Student’s t upper CI assuming sd1 = sd2 = sd

Study parameters:

level = 95.00
N = 200

N per group = 100
width = 0.2500

sd = 1.0000

Estimated probability of width:

Pr_width = 0.9199

Given a total sample size of 200, we are 92% likely to obtain an upper one-sided 95% CI with the
width no larger than 0.25 in a future study.

Stored results
ciwidth twomeans stores the following in r():

Scalars
r(level) confidence level
r(alpha) significance level
r(N) total sample size
r(N a) actual sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
r(nratio) ratio of sample sizes, N2/N1
r(nratio a) actual ratio of sample sizes
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided CI, 0 otherwise
r(Pr width) probability of CI width
r(Pr width a) actual probability of CI width (for sample-size determination when probwidth() specified)
r(width) CI width
r(width a) actual CI width (for sample-size determination when knownsds specified)
r(sd) common standard deviation of the control and experimental groups
r(sd1) standard deviation of the control group
r(sd2) standard deviation of the experimental group
r(knownsds) 1 if option knownsds is specified, 0 otherwise
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample size
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise



ciwidth twomeans — Precision analysis for a two-means-difference CI 725

Macros
r(type) ci
r(method) twomeans
r(onesidedci) upper or lower (for a one-sided CI)
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
Consider two independent samples with n1 subjects in the control group and n2 subjects in

the experimental group. Let x1 = (x11, . . . , x1n1) be a random sample of size n1 from a normal
population with mean µ1 and variance σ2

1 . Let x2 = (x21, . . . , x2n2) be a random sample of size
n2 from a normal population with mean µ2 and variance σ2

2 . We are interested in a CI for the mean
difference µ2 − µ1 estimated using samples x1 and x2. Let x = (x1,x2). A general two-sided
CI is defined as [ll(x), ul(x)], a lower one-sided CI as [ll(x),∞), and an upper one-sided CI as
(−∞, ul(x)], where ll(x) = ll and ul(x) = ul are the respective lower and upper confidence limits.
Let w be the CI width.

The sample means and variances for the two independent samples are

x1 =
1

n1

n1∑
i=1

x1i and s2
1 =

1

n1 − 1

n1∑
i=1

(x1i − x1)2

x2 =
1

n2

n2∑
i=1

x2i and s2
2 =

1

n2 − 1

n2∑
i=1

(x2i − x2)2

Let xD be the sample mean difference x2 − x1.

A two-sided CI for the means difference is constructed as

[xD − w/2, xD + w/2]

where w/2 is the half-width or margin of error.

Lower and upper one-sided CIs are

[xD − w,∞)

(−∞, xD + w]

We use the CI width w as our measure of CI precision. Let 100(1− α)% denote the confidence
level, where 0 ≤ α ≤ 1 is the corresponding significance level.

Let R = n2/n1 denote the allocation ratio. Then n2 = R × n1 and CI width can be viewed
as a function of n1. Therefore, for sample-size determination, the control-group sample size n1 is
computed first. The experimental-group size n2 is then computed as R×n1, and the total sample size
is computed as n = n1 + n2. By default, sample sizes are rounded to integer values; see Fractional
sample sizes in [PSS-4] Unbalanced designs for details.
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PrSS analysis using ciwidth twomeans can be performed under three different assumptions:
1) population standard deviations are known and equal; 2) population standard deviations are known
and unequal; and 3) population standard deviations are unknown but equal. We describe each case
below.

The following formulas are based on Kupper and Hafner (1989), Ryan (2013), Dixon and
Massey (1983), Zar (2010), and Chow et al. (2018).

Methods and formulas are presented under the following headings:
Known equal and unequal standard deviations
Unknown and equal standard deviations

Known equal and unequal standard deviations

Below we present formulas for the computations that assume unequal standard deviations. When
standard deviations are equal, the corresponding formulas are special cases of the formulas below
with σ1 = σ2 = σ.

Let σD denote the standard deviation of the difference between the two sample means. With known
standard deviation, σD =

√
σ2

1/n1 + σ2
2/n2. The statistic

TS =
xD − (µ2 − µ1)

σD

follows a normal distribution.

Let z1−α be the (1 − α)th quantile of a standard normal distribution. Based on the normal
distribution of z, the CIs are

[
xD − z1−α/2σD, xD + z1−α/2σD

]
for a two-sided CI

[xD − z1−ασD,∞) for a lower CI

(−∞, xD + z1−ασD] for an upper CI

After expanding σD, the corresponding width w is

w =

{
2z1−α/2

√
σ2

1/n1 + σ2
2/n2 for a two-sided CI

z1−α
√
σ2

1/n1 + σ2
2/n2 for lower and upper one-sided CIs

The control-group sample size n1 is computed as follows:

n1 =

 4
( z1−α/2

w

)2 (
σ2

1 +
σ2
2

R

)
for a two-sided CI( z1−α

w

)2 (
σ2

1 +
σ2
2

R

)
for lower and upper one-sided CIs

(1)

If one of the group sizes is known, the other one is computed using the following formula. For
example, for a two-sided CI, to compute n1 given n2, we use the following formula:

n1 =
σ2

1(
w

2z1−α/2

)2

− σ2
2

n2

(2)
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Unknown and equal standard deviations

When the standard deviations of the control group and the experimental group are unknown and
equal, the statistic

t =
xD − (µ2 − µ1)

sD

follows a Student’s t distribution with ν degrees of freedom. The estimated standard deviation of the
sample mean difference sD is

sD = sp
√

1/n1 + 1/n2

where sp =
{∑n1

i=1(x1i − x1)2 +
∑n2

i=1(x2i − x2)2
}
/(n1 +n2− 2) is the pooled-sample standard

deviation.

The degrees of freedom ν is

ν = n1 + n2 − 2

Let tν,α denote the αth quantile of a Student’s t distribution with ν degrees of freedom. The CIs
are 

[
xD − tν,1−α/2sD, xD + tν,1−α/2sD

]
for a two-sided CI

[xD − tν,1−αsD,∞) for a lower CI

(−∞, xD + tν,1−αsD] for an upper CI

Similarly to the case of an unknown standard deviation for a one-mean CI, the CI width depends on
the sample standard deviations. Using the fact that statistic νs2

D/σ
2
D follows a χ2 distribution with

ν degrees of freedom, we can compute the probability that the CI width is no larger than a specified
value w.

The probability of CI width is

Pr(w) =


χ2
ν

{
νw2

4t2
ν,1−α/2σ

2
(

1
n1

+ 1
n2

)} for a two-sided CI

χ2
ν

{
νw2

t2
ν,1−ασ

2
(

1
n1

+ 1
n2

)} for lower and upper one-sided CIs
(4)

where χ2
ν (·) is the c.d.f. of a χ2 distribution with ν degrees of freedom.

We can compute the desired CI width from (4):

w =


2tν,1−α/2σ

√
χ2

ν,Pr(w)

ν

(
1
n1

+ 1
n2

)
for a two-sided CI

tν,1−ασ

√
χ2

ν,Pr(w)

ν

(
1
n1

+ 1
n2

)
for lower and upper one-sided CIs

(5)

where χ2
ν,p is the pth quantile of a χ2 distribution with ν degrees of freedom.
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We can solve for the sample sizes iteratively from (5) using initial values obtained from (1) and
(2).
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Also see
[PSS-3] ciwidth — Precision and sample-size analysis for CIs

[PSS-3] ciwidth, graph — Graph results from the ciwidth command

[PSS-3] ciwidth, table — Produce table of results from the ciwidth command

[PSS-2] power twomeans — Power analysis for a two-sample means test

[PSS-5] Glossary
[R] ttest — t tests (mean-comparison tests)

[R] ztest — z tests (mean-comparison tests, known variance)
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ciwidth pairedmeans — Precision analysis for a paired-means-difference CI

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

ciwidth pairedmeans computes sample size, CI width, and probability of CI width for a CI for
the difference between two means from paired samples. It can compute sample size for a given CI
width and probability of CI width. Alternatively, it can compute CI width for a given sample size and
probability of CI width. It can also compute probability of CI width for a given sample size and CI
width. Also see [PSS-3] ciwidth for PrSS analysis for other CI methods.

For power and sample-size analysis for a two-sample paired-means test, see [PSS-2] power
pairedmeans.

Quick start
Sample size required for a two-sided 95% CI for the difference between paired means to have a width

no larger than 12 with a probability of 90%, assuming the standard deviation for the differences
of 36

ciwidth pairedmeans, width(12) probwidth(0.9) sddiff(36)

Same as above, but instead of standard deviation of the differences, specify correlation between paired
observations of 0.5 with pretreatment standard deviation of 29 and posttreatment standard deviation
of 40

ciwidth pairedmeans, width(12) probwidth(0.9) corr(.5) sd1(29) sd2(40)

CI width for sample sizes of 20, 40, 60, and 80, given a 90% probability that the CI width will be
no larger than the estimated value

ciwidth pairedmeans, n(20(20)80) probwidth(0.9) sddiff(36)

Same as above, but display results as a graph of CI width versus sample size
ciwidth pairedmeans, n(20(20)80) probwidth(0.9) sddiff(36) graph

Probability that the CI width is no larger than 12 for a sample size of 50
ciwidth pairedmeans, width(12) n(50) sddiff(36)

Menu
Statistics > Power, precision, and sample size

729
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Syntax

Compute sample size

ciwidth pairedmeans, corrspec width(numlist) probwidth(numlist)[
options

]

Compute CI width

ciwidth pairedmeans, corrspec probwidth(numlist) n(numlist)
[

options
]

Compute probability of CI width

ciwidth pairedmeans, corrspec width(numlist) n(numlist)
[

options
]

where corrspec is one of

sddiff()

corr()
[
sd()

]
corr()

[
sd1() sd2()

]
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options Description

Main
∗level(numlist) confidence level; default is level(95)
∗alpha(numlist) significance level; default is alpha(0.05)
∗probwidth(numlist) probability of CI width; required to compute sample size

and CI width
∗width(numlist) CI width; required to compute sample size and probability

of CI width
∗n(numlist) sample size; required to compute CI width and probability

of CI width
nfractional allow fractional sample sizes
∗sddiff(numlist) standard deviation σd of the differences; may not be combined

with corr()
∗corr(numlist) correlation between paired observations; required unless

sddiff() is specified
∗sd(numlist) common standard deviation; default is sd(1) and

requires corr()
∗sd1(numlist) standard deviation of the pretreatment group; requires corr()
∗sd2(numlist) standard deviation of the posttreatment group; requires corr()

knownsd request computation assuming a known standard deviation σd;
default is to assume an unknown standard deviation

∗fpc(numlist) finite population correction (FPC) as a sampling rate or
as a population size

lower lower one-sided CI; default is two-sided CI
upper upper one-sided CI; default is two-sided CI
onesided synonym for option upper

parallel treat number lists in starred options or in command arguments as
parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-3] ciwidth, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-3] ciwidth, graph
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Iteration

init(#) initial value for sample size; default is to use a closed-form
normal approximation

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

level confidence level 100(1− α)
alpha significance level α
N number of subjects N
Pr width probability of CI width pwidth

width CI width w
sd d standard deviation of the differences σd
sd common standard deviation σ
sd1 standard deviation of the pretreatment group σ1

sd2 standard deviation of the posttreatment group σ2

corr correlation between paired observations ρ
fpc FPC as a population size Npop

FPC as a sampling rate γ
all display all supported columns

Column alpha is shown in the default table in place of column level if alpha() is specified.
Columns sd, sd1, sd2, corr, and fpc are shown in the default table if the corresponding options are specified.
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Options

� � �
Main �

level(), alpha(), probwidth(), width(), n(), nfractional; see [PSS-3] ciwidth. probwidth()
may not be combined with knownsd. The nfractional option is allowed only for sample-size
determination.

