
power usermethod — Add your own methods to the power command

Description Syntax Remarks and examples References Also see

Description
The power command allows you to add your own methods to power and produce tables and graphs

of results automatically.

Syntax
Compute sample size

power usermethod ... [, power(numlist) poweropts useropts]

Compute power

power usermethod ..., nspec [poweropts useropts]

Compute effect size

power usermethod ..., nspec power(numlist) [poweropts useropts]

usermethod is the name of the method you would like to add to the power command. When naming

your power methods, you should follow the same convention as for naming the programs you add to

Stata—do not pick “nice” names that may later be used by Stata’s official methods. The length of

usermethod may not exceed 16 characters.

useropts are the options supported by your method usermethod.

nspec contains n(numlist) for a one-sample test or any of the sample-size options of poweropts such as

n1(numlist) and n2(numlist) for a two-sample test.

collect is allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples
Adding your own methods to power is easy. Suppose you want to add a method called mymethod to

power. Simply

1. write an r-class program called power cmd mymethod that computes power, sample size, or

effect size and follows power’s convention for naming common options and storing results;

and

2. place the program where Stata can find it.

You are done. You can now use mymethod within power like any other official power method.

1

https://www.stata.com/manuals/pss-2power.pdf#pss-2power
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodSyntaxusermethod
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/pss-2power.pdf#pss-2powerSyntaxpower_options
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodSyntaxuseropts
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodSyntaxusermethod
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodSyntaxnspec
https://www.stata.com/manuals/pss-2power.pdf#pss-2powerSyntaxpower_options
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodSyntaxuseropts
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodSyntaxusermethod
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodSyntaxnspec
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/pss-2power.pdf#pss-2powerSyntaxpower_options
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodSyntaxuseropts
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/pss-2power.pdf#pss-2powerSyntaxpower_options
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/pprogram.pdf#pprogram

power usermethod — Add your own methods to the power command 2

Remarks are presented under the following headings:

A quick example
Steps for adding a new method to the power command
Convention for naming options and storing results
Allowing multiple values in method-specific options
Customizing default tables

Setting supported columns
Modifying the default table columns
Modifying the look of the default table
Example continued

Customizing default graphs
Other settings
Handling parsing more efficiently
More examples: Adding two-sample methods
Initializer’s s() return settings

A quick example
Before we discuss the technical details in the following sections, let’s try an example. Let’s write

a program to compute power for a one-sample 𝑧 test given sample size, standardized difference, and

significance level. For simplicity, we assume a two-sided test. We will call our new method myztest.

We create an ado-file called power cmd myztest.ado that contains the following Stata program:

// evaluator
program power_cmd_myztest, rclass

version 19.5 // (or version 19 if you do not have StataNow)
/* parse options */

syntax, n(integer) /// sample size
STDDiff(real) /// standardized difference
Alpha(string) /// significance level

/* compute power */
tempname power
scalar ‘power’ = normal(‘stddiff’*sqrt(‘n’) - invnormal(1-‘alpha’/2))

/* return results */
return scalar power = ‘power’
return scalar N = ‘n’
return scalar alpha = ‘alpha’
return scalar stddiff = ‘stddiff’
end

Our ado-program consists of three sections: the syntax command for parsing options, the power

computation, and stored or returned results. The three sections work as follows:

The power cmd myztest program has two of power’s common options, n() for sample size

and alpha() for significance level, and it has its own option, stddiff(), to specify a stan-

dardized difference.

After the options are parsed, the power is computed and stored in a temporary scalar ‘power’.

Finally, the resulting power and other results are stored in return scalars. Following power’s
convention for naming commonly returned results, the computed power is stored in r(power),
the sample size in r(N), and the significance level in r(alpha). The program additionally

stores the standardized difference in r(stddiff).

https://www.stata.com/manuals/psyntax.pdf#psyntax
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesconvention

power usermethod — Add your own methods to the power command 3

We can now use myztest within power as we would any other existing method of power:

. power myztest, alpha(0.05) n(10) stddiff(0.25)
Estimated power
Two-sided test

alpha power N

.05 .1211 10

We can compute results for multiple sample sizes by specifying multiple values in the n() option.

