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Description

power logrank computes sample size, power, or effect size for survival analysis comparing
survivor functions in two groups by using the log-rank test. The results can be obtained using the
Freedman or Schoenfeld approaches. Effect size can be expressed as a hazard ratio or as a log hazard-
ratio. The command supports unbalanced designs, and provides options to account for administrative
censoring, uniform accrual, and withdrawal of subjects from the study. For power and sample-size
analysis in a cluster randomized design, see [PSS-2] power logrank, cluster.

Quick start
Sample size for the log-rank test of H0: ∆ = 0 versus Ha: ∆ 6= 0 using the Freedman method for

alternative hazard ratio ∆a = 0.76 without censoring and with default power of 0.8 and significance
level α = 0.05

power logrank, hratio(.76)

Same as above, but use Schoenfeld’s method
power logrank, hratio(.76) schoenfeld

Sample size for censored design with survival probabilities surv1 = 0.3 and surv2 = 0.4
power logrank .3 .4

Same as above, specified as surv1 = 0.3 and hazard ratio of 0.76
power logrank .3, hratio(.76)

Same as above, but for hazard ratios of 0.65, 0.7, 0.75, and 0.8
power logrank .3, hratio(.65(.05).8)

Same as above, but show results in a graph of hazard ratio versus sample size
power logrank .3, hratio(.65(.05).8) graph

Sample size for a one-sided test with α = 0.01
power logrank .3, hratio(.76) onesided alpha(.01)

Sample size adjusted for 10% withdrawal from the study
power logrank .3, hratio(.76) wdprob(.1)

Power for a design with censoring and a sample size of 300
power logrank .3 .4, n(300)

Same as above, but specify twice as many observations in the experimental group
power logrank .3 .4, n(300) nratio(2)
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2 power logrank — Power analysis for the log-rank test

Effect size for a design without censoring, sample size of 300, power of 0.8, and default α = 0.05
power logrank, n(300) power(.8)

Same as above, but for a censored design with control-group survival probability of 0.3
power logrank .3, n(300) power(.8)

Menu
Statistics > Power, precision, and sample size

Syntax

Compute sample size

power logrank
[

surv1

[
surv2

] ] [
, power(numlist) options

]

Compute power

power logrank
[

surv1

[
surv2

] ]
, n(numlist)

[
options

]

Compute effect size

power logrank
[

surv1

]
, n(numlist) power(numlist)

[
options

]

where surv1 is the survival probability in the control (reference) group at the end of the study t∗ and
surv2 is the survival probability in the experimental (comparison) group at the end of the study t∗.
surv1 and surv2 may each be specified either as one number or as a list of values in parentheses
(see [U] 11.1.8 numlist).

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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options Description

Main
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power or effect size
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1), meaning

equal group sizes
nfractional allow fractional sample sizes

∗hratio(numlist) hazard ratio of the experimental to the control group; default is
hratio(0.5)

∗lnhratio(numlist) log hazard-ratio of the experimental to the control group
schoenfeld use the formula based on the log hazard-ratio

in calculations; default is to use the formula based
on the hazard ratio

effect(effect) specify the type of effect to display; default is method-specific
direction(lower|upper) direction of the effect for effect-size determination; default is

direction(lower), which means that the postulated value
of the parameter is smaller than the hypothesized value

onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Censoring

simpson(# # # |matname) survival probabilities in the control group at three
specific time points to compute the probability of an event
(failure), using Simpson’s rule under uniform accrual

st1(varnames varnamet) variables varnames, containing survival probabilities in
the control group, and varnamet, containing respective time
points, to compute the probability of an event (failure),
using numerical integration under uniform accrual

∗wdprob(numlist) proportion of subjects anticipated to withdraw from the
study; default is wdprob(0)

Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/pss-2.pdf#pss-2powerlogrankSyntaxtablespec
https://www.stata.com/manuals/pss-2powertable.pdf#pss-2power,table
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/pss-2powergraph.pdf#pss-2power,graphSyntaxgraphopts
https://www.stata.com/manuals/pss-2powergraph.pdf#pss-2power,graph
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Iteration

init(#) initial value for effect size
iterate(#) maximum number of iterations; default is iterate(500)

tolerance(#) parameter tolerance; default is tolerance(1e-12)

ftolerance(#) function tolerance; default is ftolerance(1e-12)[
no
]
log suppress or display iteration log[

no
]
dots suppress or display iterations as dots

cluster perform computations for a CRD;
see [PSS-2] power logrank, cluster

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
cluster and notitle do not appear in the dialog box.

effect Description

hratio hazard ratio
lnhratio log hazard-ratio

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N total number of subjects N
N1 number of subjects in the control group N1

N2 number of subjects in the experimental group N2

nratio ratio of sample sizes, experimental to control N2/N1

delta effect size δ
E total number of events (failures) E
hratio hazard ratio ∆
lnhratio log hazard-ratio ln(∆)
s1 survival probability in the control group S1(T )
s2 survival probability in the experimental group S2(T )
Pr E overall probability of an event (failure) pE
Pr w probability of withdrawals pw
target target parameter; hratio or lnhratio
all display all supported columns

https://www.stata.com/manuals/pss-2powercluster.pdf#pss-2powerlogrank,cluster
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/pss-2.pdf#pss-2powerlogrankSyntaxcolumn
https://www.stata.com/manuals/pss-2powertable.pdf#pss-2power,tableSyntaxtableopts
https://www.stata.com/manuals/pss-2.pdf#pss-2powerlogrankSyntaxcolumn
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Column beta is shown in the default table in place of column power if specified.
Column lnhratio is shown in the default table in place of column hratio if specified.
Columns s1 and s2 are available only when specified.
Columns nratio and Pr w are shown in the default table if specified.