sddiff(numlist) specifies the standard deviation σd of the differences. Either sddiff() or corr()
must be specified.

corr(numlist) specifies the correlation between paired, pretreatment and posttreatment, observations.
This option along with sd1() and sd2() or sd() is used to compute the standard deviation of
the differences unless that standard deviation is supplied directly in the sddiff() option. Either
corr() or sddiff() must be specified.

sd(numlist) specifies the common standard deviation of the pretreatment and posttreatment groups.
Specifying sd(#) implies that both sd1() and sd2() are equal to #. Options corr() and sd()
are used to compute the standard deviation of the differences unless that standard deviation is
supplied directly with the sddiff() option. The default is sd(1).

sd1(numlist) specifies the standard deviation of the pretreatment group. Options corr(), sd1(),
and sd2() are used to compute the standard deviation of the differences unless that standard
deviation is supplied directly with the sddiff() option.

sd2(numlist) specifies the standard deviation of the posttreatment group. Options corr(), sd1(),
and sd2() are used to compute the standard deviation of the differences unless that standard
deviation is supplied directly with the sddiff() option.

knownsd requests that the standard deviation of the differences σd be treated as known in the
computation. By default, the standard deviation is treated as unknown, and the computation is
performed for a Student’s t-based CI. If knownsd is specified, the computation is performed for
a normal-based CI. knownsd may not be combined with probwidth() and is not allowed when
computing the probability of CI width.

fpc(numlist) requests that a finite population correction be used in the computation. If fpc() has
values between 0 and 1, it is interpreted as a sampling rate, n/N , where N is the total number of
units in the population. When sample size n is specified, if fpc() has values greater than n, it is
interpreted as a population size, but it is an error to have values between 1 and n. For sample-size
determination, fpc() with a value greater than 1 is interpreted as a population size. It is an error
for fpc() to have a mixture of sampling rates and population sizes.

lower, upper, onesided, parallel; see [PSS-3] ciwidth.

� � �
Table �

table, table(), notable; see [PSS-3] ciwidth, table.

saving(); see [PSS-3] ciwidth.

� � �
Graph �

graph, graph(); see [PSS-3] ciwidth, graph. Also see the column table for a list of symbols used
by the graphs.

� � �
Iteration �

init(#) specifies an initial value for the sample size when iteration is used to compute the sample
size. The default is to use a closed-form normal approximation to compute an initial sample size.
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iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-3] ciwidth.

The following option is available with ciwidth pairedmeans but is not shown in the dialog box:

notitle; see [PSS-3] ciwidth.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using ciwidth pairedmeans
Computing sample size
Computing CI width
Computing probability of CI width

This entry describes the ciwidth pairedmeans command and the methodology for PrSS analysis
for a CI for the difference between two means from paired samples. See [PSS-3] Intro (ciwidth) for
a general introduction to PrSS analysis, and see [PSS-3] ciwidth for a general introduction to the
ciwidth command. For PSS analysis for hypothesis tests, see [PSS-2] power.

Introduction
The analysis of paired means is commonly used in settings such as repeated-measures designs

with before and after measurements on the same individual or cross-sectional studies of paired
measurements from twins. For example, a company might initiate a voluntary exercise program and
measure the average weight loss of participants from the first to sixth month. Or a school district
might design an intensive remedial program for students with low math scores, and then analyze
how much the students’ math scores improve from the pretest to the posttest. For paired data, the
inference is made on the mean difference accounting for the dependence between the two groups.

To compare two paired means, we assume that the two correlated samples are drawn from two
normal populations with means µ1 and µ2 and standard deviations σ1 and σ2. The construction of
a CI for the paired-means difference and its PrSS analysis are analogous to those of a CI for one
population mean from Introduction in [PSS-3] ciwidth onemean, with mean µ replaced by the mean
difference µd = µ2−µ1 and standard deviation σ by the standard deviation of the paired differences
σd.

The ciwidth pairedmeans command provides PrSS analysis for a CI for the difference between
two correlated means. We discuss the command details in the next section.

Using ciwidth pairedmeans

ciwidth pairedmeans computes sample size, CI width, or probability of CI width for a paired-
means-difference CI. By default, a two-sided CI is assumed, and the confidence level is set to 95%. You
may change the confidence level by specifying the level() option. Alternatively, you can specify the
significance level in the alpha() option. You can specify the upper and lower options to request
upper and lower one-sided CIs.

To compute sample size, you must specify the CI width in the width() option and the probability
of CI width in the probwidth() option. To compute CI width, you must specify the sample size in
the n() option and the probability of CI width in the probwidth() option. You can also compute
the probability of CI width given the sample size in n() and CI width in width().
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For CIs for means, the CI width does not depend on the mean point estimates, the sample means,
so they are not needed in the computations.

For all computations, you must specify either the standard deviation of the differences in the
sddiff() option or the correlation between the paired observations in the corr() option. If you
specify the corr() option, then individual standard deviations of the pretreatment and posttreatment
groups may also be specified in the respective sd1() and sd2() options. By default, their values are
set to 1. When the two standard deviations are equal, you may specify the common standard deviation
in the sd() option instead of specifying them individually. By default, all computations assume an
unknown standard deviation of the differences. When the standard deviation of the differences is
known, you can specify the knownsd option to request a normal-based CI instead of the default
Student’s t-based CI.

By default, the computed sample size is rounded up. You can specify the nfractional option
to see the corresponding fractional sample size; see Fractional sample sizes in [PSS-4] Unbalanced
designs for an example. The nfractional option is allowed only for sample-size determination.

Some of ciwidth pairedmeans’s computations require iteration. For example, when the standard
deviation of the differences is unknown, the sample-size computation requires iteration. The default
initial value of the estimated sample size is obtained by using a closed-form normal approximation.
It may be changed by specifying the init() option. See [PSS-3] ciwidth for the descriptions of other
options that control the iteration procedure.

All computations assume an infinite population. For a finite population, use the fpc() option to
specify a sampling rate or a population size.

In the following sections, we describe the use of ciwidth pairedmeans accompanied by examples
for computing sample size, CI width, and probability of CI width.

Computing sample size

To compute the sample size required for a paired-means-difference CI to have the width no larger
than a target width, you must specify the target CI width in the width() option and the desired
probability of achieving the target CI width in the probwidth() option.

Example 1: Sample size for a paired-means-difference CI

Consider an example similar to example 1 in [PSS-2] power pairedmeans. We study the low
birthweight (LBW) infants as in Howell (2002, 186). The variable of interest is the decline of the
Bayley mental development index (MDI) of 24-months-old infants compared with 6-months-old infants.
We use an estimate of the standard deviation of the differences of 16.04.

We want to obtain the minimum sample size that is required to obtain a two-sided 95% CI with the
width of at most 6, or the margin of error of 3, for the decline of the mean MDI score in a 24-month
group. Because we use an estimate of the variance in our computations, we need to account for its
sampling variability to ensure that the width of the actual CI in our new study does not exceed the
target width. We use the probability of 0.98 that the width of a future CI does not exceed 6. We
specify it in the probwidth() option, and the CI width of 6 in the width() option, and the estimate
of the standard deviation of the differences 16.04 in the sddiff() option.
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. ciwidth pairedmeans, width(6) probwidth(0.98) sddiff(16.04)

Performing iteration ...

Estimated sample size for a paired-means-difference CI
Student’s t two-sided CI

Study parameters:

level = 95.0000
Pr_width = 0.9800

width = 6.0000
sd_d = 16.0400

Estimated sample size:

N = 141

A sample of 141 infants is required for us to be 98% certain that the CI width will be no larger than
6 for the decline of the mean MDI score. The output reminds us that this was computed assuming a
two-sided CI with the 95% confidence level.

As we mentioned in the previous section, sample-size determination requires iteration in the case
of an unknown standard deviation. By default, ciwidth pairedmeans suppresses the iteration log,
but we can choose to display it by specifying the log option.

Example 2: Specifying individual standard deviations

For instances in which you do not have the standard deviation of the differences, you can also
compute the required sample size by specifying the individual standard deviations as well as the
correlation among the paired observations.

Howell (2002) reported the estimates of group-specific standard deviations: 13.85 in the 6-month
group and 12.95 in the 24-month group. Using the values of individual standard deviations and the
standard deviation of the differences from the previous example, we obtain the correlation between
the observations in the 6-month group and the 24-month group to be (13.852 +12.952−16.042)/(2×
13.85×12.95) = 0.285. To compute the sample size, we specify the group-specific standard deviations
in sd1() and sd2() and the correlation in corr().

. ciwidth pairedmeans, width(6) probwidth(0.98) corr(0.285) sd1(13.85)
> sd2(12.95)

Performing iteration ...

Estimated sample size for a paired-means-difference CI
Student’s t two-sided CI

Study parameters:

level = 95.0000 sd1 = 13.8500
Pr_width = 0.9800 sd2 = 12.9500

width = 6.0000 corr = 0.2850
sd_d = 16.0403

Estimated sample size:

N = 141

We obtain the same sample size as in example 1.

Study parameters are divided into two columns. The parameters that are always displayed are
listed in the first column, and the parameters that are displayed only if they are specified are listed
in the second column. The correlation and standard deviations are reported in the second column.
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Computing CI width

To compute the CI width, you must specify the sample size in the n() option and the desired
probability of achieving the target CI width in the probwidth() option.

Example 3: Precision of a paired-means-difference CI

Continuing with example 1, suppose that we have a sample of 120 subjects. To compute the CI
width for this sample size, we specify 120 in the n() option and replace the width() option with
it. We leave the other parameters unchanged:

. ciwidth pairedmeans, n(120) probwidth(0.98) sddiff(16.04)

Estimated width for a paired-means-difference CI
Student’s t two-sided CI

Study parameters:

level = 95.0000
N = 120

Pr_width = 0.9800
sd_d = 16.0400

Estimated width:

width = 6.5705

Compared with the CI width of 6 in example 1, the CI width of 6.6 in this example is larger, as would
be expected with a smaller sample size of 120.

Example 4: One-sided CI

Rather than performing computations for the default two-sided CIs, we can request upper and
lower one-sided CIs. We modify the command from example 3 by instead requesting a lower one-sided
95% CI for the difference of the MDI scores:

. ciwidth pairedmeans, n(120) probwidth(0.98) sddiff(16.04) lower

Estimated width for a paired-means-difference CI
Student’s t lower CI

Study parameters:

level = 95.0000
N = 120

Pr_width = 0.9800
sd_d = 16.0400

Estimated width:

width = 2.7504

Given the sample size of 120, the estimated width for a 95% lower one-sided CI for the differences
of the MDI scores is about 2.75.
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Example 5: Multiple values of study parameters

To investigate the effect of sample size on CI width, we can specify a list of sample sizes in the
n() option:

. ciwidth pairedmeans, n(100(10)150) probwidth(0.98) sddiff(16.04)

Estimated width for a paired-means-difference CI
Student’s t two-sided CI

level N Pr_width width sd_d

95 100 .98 7.294 16.04
95 110 .98 6.905 16.04
95 120 .98 6.57 16.04
95 130 .98 6.278 16.04
95 140 .98 6.021 16.04
95 150 .98 5.792 16.04

As expected, when the sample size increases, the CI width decreases.

For multiple values of parameters, the results are automatically displayed in a table. For more
examples of tables, see [PSS-3] ciwidth, table. If you wish to produce sample-size and other curves,
see [PSS-3] ciwidth, graph.

Computing probability of CI width

To compute the probability that the width of a future CI will be no larger than the specified width,
you must specify the sample size in the n() option and the target CI width in the width() option.

Example 6: Probability of CI width for a paired-means-difference CI

Continuing with example 1, let’s determine how certain we can be that the CI width in a future
study will be no larger than a prespecified value for a given sample size. We use the same CI width
and standard deviation as in example 1, and we use a sample size of 120 in n().