Note that our power cmd myztest program accepts only one value at a time in n(). When a numlist is

specified in the power command’s n() option, power automatically handles that numlist for us.

. power myztest, alpha(0.05) n(10 20) stddiff(0.25)
Estimated power
Two-sided test

alpha power N

.05 .1211 10

.05 .1999 20

We can also compute results for multiple sample sizes and significance levels without any additional

effort on our part:

. power myztest, alpha(0.01 0.05) n(10 20) stddiff(0.25)
Estimated power
Two-sided test

alpha power N

.01 .03711 10

.01 .07245 20

.05 .1211 10

.05 .1999 20

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist

power usermethod — Add your own methods to the power command 4

We can even produce a graph by merely specifying the graph option:

. power myztest, alpha(0.01 0.05) n(10(10)100) stddiff(0.25) graph

0

.2

.4

.6

.8

P
ow

er
 (

1-
β)

0 20 40 60 80 100
Sample size (N)

.01

.05

Significance level (α)

Two-sided test

Estimated power

The above is just a simple example. Your program can be as complicated as you would like: you can

even use simulations to compute your results. You can also customize your tables and graphs with a little

extra effort.

Steps for adding a new method to the power command
Suppose you want to add your own method, usermethod, to the power command. Here is an outline

of the steps to follow:

1. Create the evaluator, an r-class program called power cmd usermethod and defined by the

ado-file power cmd usermethod.ado, that performs power and sample-size computations and

follows power’s convention for naming options and storing results.

2. Optionally, create an initializer, an s-class program called power cmd usermethod init and

defined by the ado-file power cmd usermethod init.ado, that specifies information about

table columns, options that may allow a numlist, and so on.

3. Optionally, create a parser, a program called power cmd usermethod parse and defined by

the ado-file power cmd usermethod parse.ado, that checks the syntax of user-specific op-

tions, useropts.

4. Place all of your programs where Stata can find them.

You can now use your usermethod with power:
. power usermethod ...

Youmay also use programs within power that are not defined by an ado-file (that is, they were defined
in a do-file or by hand).

https://www.stata.com/manuals/pprogram.pdf#pprogram
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesconvention
https://www.stata.com/manuals/pprogram.pdf#pprogram
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist

power usermethod — Add your own methods to the power command 5

Convention for naming options and storing results
For the power command to automatically recognize its common options, you must ensure that you

follow power’s naming convention for these options in your program. For example, power specifies the

significance level in the alpha() option with minimum abbreviation of a(). You need to ensure that

you use the same option with the same abbreviation in your evaluator to specify the significance level.

The same applies to all of power’s common options described in [PSS-2] power.

You can specify additional method-specific options, but power will not know about them unless you

make it aware of them; see Allowing multiple values in method-specific options for details.

To produce tables and graphs of results, you must ensure that your evaluator follows power’s conven-
tion for storing results. power’s commonly stored results are described in Stored results of [PSS-2] power.

For example, the value for power should be stored in the scalar r(power), the value for a total sample

size in the scalar r(N), the value for a significance level in r(alpha), and so on.

You can also store additional method-specific results, but power will not know about them unless you

make it aware of them; see Customizing default tables for details.

Allowing multiple values in method-specific options
By default, the power command accepts multiple values only within its common options. If you want

to allowmultiple values in the method-specific options useropts, you need to let power know about them.

This is done via the initializer.

To allow the specification of multiple values, or a numlist, in method-specific options, you need to

list the names of the options with proper abbreviations in an s-class macro s(pss numopts) within the

power cmd usermethod init program.

