power twovariances — Power analysis for a two-sample variances test

Description

power twovariances computes sample size, power, or the experimental-group variance (or standard deviation) for a two-sample variances test. By default, it computes sample size for given power and the values of the control-group and experimental-group variances. Alternatively, it can compute power for given sample size and values of the control-group and experimental-group variances or the experimental-group variance for given sample size, power, and the control-group variance. Also see [PSS-2] power for a general introduction to the power command using hypothesis tests.

Quick start

Sample size for a test of $H_0: \sigma_1^2 = \sigma_2^2$ versus $H_a: \sigma_1^2 \neq \sigma_2^2$ with control-group variance $v_1 = 25$, experimental-group variance $v_2 = 36$, default power of 0.8, and significance level $\alpha = 0.05$

```
power twovariances 25 36
```

Same as above, but specified as standard deviations $s_1 = 5$ and $s_2 = 6$

```
power twovariances 5 6, sd
```

Sample size for $v_1 = 25$ and v_2 equals to 36, 38, 40, and 42

```
power twovariances 25 (36(2)42)
```

As above, but display results in a graph of sample size versus v_2

```
power twovariances 25 (36(2)42), graph
```

Save results to the dataset mydata.dta

```
power twovariances 25 (36(2)42), saving(mydata)
```

Power for a total sample size of 300

```
power twovariances 25 36, n(300)
```

As above, but specify sample sizes of 200 and 100 for groups 1 and 2, respectively

```
power twovariances 25 36, n1(200) n2(100)
```

Effect size and experimental-group standard deviation given control-group standard deviation of 5, sample size of 200, and power of 0.8

```
power twovariances 5, sd n(200) power(0.8)
```

As above, but calculate experimental-group variance given control-group variance of 25

```
power twovariances 25, n(200) power(0.8)
```
Menu

Statistics > Power, precision, and sample size

Syntax

Compute sample size

Variance scale

\[\text{power twovariances } v_1 \ v_2 \ [, \ \text{power}(\text{numlist}) \ \text{options}]\]

Standard deviation scale

\[\text{power twovariances } s_1 \ s_2 , \ \text{sd} \ [\text{power}(\text{numlist}) \ \text{options}]\]

Compute power

Variance scale

\[\text{power twovariances } v_1 \ v_2 , n(\text{numlist}) \ [\text{options}]\]

Standard deviation scale

\[\text{power twovariances } s_1 \ s_2 , \ \text{sd} \ n(\text{numlist}) \ [\text{options}]\]

Compute effect size and target parameter

Experimental-group variance

\[\text{power twovariances } v_1 , n(\text{numlist}) \ \text{power}(\text{numlist}) \ [\text{options}]\]

Experimental-group standard deviation

\[\text{power twovariances } s_1 , \ \text{sd} \ n(\text{numlist}) \ \text{power}(\text{numlist}) \ [\text{options}]\]

where \(v_1\) and \(s_1\) are the variance and standard deviation, respectively, of the control (reference) group and \(v_2\) and \(s_2\) are the variance and standard deviation of the experimental (comparison) group. Each argument may be specified either as one number or as a list of values in parentheses (see [U] 11.1.8 numlist).
power twovariances — Power analysis for a two-sample variances test

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd</td>
<td>request computation using the standard deviation scale; default is the variance scale</td>
</tr>
</tbody>
</table>

Main

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha (numlist)</td>
<td>significance level; default is alpha(0.05)</td>
</tr>
<tr>
<td>power (numlist)</td>
<td>power; default is power(0.8)</td>
</tr>
<tr>
<td>beta (numlist)</td>
<td>probability of type II error; default is beta(0.2)</td>
</tr>
<tr>
<td>n (numlist)</td>
<td>total sample size; required to compute power or effect size</td>
</tr>
<tr>
<td>n1 (numlist)</td>
<td>sample size of the control group</td>
</tr>
<tr>
<td>n2 (numlist)</td>
<td>sample size of the experimental group</td>
</tr>
<tr>
<td>nratio (numlist)</td>
<td>ratio of sample sizes, N2/N1; default is nratio(1), meaning equal group sizes</td>
</tr>
<tr>
<td>compute(N1</td>
<td>N2)*</td>
</tr>
<tr>
<td>nfractional</td>
<td>allow fractional sample sizes</td>
</tr>
<tr>
<td>ratio (numlist)</td>
<td>ratio of variances, v2/v1 (or ratio of standard deviations, s2/s1, if option sd is specified); specify instead of the experimental-group variance v2 (or standard deviation s2)</td>
</tr>
<tr>
<td>direction(upper</td>
<td>lower)*</td>
</tr>
<tr>
<td>onesided</td>
<td>one-sided test; default is two sided</td>
</tr>
<tr>
<td>parallel</td>
<td>treat number lists in starred options or in command arguments as parallel when multiple values per option or argument are specified (do not enumerate all possible combinations of values)</td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[no] table</td>
<td>suppress table or display results as a table; see [PSS-2] power, table</td>
</tr>
<tr>
<td>saving(filename [, replace])</td>
<td>save the table data to filename; use replace to overwrite existing filename</td>
</tr>
</tbody>
</table>