Options

� � �
Main �

alpha(), power(), beta(), n(), n1(), n2(), nratio(), nfractional; see [PSS-2] power.

hratio(numlist) specifies the hazard ratio (effect size) of the experimental group to the control group.
The default is hratio(0.5). This value typically defines the clinically significant improvement
of the experimental procedure over the control procedure desired to be detected by the log-rank
test with a certain power.

You can specify an effect size either as a hazard ratio in hratio() or as a log hazard-ratio
in lnhratio(). The default is hratio(0.5). If both arguments surv1 and surv2 are specified,
hratio() is not allowed and the hazard ratio is instead computed as ln(surv2)/ ln(surv1).

This option is not allowed with the effect-size determination and may not be combined with
lnhratio().

lnhratio(numlist) specifies the log hazard-ratio (effect size) of the experimental group to the control
group. This value typically defines the clinically significant improvement of the experimental
procedure over the control procedure desired to be detected by the log-rank test with a certain
power.

You can specify an effect size either as a hazard ratio in hratio() or as a log hazard-ratio
in lnhratio(). The default is hratio(0.5). If both arguments surv1 and surv2 are specified,
lnhratio() is not allowed and the log hazard-ratio is computed as ln{ ln(surv2)/ ln(surv1)}.
This option is not allowed with the effect-size determination and may not be combined with
hratio().

schoenfeld requests calculations using the formula based on the log hazard-ratio, according to
Schoenfeld (1981). The default is to use the formula based on the hazard ratio, according to
Freedman (1982).

effect(effect) specifies the type of the effect size to be reported in the output as delta. effect is one
of hratio or lnhratio. By default, the effect size delta is a hazard ratio, effect(hratio),
for a hazard-ratio test and a log hazard-ratio, effect(lnhratio), for a log hazard-ratio test
(when schoenfeld is specified).

direction(), onesided, parallel; see [PSS-2] power. direction(lower) is the default.

� � �
Censoring �

simpson(# # # |matname) specifies survival probabilities in the control group at three specific time
points to compute the probability of an event (failure) using Simpson’s rule under the assumption
of uniform accrual. Either the actual values or a 1× 3 matrix, matname, containing these values
can be specified. By default, the probability of an event is approximated as an average of the failure
probabilities 1−s1 and 1−s2; see Methods and formulas. simpson() may not be combined with
st1() and may not be used if command argument surv1 or surv2 is specified. This option is not
allowed with effect-size computation.

https://www.stata.com/manuals/pss-2power.pdf#pss-2power
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/pss-2power.pdf#pss-2power
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st1(varnames varnamet) specifies variables varnames, containing survival probabilities in the control
group, and varnamet, containing respective time points, to compute the probability of an event
(failure) using numerical integration under the assumption of uniform accrual; see [R] dydx. The
minimum and the maximum values of varnamet must be the length of the follow-up period and
the duration of the study, respectively. By default, the probability of an event is approximated as
an average of the failure probabilities 1−s1 and 1−s2; see Methods and formulas. st1() may
not be combined with simpson() and may not be used if command argument surv1 or surv2 is
specified. This option is not allowed with effect-size computation.

wdprob(numlist) specifies the proportion of subjects anticipated to withdraw from the study. The
default is wdprob(0). wdprob() is allowed only with sample-size computation.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

� � �
Iteration �

init(#) specifies an initial value for the estimated hazard ratio or, if schoenfeld is specified, for
the estimated log hazard-ratio during the effect-size determination.

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

The following options are available with power logrank but are not shown in the dialog box:

cluster; see [PSS-2] power logrank, cluster.

notitle; see [PSS-2] power.

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Using power logrank
Computing sample size

Computing sample size in the absence of censoring
Computing sample size in the presence of censoring

Withdrawal of subjects from the study
Including information about subject accrual
Computing power
Computing effect size
Testing a hypothesis about two survivor functions using the log-rank test

This entry describes the power logrank command and the methodology for power and sample-size
analysis for a two-sample comparison of survivor functions using the log-rank test. See [PSS-2] Intro
(power) for a general introduction to power and sample-size analysis and [PSS-2] power for a general
introduction to the power command using hypothesis tests. See Survival data in [PSS-2] Intro (power)
for an introduction to power and sample-size analysis for survival data. For power and sample-size
analysis in a cluster randomized design, see [PSS-2] power logrank, cluster.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rdydx.pdf#rdydx
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/pss-2powertable.pdf#pss-2power,table
https://www.stata.com/manuals/pss-2power.pdf#pss-2power
https://www.stata.com/manuals/pss-2powergraph.pdf#pss-2power,graph
https://www.stata.com/manuals/pss-2.pdf#pss-2powerlogrankSyntaxcolumn
https://www.stata.com/manuals/pss-2power.pdf#pss-2power
https://www.stata.com/manuals/pss-2powercluster.pdf#pss-2powerlogrank,cluster
https://www.stata.com/manuals/pss-2power.pdf#pss-2power
http://stata.com
https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)
https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)
https://www.stata.com/manuals/pss-2power.pdf#pss-2power
https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)RemarksandexamplesSurvivaldata
https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)
https://www.stata.com/manuals/pss-2powerlogrankcluster.pdf#pss-2powerlogrank,cluster
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Introduction
Consider a survival study comparing the survivor functions in two groups using the log-rank