. ciwidth pairedmeans, n(120) width(6) sddiff(16.04)

Estimated probability of width for a paired-means-difference CI
Student’s t two-sided CI

Study parameters:

level = 95.0000
N = 120

width = 6.0000
sd_d = 16.0400

Estimated probability of width:

Pr_width = 0.7175

The estimated probability is 72%. Compared with example 1, with a smaller sample size of 120, we
are about 26% less certain that the CI width in a future study will be no larger than 6.
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Stored results
ciwidth pairedmeans stores the following in r():

Scalars
r(level) confidence level
r(alpha) significance level
r(N) sample size
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided CI, 0 otherwise
r(Pr width) probability of CI width
r(Pr width a) actual probability of CI width (for sample-size determination when probwidth() specified)
r(width) CI width
r(width a) actual CI width (for sample-size determination when knownsd specified)
r(corr) correlation between paired observations
r(sd d) standard deviation of the differences
r(sd1) standard deviation of the pretreatment group
r(sd2) standard deviation of the posttreatment group
r(sd) common standard deviation
r(knownsd) 1 if option knownsd is specified, 0 otherwise
r(fpc) finite population correction (if specified)
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample size
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) ci
r(method) pairedmeans
r(onesidedci) upper or lower (for a one-sided CI)
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
Consider a sequence of n paired observations denoted by xij for i = 1, . . . , n and groups j = 1, 2.

Individual observations correspond to the pair (xi1, xi2), and inference is made on the differences
within the pairs. Let µd = µ2 − µ1 denote the mean difference, where µj is the population mean of
group j, and Di = xi2 − xi1 denote the difference between paired individual observations.

PrSS analysis for a paired-means-difference CI is analogous to a one-mean CI where the sample of
differences Di’s is treated as a single sample (Dixon and Massey 1983). The standard deviation of
the differences, σd, is used in place of the one-sample standard deviation. For more information, see
Methods and formulas in [PSS-3] ciwidth onemean.
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Also see
[PSS-3] ciwidth — Precision and sample-size analysis for CIs

[PSS-3] ciwidth, graph — Graph results from the ciwidth command

[PSS-3] ciwidth, table — Produce table of results from the ciwidth command

[PSS-2] power pairedmeans — Power analysis for a two-sample paired-means test

[PSS-5] Glossary
[R] ttest — t tests (mean-comparison tests)

[R] ztest — z tests (mean-comparison tests, known variance)
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ciwidth onevariance — Precision analysis for a one-variance CI

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

ciwidth onevariance computes sample size, CI width, and probability of CI width for a CI for
a population variance. It can compute sample size for a given CI width and probability of CI width.
Alternatively, it can compute CI width for a given sample size and probability of CI width. It can also
compute probability of CI width for a given sample size and CI width. The computation is available
for the variance or the standard deviation. Also see [PSS-3] ciwidth for PrSS analysis for other CI
methods.

For power and sample-size analysis for a one-sample variance test, see [PSS-2] power onevariance.

Quick start
Sample size required for a two-sided 95% CI for a population variance to have a width no larger than

2 with a probability of 90%, using population-variance estimate v = 4,
ciwidth onevariance 4, width(2) probwidth(0.9)

Same as above, but specify multiple widths and graph the result
ciwidth onevariance 4, width(2 3 4) probwidth(0.9) graph

CI width for a sample size of 30, with a 90% probability that the CI width will be no larger than the
estimated value

ciwidth onevariance 4, n(30) probwidth(0.9)

Same as above, but specify standard deviations rather than variances
ciwidth onevariance 4, sd n(30) probwidth(0.9)

Same as above, but specify an upper one-sided CI

ciwidth onevariance 4, sd n(30) probwidth(0.9) upper

Menu
Statistics > Power, precision, and sample size

741
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Syntax

Compute sample size

Variance scale

ciwidth onevariance v, width(numlist) probwidth(numlist)
[

options
]

Standard deviation scale

ciwidth onevariance s, sd width(numlist) probwidth(numlist)
[

options
]

Compute CI width

Variance scale

ciwidth onevariance v, probwidth(numlist) n(numlist)
[

options
]

Standard deviation scale

ciwidth onevariance s, sd probwidth(numlist) n(numlist)
[

options
]

Compute probability of CI width

Variance scale

ciwidth onevariance v, width(numlist) n(numlist)
[

options
]

Standard deviation scale

ciwidth onevariance s, sd width(numlist) n(numlist)
[

options
]

where v and s are variance and standard deviation, respectively. Each argument may be specified
either as one number or as a list of values in parentheses (see [U] 11.1.8 numlist).
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options Description

sd request computation using the standard-deviation scale;
default is the variance scale

Main
∗level(numlist) confidence level; default is level(95)
∗alpha(numlist) significance level; default is alpha(0.05)
∗probwidth(numlist) probability of CI width; required to compute sample size

and CI width
∗width(numlist) CI width; required to compute sample size and probability

of CI width
∗n(numlist) sample size; required to compute CI width and probability

of CI width
nfractional allow fractional sample sizes
lower lower one-sided CI; default is two-sided CI
upper upper one-sided CI; default is two-sided CI
onesided synonym for option upper

parallel treat number lists in starred options or in command arguments as
parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-3] ciwidth, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-3] ciwidth, graph

Iteration

init(#) initial value for sample size; default is to use a closed-form
normal approximation

iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
sd does not appear in the dialog box; specification of sd is done automatically by the dialog box selected.
notitle does not appear in the dialog box.
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where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

level confidence level 100(1− α)
alpha significance level α
N number of subjects N
Pr width probability of CI width pwidth

width CI width w
v variance σ2

s standard deviation σ
all display all supported columns

Column alpha is shown in the default table in place of column level if alpha() is specified.
Column s is shown in the default table in place of column v if option sd is specified.

Options
sd specifies that the computation be performed using the standard-deviation scale. The default is to

use the variance scale. Specification of the sd option is done automatically when the dialog box
for standard deviation is selected.

� � �
Main �

level(), alpha(), probwidth(), width(), n(), nfractional; see [PSS-3] ciwidth. The nfrac-
tional option is allowed only for sample-size determination.

lower, upper, onesided, parallel; see [PSS-3] ciwidth.

� � �
Table �

table, table(), notable; see [PSS-3] ciwidth, table.

saving(); see [PSS-3] ciwidth.

� � �
Graph �

graph, graph(); see [PSS-3] ciwidth, graph. Also see the column table for a list of symbols used
by the graphs.

� � �
Iteration �

init(#) specifies an initial value for the sample size when iteration is used to compute the sample
size. The default is to use a closed-form normal approximation to compute an initial sample size.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-3] ciwidth.

The following option is available with ciwidth onevariance but is not shown in the dialog box:

notitle; see [PSS-3] ciwidth.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Using ciwidth onevariance
Computing sample size
Computing CI width
Computing probability of CI width

This entry describes the ciwidth onevariance command and the methodology for PrSS analysis
for a CI for a population variance. See [PSS-3] Intro (ciwidth) for a general introduction to PrSS
analysis, and see [PSS-3] ciwidth for a general introduction to the ciwidth command. For PSS analysis
for hypothesis tests, see [PSS-2] power.

Introduction
The study of variance arises in cases where investigators are interested in measuring the variability

of a process. For example, the accuracy of a thermometer in taking measurements, the variation in
the weights of potato chips from one bag to another, and the variation in mileage across automobiles
of the same model. Before undertaking the actual study, we may want to find the optimal sample
size to measure the variations with a certain precision.

We are interested in a CI for the population variance σ2. The precision of a CI is commonly measured
by its width w. For example, a two-sided one-variance CI is formed as [σ̂2 − wlower, σ̂

2 + wupper],
where σ̂2 is the variance point estimate. The CI width, the distance between the upper and lower
limits, is w = wlower + wupper. The smaller the w the more precise the CI.

In PrSS analysis, it is usually of interest to determine the sample size that would be sufficient for a
CI to have a prespecified width in a future study. Generally, larger sample sizes lead to more precise
CIs. To compute the required sample size, we need to know the expression for w.

Just like with a one-mean CI, the CI width w for a one-variance CI depends on the sample estimate
s2 of the variance and thus will vary from one sample to another. To ensure that, in a future study, a
CI has the desired width, this sampling variability of w must be accounted for when computing the
required sample size. Kupper and Hafner (1989) introduce what we call the probability of CI width,
which specifies the probability of a future CI to have the width of no larger than some prespecified CI
width for a given sample size. This probability is defined based on the assumption of a χ2 distribution
for the sample variance s2; see Methods and formulas for details.

You can use ciwidth onevariance to perform PrSS analysis for a CI for a population variance
or standard deviation. We discuss the command details in the next section.

Using ciwidth onevariance

ciwidth onevariance computes sample size, CI width, or probability of CI width for a one-
variance CI. By default, a two-sided CI is assumed, and the confidence level is set to 95%. You may
change the confidence level by specifying the level() option. Alternatively, you can specify the
significance level in the alpha() option. You can specify the upper and lower options to request
upper and lower one-sided CIs.

To compute sample size, you must specify the CI width in the width() option and the probability
of CI width in the probwidth() option. To compute CI width, you must specify the sample size in
the n() option and the probability of CI width in the probwidth() option. You can also compute
the probability of CI width given the sample size in n() and CI width in width(). In each case, you
must also specify the variance v or standard deviation s as the command argument.
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By default, the computation is performed for the variance parameter. You can use the sd option
to specify the computation for the standard deviation.

By default, the computed sample size is rounded up. You can specify the nfractional option
to see the corresponding fractional sample size; see Fractional sample sizes in [PSS-4] Unbalanced
designs for an example. The nfractional option is allowed only for sample-size determination.

Some of ciwidth onevariance’s computations require iteration. For example, the sample-size
computation requires iteration. The default initial value of the estimated sample size is obtained by
using a closed-form normal approximation. It may be changed by specifying the init() option. See
[PSS-3] ciwidth for the descriptions of other options that control the iteration procedure.

In the following sections, we describe the use of ciwidth onevariance accompanied by examples
for computing sample size, CI width, and probability of CI width.

Computing sample size

To compute the sample size required for a one-variance CI to have the width no larger than a
target width, you must specify the target CI width in the width() option and the desired probability
of achieving the target CI width in the probwidth() option. You must also specify the variance v
or standard deviation s as the command argument.

Example 1: Sample size for a one-variance CI

Consider a study where interest lies in measuring the variability in mileage (measured in miles
per gallon) of automobiles of a certain car manufacturer. Industry-wide standards maintain that a
variation of at most two miles per gallon (mpg) from an average value is acceptable for commercial
production.

We want to compute the required sample size such that the width of a two-sided 95% CI for the
variance will not exceed 2 mpg with a 96% certainty. Suppose the variance is 4. We specify the
variance v = 4 after the command name, the CI width of 2 in the width() option, and the probability
of obtaining the target CI width in the probwidth() option:

. ciwidth onevariance 4, probwidth(0.96) width(2)

Performing iteration ...

Estimated sample size for a one-variance CI
Chi-squared two-sided CI

Study parameters:

level = 95.00
Pr_width = 0.9600

width = 2.0000
v = 4.0000

Estimated sample size:

N = 183

We find that a sample of 183 cars is required for this study.

As we mentioned in the previous section, sample-size computation requires iteration. By default,
ciwidth onevariance suppresses the iteration log, but it can be displayed by specifying the log
option.
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Computing CI width

To compute the CI width, you must specify the sample size in the n() option and the desired
probability of achieving the target CI width in the probwidth() option. You must also specify the
variance v or standard deviation s as the command argument.