Graph

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>graph</td>
<td>graph results; see [PSS-2] power, graph</td>
</tr>
</tbody>
</table>

Iteration

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>init(#)</td>
<td>initial value for sample sizes or experimental-group variance</td>
</tr>
<tr>
<td>iterate(#)</td>
<td>maximum number of iterations; default is iterate(500)</td>
</tr>
<tr>
<td>tolerance(#)</td>
<td>parameter tolerance; default is tolerance(1e-12)</td>
</tr>
<tr>
<td>ftolerance(#)</td>
<td>function tolerance; default is ftolerance(1e-12)</td>
</tr>
<tr>
<td>[no] log</td>
<td>suppress or display iteration log</td>
</tr>
<tr>
<td>[no] dots</td>
<td>suppress or display iterations as dots</td>
</tr>
<tr>
<td>notitle</td>
<td>suppress the title</td>
</tr>
</tbody>
</table>

*Specifying a list of values in at least two starred options, or at least two command arguments, or at least one starred option and one argument results in computations for all possible combinations of the values; see [U] 11.1.8 numlist. Also see the parallel option.

sd does not appear in the dialog box; specification of sd is done automatically by the dialog box selected. notitle does not appear in the dialog box.
where *tablespec* is

\[
\text{column}[::\text{label}][\text{column}[::\text{label}][\ldots]][,\text{tableopts}]
\]

column is one of the columns defined below, and *label* is a column label (may contain quotes and compound quotes).

<table>
<thead>
<tr>
<th>column</th>
<th>Description</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>significance level</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>power</td>
<td>power</td>
<td>(1 - \beta)</td>
</tr>
<tr>
<td>beta</td>
<td>type II error probability</td>
<td>(\beta)</td>
</tr>
<tr>
<td>N</td>
<td>total number of subjects</td>
<td>(N)</td>
</tr>
<tr>
<td>N1</td>
<td>number of subjects in the control group</td>
<td>(N_1)</td>
</tr>
<tr>
<td>N2</td>
<td>number of subjects in the experimental group</td>
<td>(N_2)</td>
</tr>
<tr>
<td>nratio</td>
<td>ratio of sample sizes, experimental to control</td>
<td>(N_2/N_1)</td>
</tr>
<tr>
<td>delta</td>
<td>effect size</td>
<td>(\delta)</td>
</tr>
<tr>
<td>v1</td>
<td>control-group variance</td>
<td>(\sigma_1^2)</td>
</tr>
<tr>
<td>v2</td>
<td>experimental-group variance</td>
<td>(\sigma_2^2)</td>
</tr>
<tr>
<td>s1</td>
<td>control-group standard deviation</td>
<td>(\sigma_1)</td>
</tr>
<tr>
<td>s2</td>
<td>experimental-group standard deviation</td>
<td>(\sigma_2)</td>
</tr>
<tr>
<td>ratio</td>
<td>ratio of the experimental-group variance to the</td>
<td>(\sigma_2^2/\sigma_1^2)</td>
</tr>
<tr>
<td></td>
<td>control-group variance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ratio of the experimental-group standard deviation to the control-group standard deviation</td>
<td>(\sigma_2/\sigma_1)</td>
</tr>
<tr>
<td></td>
<td>(if sd is specified)</td>
<td></td>
</tr>
<tr>
<td>target</td>
<td>target parameter; synonym for v2</td>
<td></td>
</tr>
<tr>
<td>_all</td>
<td>display all supported columns</td>
<td></td>
</tr>
</tbody>
</table>

Column *beta* is shown in the default table in place of column *power* if specified.