test. Let S1(t) and S2(t) denote the survivor functions of the control and the experimental groups,
respectively. The key assumption of the log-rank test is that the hazard functions are proportional.
That is, h2(t) = ∆h1(t) for any t or, equivalently, S2(t) = {S1(t)}∆, where ∆ is the hazard ratio.
If ∆ < 1, the survival in the experimental group is higher relative to the survival in the control
group; the new treatment is superior to the standard treatment. If ∆ > 1, then the standard treatment
is superior to the new treatment. Under the proportional-hazards assumption, the test of the equality
of the two survivor functions H0: S1(t) = S2(t) versus Ha: S1(t) 6= S2(t) is equivalent to the test
H0: ∆ = 1 versus Ha: ∆ 6= 1 or H0: ln(∆) = 0 versus Ha: ln(∆) 6= 0.

The methods implemented in power logrank for power and sample-size analysis relate the power
of the log-rank test directly to the number of events observed in the study. Depending on whether
censoring occurs in a study, the required number of subjects is either equal to the number of events
or is computed using the estimates of the number of events and the combined probability of an event
(failure). Thus, in the presence of censoring, in addition to the number of events, the probability of a
subject not being censored (failing) needs to be estimated to obtain the final estimate of the required
number of subjects in the study.

To determine the required number of events, the investigator must specify the size or significance
level, α, and the clinically significant difference between the two treatments (effect size) to be detected
by the log-rank test, Ha : ∆ = ∆a, with prespecified power 1 − β. The effect size, a difference
between the two treatments, is usually expressed as a hazard ratio, ∆a, using the hratio() option.
Alternatively, you may specify an effect size as a log hazard-ratio, ln(∆a), in the lnhratio()
option.

When all subjects fail by the end of the study (no censoring), a type I study, the information
above is sufficient to obtain the number of subjects required in the study. Often, in practice, not all
subjects fail by the end of the study, in which case censoring of subjects occurs (a type II study).
Here the estimates of the survival probabilities in the control and experimental groups are necessary
to estimate an overall probability of an event and, then, the required sample size.

power logrank supports two methods, those of Freedman (1982) and Schoenfeld (1981), to obtain
the estimates of the number of events or power (see also Marubini and Valsecchi [1995, 127, 134]
and Collett [2015, 473, 479]). The final estimates of the sample size are based on the approximation
of the probability of an event due to Freedman (1982), the default, or in the presence of uniform
accrual, due to Schoenfeld (1983) (see also Collett 2015).

You can use power logrank to

• compute required number of events and sample size when you know power and effect size
(expressed as a hazard ratio or log hazard-ratio);

• compute power when you know sample size (number of events) and effect size (expressed
as a hazard ratio or log hazard-ratio); or

• compute effect size (hazard ratio or log hazard-ratio) and experimental-group survival when
you know sample size (number of events) and power.

You can also choose between the Freedman or Schoenfeld computational approaches, adjust results
for administrative censoring, adjust results for uniform accrual of subjects to the study, and adjust
results for withdrawal of subjects from the study.

https://www.stata.com/manuals/pss-5glossary.pdf#pss-5Glossarydef_typeIstudy
https://www.stata.com/manuals/pss-5glossary.pdf#pss-5Glossarydef_typeIIstudy


8 power logrank — Power analysis for the log-rank test

Using power logrank

power logrank computes sample size, power, or effect size for the log-rank test comparing the
survivor functions in two groups. All computations are performed for a two-sided hypothesis test
where, by default, the significance level is set to 0.05. You may change the significance level by
specifying the alpha() option. You can specify the onesided option to request a one-sided test.
By default, all computations assume a balanced- or equal-allocation design; see [PSS-4] Unbalanced
designs for a description of how to specify an unbalanced design.

To compute a total sample size, you specify an effect size and optionally power of the test in the
power() option. The default power is set to 0.8. By default, the computed sample size is rounded
up. You can specify the nfractional option to see the corresponding fractional sample size; see
Fractional sample sizes in [PSS-4] Unbalanced designs for an example. The nfractional option is
allowed only for sample-size determination.

To compute power, you must specify the total sample size in the n() option and an effect size.

An effect size may be specified either as a hazard ratio supplied in the hratio() option or as a
log hazard-ratio supplied in the lnhratio() option. If neither is specified, a hazard ratio of 0.5 is
assumed.

To compute an effect size, which may be expressed either as a hazard ratio or as a log hazard-ratio,
you must specify the total sample size in the n() option; the power in the power() option; and,
optionally, the direction of the effect. The direction is lower by default, direction(lower), which
means that the target hazard ratio is assumed to be less than one or that target log hazard-ratio is
negative. In other words, the experimental treatment is presumed to be an improvement over the
control treatment. If you want to change the direction to upper, corresponding to the target hazard
ratio being greater than one, use direction(upper).