Example 2: CI width for a one-variance CI

Continuing with example 1, suppose that we anticipate obtaining a sample of 150 cars and want to
compute the CI width corresponding to this sample size. To compute the CI width, we use the study
parameters from example 1, but we now specify the sample size of 150 in the n() option instead of
the width() option:

. ciwidth onevariance 4, probwidth(0.96) n(150)

Estimated width for a one-variance CI
Chi-squared two-sided CI

Study parameters:

level = 95.00
N = 150

Pr_width = 0.9600
v = 4.0000

Estimated width:

width = 2.2571

With a sample size smaller than the one we estimated in example 1, the width of the variance CI
increases to about 2.3.

Example 3: Standard deviation scale

Continuing with example 2, suppose that we would like to compute the CI width using the
standard-deviation scale instead. Above we used a variance of 4; taking its square root, we specify a
standard deviation of 2 as the command argument and the sd option. The other parameters remain
unchanged from the example above.

. ciwidth onevariance 2, probwidth(0.96) n(150) sd

Estimated width for a one-standard-deviation CI
Chi-squared two-sided CI

Study parameters:

level = 95.00
N = 150

Pr_width = 0.9600
s = 2.0000

Estimated width:

width = 0.5060

For a sample size of 150, probability of CI width of 0.96, and standard deviation of 2, the estimated
largest width for a standard-deviation CI is 0.51 mpg.
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Computing probability of CI width

To compute the probability that the width of a future CI will be no larger than the specified width,
you must specify the sample size in the n() option and the target CI width in the width() option.

Example 4: Computing probability of CI width for a one-variance CI

Because CI width may vary across samples, we may want to estimate the probability that the width
of a future CI will not exceed a target value. Continuing with example 1, suppose that we have only
enough resources to test the mileage of 150 automobiles. We can estimate the probability that the CI
width will not exceed a target width of 2, given this sample size and a variance of 4:

. ciwidth onevariance 4, width(2) n(150)

Estimated probability of width for a one-variance CI
Chi-squared two-sided CI

Study parameters:

level = 95.00
N = 150

width = 2.0000
v = 4.0000

Estimated probability of width:

Pr_width = 0.7453

For this sample size, we can be 75% certain that the CI width will be no more than 2 mpg for a
95% CI for the variance.

Example 5: Multiple values of study parameters

As a variation of example 4, we would like to see the effect of an increasing variance on the
estimated probability of achieving a target CI width of 2. We compute the probability of CI width
for a range of variances between 3 and 5, with the step size of 0.5, by specifying the corresponding
numlist as the argument for ciwidth onevariance.

. ciwidth onevariance (3(0.5)5), width(2) n(150)

Estimated probability of width for a one-variance CI
Chi-squared two-sided CI

level N Pr_width width v

95 150 .9996 2 3
95 150 .969 2 3.5
95 150 .7453 2 4
95 150 .3591 2 4.5
95 150 .1074 2 5

The output shows that the probability of achieving the target CI width decreases rapidly as we increase
the variance.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-3] ciwidth, table. If you wish to produce sample-size
and other curves, see [PSS-3] ciwidth, graph.
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Stored results
ciwidth onevariance stores the following in r():

Scalars
r(level) confidence level
r(alpha) significance level
r(N) sample size
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided CI, 0 otherwise
r(Pr width) probability of CI width
r(Pr width a) actual probability of CI width (for sample-size determination when probwidth() specified)
r(width) CI width
r(v) variance
r(s) standard deviation
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for sample size
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) ci
r(method) onevariance
r(scale) variance or standard deviation
r(onesidedci) upper or lower (for a one-sided CI)
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results

Methods and formulas
See Methods and formulas in [R] ci for a general description of CIs for variances.

Consider a random sample x = (x1, . . . , xn) of size n from a normal population with mean µ
and variance σ2. We are interested in a CI for the population variance σ2.

A general two-sided CI is defined as [ll(x), ul(x)], a lower one-sided CI as [ll(x),∞), and an
upper one-sided CI as (0, ul(x)], where ll(x) = ll and ul(x) = ul are the respective lower and
upper confidence limits. Let w be the CI width.

Let

x =
1

n

n∑
i=1

xi and s2 =
1

n− 1

n∑
i=1

(xi − x)2

be the sample mean and the sample variance, respectively.
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A two-sided CI for the variance σ2 is constructed as

[s2 − wlower, s
2 + wupper]

where wlower and wupper are such that wupper + wlower = w.

Lower and upper one-sided CIs are constructed as[
s2 − wlower,∞

)
(
0, s2 + wupper

]
We define w = wlower for lower one-sided CIs and w = wupper for upper one-sided CIs.

We use the CI width w as our measure of CI precision. Let 100(1− α)% denote the confidence
level, where 0 ≤ α ≤ 1 is the corresponding significance level.

The following formulas are based on Dixon and Massey (1983). The sampling distribution of the
statistic χ2 = (n − 1)s2/σ2 follows a χ2 distribution with n − 1 degrees of freedom. Let χ2

n−1,p

be the pth quantile of the χ2 distribution with n− 1 degrees of freedom.

Based on the χ2 distribution, the constructed CIs are:

[
(n−1)s2

χ2
n−1,1−α/2

, (n−1)s2

χ2
n−1,α/2

]
for a two-sided CI[

(n−1)s2

χ2
n−1,1−α

,∞
)

for a lower CI(
0, (n−1)s2

χ2
n−1,α

]
for an upper CI

Similarly to the case of an unknown standard deviation for a one-mean CI, the CI width depends
on the sample standard deviation. Again, using the fact that (n− 1)s2/σ2 follows a χ2 distribution
with n− 1 degrees of freedom, we can compute the probability that the CI width is no larger than a
specified value w.

Let χ2
n−1 (·) be the c.d.f. of the χ2 distribution with n− 1 degrees of freedom. The probability

of CI width, Pr(w), is

Pr(w) =


χ2
n−1

(
w2

σ2(1/χ2
n−1,1−α/2−1/χ2

n−1,α/2
)

)
for a two-sided CI

χ2
n−1

(
w2

σ2{1/(n−1)−1/χ2
n−1,α

}

)
for a lower one-sided CI

χ2
n−1

(
w2

σ2{1/χ2
n−1,1−α−1/(n−1)}

)
for an upper one-sided CI

(1)

We can compute the desired CI width from (1).

w =


σ2χ2

n−1,Pr(w)

(
1/χ2

n−1,1−α/2 − 1/χ2
n−1,α/2

)
for a two-sided CI

σ2χ2
n−1,Pr(w)

{1/(n− 1)− 1/χ2
n−1,α} for a lower one-sided CI

σ2χ2
n−1,Pr(w)

{1/χ2
n−1,1−α − 1/(n− 1)} for an upper one-sided CI

(2)

where χ2
n−1,p is the pth quantile of a χ2 distribution with n− 1 degrees of freedom.
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We can solve for the sample size iteratively using (2). The default initial value for the sample size is
computed using the closed-form formula based on a large-sample normal approximation. Specifically,
for a large n, the log-transformed sample variance is approximately normally distributed with mean
2 ln(σ) and standard deviation

√
2/n.

If the nfractional option is not specified, the computed sample size is rounded up.

References
Dixon, W. J., and F. J. Massey, Jr. 1983. Introduction to Statistical Analysis. 4th ed. New York: McGraw–Hill.

Kupper, L. L., and K. B. Hafner. 1989. How appropriate are popular sample size formulas? American Statistician
43: 101–105. https://doi.org/10.2307/2684511.

Also see
[PSS-3] ciwidth — Precision and sample-size analysis for CIs

[PSS-3] ciwidth, graph — Graph results from the ciwidth command

[PSS-3] ciwidth, table — Produce table of results from the ciwidth command

[PSS-2] power onevariance — Power analysis for a one-sample variance test

[PSS-5] Glossary
[R] ci — Confidence intervals for means, proportions, and variances

https://doi.org/10.2307/2684511
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Title

Unbalanced designs — Specifications for unbalanced designs

Description Syntax Options Remarks and examples Also see

Description

This entry describes the specifications of unbalanced designs for two-sample studies, including
power and sample-size analysis for two-sample hypothesis tests and precision and sample-size analysis
of two-sample CIs. See [PSS-2] power for a general introduction to the power command for power
analysis and [PSS-3] ciwidth for a general introduction to the ciwidth command for precision analysis.

Syntax

Two samples, compute sample size for unbalanced designs

Compute total sample size

cmdname . . ., nratio(numlist)
[
nfractional

]
. . .

Compute one group size given the other

cmdname . . ., n#(numlist) compute(N1 | N2)
[
nfractional

]
. . .

Two samples, specify sample size for unbalanced designs

Specify total sample size and allocation ratio

cmdname . . ., n(numlist) nratio(numlist)
[
nfractional

]
. . .

Specify one of the group sizes and allocation ratio

cmdname . . ., n#(numlist) nratio(numlist)
[
nfractional

]
. . .

Specify total sample size and one of the group sizes

cmdname . . ., n(numlist) n#(numlist) . . .

Specify group sizes

cmdname . . ., n1(numlist) n2(numlist) . . .

cmdname can be either power for power analysis or ciwidth for precision analysis.
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twosampleopts Description

∗n(numlist) total sample size
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1), meaning

equal group sizes
compute(N1 | N2) solve for N1 given N2 or for N2 given N1

nfractional allow fractional sample sizes

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

Options

� � �
Main �

n(numlist) specifies the total number of subjects in the study.

When used with power, this sample size is used for power or effect-size determination. If n()
is specified, the power is computed. If n() and power() or beta() are specified, the minimum
effect size that is likely to be detected in a study is computed.

When used with ciwidth, this sample size is used to compute the CI width and probability of CI
width.

n1(numlist) specifies the number of subjects in the control group.

When used with power, this sample size is used for power or effect-size determination.

When used with ciwidth, this sample size is used to compute the CI width and probability of CI
width.

n2(numlist) specifies the number of subjects in the experimental group. It is used for the same
computations as n1(numlist), as mentioned above.

nratio(numlist) specifies the sample-size ratio of the experimental group relative to the control
group, N2/N1. The default is nratio(1), meaning equal allocation between the two groups.

When used with power, this ratio is used for power and effect-size determination for two-sample
tests.

When used with ciwidth, this ratio is used for computing CI width and probability of CI width
for two-sample CIs.

compute(N1 | N2) requests that one of the group sample sizes be computed given the other one,
instead of the total sample size. To compute the control-group sample size, you must specify
compute(N1) and the experimental-group sample size in n2(). Alternatively, to compute the
experimental-group sample size, you must specify compute(N2) and the control-group sample
size in n1().

nfractional specifies that fractional sample sizes be allowed. When this option is specified, fractional
sample sizes are used in the intermediate computations and are also displayed in the output.
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Remarks and examples
Remarks are presented under the following headings:

Two samples
Specifying total sample size and allocation ratio
Specifying group sample sizes
Specifying one of the group sample sizes and allocation ratio
Specifying total sample size and one of the group sample sizes

Fractional sample sizes

By default, for two-sample tests and CIs, the power and ciwidth commands assume a balanced
design, but you may request an unbalanced design. A common way of specifying an unbalanced
design is by specifying the nratio() option. You can also specify group sample sizes directly in
the n1() and n2() options.

All considered options that accept arguments allow you to specify either one value # or numlist, a
list of values as described in [U] 11.1.8 numlist. For simplicity, we demonstrate these options using
only one value.

Below we describe in detail the specifications of unbalanced designs for two-sample methods
and the handling of fractional sample sizes. As can be seen in Syntax, the specification of sample
sizes, either total or group sample sizes, is the same across the power and ciwidth commands. In
Two samples, we primarily use power in our examples, but the n(), n1(), n2(), nratio(), and
compute() options shown there are used in the same fashion with ciwidth. Similarly, in Fractional
sample sizes, we primarily use ciwidth in our examples, but the nfractional option shown there
would be used in the same fashion with power.