Columns *s1* and *s2* are displayed in the default table in place of the *v1* and *v2* columns when the *sd* option is specified.

Column *ratio* is shown in the default table if specified. If the *sd* option is specified, this column contains the ratio of standard deviations. Otherwise, this column contains the ratio of variances.

Options

sd specifies that the computation be performed using the standard deviation scale. The default is to use the variance scale.

Main

alpha(), power(), beta(), n(), n1(), n2(), nratio(), compute(), nfractional; see [PSS-2] power.

ratio(numlist) specifies the ratio of the experimental-group variance to the control-group variance, \(v_2/v_1\), or the ratio of the standard deviations, \(s_2/s_1\), if the *sd* option is specified. You can specify either the experimental-group variance \(v_2\) as a command argument or the ratio of the variances in ratio(). If you specify ratio(#), the experimental-group variance is computed as \(v_2 = v_1 \times #\). This option is not allowed with the effect-size determination.

direction(), onesided, parallel; see [PSS-2] power.
Table

Table, `table()`, `notable`; see [PSS-2] power, table.

saving(); see [PSS-2] power.

Graph

Graph, `graph()`; see [PSS-2] power, graph. Also see the column table for a list of symbols used by the graphs.

Iteration

`init(#)` specifies the initial value for the estimated parameter. For sample-size determination, the estimated parameter is either the control-group size n_1 or, if `compute(N2)` is specified, the experimental-group size n_2. For the effect-size determination, the estimated parameter is the experimental-group variance v_2 or, if the `sd` option is specified, the experimental-group standard deviation s_2. The default initial values for the variance and standard deviation for a two-sided test are obtained as a closed-form solution for the corresponding one-sided test with the significance level $\alpha/2$. The default initial values for sample sizes for a χ^2 test are obtained from the corresponding closed-form normal approximation.

`iterate()`, `tolerance()`, `ftolerance()`, `log`, `nolog`, `dots`, `nodots`; see [PSS-2] power.

The following option is available with `power twovariances` but is not shown in the dialog box: `notitle`; see [PSS-2] power.

Remarks and examples

Remarks are presented under the following headings:

- Introduction
- Using power twovariances
- Computing sample size
- Computing power
- Computing effect size and experimental-group variance
- Testing a hypothesis about two independent variances

This entry describes the `power twovariances` command and the methodology for power and sample-size analysis for a two-sample variances test. See [PSS-2] Intro (power) for a general introduction to power and sample-size analysis and [PSS-2] power for a general introduction to the `power` command using hypothesis tests.

Introduction

Investigators are often interested in comparing the variances of two populations, such as comparing variances in yields of corn from two plots, comparing variances of stock returns from two companies, comparing variances of the alcohol concentrations from two different yeast strains, and so on. Before conducting the actual study, the investigators need to find the optimal sample size to detect variations that are beyond tolerable limits or industry-wide standards.

This entry describes power and sample-size analysis for the inference about two population variances performed using hypothesis testing. Specifically, we consider the null hypothesis $H_0: \sigma_2^2 = \sigma_1^2$ versus the two-sided alternative hypothesis $H_a: \sigma_2^2 \neq \sigma_1^2$, the upper one-sided alternative $H_a: \sigma_2^2 > \sigma_1^2$, or the lower one-sided alternative $H_a: \sigma_2^2 < \sigma_1^2$.
Hypothesis testing of variances relies on the assumption of normality. If two independent processes are assumed to follow a normal distribution, then the ratio of their sample variances follows an F distribution, and the corresponding test is known as an F test.

The test of variances is equivalent to the test of standard deviations with the null hypothesis $H_0: \sigma_1 = \sigma_2$. The standard deviation test uses the same F test statistic. The only difference between the two tests is the scale or metric of the variability parameters: variances for the variance test and standard deviations for the standard deviation test. In some cases, standard deviations may provide a more meaningful interpretation than variances. For example, standard deviations of test scores or IQ have the same scale as the mean and provide information about the spread of the observations around the mean.

The `power twovariances` command provides power and sample-size analysis for the F test of two-sample variances or standard deviations.

Using `power twovariances`

`power twovariances` computes sample size, power, or experimental-group variance for a two-sample variances test. All computations are performed for a two-sided hypothesis test where, by default, the significance level is set to 0.05. You may change the significance level by specifying the `alpha()` option. You can specify the `onesided` option to request a one-sided test. By default, all computations assume a balanced- or equal-allocation design; see [PSS-4] Unbalanced designs for a description of how to specify an unbalanced design.