Instead of the total sample size n(), you can specify individual group sizes in n1() and n2(), or
specify one of the group sizes and nratio() when computing power or effect size. Also see Two
samples in [PSS-4] Unbalanced designs for more details.

As we mentioned earlier, the effect size for power logrank may be expressed as a hazard ratio or
as a log hazard-ratio. By default, the effect size, which is labeled as delta in the output, corresponds
to the hazard ratio for the Freedman method and to the log hazard-ratio for the Schoenfeld method.
You can change this by specifying the effect() option: effect(hratio) (the default) reports the
hazard ratio and effect(lnhratio) reports the log hazard-ratio.

By default, all computations assume no censoring. In the presence of administrative censoring, you
must specify a survival probability at the end of the study in the control group as the first command
argument. You can also specify a survival probability at the end of the study in the experimental
group as the second command argument. Otherwise, it will be computed using the specified hazard
ratio or log hazard-ratio and the control-group survival probability. To accommodate an accrual period
under the assumption of uniform accrual, survival information may instead be supplied in option
simpson() or in option st1(); see Including information about subject accrual for details.

When computing sample size, you can adjust for withdrawal of subjects from the study by specifying
the anticipated proportion of withdrawals in the wdprob() option.

By default, power logrank performs computations for a hazard-ratio test. Use the schoenfeld
option to request computations for a log-hazard-ratio test.

In the presence of censoring, effect-size determination requires iteration. The default initial value
of the estimated hazard ratio or, if schoenfeld is specified, of log hazard-ratio is obtained based on
the formula assuming no censoring. This value may be changed by specifying the init() option.
See [PSS-2] power for the descriptions of other options that control the iteration procedure.

https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4Unbalanceddesigns
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4Unbalanceddesigns
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4UnbalanceddesignsRemarksandexamplesFractionalsamplesizes
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4Unbalanceddesigns
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4UnbalanceddesignsRemarksandexamplesTwosamples
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4UnbalanceddesignsRemarksandexamplesTwosamples
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4Unbalanceddesigns
https://www.stata.com/manuals/pss-5glossary.pdf#pss-5Glossaryadmincensoring
https://www.stata.com/manuals/pss-5glossary.pdf#pss-5Glossaryaccrual_period
https://www.stata.com/manuals/pss-2power.pdf#pss-2power
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In the following sections, we describe the use of power logrank accompanied by examples for
computing sample size, power, and effect size.

Computing sample size

To compute sample size and number of events, you must specify an effect size (a hazard ratio or
a log hazard-ratio) and, optionally, the power of the test in the power() option. A default power of
0.8 is assumed if power() is not specified. A hazard ratio of 0.5 is assumed if an effect size is not
specified.

Computing sample size in the absence of censoring

We demonstrate several examples of how to use power logrank to obtain the estimates of sample
size and number of events using Freedman (1982) and Schoenfeld (1981) methods for uncensored
data (a type I study when no censoring of subjects occurs).

Example 1: Number of events (failures) using Freedman method

Consider a survival study to be conducted to compare the survivor function of subjects receiving a
treatment (the experimental group) to the survivor function of those receiving a placebo or no treatment
(the control group) using the log-rank test. Suppose that the study continues until all subjects fail
(no censoring). The investigator wants to know how many events need to be observed in the study
to achieve a power of 80% of a two-sided log-rank test with α = 0.05 to detect a 50% reduction in
the hazard of the experimental group (∆a = 0.5). Because the default settings of power logrank
are power(0.8), alpha(0.05), and hratio(0.5), to obtain the estimate of the required number
of events for the above study using the Freedman method (the default), we simply type

. power logrank

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.5000 (hazard ratio)

hratio = 0.5000

Censoring:

Pr_E = 1.0000

Estimated number of events and sample sizes:

E = 72
N = 72

N per group = 36

From the output, a total of 72 events (failures) must be observed to achieve the required power of
80%. Because all subjects experience an event by the end of the study (Pr E=1.0000), the number of
subjects required to be recruited to the study is equal to the number of events. That is, the investigator
needs to recruit a total of 72 subjects (36 per group) to the study.
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Example 2: Number of events (failures) using Schoenfeld method

Following example 1, we can request the Schoenfeld method by specifying the schoenfeld option.

. power logrank, schoenfeld

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
H0: ln(HR) = 0 versus Ha: ln(HR) != 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.6931 (log hazard-ratio)

hratio = 0.5000

Censoring:

Pr_E = 1.0000

Estimated number of events and sample sizes:

E = 66
N = 66

N per group = 33

We obtain a slightly smaller estimate (66) of the total number of events and subjects.

Technical note
Freedman (1982) and Schoenfeld (1981) derive the formulas for the number of events based on

the asymptotic distribution of the log-rank test statistic. Freedman (1982) uses the asymptotic mean
and variance of the log-rank test statistic expressed as a function of the true hazard ratio, ∆, whereas
Schoenfeld (1981) (see also Collett [2015, 474]) bases the derivation on the asymptotic mean of the
log-rank test statistic as a function of the true log hazard-ratio, ln(∆). We label the corresponding
approaches as “Freedman method” and “Schoenfeld method” in the output.