Two samples

All two-sample methods, such as power twomeans and ciwidth twomeans, support the following
options for specifying sample sizes: the total sample size n(), individual sample sizes n1() and
n2(), and allocation ratio nratio(). The compute() option is useful if you want to compute one
of the group sizes given the other one, instead of the total sample size.

We first describe the specifications and then demonstrate their use in real examples. The example
below uses the power command, but the same principle applies to the ciwidth command.

We start with the sample-size determination—the default computation performed by the power
command. The “switch” option for sample-size determination is the power() option. If you do not
specify this option, it is implied with the default value of 0.8 corresponding to 80% power.

By default, group sizes are assumed to be equal; that is, the nratio(1) option is implied.

. power . . . ,
[
nratio(1)

]
. . .

You can supply a different allocation ratio, n2/n1, to nratio() to request an unbalanced design.

. power . . . , nratio(#) . . .

To compute power or effect size, you must supply information about group sample sizes to power.
Similarly, to compute CI width or probability of CI width, you must supply information about group
sample sizes to ciwidth. There are several ways for you to do this. The simplest one, perhaps, is
to specify the total sample size in the n() option.

. power . . . , n(#) . . .

The specification above assumes a balanced design in which the two group sizes are the same.
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To request an unbalanced design, you can specify the desired allocation ratio between the two
groups in the nratio() option:

. power . . . , n(#) nratio(#) . . .

The nratio() options assumes that the supplied values are the ratios of the second (experimental or
comparison) group to the first (control or reference) group.

Alternatively, you can specify the two group sizes directly,

. power . . . , n1(#) n2(#) . . .

or you can specify one of the group sizes and the allocation ratio:

. power . . . , n1(#) nratio(#) . . .

. power . . . , n2(#) nratio(#) . . .

Also supported, but perhaps more rarely used, is a combination of the total sample size and one
of the group sizes:

. power . . . , n(#) n1(#) . . .

. power . . . , n(#) n2(#) . . .

Below we demonstrate the described specifications using the power twomeans command, which
provides power and sample-size analysis for tests of two independent means; see [PSS-2] power
twomeans for details. In all examples, we use a value of 0 for the control-group mean, a value of 1
for the experimental-group mean, and the default values of the other study parameters.

Example 1: Sample-size determination for a balanced design

By default, power twomeans computes sample size for a balanced design.

. power twomeans 0 1

Performing iteration ...

Estimated sample sizes for a two-sample means test
t test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated sample sizes:

N = 34
N per group = 17

The required total sample size is 34, with 17 subjects in each group.
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The above is equivalent to specifying the nratio(1) option:

. power twomeans 0 1, nratio(1)

Performing iteration ...

Estimated sample sizes for a two-sample means test
t test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated sample sizes:

N = 34
N per group = 17

Example 2: Sample-size determination for an unbalanced design

To compute sample size for an unbalanced design, we specify the ratio of the experimental-group
size to the control-group size in the nratio() option. For example, if we anticipate twice as many
subjects in the experimental group as in the control group, we compute the corresponding sample
size by specifying nratio(2):

. power twomeans 0 1, nratio(2)

Performing iteration ...

Estimated sample sizes for a two-sample means test
t test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

N2/N1 = 2.0000

Estimated sample sizes:

N = 39
N1 = 13
N2 = 26

The required total sample size is 39, with 13 subjects in the control group and 26 subjects in
the experimental group. Generally, unbalanced designs require more subjects than the corresponding
balanced designs. This is the case for precision and sample size as well.
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Example 3: Power determination for a balanced design

To compute power for a balanced design, we specify the total sample size in the n() option:

. power twomeans 0 1, n(30)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 30

N per group = 15
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated power:

power = 0.7529

Equivalently, we specify one of the group sizes in the n1() or n2() option:

. power twomeans 0 1, n1(15)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 30

N1 = 15
N2 = 15

delta = 1.0000
m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated power:

power = 0.7529

Both specifications imply the nratio(1) option.

Example 4: Power determination for an unbalanced design

As we described in Two samples, there are a number of ways for you to request an unbalanced
design for power and precision determination. Below we provide an example for each specification.

Specifying total sample size and allocation ratio

Similarly to example 2 but for power determination, we request an unbalanced design with twice
as many subjects in the experimental group as in the control group by specifying the nratio(2)
option:
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. power twomeans 0 1, n(30) nratio(2)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 30

N1 = 10
N2 = 20

N2/N1 = 2.0000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated power:

power = 0.7029

The computed power of 0.7029 is lower than the power of 0.7529 of the corresponding balanced
design from example 3.

Specifying group sample sizes

Instead of the total sample size and the allocation ratio, we can specify the group sample sizes
directly in the n1() and n2() options:

. power twomeans 0 1, n1(10) n2(20)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 30

N1 = 10
N2 = 20

N2/N1 = 2.0000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated power:

power = 0.7029

Specifying one of the group sample sizes and allocation ratio

Alternatively, we can specify one of the group sizes and the allocation ratio. Here we specify the
control-group size.
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. power twomeans 0 1, n1(10) nratio(2)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 30

N1 = 10
N2 = 20

N2/N1 = 2.0000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated power:

power = 0.7029

We could have specified the experimental-group size instead:

. power twomeans 0 1, n2(20) nratio(2)
(output omitted )

Specifying total sample size and one of the group sample sizes

Finally, we can specify a combination of the total sample size and one of the group sizes—the
control group:

. power twomeans 0 1, n1(10) n(30)

Estimated power for a two-sample means test
t test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500
N = 30

N1 = 10
N2 = 20

N2/N1 = 2.0000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000
sd = 1.0000

Estimated power:

power = 0.7029

or the experimental group:

. power twomeans 0 1, n2(20) n(30)
(output omitted )

Options n(), n1(), and n2() require integer numbers. When you specify the n1() and n2()
options, your sample sizes are guaranteed to be integers. This is not necessarily true for other
specifications for which the resulting sample sizes may be fractional. See Fractional sample sizes for
details about how the power and ciwidth commands handle fractional sample sizes.

We show examples using the ciwidth command, but the same principles apply to the power
command.
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Fractional sample sizes

Certain sample-size specifications may lead to fractional sample sizes. For example, if you specify
an odd value for the total sample size of a two-sample study, the two group sample sizes would have
to be fractional to accommodate the specified total sample size. Also, if you specify the nratio()
option with a two-sample method, the resulting sample sizes may be fractional.

By default, the power and ciwidth commands round sample sizes to integers and use integer
values in the computations. To ensure conservative results, the commands round down the input
sample sizes and round up the output sample sizes.

Example 5: Output sample sizes

For example, when we compute sample size, the sample size is rounded up to the nearest integer
by default:

. ciwidth onemean, width(1) probwidth(0.9)

Performing iteration ...

Estimated sample size for a one-mean CI
Student’s t two-sided CI

Study parameters:

level = 95.00
Pr_width = 0.9000

width = 1.0000
sd = 1.0000

Estimated sample size:

N = 24

We computed sample size for a one-sample mean CI; see [PSS-3] ciwidth onemean for details.

We can specify the nfractional option to see the corresponding fractional sample size:

. ciwidth onemean, width(1) probwidth(0.9) nfractional

Performing iteration ...

Estimated sample size for a one-mean CI
Student’s t two-sided CI

Study parameters:

level = 95.00
Pr_width = 0.9000

width = 1.0000
sd = 1.0000

Estimated sample size:

N = 23.8582

The sample size of 24 reported above is the ceiling for the fractional sample size 23.86.
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We can also compute the actual CI width corresponding to the rounded sample size:

. ciwidth onemean, n(24) probwidth(0.9)

Estimated width for a one-mean CI
Student’s t two-sided CI

Study parameters:

level = 95.00
N = 24

Pr_width = 0.9000
sd = 1.0000

Estimated width:

width = 0.9963

The actual CI width corresponding to the sample size of 24 is smaller than the specified CI width of
1 from the two previous examples because the sample size was rounded up.

On the other hand, the power and ciwidth commands round down the input sample sizes.

Example 6: Input sample sizes

For example, let’s use ciwidth twomeans to compute the CI width for a two-means-difference
CI, given a total sample size of 51. To be 95% certain that the width of a future CI for this sample
size will be no larger than the value we estimate, we specify probwidth(0.95). We use the default
95% confidence level; see [PSS-3] ciwidth twomeans for details.

. ciwidth twomeans, probwidth(0.95) n(51)

Estimated width for a two-means-difference CI
Student’s t two-sided CI assuming sd1 = sd2 = sd

Study parameters:

level = 95.00
N = 51

Pr_width = 0.9500
sd = 1.0000

Actual sample sizes:

N = 50
N per group = 25

Estimated width:

width = 1.3253

By default, ciwidth twomeans assumes a balanced design. To accommodate a balanced design, the
command rounds down the group sample sizes from 25.5 to 25 for an actual total sample size of 50.

When the specified sample sizes differ from the resulting rounded sample sizes, the actual sample
sizes used in the computations are reported. In our example, we requested a total sample size of 51,
but the actual sample size used to compute the CI width was 50.

We can specify the nfractional option to request that fractional sample sizes be used in the
computations.
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. ciwidth twomeans, probwidth(0.95) n(51) nfractional

Estimated width for a two-means-difference CI
Student’s t two-sided CI assuming sd1 = sd2 = sd

Study parameters:

level = 95.00
N = 51.0000

N per group = 25.5000
Pr_width = 0.9500

sd = 1.0000

Estimated width:

width = 1.3097

The fractional group sample sizes of 25.5 are now used in the computations.

If we want to preserve the total sample size of 51 and ensure that group sample sizes are integers,
we can specify the group sizes directly:

. ciwidth twomeans, probwidth(0.95) n1(25) n2(26)

Estimated width for a two-means-difference CI
Student’s t two-sided CI assuming sd1 = sd2 = sd

Study parameters:

level = 95.00
N = 51

N1 = 25
N2 = 26

N2/N1 = 1.0400
Pr_width = 0.9500

sd = 1.0000

Estimated width:

width = 1.3099

Alternatively, we can specify one of the group sizes (or the total sample size) and the corresponding
allocation ratio n2/n1 = 26/25 = 1.04:

. ciwidth twomeans, probwidth(0.95) n1(25) nratio(1.04)

Estimated width for a two-means-difference CI
Student’s t two-sided CI assuming sd1 = sd2 = sd

Study parameters:

level = 95.00
N = 51

N1 = 25
N2 = 26

N2/N1 = 1.0400
Pr_width = 0.9500

sd = 1.0000

Estimated width:

width = 1.3099

We obtain the same CI width of 1.31.
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In the command above, the sample-size ratio we specified resulted in integer sample sizes. This
may not always be the case. For example, if we specify the sample-size ratio of 1.3,

. ciwidth twomeans, probwidth(0.95) n1(25) nratio(1.3)

Estimated width for a two-means-difference CI
Student’s t two-sided CI assuming sd1 = sd2 = sd

Study parameters:

level = 95.00
N1 = 25

N2/N1 = 1.3000
Pr_width = 0.9500

sd = 1.0000

Actual sample sizes:

N = 57
N1 = 25
N2 = 32

N2/N1 = 1.2800

Estimated width:

width = 1.2352

the experimental-group size of 32.5 is rounded down to 32. The total sample size used in the
computation is 57, and the actual sample-size ratio is 1.28.

As before, we can specify the nfractional option to use the fractional experimental-group size
of 32.5 in the computations:

. ciwidth twomeans, probwidth(0.95) n1(25) nratio(1.3) nfractional

Estimated width for a two-means-difference CI
Student’s t two-sided CI assuming sd1 = sd2 = sd

Study parameters:

level = 95.00
N = 57.5000

N1 = 25.0000
N2 = 32.5000

N2/N1 = 1.3000
Pr_width = 0.9500

sd = 1.0000

Estimated width:

width = 1.2300

Also see
[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-3] ciwidth — Precision and sample-size analysis for CIs
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1 : M matched case–control study. See matched study.