In what follows, we describe the use of `power twovariances` in a variance metric. The corresponding use in a standard deviation metric, when the `sd` option is specified, is the same except variances v_1 and v_2 should be replaced with the respective standard deviations s_1 and s_2. Note that computations using the variance and standard deviation scales yield the same results; the difference is only in the specification of the parameters.

To compute the total sample size, you must specify the control- and experimental-group variances, v_1 and v_2, respectively, and, optionally, the power of the test in the `power()` option. The default power is set to 0.8.

Instead of the total sample size, you can compute one of the group sizes given the other one. To compute the control-group sample size, you must specify the `compute(N1)` option and the sample size of the experimental group in the `n2()` option. Likewise, to compute the experimental-group sample size, you must specify the `compute(N2)` option and the sample size of the control group in the `n1()` option.

To compute power, you must specify the total sample size in the `n()` option and the control and the experimental-group variances, v_1 and v_2, respectively.

Instead of the experimental-group variance v_2, you may specify the ratio v_2/v_1 of the experimental-group variance to the control-group variance in the `ratio()` option when computing sample size or power.

To compute effect size, the ratio of the experimental-group variance to the control-group variance, and the experimental-group variance, you must specify the total sample size in the `n()` option, the power in the `power()` option, the control-group variance v_1, and, optionally, the direction of the effect. The direction is upper by default, `direction(upper)`, which means that the experimental-group variance is assumed to be larger than the specified control-group value. You can change the direction to be lower, which means that the experimental-group variance is assumed to be smaller than the specified control-group value, by specifying the `direction(lower)` option.
Instead of the total sample size \(n() \), you can specify individual group sizes in \(n1() \) and \(n2() \), or specify one of the group sizes and \(nratio() \) when computing power or effect size. Also see *Two samples* in [PSS-4] Unbalanced designs for more details.

In the following sections, we describe the use of `power twovariances` accompanied by examples for computing sample size, power, and experimental-group variance.

Computing sample size

To compute sample size, you must specify the control- and the experimental-group variances, \(v_1 \) and \(v_2 \), respectively, and, optionally, the power of the test in the `power()` option. A default power of 0.8 is assumed if `power()` is not specified.

Example 1: Sample size for a two-sample variances test

Consider a study whose goal is to investigate whether the variability in weights (measured in ounces) of bags of potato chips produced by a machine at a plant A, the control group, differs from that produced by a similar machine at a new plant B, the experimental group. The considered null hypothesis is \(H_0: \sigma_A = \sigma_B \) versus a two-sided alternative hypothesis \(H_a: \sigma_A \neq \sigma_B \) or, equivalently, \(H_0: \sigma_A^2 = \sigma_B^2 \) versus \(H_a: \sigma_A^2 \neq \sigma_B^2 \). The standard deviation of weights from plant A is 2 ounces. The standard deviation of weights from the new plant B is expected to be lower, 1.5 ounces. The respective variances of weights from plants A and B are 4 and 2.25. Investigators wish to obtain the minimum sample size required to detect the specified change in variability with 80% power using a 5%-level two-sided test assuming equal-group allocation. To compute sample size for this study, we specify the control- and experimental-group variances after the command name:

```
. power twovariances 4 2.25
Performing iteration ...  
Estimated sample sizes for a two-sample variances test  
F test  
Ho: v2 = v1 versus Ha: v2 != v1  
Study parameters:  
    alpha = 0.0500  
    power = 0.8000  
    delta = 0.5625  
    v1 = 4.0000  
    v2 = 2.2500  
Estimated sample sizes:  
    N = 194  
    N per group = 97
```

A total sample of 194 bags, 97 in each plant, must be obtained to detect the specified ratio of variances in the two plants with 80% power using a two-sided 5%-level test.
Example 2: Standard deviation scale

We can also specify standard deviations instead of variances, in which case we must also specify the `sd` option:

```
. power twovariances 2 1.5, sd
Performing iteration ...  
Estimated sample sizes for a two-sample standard-deviations test  
F test  
Ho: s2 = s1 versus Ha: s2 != s1  
Study parameters:  
    alpha = 0.0500  
    power = 0.8000  
    delta = 0.7500  
    s1 = 2.0000  
    s2 = 1.5000  
Estimated sample sizes:  
    N = 194  
    N per group = 97
```

We obtain the same sample sizes as in example 1.