For values of the hazard ratio close to one, the two methods tend to give similar results. In general,
the Freedman method gives higher estimates than the Schoenfeld method. The performance of the
Freedman method was studied by Lakatos and Lan (1992) and was found to slightly overestimate the
sample size under the assumption of proportional hazards. Hsieh (1992) investigated the performance
of the two methods under unequal allocation and concluded that Freedman’s formula predicts the
highest power for the log-rank test when the sample-size ratio of the two groups equals the reciprocal
of the hazard ratio. Schoenfeld’s formula predicts highest powers when sample sizes in the two groups
are equal.
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Example 3: Unbalanced design

By default, power logrank computes sample size for a balanced- or equal-allocation design. If
we know the allocation ratio of subjects between the groups, we can compute the required sample
size and number of events for an unbalanced design by specifying the nratio() option.

Continuing with example 1, we anticipate being able to recruit twice as many subjects in the
experimental group; that is, n2/n1 = 2. We specify the nratio(2) option to compute the required
sample size for the specified unbalanced design.

. power logrank, nratio(2)

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.5000 (hazard ratio)

hratio = 0.5000
N2/N1 = 2.0000

Censoring:

Pr_E = 1.0000

Estimated number of events and sample sizes:

E = 63
N = 63

N1 = 21
N2 = 42

We need a total of 63 subjects—21 in the control group and 42 in the experimental group.

Also see Two samples in [PSS-4] Unbalanced designs for more examples of unbalanced designs
for two-sample tests.

Computing sample size in the presence of censoring

Because of constraints on costs and time, it is often infeasible to continue the study until all
subjects experience an event. Instead, the study terminates at some prespecified point in time. As a
result, some subjects may not experience an event by the end of the study; that is, administrative
censoring of subjects occurs. This increases the requirement on the number of subjects in the study
to ensure that a certain number of events is observed.

In the presence of censoring (for a type II study), Freedman (1982) assumes the following. The
analysis occurs at a fixed time t∗ after the last patient was accrued, and all information about subject
follow-up beyond time t∗ is excluded. To minimize an overestimation of the sample size because
of neglecting this information, the author suggests choosing t∗ as the minimum follow-up time, f ,
beyond which the frequency of occurrence of events is low (the time at which, say, 85% of the
total events expected are observed). Under this assumption, the number of required subjects does not
depend on the rates of accrual and occurrence of events but only on the proportions of patients in the
two treatment groups, s1 and s2, surviving after f . See Including information about subject accrual
about how to compute the sample size in the presence of a long accrual.

If censoring of subjects occurs, the probability of a subject not being censored needs to be estimated
to obtain an accurate estimate of the required sample size. The assumption above justifies a simple
procedure, suggested by Freedman (1982) and used by default by power logrank, to compute

https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4UnbalanceddesignsRemarksandexamplesTwosamples
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4Unbalanceddesigns
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this probability using the estimates of survival probabilities at the end of the study in the control
and the experimental groups. Therefore, for a type II study (under administrative censoring), these
probabilities must be supplied to power logrank.

Example 4: Sample size in the presence of censoring using Freedman method

Consider an example from Machin et al. (2009, 91) of a study of patients with resectable colon
cancer. The goal of the study was to compare the efficacy of the drug levamisole against a placebo
with respect to relapse-free survival, using a one-sided log-rank test with a significance level of 5%.
The investigators anticipated a 10% increase (from 50% to 60%, with a respective hazard ratio of
0.737) in the survival of the experimental group with respect to the survival of the control (placebo)
group at the end of the study. They wanted to detect this increase with a power of 80%. To obtain
the required sample size, we enter the survival probabilities 0.5 and 0.6 as arguments and specify the
onesided option to request a one-sided test.

. power logrank 0.5 0.6, onesided

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7370 (hazard ratio)

hratio = 0.7370

Censoring:

s1 = 0.5000
s2 = 0.6000

Pr_E = 0.4500

Estimated number of events and sample sizes:

E = 270
N = 600

N per group = 300

From the above output, the investigators would have to observe a total of 270 events (relapses) to
detect a 26% decrease in the hazard (∆a = 0.737) of the experimental group relative to the hazard of
the control group with a power of 80% using a one-sided log-rank test with α = 0.05. They would
have to recruit a total of 600 patients (300 per group) to observe that many events.

In contrast, in the absence of censoring, only 270 subjects would have been required to detect a
decrease in hazard corresponding to ∆a = 0.737:
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. power logrank, hratio(0.737) onesided

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7370 (hazard ratio)

hratio = 0.7370

Censoring:

Pr_E = 1.0000

Estimated number of events and sample sizes:

E = 270
N = 270

N per group = 135

Example 5: Sample size in the presence of censoring using Schoenfeld method

If we wanted to use the Schoenfeld method to calculate sample size for the study described in
example 4, we could type

. power logrank 0.5 0.6, onesided schoenfeld

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
H0: ln(HR) = 0 versus Ha: ln(HR) < 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.3052 (log hazard-ratio)

hratio = 0.7370

Censoring:

s1 = 0.5000
s2 = 0.6000

Pr_E = 0.4500

Estimated number of events and sample sizes:

E = 266
N = 590

N per group = 295

We find that 590 subjects are required in the study to observe a total of 266 events to ensure a power
of 80%.