Recall our earlier example in which we added the myztest method, calculating the power of a two-

sided one-sample 𝑧 test, to power. We computed powers for multiple values of significance level and

sample size. What if we would also like to specify multiple values of standardized differences in the

stddiff() option of myztest? If we do this now, we will receive an error message,

. power myztest, alpha(0.05) n(10) stddiff(0.25 0.5)
option stddiff() invalid
r(198);

because the stddiff() option is not allowed to include numlist by the evaluator and is not one of power’s
common options. To make power recognize this option as one allowing numlist, we need to specify this

in the initializer. Following the guidelines, we create an ado-file called power cmd myztest init.ado
and specify the name of the stddiff() option (with the corresponding abbreviation) in the s-class macro

s(pss numopts) within the power cmd myztest init program.

// initializer
program power_cmd_myztest_init, sclass

version 19.5 // (or version 19 if you do not have StataNow)
sreturn clear
sreturn local pss_numopts ”STDDiff”

end

https://www.stata.com/manuals/pss-2power.pdf#pss-2powerSyntaxpower_options
https://www.stata.com/manuals/pss-2power.pdf#pss-2power
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesusernumlist
https://www.stata.com/manuals/pss-2power.pdf#pss-2powerStoredresults
https://www.stata.com/manuals/pss-2power.pdf#pss-2power
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesusertable
https://www.stata.com/manuals/pss-2power.pdf#pss-2powerSyntaxpower_options
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesinitializer
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesintroex
https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(198)

power usermethod — Add your own methods to the power command 6

We now can specify multiple standardized differences:

. power myztest, alpha(0.05) n(10) stddiff(0.25 0.5)
Estimated power
Two-sided test

alpha power N

.05 .1211 10

.05 .3524 10

Customizing default tables
The power command with user-defined methods always displays results in a table. By default, it

displays columns alpha, power or beta (whichever is specified), and N, which contain the significance
level, the power, and the sample size, respectively. See Setting supported columns and Modifying the

default table columns for details on how to customize the default table columns.

The default column labels are the column names, and the default formats are %7.4g for alpha and

power and %7.0gc for N. These and other settings controlling the look of the default table can be changed
as described in Modifying the look of the default table.

You can always use the table() option to customize your table. However, if you want to modify

how the table looks by default, you need to follow the steps described in the following sections:

Setting supported columns
Modifying the default table columns
Modifying the look of the default table
Example continued

Setting supported columns

The power command automatically supports a number of columns, such as alpha, beta, power, N,
etc. The supported columns are the columns that can be accessed within power’s options table() and

graph().

Most of the time, you will have additional columns, usercolnames, which you will want power to

support. To make power recognize the columns as supported columns, you must list the names of the

additional columns, usercolnames, in an s-class macro s(pss colnames) in the initializer. Columns

usercolnames will then be added to power’s list of supported columns. Columns usercolnames will also

be displayed in the default table unless s(pss tabcolnames) or s(pss alltabcolnames) is set.

If you want to reset power’s list of supported columns, that is, to specify all the supported columns

manually, you should use the s(pss allcolnames) macro. The supported columns will then include

only the ones you listed in the macro. If you specify s(pss allcolnames), you must remember to

include power’s main columns N, power, and alpha in your list. Otherwise, you may not be able to use

some of power’s functionality, such as default graphs. If s(pss colnames) is specified together with

s(pss allcolnames), the former will be ignored. The specified supported columns will be automati-

cally displayed in the default table unless s(pss alltabcolnames) is set.

The values corresponding to the specified columns must be stored by the evaluator in r() scalars with

the same names as the column names. For example, the value for column alpha is stored in r(alpha),
the value for column power is stored in r(power), and the value for column N is stored in r(N).

https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesusertablecols
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesusertabletabcols
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesusertabletabcols
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesusertablelabs
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesinitializer
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_tabcolnames
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_alltabcolnames
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_alltabcolnames
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesevaluator

power usermethod — Add your own methods to the power command 7

Any column not listed in s(pss colnames) or s(pss allcolnames) will not be available within

the power command. For example, any reference to such a column within power’s options table() and

graph() will result in an error.