Example 3: Specifying ratio of variances or standard deviations

Instead of the experimental-group variance of 2.25 as in example 1, we can specify the ratio of variances 2.25/4 = 0.5625 in the `ratio()` option.

```
. power twovariances 4, ratio(0.5625)
Performing iteration ...  
Estimated sample sizes for a two-sample variances test  
F test  
Ho: v2 = v1 versus Ha: v2 != v1  
Study parameters:  
    alpha = 0.0500  
    power = 0.8000  
    delta = 0.5625  
    v1 = 4.0000  
    v2 = 2.2500  
    ratio = 0.5625  
Estimated sample sizes:  
    N = 194  
    N per group = 97
```

The results are identical to those from example 1.

Similarly, instead of the experimental-group standard deviation of 1.5 as in example 2, we can specify the ratio of standard deviations 1.5/2 = 0.75 in the `ratio()` option and obtain the same results:
. power twovariances 2, sd ratio(0.75)
Performing iteration ...
Estimated sample sizes for a two-sample standard-deviations test
F test
Ho: s2 = s1 versus Ha: s2 != s1
Study parameters:
 alpha = 0.0500
 power = 0.8000
 delta = 0.7500
 s1 = 2.0000
 s2 = 1.5000
 ratio = 0.7500
Estimated sample sizes:
 N = 194
 N per group = 97

Example 4: Computing one of the group sizes

Continuing with example 1, we will suppose that investigators anticipate a sample of 100 bags from plant A and wish to compute the required number of bags from plant B. To compute sample size for plant B using the study parameters of example 1, we use a combination of the n1() and compute(N2) options.

. power twovariances 4 2.25, n1(100) compute(N2)
Performing iteration ...
Estimated sample sizes for a two-sample variances test
F test
Ho: v2 = v1 versus Ha: v2 != v1
Study parameters:
 alpha = 0.0500
 power = 0.8000
 delta = 0.5625
 v1 = 4.0000
 v2 = 2.2500
 N1 = 100
Estimated sample sizes:
 N = 194
 N2 = 94

A slightly smaller sample of 94 bags is needed from plant B given a slightly larger sample of bags from plant A to achieve the same 80% power as in example 1.

If the sample size for plant B is known a priori, you can compute the sample size for plant A by specifying the n2() and compute(N1) options.

Example 5: Unbalanced design

By default, power twovariances computes sample size for a balanced- or equal-allocation design. If we know the allocation ratio of subjects between the groups, we can compute the required sample size for an unbalanced design by specifying the nratio() option.
Continuing with example 1, we will suppose that the new plant B is more efficient and more cost effective in producing bags of chips than plant A. Investigators anticipate twice as many bags from plant B than from plant A; that is, \(n_2/n_1 = 2 \). We compute the required sample size for this unbalanced design by specifying the `nratio()` option:

```
. power twovariances 4 2.25, nratio(2)
Performing iteration ...
Estimated sample sizes for a two-sample variances test
F test
Ho: v2 = v1 versus Ha: v2 != v1
Study parameters:
  alpha = 0.0500
  power = 0.8000
  delta = 0.5625
  v1 = 4.0000
  v2 = 2.2500
  N2/N1 = 2.0000
Estimated sample sizes:
  N = 225
  N1 = 75
  N2 = 150
```

The requirement on the total sample size increases for an unbalanced design compared with the balanced design from example 1. Investigators must decide whether the decrease of 22 from 97 to 75 in the number of bags from plant A covers the cost of the additional 53 (150 − 97 = 53) bags from plant B.

Also see Two samples in [PSS-4] Unbalanced designs for more examples of unbalanced designs for two-sample tests.

Computing power

To compute power, you must specify the total sample size in the `n()` option and the control- and experimental-group variances, \(v_1 \) and \(v_2 \), respectively.

Example 6: Power of a two-sample variances test

Continuing with example 1, we will suppose that the investigators can afford a total sample of 250 bags, 125 from each plant, and want to find the power corresponding to this larger sample size.

To compute the power corresponding to this sample size, we specify the total sample size in the `n()` option:

```
. power twovariances 4 2.25, n(250)
Estimated power for a two-sample variances test
F test
Ho: v2 = v1 versus Ha: v2 != v1
Study parameters:
  alpha = 0.0500
  N = 250
  N per group = 125
  delta = 0.5625
  v1 = 4.0000
  v2 = 2.2500
Estimated power:
  power = 0.8908
```
With a total sample of 250 bags, 125 per plant, we obtain a power of roughly 89%.