2× 2 contingency table. A 2 × 2 contingency table is used to describe the association between a
binary independent variable and a binary response variable of interest.

2× 2×K contingency table. See stratified 2× 2 tables.

acceptance region. In hypothesis testing, an acceptance region is a set of sample values for which
the null hypothesis cannot be rejected or can be accepted. It is the complement of the rejection
region.

accrual period or recruitment period or accrual. The accrual period (or recruitment period) is the
period during which subjects are being enrolled (recruited) into a study. Also see follow-up period.

actual alpha, actual significance level. This is an attained or observed significance level.

actual confidence-interval width. This is the CI width that is computed using the rounded-up sample
size when the population standard deviation is known.

actual probability of confidence-interval width. ciwidth will calculate the required sample size
for a specified probability of CI width, and if it is fractional, will round it up to report an integer.
The actual probability of CI width is calculated using the rounded sample-size estimates.

actual sample size. For a two-sample study, when specifying one of the sample sizes and a sample-size
ratio that result in noninteger sample sizes, power and ciwidth will round down the noninteger
sample sizes to the nearest integers and use these integers for computations. The actual sample
size is the rounded-down sample size.

actual sample-size ratio. When specifying a sample-size ratio that results in noninteger sample sizes,
power and ciwidth will round down the input sample sizes and round up the computed sample
sizes to the nearest integers. The actual sample-size ratio is computed using the rounded sample
sizes.

administrative censoring. Administrative censoring is the right-censoring that occurs when the study
observation period ends. All subjects complete the course of the study and are known to have
experienced one of two outcomes at the end of the study: survival or failure. This type of censoring
should not be confused with withdrawal and loss to follow-up. Also see censored, uncensored,
left-censored, and right-censored.

allocation ratio. This ratio n2/n1 represents the number of subjects in the comparison, experimental
group relative to the number of subjects in the reference, control group. Also see [PSS-4] Unbalanced
designs.

alpha. Alpha, α, denotes the significance level.

alternative hypothesis. In hypothesis testing, the alternative hypothesis represents the counterpoint to
which the null hypothesis is compared. When the parameter being tested is a scalar, the alternative
hypothesis can be either one sided or two sided.

alternative value, alternative parameter. This value of the parameter of interest under the alternative
hypothesis is fixed by the investigator in a power and sample-size analysis. For example, alternative
mean value and alternative mean refer to a value of the mean parameter under the alternative
hypothesis.

analysis of variance, ANOVA. This is a class of statistical models that studies differences between
means from multiple populations by partitioning the variance of the continuous outcome into
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independent sources of variation due to effects of interest and random variation. The test statistic is
then formed as a ratio of the expected variation due to the effects of interest to the expected random
variation. Also see one-way ANOVA, two-way ANOVA, one-way repeated-measures ANOVA, and
two-way repeated-measures ANOVA.

balanced design. A balanced design represents an experiment in which the numbers of treated and
untreated subjects are equal. For many types of two-sample hypothesis tests, the power of the test
is maximized with balanced designs. For both PrSS and PSS analyses, balanced designs tend to
require fewer subjects than their corresponding unbalanced designs.

beta. Beta, β, denotes the probability of committing a type II error, namely, failing to reject the null
hypothesis even though it is false.

between-subjects design. This is an experiment that has only between-subjects factors. See
[PSS-2] power oneway and [PSS-2] power twoway.

between-subjects factor. This is a factor for which each subject receives only one of the levels.

binomial test. A binomial test is a test for which the exact sampling distribution of the test statistic
is binomial; see [R] bitest. Also see [PSS-2] power oneproportion.

bisection method. This method finds a root x of a function f(x) such that f(x) = 0 by repeatedly
subdividing an interval on which f(x) is defined until the change in successive root estimates is
within the requested tolerance and function f(·) evaluated at the current estimate is sufficiently
close to zero.

case–control study. An observational study that retrospectively compares characteristics of subjects
with a certain problem (cases) with characteristics of subjects without the problem (controls). For
example, to study association between smoking and lung cancer, investigators will sample subjects
with and without lung cancer and record their smoking status. Case–control studies are often used
to study rare diseases.

CCT. See controlled clinical trial study.

cell means. These are means of the outcome of interest within cells formed by the cross-classification
of the two factors. See [PSS-2] power twoway and [PSS-2] power repeated.

cell-means model. A cell-means model is an ANOVA model formulated in terms of cell means.

χ2 test. This test for which either an asymptotic sampling distribution or a sampling distribution of
a test statistic is χ2. See [PSS-2] power onevariance and [PSS-2] power twoproportions.

CI. See confidence interval.

CI precision. See confidence-interval precision.

CI precision graph. See confidence-interval precision curve.

CI width. See confidence-interval width.

clinical trial. A clinical trials is an experiment testing a medical treatment or procedure on human
subjects.

clinically meaningful difference, clinically meaningful effect, clinically significant difference.
Clinically meaningful difference represents the magnitude of an effect of interest that is of clinical
importance. What is meant by “clinically meaningful” may vary from study to study. In clinical
trials, for example, if no prior knowledge is available about the performance of the considered
clinical procedure, a standardized effect size (adjusted for standard deviation) between 0.25 and
0.5 may be considered of clinical importance.

cluster randomized design, CRD, cluster randomized trial, CRT, group randomized trial, GRT.
Cluster randomized design is a type of randomized design in which groups of subjects or clusters
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are sampled instead of individual subjects. A cluster is the randomization unit, and an individual
within a cluster is the analysis unit. Observations within a cluster tend to be correlated. The strength
of the correlation is measured by the intraclass correlation. Also see individual-level design.

cluster size. The number of subjects in a group or cluster in a cluster randomized design. If cluster
sizes vary between clusters, the coefficient of variation for cluster sizes is used for power and
sample-size determination.

Cochran–Armitage test. The Cochran–Armitage test is a test for a linear trend in a probability of
response in a J × 2 contingency table. The test statistic has an asymptotic χ2 distribution under
the null hypothesis. See [PSS-2] power trend.

Cochran–Mantel–Haenszel test. See Mantel–Haenszel test.

coefficient of variation, CV. Coefficient of variation measures the spread or the variability of the
observations relative to the mean.

cohort study. Typically an observational study, a cohort study may also be an experimental study in
which a cohort, a group of subjects who have similar characteristics, is followed over time and
evaluated at the end of the study. For example, cohorts of vaccinated and unvaccinated subjects
are followed over time to study the effectiveness of influenza vaccines.

columns in graph. Think of power, graph() and ciwidth, graph() as graphing the columns of
power, table and ciwidth, table, respectively. One of the columns will be placed on the x
axis, another will be placed on the y axis, and, if you have more columns with varying values,
separate plots will be created for each. Similarly, we use the terms “column symbol”, “column
name”, and “column label” to refer to symbols, names, and labels that appear in tables when
tabular output is requested.

common odds ratio. A measure of association in stratified 2×2 tables. It can be viewed as a weighted
aggregate of stratum-specific odds ratios.

comparison value. See alternative value.

compound symmetry. A covariance matrix has a compound-symmetry structure if all the variances
are equal and all the covariances are equal. This is a special case of the sphericity assumption.

concordant pairs. In a 2× 2 contingency table, a concordant pair is a pair of observations that are
both either successes or failures. Also see discordant pairs and Introduction under Remarks and
examples in [PSS-2] power pairedproportions.

confidence bounds. See confidence limits.

confidence coefficient. See confidence level.

confidence interval. A confidence interval provides an interval estimate for a parameter of interest. It
is constructed such that, in a repeated independent sampling, the proportion of confidence intervals
containing the true parameter value will be larger than or equal to the specified confidence level,
1−α. A confidence interval can also be viewed as a range of plausible values that cannot be rejected
by the corresponding hypothesis test at a given significance level α. See Confidence intervals in
[PSS-3] Intro (ciwidth). Also see one-sided confidence interval and two-sided confidence interval.

confidence level. The confidence level sets the degree of certainty with which the CIs, constructed
from repeated independent sampling, will be guaranteed to contain the true parameter value. For
example, when specifying a confidence level of 95, the CI is guaranteed to contain the true parameter
value 95% of the time. The confidence level is equal to 1− α, where α is the significance level.
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confidence limits. The confidence limits are the upper and lower limits of the confidence interval. For
two-sided CIs, both confidence limits are finite. For one-sided CIs, one confidence limit is finite and
the other is infinite. An upper one-sided CI has a lower confidence limit equal to negative infinity,
whereas a lower one-sided CI has an upper confidence limit equal to infinity. See Confidence
intervals in [PSS-3] Intro (ciwidth).

confidence-interval half-width. The half-width of a confidence interval is equal to one half of the
confidence-interval width, w/2, and is also known as the margin of error. The CI half-width is
used as a measure of precision for a symmetric CI.

confidence-interval precision. The precision of a confidence interval is typically measured by its
width. A larger width means a lower degree of precision and leads to a wider CI. A smaller width
means a higher degree of precision and leads to a narrower CI.

confidence-interval precision curve. A confidence-interval precision curve is a graph of the estimated
CI width as a function of some other study parameter, such as sample size or probability of CI
width. The CI width is plotted on the y axis, and the sample size or other parameter is plotted on
the x axis.

confidence-interval precision determination. This pertains to the computation of confidence-interval
width given sample size, probability of CI width, and other study parameters.

confidence-interval width. For two-sided CIs, the width is defined as the difference between the
upper and lower limits. For an upper one-sided CI, the width is the difference between the upper
confidence limit and the point estimate. For a lower one-sided CI, the width is the difference
between the lower confidence limit and the point estimate.

contrasts. Contrasts refers to a linear combination of cell means such that the sum of contrast
coefficients is zero.

control covariates. See reduced model.

control group. A control group comprises subjects that are randomly assigned to a group where
they receive no treatment or receives a standard treatment. In hypothesis testing, this is usually a
reference group. Also see experimental group.

controlled clinical trial study. This is an experimental study in which treatments are assigned to two
or more groups of subjects without the randomization.

CRD. See cluster randomized design.

critical region. See rejection region.

critical value. In hypothesis testing, a critical value is a boundary of the rejection region.

cross-sectional study. This type of observational study measures various population characteristics at
one point in time or over a short period of time. For example, a study of the prevalence of breast
cancer in the population is a cross-sectional study.

CRT. See cluster randomized design.