Modifying the default table columns

By default, power displays the specified supported columns. If you want to display only a

subset of those columns, you can use either s(pss tabcolnames) or s(pss alltabcolnames)
to specify the columns to be displayed. You specify additional columns to be displayed in

s(pss tabcolnames) and a complete list of the displayed columns in s(pss alltabcolnames).
If you specify s(pss tabcolnames), the displayed columns will include alpha, power, or beta
(whichever is specified with the command), N, and the additional columns you specified. If you specify

s(pss alltabcolnames), only the columns listed in this macro will be displayed. One situation when

you may want to do this is if you want to change the order in which the columns are displayed by default.

If you specify both macros, s(pss tabcolnames) will be ignored. You can specify only the names of

supported columns in these macros.

Modifying the look of the default table

The default table column labels are the column names. You can change this by specifying your

own column labels in the s(pss collabels) macro. The labels must be properly quoted if they

contain spaces or quotes. The labels must be specified for all columns listed in s(pss colnames)
or s(pss allcolnames).

The default column formats are %7.0gc for sample sizes and %7.4g for all other columns. You can

change this by specifying your own column formats in the s(pss colformats) macro. The formats

must be quoted and specified for all columns listed in s(pss colnames) or s(pss allcolnames).

The default column widths are the widths of the default formats plus one. You can specify your own

column widths in the s(pss colwidths) macro. The widths must be specified for all columns listed in

s(pss colnames) or s(pss allcolnames).

Example continued

Continuing our myztest example, we want to add a column containing the specified standardized dif-

ferences to the list of supported columns. The specified standardized difference is stored in r(stddiff)
in the myztest evaluator, so the name of our column is stddiff. We specify it in s(pss colnames)
in our initializer as follows:

// initializer
program drop power_cmd_myztest_init
program power_cmd_myztest_init, sclass

version 19.5 // (or version 19 if you do not have StataNow)
sreturn clear
sreturn local pss_numopts ”STDDiff”
sreturn local pss_colnames ”stddiff” // <-- new line

end

https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplessupported
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_colnames
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_allcolnames
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesintroex

power usermethod — Add your own methods to the power command 8

We rerun our command now and see that the stddiff column is added to the default table:

. power myztest, alpha(0.05) n(10) stddiff(0.25)
Estimated power
Two-sided test

alpha power N stddiff

.05 .1211 10 .25

We can also change the default column label of the stddiff column to “Std. difference”. Note that we

can do this within power’s option table(), but if we want this label to show up automatically in the de-

fault table, we should specify it in the initializer. We specify the column label in the s(pss collabels)
macro.

// initializer
program drop power_cmd_myztest_init
program power_cmd_myztest_init, sclass

version 19.5 // (or version 19 if you do not have StataNow)
sreturn clear
sreturn local pss_numopts ”STDDiff”
sreturn local pss_colnames ”stddiff”
sreturn local pss_collabels ‘””Std. difference””’ // <-- new line

end

The column containing standardized differences now has the new label

. power myztest, alpha(0.05) n(10) stddiff(0.25)
Estimated power
Two-sided test

alpha power N Std. difference

.05 .1211 10 .25

Customizing default graphs
By default, power plots the estimated power on the 𝑦 axis and the specified sample size on the 𝑥 axis

or the estimated sample size on the 𝑦 axis and the specified power on the 𝑥 axis. If s(pss target)
is specified, the estimated sample size is plotted against the specified target parameter. For effect-size

computation, the target parameter must be specified in s(pss target), and it is plotted on the 𝑥 axis

against the specified sample size. See [PSS-2] power, graph for details about other default settings.

You can overwrite the default column labels displayed on the graph by specifying the

s(pss colgrlabels) macro. The specification of the graph labels is the same as the specification

of table column labels.

https://www.stata.com/manuals/pss-2power.pdf#pss-2powerSyntaxpower_options
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_target
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_target
https://www.stata.com/manuals/pss-2powergraph.pdf#pss-2power,graph
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_collabels

power usermethod — Add your own methods to the power command 9

You can also overwrite the default symbols that are used to label the results on the graph by specifying

the new symbols in the macro s(pss colgrsymbols). The symbols must be specified for all columns

listed in s(pss colnames) or s(pss allcolnames).