See the technical note in Computing sample size in the absence of censoring for a brief comparison
of the Freedman and Schoenfeld methods.
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Example 6: Alternative ways of specifying effect

If we wish, we can redefine effect size delta in example 4 to be a log hazard-ratio by specifying
the effect() option.

. power logrank 0.5 0.6, onesided effect(lnhratio)

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = -0.3052 (log hazard-ratio)

hratio = 0.7370

Censoring:

s1 = 0.5000
s2 = 0.6000

Pr_E = 0.4500

Estimated number of events and sample sizes:

E = 270
N = 600

N per group = 300

The effect size delta now contains the value of the log hazard-ratio.

Continuing with example 4, instead of the estimate of the survival probability in the experimental
group, we may have an estimate of the hazard ratio ∆a. For example, the estimate of the hazard
ratio in this example is 0.737. We can specify the value of the hazard ratio in the hratio() option
instead of specifying the experimental-group survival probability 0.6.

. power logrank 0.5, onesided hratio(0.737)

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7370 (hazard ratio)

hratio = 0.7370

Censoring:

s1 = 0.5000
s2 = 0.6000

Pr_E = 0.4500

Estimated number of events and sample sizes:

E = 270
N = 600

N per group = 300
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Alternatively, instead of the hazard ratio we can specify the log hazard-ratio in option lnhratio().

. power logrank 0.5, onesided lnhratio(-0.3052)

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7370 (hazard ratio)

ln(hratio) = -0.3052

Censoring:

s1 = 0.5000
s2 = 0.6000

Pr_E = 0.4500

Estimated number of events and sample sizes:

E = 270
N = 600

N per group = 300

The results are identical to the prior results. The estimate of the log hazard-ratio is now displayed in
the output instead of the hazard ratio.

Withdrawal of subjects from the study

Under administrative censoring, the subject is known to have experienced either of the two outcomes
by the end of the study: survival or failure. Often, in practice, subjects may withdraw from the study
before it terminates and therefore may not experience an event by the end of the study (or be censored)
for nonadministrative reasons. Withdrawal of subjects from a study may greatly affect the estimate of
the sample size and must be accounted for in the computations. Refer to Survival data in [PSS-2] Intro
(power) and [PSS-5] Glossary for a formal definition of withdrawal.

Freedman (1982) suggests a conservative adjustment for the estimate of the sample size in the
presence of withdrawal, which is implemented in power logrank. Withdrawal is assumed to be
independent of failure (event) times and administrative censoring.

The proportion of subjects anticipated to withdraw from a study may be specified by using
wdprob().

https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)RemarksandexamplesSurvivaldata
https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)
https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)
https://www.stata.com/manuals/pss-5glossary.pdf#pss-5Glossary
https://www.stata.com/manuals/pss-5glossary.pdf#pss-5Glossarywithdrawal
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Example 7: Withdrawal of subjects from the study

Continuing with example 4, suppose that a withdrawal rate of 10% is expected in the study of
colon cancer patients. To account for this, we also specify wdprob(0.1).

. power logrank 0.5 0.6, onesided wdprob(0.1)

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.7370 (hazard ratio)

hratio = 0.7370

Censoring and withdrawal:

s1 = 0.5000
s2 = 0.6000

Pr_E = 0.4500
Pr_w = 0.1000

Estimated number of events and sample sizes:

E = 270
N = 666

N per group = 333

The estimate of the total sample size using the Freedman method increases from 600 to 666 when
the withdrawal rate is assumed to be 10%. The adjustment of the estimate of the sample size for
the withdrawal of subjects is conservative. It assumes equal withdrawals from each group; that is,
10% of subjects are lost by the end of the study in each group. This adjustment affects only the
estimates of the sample sizes but not the number of events. This is because withdrawal is assumed
to be independent of event times, and the ratio of subjects surviving until the end of the study in the
two groups does not change under equal withdrawals.

Including information about subject accrual

Many clinical studies have an accrual period of r, during which the subjects are recruited to the
study, and a follow-up period of f = T − r, during which the subjects are followed until the end of
the study, T , and no new subjects enter the study. The information about the duration of the accrual
and follow-up periods affects the probability of a subject experiencing an event or failing during the
study.

Freedman (1982) suggests approximating the combined event-free probability as an average of
the survival probabilities in the control and the experimental groups at the minimum follow-up time,
t∗ = f (the default approach used in power logrank). However, for a long accrual of subjects, this
approach may overestimate the required number of subjects, often seriously, because it does not take
into account the information about subject follow-up beyond time f . Here Freedman (1982) proposes
to use the survival probabilities at the average follow-up time, defined as t∗ = (f +T )/2 = f + 0.5r,
instead of the minimum follow-up time, f .

Alternatively, Schoenfeld (1983) (see also Collett [2015, 479]) presents a formula for the required
number of subjects allowing for uniform accrual (entry, recruitment) over [0, r] and a follow-up period,
f . This information is incorporated into the formula for the probability of an event (or failure). The
formula involves the integrals of the survivor functions of the control and the experimental groups.
Schoenfeld (1983) suggests approximating the integral by using Simpson’s rule, which requires the
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estimates of the survivor function at three specific time points: f , 0.5r + f , and T = r + f . It is
sufficient to provide the estimates of these three survival probabilities, S1(f), S1(0.5r + f), and
S1(T ), for the control group only. The corresponding survival probabilities of the experimental group
are automatically computed using the value of the hazard ratio in hratio() (or log hazard-ratio in
lnhratio()) and the proportional-hazards assumption.