CV. See coefficient of variation.

delta. Delta, δ, in the context of power and sample-size calculations, denotes the effect size.

directional test. See one-sided test.

discordant pairs. In a 2 × 2 contingency table, discordant pairs are the success–failure or failure–
success pairs of observations. Also see concordant pairs and Introduction under Remarks and
examples in [PSS-2] power pairedproportions.
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discordant proportion. This is a proportion of discordant pairs or discordant sets. Also see Introduction
under Remarks and examples in [PSS-2] power pairedproportions as well as Introduction under
Remarks and examples in [PSS-2] power mcc.

discordant sets. In a matched study with multiple controls matched to a case, discordant sets are
the sets in which there is any success–failure or failure–success match between the case and any
matched control. Also see Introduction under Remarks and examples in [PSS-2] power mcc.

dropout. Dropout is the withdrawal of subjects before the end of a study and leads to incomplete or
missing data.

effect size. The effect size is the size of the clinically significant difference between the treatments
being compared, typically expressed as a quantity that is independent of the unit of measure. For
example, in a one-sample mean test, the effect size is a standardized difference between the mean
and its reference value. In other cases, the effect size may be measured as an odds ratio or a risk
ratio. See [PSS-2] Intro (power) to learn more about the relationship between effect size and the
power of a test.

effect-size curve. The effect-size curve is a graph of the estimated effect size or target parameter
as a function of some other study parameter such as the sample size. The effect size or target
parameter is plotted on the y axis, and the sample size or other parameter is plotted on the x axis.

effect-size determination. This pertains to the computation of an effect size or a target parameter
given power, sample size, and other study parameters.

equal-allocation design. See balanced design.

exact test. An exact test is one for which the probability of observing the data under the null
hypothesis is calculated directly, often by enumeration. Exact tests do not rely on any asymptotic
approximations and are therefore widely used with small datasets. See [PSS-2] power oneproportion
and [PSS-2] power twoproportions.

experimental group. An experimental group is a group of subjects that receives a treatment or
procedure of interest defined in a controlled experiment. In hypothesis testing, this is usually a
comparison group. Also see control group.

experimental study. In an experimental study, as opposed to an observational study, the assignment
of subjects to treatments is controlled by investigators. For example, a study that compares a
new treatment with a standard treatment by assigning each treatment to a group of subjects is an
experimental study.

exponential test. The exponential test is the parametric test comparing the hazard rates, λ1 and λ2,
(or log hazards) from two independent exponential (constant only) regression models with the null
hypothesis H0: λ2 − λ1 = 0 [or H0: ln(λ2)− ln(λ1) = ln(λ2/λ1) = 0].

exposure odds ratio. An odds ratio of exposure in cases relative to controls in a case–control study.

F test. An F test is a test for which a sampling distribution of a test statistic is an F distribution.
See [PSS-2] power twovariances.

factor, factor variables. This is a categorical explanatory variable with any number of levels.

finite population correction. When sampling is performed without replacement from a finite pop-
ulation, a finite population correction is applied to the standard error of the estimator to reduce
sampling variance.

Fisher–Irwin’s exact test. See Fisher’s exact test.

Fisher’s exact test. Fisher’s exact test is an exact small-sample test of independence between rows
and columns in a 2× 2 contingency table. Conditional on the marginal totals, the test statistic has
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a hypergeometric distribution under the null hypothesis. See [PSS-2] power twoproportions and
[R] tabulate twoway.

Fisher’s z test. This is a z test comparing one or two correlations. See [PSS-2] power onecorrelation
and [PSS-2] power twocorrelations. Also see Fisher’s z transformation.

Fisher’s z transformation. Fisher’s z transformation applies an inverse hyperbolic tangent transfor-
mation to the sample correlation coefficient. This transformation is useful for testing hypothesis
concerning Pearson’s correlation coefficient. The exact sampling distribution of the correlation
coefficient is complicated, while the transformed statistic is approximately standard normal.

fixed effects. Fixed effects represent all levels of the factor that are of interest.

follow-up period or follow-up. The (minimum) follow-up period is the period after the last subject
entered the study until the end of the study. The follow-up defines the phase of a study during
which subjects are under observation and no new subjects enter the study. If T is the total duration
of a study, and r is the accrual period of the study, then follow-up period f is equal to T − r.
Also see accrual period.

follow-up study. See cohort study.

fractional sample size. Fractional (noninteger) sample sizes occur when specifying an odd number
for the total sample size in studies with an equal-allocation design. They may also occur when
specifying noninteger sample-size ratios.

full model. In the regression context, a full model is a regression model that includes all covariates
of interest. Also see reduced model.

Greenhouse–Geisser correction. See nonsphericity correction.

group randomized trial, GRT. See cluster randomized design.

hypothesis. A hypothesis is a statement about a population parameter of interest.

hypothesis testing, hypothesis test. This method of inference evaluates the validity of a hypothesis
based on a sample from the population. See Hypothesis testing under Remarks and examples in
[PSS-2] Intro (power).

hypothesized value. See null value.

individual-level design. Individual-level design is a classical randomized design in which individual
subjects or observations are sampled; thus they represent both units of randomization and units of
analysis. In contrast, see cluster randomized design.

interaction effects. Interaction effects measure the dependence of the effects of one factor on the
levels of the other factor. Mathematically, they can be defined as the differences among treatment
means that are left after main effects are removed from these differences.

intraclass correlation. Intraclass correlation measures the dependence of observations in the same
group or cluster.

J × 2 contingency table. A J × 2 contingency table is used to describe the association between an
ordinal independent variable with J levels and a binary response variable of interest.

Lagrange multiplier test. See score test.

likelihood-ratio test. The likelihood-ratio (LR) test is one of the three classical testing procedures
used to compare the fit of two models, one of which, the constrained model, is nested within the
full (unconstrained) model. Under the null hypothesis, the constrained model fits the data as well
as the full model. The LR test requires one to determine the maximal value of the log-likelihood
function for both the constrained and the full models. See [PSS-2] power twoproportions and
[R] lrtest.
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loss to follow-up. Subjects are lost to follow-up if they do not complete the course of the study for
reasons unrelated to the event of interest. For example, loss to follow-up occurs if subjects move
to a different area or decide to no longer participate in a study. Loss to follow-up should not be
confused with administrative censoring. If subjects are lost to follow-up, the information about
the outcome these subjects would have experienced at the end of the study, had they completed
the study, is unavailable. Also see withdrawal, administrative censoring, and follow-up period or
follow-up.

lower one-sided confidence interval. A lower one-sided confidence interval contains a range of values
that are greater than or equal to the lower confidence limit ll . The confidence interval is defined
by a finite lower confidence limit and an upper confidence limit of infinity: [ll ,∞).

lower one-sided test, lower one-tailed test. A lower one-sided test is a one-sided test of a scalar
parameter in which the alternative hypothesis is lower one sided, meaning that the alternative
hypothesis states that the parameter is less than the value conjectured under the null hypothesis.
Also see One-sided test versus two-sided test under Remarks and examples in [PSS-2] Intro (power).

main effects. These are average, additive effects that are associated with each level of each factor.
For example, the main effect of level j of a factor is the difference between the mean of all
observations on the outcome of interest at level j and the grand mean.

Mantel–Haenszel test. The Mantel–Haenszel test evaluates whether the overall degree of association
in stratified 2× 2 tables is significant assuming that the exposure effect is the same across strata.
See [PSS-2] power cmh.

margin of error. See confidence-interval half-width.

marginal homogeneity. Marginal homogeneity refers to the equality of one or more row marginal
proportions with the corresponding column proportions. Also see Introduction under Remarks and
examples in [PSS-2] power pairedproportions.

marginal proportion. This represents a ratio of the number of observations in a row or column
of a contingency table relative to the total number of observations. Also see Introduction under
Remarks and examples in [PSS-2] power pairedproportions.

matched study. In a matched study, an observation from one group is matched to one or more
observations from another group with respect to one or more characteristics of interest. When
multiple matches occur, the study design is 1 : M , where M is the number of matches. Also see
paired data, also known as 1 : 1 matched data.

McNemar’s test. McNemar’s test is a test used to compare two dependent binary populations. The
null hypothesis is formulated in the context of a 2×2 contingency table as a hypothesis of marginal
homogeneity. See [PSS-2] power pairedproportions and the mcc command in [R] Epitab.

MDES. See minimum detectable effect size.

mean contrasts. See contrasts.

minimum detectable effect size. The minimum detectable effect size is the smallest effect size that
can be detected by hypothesis testing for a given power and sample size.

minimum detectable value. The minimum detectable value represents the smallest amount or con-
centration of a substance that can be reliably measured.

mixed design. A mixed design is an experiment that has at least one between-subjects factor and one
within-subject factor. See [PSS-2] power repeated.

multiple partial correlation. In the regression context, multiple partial correlation is the measure
of association between the dependent variable and one or more independent variables of interest,
while controlling for the effect of other variables in the model.
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negative effect size. In power and sample-size analysis, we obtain a negative effect size when the
postulated value of the parameter under the alternative hypothesis is less than the hypothesized
value of the parameter under the null hypothesis. Also see positive effect size.

nominal alpha, nominal significance level. This is a desired or requested significance level.

noncentrality parameter. In power and sample-size analysis, a noncentrality parameter is the expected
value of the test statistic under the alternative hypothesis.

nondirectional test. See two-sided test.

nonsphericity correction. This is a correction used for the degrees of freedom of a regular F test
in a repeated-measures ANOVA to compensate for the lack of sphericity of the repeated-measures
covariance matrix.

null hypothesis. In hypothesis testing, the null hypothesis typically represents the conjecture that one
is attempting to disprove. Often the null hypothesis is that a treatment has no effect or that a
statistic is equal across populations.

null value, null parameter. This value of the parameter of interest under the null hypothesis is fixed
by the investigator in a power and sample-size analysis. For example, null mean value and null
mean refer to the value of the mean parameter under the null hypothesis.

number of clusters. The number of independent sampling units, groups or clusters, in a cluster
randomized design.

observational study. In an observational study, as opposed to an experimental study, the assignment of
subjects to treatments happens naturally and is thus beyond the control of investigators. Investigators
can only observe subjects and measure their characteristics. For example, a study that evaluates
the effect of exposure of children to household pesticides is an observational study.

observed level of significance. See p-value.

odds and odds ratio. The odds in favor of an event are Odds = p/(1−p), where p is the probability
of the event. Thus if p = 0.2, the odds are 0.25, and if p = 0.8, the odds are 4.

The log of the odds is ln(Odds) = logit(p) = ln{p/(1− p)}, and logistic regression models, for
instance, fit ln(Odds) as a linear function of the covariates.

The odds ratio is a ratio of two odds: Odds2/Odds1. The individual odds that appear in the ratio
are usually for an experimental group and a control group or for two different demographic groups.

one-sample test. A one-sample test compares a parameter of interest from one sample with a reference
value. For example, a one-sample mean test compares a mean of the sample with a reference
value.

one-sided confidence interval. See upper one-sided confidence interval and lower one-sided confidence
interval.

one-sided test, one-tailed test. A one-sided test is a hypothesis test of a scalar parameter in which the
alternative hypothesis is one sided, meaning that the alternative hypothesis states that the parameter
is either less than or greater than the value conjectured under the null hypothesis but not both. Also
see One-sided test versus two-sided test under Remarks and examples in [PSS-2] Intro (power).

one-way ANOVA, one-way analysis of variance. A one-way ANOVA model has a single factor. Also
see [PSS-2] power oneway.

one-way repeated-measures ANOVA. A one-way repeated-measures ANOVA model has a single
within-subject factor. Also see [PSS-2] power repeated.

paired data. Paired data consist of pairs of observations that share some characteristics of interest. For
example, measurements on twins, pretest and posttest measurements, before and after measurements,
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repeated measurements on the same individual. Paired data are correlated and thus must be analyzed
by using a paired test. See [PSS-3] ciwidth pairedmeans for PrSS analysis for a paired-means-
difference CI.

paired observations. See paired data.

paired test. A paired test is used to test whether the parameters of interest of two paired populations are
equal. The test takes into account the dependence between measurements. For this reason, paired
tests are usually more powerful than their two-sample counterparts. For example, a paired-means
or paired-difference test is used to test whether the means of two paired (correlated) populations
are equal.

partial correlation. Partial correlation is the measure of association between two continuous variables,
while controlling for the effect of other variables.