Other settings
When you add your own method to power, the effect-size parameter is not defined. You can define it

yourself by specifying the name of the column containing the values of the effect-size parameter in the

s(pss delta) macro. The effect-size parameter can then be accessed using the column name delta
and will be displayed in the default table as delta unless the s(pss notabdelta) macro is set to

notabdelta.

The target parameter is not set by power for newly added methods. You can set it yourself by specify-

ing the name of the column containing the values of the target parameter in the s(pss target) macro.

You must set this macro if you want to obtain default graphs for effect-size determination. The target

parameter can then be accessed using the column name target.

If the target parameter is set in the s(pss target) macro, you can also specify its label in

s(pss targetlabel). This label will be used in the title for the effect-size determination and as the

axis label for the graph column target.

If your method supports command arguments, the arguments specified directly following the method

name, you can specify their corresponding column names in the s(pss argnames) macro. You can

then refer to these arguments as arg1, arg2, and so on, when producing tables or graphs.

power usermethod uses the following generic titles: “Estimated sample size” for sample-size deter-

mination, “Estimated power” for power determination, and “Estimated target parameter” for effect-size

determination. You can extend these titles to be more specific to your method by adding text in the

s(pss title) macro. For example, if s(pss title) contains “for my test”, the resulting titles will

be “Estimated sample size for my test”, “Estimated power for my test”, and “Estimated target parameter

for my test”. Also see s(pss targetlabel) for how to include a label for the target parameter in the

title.

power usermethod uses the following generic subtitles: “Two-sided test” for a two-sided test or “One-

sided test” for a one-sided test when the onesided option is specified. You can change the default subtitle
by specifying the s(pss subtitle) macro.

Optionally, power usermethod can display a hypothesis statement if macros s(pss hyp lhs)
and s(pss hyp rhs) are specified. s(pss hyp lhs) must contain the parameter of interest, and

s(pss hyp rhs)will typically contain the null or comparison value. For example, if s(pss hyp lhs)
contains beta1 and s(pss hyp rhs) contains 0, power usermethod will display

Ho: beta1 = 0 versus Ha: beta1 != 0

for a two-sided test and

Ho: beta1 = 0, one-sided alternative

for a one-sided test. The same hypotheses will appear on the graph, unless s(pss grhyp lhs) and

s(pss grhyp rhs) are specified. These macros are useful if you want to include parameters as symbols

on the graph. In our example, we could have defined s(pss grhyp lhs) as {&beta}{sub:1} and

s(pss grhyp rhs) as 0 to include “beta1” as the corresponding symbol on the graph; see [G-4] text.

https://www.stata.com/manuals/g-4text.pdf#g-4text
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_colnames
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_allcolnames
https://www.stata.com/manuals/pss-5glossary.pdf#pss-5Glossarydef_target
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_target
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_targetlabel
https://www.stata.com/manuals/g-4text.pdf#g-4text

power usermethod — Add your own methods to the power command 10

Handling parsing more efficiently
The power command checks its common options, but you are responsible for checking your method-

specific options, useropts, or their interaction with power’s common options. You can certainly do this

in your evaluator. However, the checks will then be performed each time your evaluator is called. You

can instead perform all of your checks once within the parser.

Your parser may be an s-class command and may set any of the s() results typically specified in

the initializer. This may be useful, for example, for building the columns displayed in the default table

dynamically, depending on which options were specified. If all desired s() results are set in the parser,

you do not need an initializer.

More examples: Adding two-sample methods
All the examples so far showed how to add a one-sample method to power. We now demonstrate

how to add a two-sample method. (Support for multiple-sample methods is not yet available.)