Example 7: Multiple values of study parameters

In this example, we assess the effect of varying the variances of weights obtained from plant B on the power of our study. Continuing with example 6, we vary the experimental-group variance from 1.5 to 3 in 0.25 increments. We specify the corresponding `numlist` in parentheses:

```
. power twovariances 4 (1.5(0.25)3), n(250)
```

Estimated power for a two-sample variances test

<table>
<thead>
<tr>
<th>alpha</th>
<th>power</th>
<th>N</th>
<th>N1</th>
<th>N2</th>
<th>delta</th>
<th>v1</th>
<th>v2</th>
</tr>
</thead>
<tbody>
<tr>
<td>.05</td>
<td>.9997</td>
<td>250</td>
<td>125</td>
<td>125</td>
<td>.375</td>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>.05</td>
<td>.9956</td>
<td>250</td>
<td>125</td>
<td>125</td>
<td>.4375</td>
<td>4</td>
<td>1.75</td>
</tr>
<tr>
<td>.05</td>
<td>.9701</td>
<td>250</td>
<td>125</td>
<td>125</td>
<td>.5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>.05</td>
<td>.8908</td>
<td>250</td>
<td>125</td>
<td>125</td>
<td>.5625</td>
<td>4</td>
<td>2.25</td>
</tr>
<tr>
<td>.05</td>
<td>.741</td>
<td>250</td>
<td>125</td>
<td>125</td>
<td>.625</td>
<td>4</td>
<td>2.5</td>
</tr>
<tr>
<td>.05</td>
<td>.5466</td>
<td>250</td>
<td>125</td>
<td>125</td>
<td>.6875</td>
<td>4</td>
<td>2.75</td>
</tr>
<tr>
<td>.05</td>
<td>.3572</td>
<td>250</td>
<td>125</td>
<td>125</td>
<td>.75</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

The power decreases from 99.97% to 35.72% as the experimental-group variance gets closer to the control-group variance of 4.

For multiple values of parameters, the results are automatically displayed in a table, as we see above. For more examples of tables, see [PSS-2] `power, table`. If you wish to produce a power plot, see [PSS-2] `power, graph`.

Computing effect size and experimental-group variance

Effect size \(\delta \) for a two-sample variances test is defined as the ratio of the experimental-group variance to the control-group variance, \(\delta = v_2/v_1 \). If the `sd` option is specified, effect size \(\delta \) is the ratio of the experimental-group standard deviation to the control-group standard deviation, \(\delta = s_2/s_1 \).

Sometimes, we may be interested in determining the smallest effect and the corresponding experimental-group variance that yield a statistically significant result for prespecified sample size and power. In this case, power, sample size, and control-group variance must be specified. In addition, you must also decide on the direction of the effect: upper, meaning \(v_2 > v_1 \), or lower, meaning \(v_2 < v_1 \). The direction may be specified in the `direction()` option; `direction(upper)` is the default. If the `sd` option is specified, the estimated parameter is the experimental-group standard deviation instead of the variance.

Example 8: Minimum detectable value of the experimental-group variance

Continuing with example 6, we will compute the minimum plant B variance that can be detected given a total sample of 250 bags and 80% power. To find the variance, after the command name, we specify the plant A variance of 4, total sample size `n(250)`, and power `power(0.8)`:
. power twovariances 4, n(250) power(0.8)
Performing iteration ...
Estimated experimental-group variance for a two-sample variances test
F test
Ho: v2 = v1 versus Ha: v2 != v1; v2 > v1
Study parameters:
alpha = 0.0500
power = 0.8000
N = 250
N per group = 125
v1 = 4.0000
Estimated effect size and experimental-group variance:
delta = 1.6573
v2 = 6.6291

We find that the minimum value of the experimental-group variance that would yield a statistically
significant result in this study is 6.63, and the corresponding effect size is 1.66.

In this example, we computed the variance assuming an upper direction, or a ratio greater than 1,
$\delta > 1$. To request a lower direction, or a ratio less than 1, we can specify the direction(lower)
option.

Testing a hypothesis about two independent variances

In this section, we demonstrate the use of the \texttt{sdtest} command for testing a hypothesis about
two independent variances; see \texttt{[R] sdtest} for details.