The three estimates of the survival probabilities of the control group may be supplied by using
the simpson() option to adjust the estimates of the sample size or power for uniform entry and
a follow-up period. If the estimate of the survivor function over an array of values in the range
[f, T ] is available from a previous study, it can be supplied using the st1() option to form a more
accurate approximation of the probability of an event using numerical integration (see [R] dydx).
Here the value of the length of the accrual period is needed for the computation. It is computed as the
difference between the maximum and the minimum values of the time variable varnamet, supplied
using st1(), that is, r = T − f = max(varnamet)− min(varnamet).

For more information, see Cleves, Gould, and Marchenko (2016, sec. 16.2).

Example 8: Sample size in the presence of accrual and follow-up periods

Consider an example described in Collett (2015, 482) of a survival study of chronic active hepatitis.
A new treatment is to be compared with a standard treatment with respect to the survival times of
the patients with this disease. The investigators want to detect a change in a hazard ratio of 0.57
with 90% power and a 5% two-sided significance level. Also subjects are to be entered into the study
uniformly over a period of 18 months and then followed for 24 months. From the Kaplan–Meier
estimate of the survivor function available for the control group, the survival probabilities at f = 24,
0.5r + f = 33, and T = 42 months are 0.70, 0.57, and 0.45, respectively.

. power logrank, hratio(0.57) power(0.9) schoenfeld simpson(0.7 0.57 0.45)
note: probability of an event is computed using Simpson’s rule with

S1(f) = 0.70, S1(f+r/2) = 0.57, S1(T) = 0.45
S2(f) = 0.82, S2(f+r/2) = 0.73, S2(T) = 0.63

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
H0: ln(HR) = 0 versus Ha: ln(HR) != 0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.5621 (log hazard-ratio)

hratio = 0.5700

Censoring:

Pr_E = 0.3514

Estimated number of events and sample sizes:

E = 134
N = 380

N per group = 190

Collett (2015, 309) reports the required number of events to be 133, which, apart from rounding,
agrees with our estimate of 134. In a later example, Collett (2003, 309) uses the number of events,
rounded to 140, to compute the required sample size as 140/0.35 = 400, where 0.35 is the estimate of
the combined probability of an event. By hand, without rounding the number of events, we compute
the required sample size as 133/0.35 = 380 and obtain the same estimate of the total sample size as
in the output.

https://www.stata.com/manuals/rdydx.pdf#rdydx
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Using the average follow-up time suggested by Freedman (1982), we obtain the following:
. power logrank 0.57, hratio(0.57) power(0.9) schoenfeld

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
H0: ln(HR) = 0 versus Ha: ln(HR) != 0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.5621 (log hazard-ratio)

hratio = 0.5700

Censoring:

s1 = 0.5700
s2 = 0.7259

Pr_E = 0.3521

Estimated number of events and sample sizes:

E = 134
N = 378

N per group = 189

We specify the survival probability in the control group at t∗ = 0.5r + f = 0.5× 18 + 24 = 33
as S1(33) = 0.57 and the hazard ratio of 0.57 (coincidentally). The survival probability in the
experimental group is S2(33) = S1(33)∆ = 0.570.57 = 0.726. Here we obtain the estimate of
the sample size, 378, which is close to the estimate of 380 computed using the more complicated
approximation. In this example, the two approximations produce similar results, but this may not
always be the case.

The approximation suggested by Schoenfeld (1983) and Collett (2015) is considered to be more
accurate because it takes into account information about the patient survival beyond the average
follow-up time. In general, the Freedman (1982) and Schoenfeld (1983) approximations tend to give
similar results when {S̃(f) + S̃(T )}/2 ≈ S̃(0.5r + f); see Methods and formulas for a formal
definition of S̃(·).

If we use the survival probability in the control group, S1(24) = 0.7, at a follow-up time
t∗ = f = 24 instead of the average follow-up time t∗ = 33 in the presence of an accrual period,

. power logrank 0.7, hratio(0.57) power(0.9) schoenfeld

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
H0: ln(HR) = 0 versus Ha: ln(HR) != 0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.5621 (log hazard-ratio)

hratio = 0.5700

Censoring:

s1 = 0.7000
s2 = 0.8160

Pr_E = 0.2420

Estimated number of events and sample sizes:

E = 134
N = 550

N per group = 275

we obtain the estimate of the total sample size of 550, which is substantially greater than the previously
estimated sample sizes of 380 and 378.
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Computing power

Sometimes the number of subjects available for the enrollment into the study is limited. In such
cases, the researchers may want to investigate with what power they can detect a desired treatment
effect for a given sample size.

To compute power, you must specify the sample size in the n() option and an effect size (a hazard
ratio or a log hazard-ratio). A hazard ratio of 0.5 is assumed if an effect size is not specified.

Example 9: Power determination

Recall the colon cancer study described in example 4. Suppose that only 100 subjects are available
to be recruited to the study. We find out how this affects the power to detect a hazard ratio of 0.737.