The steps for adding your own two-sample methods are the same as those for adding one-sample

methods, except you may need to set the s(pss samples) macro to contain twosample in the initial-

izer. If any of the two-sample options n1(), n2(), and nratio() are specified, power automatically

recognizes the method as a two-sample method. If these options are not used and you need the method

to be recognized as a two-sample method, you must set s(pss samples) to twosample. If you do not
want power to respect the two-sample options, you should set s(pss samples) to onesample.

For illustration, let’s add a method comparing two independent proportions using a large-sample 𝜒2

test. (Note that this method is available in the official power twoproportions command.) For simplic-

ity, we will compute the power of a two-sided test. We will call our new method powertwoprop.

We write our evaluator and save it as power cmd powertwoprop.ado.
// evaluator
program power_cmd_powertwoprop, rclass

version 19.5 // (or version 19 if you do not have StataNow)
//parse command arguments and options
syntax anything(id=”proportions”), ///

[Alpha(real 0.05) /// significance level
n(string) /// total sample size
n1(string) n2(string) /// group sample sizes
NRATio(real 1) /// N2/N1
Power(string) ///

]
//parse specification of proportions
gettoken p1 rest : anything
gettoken p2 rest : rest
if (‘”‘p2’”’==””) {

di as err ”Experimental-group proportion must be specified”
exit 198

}
if (‘”‘rest’”’!=””) {

di as err ”Only two proportions may be specified”
exit 198

}
//sample size must be specified to compute power
if (‘”‘n’‘n1’‘n2’”’==””) {

di as err ”One of {bf:n()}, {bf:n1()}, or {bf:n2()} ” ///
”is required to compute power”

exit 198
}

https://www.stata.com/manuals/pss-2power.pdf#pss-2powerSyntaxpower_options
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesevaluator
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesparser
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplessresults
https://www.stata.com/manuals/pss-2powertwoproportions.pdf#pss-2powertwoproportions

power usermethod — Add your own methods to the power command 11

//handle some sample-size specifications
if (‘”‘n’”’==””) {

tempname n
if (‘”‘n2’”’==””) {

tempname n2
scalar ‘n2’ = ceil(‘nratio’*‘n1’)

}
else if (‘”‘n1’”’==””) {

tempname n1
scalar ‘n1’ = ceil(‘n2’/‘nratio’)

}
scalar ‘n’ = ‘n1’+‘n2’
local nratio = ‘n2’/‘n1’

}
else {

if (‘”‘n1’”’!=””) {
tempname n2
scalar ‘n2’ = ‘n’ - ‘n1’

}
else if (‘”‘n2’”’!=””) {

tempname n1
scalar ‘n1’ = ‘n’ - ‘n2’

}
else {

tempname n1 n2
scalar ‘n1’ = ceil(‘n’/(1+‘nratio’))
scalar ‘n2’ = ‘n’-‘n1’

}
}

//compute power
tempname diff pbar sigma_D sigma_p crv power
scalar ‘diff’ = ‘p2’ - ‘p1’
scalar ‘pbar’ = (‘n1’*‘p1’+‘n2’*‘p2’)/‘n’
scalar ‘sigma_D’ = sqrt(‘p1’*(1-‘p1’)/‘n1’+‘p2’*(1-‘p2’)/‘n2’)
scalar ‘sigma_p’ = sqrt(‘pbar’*(1-‘pbar’)*(1/‘n1’+1/‘n2’))
scalar ‘crv’ = invnormal(1-‘alpha’/2)*‘sigma_p’
scalar ‘power’ = normal((‘diff’-‘crv’)/‘sigma_D’) ///

+ normal((-‘diff’-‘crv’)/‘sigma_D’)

//return results
return scalar alpha = ‘alpha’
return scalar power = ‘power’
return scalar N = ‘n’
return scalar N1 = ‘n1’
return scalar N2 = ‘n2’
return scalar nratio = ‘nratio’
return scalar p1 = ‘p1’
return scalar p2 = ‘p2’

end

power usermethod — Add your own methods to the power command 12

We can now use powertwoprop with the power command. We specify the two proportions following

the command name and group sample sizes in the n1() and n2() options.