\textbf{Example 9: Comparing two variances}

Consider the \texttt{fuel} dataset analyzed in \texttt{[R] sdtest}. Suppose we want to investigate the effectiveness
of a new fuel additive on the mileage of cars. We have a sample of 12 cars, where each car was run
without the additive and later with the additive. The results of each run are stored in variables \texttt{mpg1}
and \texttt{mpg2}.

\begin{verbatim}
. use https://www.stata-press.com/data/r16/fuel
. sdtest mpg1==mpg2
Variance ratio test

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpg1</td>
<td>12</td>
<td>21</td>
<td>.7881701</td>
<td>2.730301</td>
<td>19.26525 22.73475</td>
</tr>
<tr>
<td>mpg2</td>
<td>12</td>
<td>22.75</td>
<td>.9384465</td>
<td>3.250874</td>
<td>20.68449 24.81551</td>
</tr>
<tr>
<td>combined</td>
<td>24</td>
<td>21.875</td>
<td>.6264476</td>
<td>3.068954</td>
<td>20.57909 23.17091</td>
</tr>
</tbody>
</table>

ratio = sd(mpg1) / sd(mpg2) f = 0.7054
Ho: ratio = 1 degrees of freedom = 11, 11
Ha: ratio < 1 Ha: ratio != 1 Ha: ratio > 1
Pr(F < f) = 0.2862 2*Pr(F < f) = 0.5725 Pr(F > f) = 0.7138
\end{verbatim}

\texttt{sdtest} uses the ratio of the control-group standard deviation to the experimental-group standard
deviation as its test statistic. We do not have sufficient evidence to reject the null hypothesis of
$H_0: \sigma_1 = \sigma_2$ versus the two-sided alternative $H_a: \sigma_1 \neq \sigma_2$; the \textit{p}-value > 0.5725.
We use the estimates of this study to perform a sample-size analysis we would have conducted before the study. We assume an equal-group design and power of 80%.

```
. power twovariances 2.73 3.25, sd power(0.8)
```

Performing iteration ...

Estimated sample sizes for a two-sample standard-deviations test
F test
Ho: s2 = s1 versus Ha: s2 != s1

Study parameters:

```
alpha = 0.0500
power = 0.8000
delta = 1.1905
s1 = 2.7300
s2 = 3.2500
```

Estimated sample sizes:

```
N = 522
N per group = 261
```

The total sample size required by the test to detect the difference between the two standard deviations of 2.73 in the control group and of 3.25 in the experimental group is 522, 261 for each group, which is significantly larger than the sample of 12 cars in our fuel dataset.

Stored results

`power twovariances` stores the following in `r()`:

Scalars

- `r(alpha)`: significance level
- `r(power)`: power
- `r(beta)`: probability of a type II error
- `r(delta)`: effect size
- `r(N)`: total sample size
- `r(N_a)`: actual sample size
- `r(N1)`: sample size of the control group
- `r(N2)`: sample size of the experimental group
- `r(nratio)`: ratio of sample sizes, N2/N1
- `r(nratio_a)`: actual ratio of sample sizes
- `r(nfractional)`: 1 if nfractional is specified, 0 otherwise
- `r(onesided)`: 1 for a one-sided test, 0 otherwise
- `r(v1)`: control-group variance
- `r(v2)`: experimental-group variance
- `r(ratio)`: ratio of the experimental- to the control-group variances (or standard deviations if sd is specified)
- `r(separator)`: number of lines between separator lines in the table
- `r(divider)`: 1 if divider is requested in the table, 0 otherwise
- `r(init)`: initial value for sample sizes, experimental-group variance, or standard deviation
- `r(maxiter)`: maximum number of iterations
- `r(iter)`: number of iterations performed
- `r(tolerance)`: requested parameter tolerance
- `r(deltax)`: final parameter tolerance achieved
- `r(ftolerance)`: requested distance of the objective function from zero
- `r(function)`: final distance of the objective function from zero
- `r(converged)`: 1 if iteration algorithm converged, 0 otherwise
Methods and formulas

Consider two independent samples from a normal population with means \(\mu_1 \) and \(\mu_2 \) and variances \(\sigma_1^2 \) and \(\sigma_2^2 \). The ratio \((s_1^2/\sigma_1^2)/(s_2^2/\sigma_2^2) \) has an \(F \) distribution with \(n_1 - 1 \) numerator and \(n_2 - 1 \) denominator degrees of freedom. \(s_1^2 \) and \(s_2^2 \) are the sample variances, and \(n_1 \) and \(n_2 \) are the sample sizes.