Pearson’s correlation. Pearson’s correlation ρ, also known as the product-moment correlation, mea-
sures the degree of association between two variables. Pearson’s correlation equals the variables’
covariance divided by their respective standard deviations, and ranges between −1 and 1. Zero
indicates no correlation between the two variables.

population parameter. See target parameter.

positive effect size. In power and sample-size analysis, we obtain a positive effect size when the
postulated value of the parameter under the alternative hypothesis is greater than the hypothesized
value of the parameter under the null hypothesis. Also see negative effect size.

postulated value. See alternative value.

power. The power of a test is the probability of correctly rejecting the null hypothesis when it is false.
It is often denoted as 1 − β in the statistical literature, where β is the type II error probability.
Commonly used values for power are 80% and 90%. See [PSS-2] Intro (power) for more details
about power.

power and sample-size analysis. Power and sample-size analysis investigates the optimal allocation
of study resources to increase the likelihood of the successful achievement of a study objective.
The focus of power and sample-size analysis is on studies that use hypothesis testing for inference.
Power and sample-size analysis provides an estimate of the sample size required to achieve the
desired power of a test in a future study. See [PSS-2] Intro (power). Also see precision and
sample-size analysis.

power curve. A power curve is a graph of the estimated power as a function of some other study
parameter such as the sample size. The power is plotted on the y axis, and the sample size or
other parameter is plotted on the x axis. See [PSS-2] power, graph.

power determination. This pertains to the computation of a power given sample size, effect size,
and other study parameters.

power function. The power functions is a function of the population parameter θ, defined as the
probability that the observed sample belongs to the rejection region of a test for given θ. See
Hypothesis testing under Remarks and examples in [PSS-2] Intro (power).

power graph. See power curve.

precision and sample-size analysis. Just like power and sample-size analysis, precision and sample-
size analysis investigates the optimal allocation of study resources to increase the likelihood of the
successful achievement of a study objective. The focus of precision and sample-size analysis is
on studies that use confidence intervals for inference. Precision and sample-size analysis provides
an estimate of the sample size required to achieve the desired precision of a confidence interval
in a future study. See [PSS-3] Intro (ciwidth).
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precision of a confidence interval. See confidence-interval precision.

probability of a type I error. This is the probability of committing a type I error of incorrectly
rejecting the null hypothesis. Also see significance level.

probability of a type II error. This is the probability of committing a type II error of incorrectly
accepting the null hypothesis. Common values for the probability of a type II error are 0.1 and
0.2 or, equivalently, 10% and 20%. Also see beta and power.

probability of confidence-interval width. The probability of CI width is the probability that the width
of a CI in a future study will be no greater than a prespecified value.

probability of confidence-interval width determination. This pertains to the computation of the
probability of CI width given CI width, sample size, and other study parameters.

prospective study. In a prospective study, the population or cohort is classified according to specific
risk factors, such that the outcome of interest, typically various manifestations of a disease, can
be observed over time and tied in to the initial classification. Also see retrospective study.

PrSS analysis. See precision and sample-size analysis.

PSS analysis. See power and sample-size analysis.

PSS Control Panel. The PSS Control Panel is a point-and-click graphical user interface for power
and sample-size analysis. See [PSS-2] GUI (power).

p-value. P -value is a probability of obtaining a test statistic as extreme or more extreme as the one
observed in a sample assuming the null hypothesis is true.

R2. See coefficient of determination.

random effects. Random effects represent a random sample of levels from all possible levels, and
the interest lies in all possible levels.

randomized controlled trial. In this experimental study, treatments are randomly assigned to two or
more groups of subjects.

RCT. See randomized controlled trial.

recruitment period. See accrual period.

reduced model. In the regression context, a reduced model is a regression model that contains only a
subset of covariates from the corresponding full model. These covariates are referred to as “control
covariates”. The covariates that are not in the reduced model are referred to as “tested covariates”.

reference value. See null value.

rejection region. In hypothesis testing, a rejection region is a set of sample values for which the null
hypothesis can be rejected.

relative risk. See risk ratio.

retrospective study. In a retrospective study, a group with a disease of interest is compared with a
group without the disease, and information is gathered in a retrospective way about the exposure in
each group to various risk factors that might be associated with the disease. Also see prospective
study.

risk difference. A risk difference is defined as the probability of an event occurring when a risk
factor is increased by one unit minus the probability of the event occurring without the increase
in the risk factor.

When the risk factor is binary, the risk difference is the probability of the outcome when the risk
factor is present minus the probability when the risk factor is not present.
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When one compares two populations, a risk difference is defined as a difference between the
probabilities of an event in the two groups. It is typically a difference between the probability in
the comparison group or experimental group and the probability in the reference group or control
group.

risk factor. A risk factor is a variable that is associated with an increased or decreased probability
of an outcome.

risk ratio. A risk ratio, also called a relative risk, measures the increase in the likelihood of an event
occurring when a risk factor is increased by one unit. It is the ratio of the probability of the event
when the risk factor is increased by one unit over the probability without that increase.

When the risk factor is binary, the risk ratio is the ratio of the probability of the event when the
risk factor occurs over the probability when the risk factor does not occur.

When one compares two populations, a risk ratio is defined as a ratio of the probabilities of
an event in the two groups. It is typically a ratio of the probability in the comparison group or
experimental group to the probability in the reference group or control group.

sample size. This is the number of subjects in a sample. See [PSS-2] Intro (power) to learn more
about the relationship between sample size and the power of a test.

sample-size curve. A sample-size curve is a graph of the estimated sample size as a function of some
other study parameter such as power or CI width. The sample size is plotted on the y axis, and
the power or other parameter is plotted on the x axis.

sample-size determination. This pertains to the computation of a sample size given either power and
effect size or CI width and probability of CI width and any other study parameters. In a cluster
randomized design, sample-size determination consists of determining the number of clusters given
the cluster size or the cluster size given the number of clusters.

sample-size ratio. The ratio of the experimental-group sample size relative to the control-group sample
size, n2/n1.

Satterthwaite’s t test. Satterthwaite’s t test is a modification of the two-sample t test to account for
unequal variances in the two populations. See Methods and formulas in [PSS-2] power twomeans
for details.

score test. A score test, also known as a Lagrange multiplier test, is one of the three classical testing
procedures used to compare the fit of two models, one of which, the constrained model, is nested
within the full (unconstrained) model. The null hypothesis is that the constrained model fits the
data as well as the full model. The score test only requires one to fit the constrained model. See
[PSS-2] power oneproportion and [R] prtest.

sensitivity analysis. Sensitivity analysis investigates the effect of varying study parameters on power,
CI precision, probability of CI width, sample size, and other components of a study. The true values
of study parameters are usually unknown, and analyses of power, precision, and sample size use
best guesses for these values. It is therefore important to evaluate the sensitivity of the computed
power, CI precision, or sample size in response to changes in study parameters. See [PSS-2] power,
table, [PSS-2] power, graph, [PSS-3] ciwidth, table, and [PSS-3] ciwidth, graph for details.

sign test. A sign test is used to test the null hypothesis that the median of a distribution is equal to
some reference value. A sign test is carried out as a test of binomial proportion with a reference
value of 0.5. See [PSS-2] power oneproportion and [R] bitest.

significance level. In hypothesis testing, the significance level α is an upper bound for a probability of
a type I error. See [PSS-2] Intro (power) to learn more about the relationship between significance
level and the power of a test.
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size of test. See significance level.

sphericity assumption. All differences between levels of the within-subject factor within-subject
factor have the same variances.

stratified 2× 2 tables. Stratified 2× 2 tables describe the association between a binary independent
variable and a binary response variable of interest. The analysis is stratified by a nominal (categorical)
variable with K levels.

symmetry. In a 2×2 contingency table, symmetry refers to the equality of the off-diagonal elements.
For a 2× 2 table, a test of marginal homogeneity reduces to a test of symmetry.

t test. A t test is a test for which the sampling distribution of the test statistic is a Student’s t
distribution.

A one-sample t test is used to test whether the mean of a population is equal to a specified value
when the variance must also be estimated. The test statistic follows Student’s t distribution with
N − 1 degrees of freedom, where N is the sample size.

A two-sample t test is used to test whether the means of two populations are equal when the
variances of the populations must also be estimated. When the two populations’ variances are
unequal, a modification to the standard two-sample t test is used; see Satterthwaite’s t test.

target parameter. In power and sample-size analysis, the target parameter is the parameter of interest
or the parameter in the study about which hypothesis tests are conducted.

test statistic. In hypothesis testing, a test statistic is a function of the sample that does not depend
on any unknown parameters.

tested covariates. See reduced model.

two-independent-samples test. See two-sample test.

two-sample paired test. See paired test.

two-sample test. A two-sample test is used to test whether the parameters of interest of the two
independent populations are equal. For example, two-sample means test, two-sample variances,
two-sample proportions test, two-sample correlations test.

two-sided confidence interval. A two-sided CI contains a plausible finite range of values for a
parameter of interest. Two-sided CIs contain a finite upper limit for plausible values greater than
the point estimate and a finite lower limit for plausible values less than the point estimate. See
Confidence intervals in [PSS-3] Intro (ciwidth).

two-sided test, two-tailed test. A two-sided test is a hypothesis test of a parameter in which the
alternative hypothesis is the complement of the null hypothesis. In the context of a test of a scalar
parameter, the alternative hypothesis states that the parameter is less than or greater than the value
conjectured under the null hypothesis.

two-way ANOVA, two-way analysis of variance. A two-way ANOVA model contains two factors.
Also see [PSS-2] power twoway.

two-way repeated-measures ANOVA, two-factor ANOVA. This is a repeated-measures ANOVA model
with one within-subject factor and one between-subjects factor. The model can be additive (contain
only main effects of the factors) or can contain main effects and an interaction between the two
factors. Also see [PSS-2] power repeated.

type I error. The type I error of a test is the error of rejecting the null hypothesis when it is true;
see [PSS-2] Intro (power) for more details.

type I error probability. See probability of a type I error.
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type I study. A type I study is a study in which all subjects fail (or experience an event) by the end
of the study; that is, no censoring of subjects occurs.

type II error. The type II error of a test is the error of not rejecting the null hypothesis when it is
false; see [PSS-2] Intro (power) for more details.

type II error probability. See probability of a type II error.

type II study. A type II study is a study in which there are subjects who do not fail (or do not
experience an event) by the end of the study. These subjects are known to be censored.

unbalanced design. An unbalanced design indicates an experiment in which the numbers of treated
and untreated subjects differ. Also see [PSS-4] Unbalanced designs.

unequal-allocation design. See unbalanced design.

upper one-sided confidence interval. An upper one-sided confidence interval contains a range of
values that are less than or equal to the upper confidence limit ul . The confidence interval is defined
by a finite upper confidence limit and a lower confidence limit of negative infinity: (−∞, ul ].

upper one-sided test, upper one-tailed test. An upper one-sided test is a one-sided test of a scalar
parameter in which the alternative hypothesis is upper one sided, meaning that the alternative
hypothesis states that the parameter is greater than the value conjectured under the null hypothesis.
Also see One-sided test versus two-sided test under Remarks and examples in [PSS-2] Intro (power).

Wald test. A Wald test is one of the three classical testing procedures used to compare the fit of
two models, one of which, the constrained model, is nested within the full (unconstrained) model.
Under the null hypothesis, the constrained model fits the data as well as the full model. The Wald
test requires one to fit the full model but does not require one to fit the constrained model. Also
see [PSS-2] power oneproportion and [R] test.

withdrawal. Withdrawal is the process under which subjects withdraw from a study for reasons
unrelated to the event of interest. For example, withdrawal occurs if subjects move to a different
area or decide to no longer participate in a study. Withdrawal should not be confused with
administrative censoring. If subjects withdraw from the study, the information about the outcome
those subjects would have experienced at the end of the study, had they completed the study, is
unavailable. Also see loss to follow-up and administrative censoring.

within-subject design. This is an experiment that has at least one within-subject factor. See
[PSS-2] power repeated.

within-subject factor. This is a factor for which each subject receives several of or all the levels.

z test. A z test is a test for which a potentially asymptotic sampling distribution of the test statistic
is a normal distribution. For example, a one-sample z test of means is used to test whether the
mean of a population is equal to a specified value when the variance is assumed to be known. The
distribution of its test statistic is normal. See [PSS-2] power onemean, [PSS-2] power twomeans,
and [PSS-2] power pairedmeans.



Subject and author index

See the combined subject index and the combined author index in the Stata Index.
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