. power powertwoprop 0.1 0.3, n1(40) n2(60)
Estimated power
Two-sided test

alpha power N

.05 .6743 100

As with one-sample methods, we can use an initializer (saved in

power cmd powertwoprop init.ado) to include additional columns in our default table.

// initializer
program power_cmd_powertwoprop_init, sclass

version 19.5 // (or version 19 if you do not have StataNow)
sreturn clear
sreturn local pss_colnames ”N1 N2 nratio p1 p2”
sreturn local pss_samples ”twosample”

end

. power powertwoprop 0.1 0.3, n1(40) n2(60)
Estimated power
Two-sided test

alpha power N N1 N2 nratio p1 p2

.05 .6743 100 40 60 1.5 .1 .3

Initializer’s s() return settings
The following s() results may be set by the initializer or parser:

Macros

s(pss samples) onesample for a one-sample test or twosample for a two-sample test

s(pss colnames) columns to be added to the default supported columns

s(pss allcolnames) all supported columns

s(pss tabcolnames) columns to be added to the default table

s(pss alltabcolnames) all columns to be displayed in the default table

s(pss collabels) labels for the specified columns

s(pss colformats) formats for the specified columns

s(pss colwidths) widths for the specified columns

s(pss colgrlabels) labels to be used to label columns on the graph

s(pss colgrsymbols) symbols to be used to label columns on the graph

s(pss delta) column name containing the effect-size parameter

s(pss target) column name containing the target parameter

s(pss targetlabel) label for the target parameter

s(pss argnames) column names containing command arguments

s(pss title) method-specific title

s(pss subtitle) subtitle

s(pss hyp lhs) left-hand-side parameter or value for the hypothesis

s(pss hyp rhs) right-hand-side parameter or value for the hypothesis

s(pss grhyp lhs) left-hand-side parameter or value for the hypothesis on the graph

s(pss grhyp rhs) right-hand-side parameter or value for the hypothesis on the graph

https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesinitializer
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplesparser
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_samples
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_colnames
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_allcolnames
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_tabcolnames
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_alltabcolnames
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_collabels
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_colformats
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_colwidths
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_colgrlabels
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_colgrsymbols
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_delta
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_target
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_targetlabel
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_argnames
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_title
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_subtitle
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_hyp_lhs
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_hyp_rhs
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_grhyp_lhs
https://www.stata.com/manuals/pss-2powerusermethod.pdf#pss-2powerusermethodRemarksandexamplespss_grhyp_rhs

power usermethod — Add your own methods to the power command 13

References
Cain, M. 2021. Calculating power using Monte Carlo simulations, part 5: Structural equation models. The Stata Blog:

Not Elsewhere Classified. https://blog.stata.com/2021/08/19/calculating-power-using-monte-carlo-simulations-part-

5-structural-equation-models/.

Huber, C. 2019. Calculating power using Monte Carlo simulations, part 2: Running your simulation using power.

The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2019/01/29/calculating-power-using-monte-carlo-

simulations-part-2-running-your-simulation-using-power/.

Also see
[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] Intro (power) — Introduction to power and sample-size analysis for hypothesis tests

[PSS-5] Glossary

[ADAPT] gsdesign usermethod —Add your own methods to the gsdesign command

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://blog.stata.com/2021/08/19/calculating-power-using-monte-carlo-simulations-part-5-structural-equation-models/
https://blog.stata.com/2021/08/19/calculating-power-using-monte-carlo-simulations-part-5-structural-equation-models/
https://blog.stata.com/2019/01/29/calculating-power-using-monte-carlo-simulations-part-2-running-your-simulation-using-power/
https://blog.stata.com/2019/01/29/calculating-power-using-monte-carlo-simulations-part-2-running-your-simulation-using-power/
https://www.stata.com/manuals/pss-2power.pdf#pss-2power
https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)
https://www.stata.com/manuals/pss-5glossary.pdf#pss-5Glossary
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethod
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