Let \(\sigma_1^2 \) and \(\sigma_2^2 \) be the control-group and experimental-group variances, respectively.

A two-sample variances test involves testing the null hypothesis \(H_0: \sigma_2^2 = \sigma_1^2 \) versus the two-sided alternative hypothesis \(H_a: \sigma_2^2 \neq \sigma_1^2 \), the upper one-sided alternative \(H_a: \sigma_2^2 > \sigma_1^2 \), or the lower one-sided alternative \(H_a: \sigma_2^2 < \sigma_1^2 \).

Equivalently, the hypotheses can be expressed in terms of the ratio of the two variances: \(H_0: \sigma_2^2/\sigma_1^2 = 1 \) versus the two-sided alternative \(H_a: \sigma_2^2/\sigma_1^2 \neq 1 \), the upper one-sided alternative \(H_a: \sigma_2^2/\sigma_1^2 > 1 \), or the lower one-sided alternative \(H_a: \sigma_2^2/\sigma_1^2 < 1 \).

The following formulas are based on Dixon and Massey (1983, 116–119).

Let \(\alpha \) be the significance level, \(\beta \) be the probability of a type II error, and \(F_{\alpha} = F_{n_1 - 1, n_2 - 1, \alpha} \) and \(F_{n_1 - 1, n_2 - 1, \beta} \) be the \(\alpha \)th and the \(\beta \)th quantiles of an \(F \) distribution with \(n_1 - 1 \) numerator and \(n_2 - 1 \) denominator degrees of freedom.

The power \(\pi = 1 - \beta \) is computed using

\[
\pi = \begin{cases}
1 - F_{n_1 - 1, n_2 - 1} \left(\frac{\sigma_2^2}{\sigma_1^2} F_{1-\alpha} \right) & \text{for an upper one-sided test} \\
F_{n_1 - 1, n_2 - 1} \left(\frac{\sigma_2^2}{\sigma_1^2} F_{\alpha} \right) & \text{for a lower one-sided test} \\
1 - F_{n_1 - 1, n_2 - 1} \left(\frac{\sigma_1^2}{\sigma_2^2} F_{1-\alpha/2} \right) + F_{n_1 - 1, n_2 - 1} \left(\frac{\sigma_1^2}{\sigma_2^2} F_{\alpha/2} \right) & \text{for a two-sided test}
\end{cases}
\]

(1)

where \(F_{n_1 - 1, n_2 - 1} (\cdot) \) is the cdf of an \(F \) distribution with \(n_1 - 1 \) numerator and \(n_2 - 1 \) denominator degrees of freedom.

Let \(R = n_2/n_1 \) denote the allocation ratio. Then \(n_2 = R \times n_1 \) and power can be viewed as a function of \(n_1 \). Therefore, for sample-size determination, the control-group sample size \(n_1 \) is computed first. The experimental-group size \(n_2 \) is then computed as \(R \times n_1 \), and the total sample size is computed as \(n = n_1 + n_2 \). By default, sample sizes are rounded to integer values; see Fractional sample sizes in [PSS-4] Unbalanced designs for details.

If either \(n_1 \) or \(n_2 \) is known, the other sample size is computed iteratively from the corresponding power equation in (1).

The initial values for the sample sizes are obtained from closed-form large-sample normal approximations; see, for example, Mathews (2010, 68).
For a one-sided test, the minimum detectable value of the experimental-group variance is computed as follows:

$$\sigma_2^2 = \begin{cases}
\sigma_1^2 \frac{F_{n_1-1,n_2-1,1-\alpha}}{F_{n_1-1,n_2-1,\beta}} & \text{for an upper one-sided test} \\
\sigma_1^2 \frac{F_{n_1-1,n_2-1,1-\beta}}{F_{n_1-1,n_2-1,\alpha}} & \text{for a lower one-sided test}
\end{cases} \quad (2)$$

For a two-sided test, the minimum detectable value of the experimental-group variance is computed iteratively using the two-sided power equation from (1). The default initial value is obtained from (2) with α replaced by $\alpha/2$.

References

Also see

[PSS-2] power — Power and sample-size analysis for hypothesis tests

[PSS-2] power, graph — Graph results from the power command

[PSS-2] power, table — Produce table of results from the power command

[PSS-5] Glossary

[R] sdtest — Variance-comparison tests