. power logrank 0.5, hratio(0.737) onesided n(100)

Estimated power for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

Study parameters:

alpha = 0.0500
N = 100

N per group = 50
delta = 0.7370 (hazard ratio)

hratio = 0.7370

Number of events and censoring:

E = 46
s1 = 0.5000
s2 = 0.6000

Pr_E = 0.4500

Estimated power:

power = 0.2646

The power to detect an alternative Ha: ∆ = 0.737 decreased from 0.8 to 0.2646 when the sample
size decreased from 600 to 100 (the number of events decreased from 270 to 46).

Example 10: Multiple values of study parameters

Continuing with example 9, suppose we want to consider a range of sample sizes. We can specify
a list (see [U] 11.1.8 numlist) of sample sizes in the n() option. For simplicity, we display only
power, sample size, and number of events in the table.

. power logrank 0.5, hratio(0.737) onesided n(100(100)600) table(power N E)

Estimated power for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

power N E

.2646 100 46

.4174 200 91

.5455 300 136

.6505 400 181

.7344 500 226

.8004 600 271

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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As the sample size increases, the power increases. The decrease in sample size reduces the number
of events observed in the study and therefore changes the estimates of the power. If the number of
events were fixed, power would have been independent of the sample size, provided that all other
parameters were held constant, because the formulas relate power directly to the number of events
and not the number of subjects.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

Computing effect size

Effect size δ for the log-rank test comparing two survivor functions is defined as a hazard ratio (or
a log hazard-ratio) of the experimental group to the control group. This value typically defines the
clinically significant improvement of the experimental procedure over the control procedure desired
to be detected by the log-rank test with a certain power.

Sometimes, we may be interested in determining the smallest effect that yields a statistically
significant result for prespecified sample size and power. In this case, both power and sample size
must be specified in options power() and n(), respectively. Additionally, you may also choose the
direction of the effect by specifying the direction() option. direction(lower) is the default,
and it assumes ∆a < 1 [or ln(∆a) < 0]. You can use direction(upper) to compute ∆a > 1 [or
ln(∆a) > 0].

Example 11: Effect-size determination

Continuing with example 10, we can find that the value of the hazard ratio that can be detected
for a fixed sample size of 100 with 80% power is approximately 0.42, corresponding to an increase
in survival probability from 0.5 to roughly 0.75.

. power logrank 0.5, onesided n(100) power(0.8)

Performing iteration ...

Estimated hazard ratio for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

Study parameters:

alpha = 0.0500
power = 0.8000

N = 100
N per group = 50

Number of events and censoring:

E = 38
s1 = 0.5000
s2 = 0.7455

Pr_E = 0.3772

Estimated effect size and hazard ratio:

delta = 0.4237 (hazard ratio)
hratio = 0.4237

Under the censoring information, power logrank also reports the experimental-group survival rate
at the end of the study corresponding to the computed hazard ratio—s2=0.7455 in our example.

https://www.stata.com/manuals/pss-2powertable.pdf#pss-2power,table
https://www.stata.com/manuals/pss-2powergraph.pdf#pss-2power,graph
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Testing a hypothesis about two survivor functions using the log-rank test

Example 12: Using the log-rank test to detect a change in survival in two groups

Similarly to example 4, consider the generated dataset drug.dta, consisting of variables drug (a
drug type) and failtime (a time to failure).

. use https://www.stata-press.com/data/r18/drug
(Patient survival in drug trial)

. tabulate drug

Treatment
type Freq. Percent Cum.

Placebo 50 33.33 33.33
Drug A 50 33.33 66.67
Drug B 50 33.33 100.00

Total 150 100.00

. by drug, sort: summarize failtime

-> drug = Placebo

Variable Obs Mean Std. dev. Min Max

failtime 50 1.03876 .5535538 .1687701 2.382302

-> drug = Drug A

Variable Obs Mean Std. dev. Min Max

failtime 50 1.191802 .5927507 .2366922 2.277536

-> drug = Drug B

Variable Obs Mean Std. dev. Min Max

failtime 50 1.717314 .8350659 .5511715 3.796102

Failure times of the control group (Placebo) were generated from the Weibull distribution with
λw = 0.693 and p = 2 (see [ST] streg); failure times of the two experimental groups, Drug A and
Drug B, were generated from Weibull distributions with hazard functions proportional to the hazard of
the control group in ratios 0.737 and 0.42, respectively. The Weibull family of survival distributions is
chosen arbitrarily, and the Weibull parameter, λw, is chosen such that the survival at 1 year, t = 1, is
roughly equal to 0.5. Subjects are randomly allocated to one of the three groups in equal proportions.
Subjects with failure times greater than t = 1 will be censored at t = 1.

Before analyzing these survival data, we need to set up the data using stset. After that, we
can use sts test, logrank to test the survivor functions separately for Drug A against Placebo
and Drug B against Placebo by using the log-rank test. See [ST] stset and [ST] sts test for more
information about these two commands.

https://www.stata.com/manuals/ststreg.pdf#ststreg
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/stststest.pdf#stststest
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. stset failtime, exit(time 1)

Survival-time data settings

Failure event: (assumed to fail at time=failtime)
Observed time interval: (0, failtime]

Exit on or before: time 1

150 total observations
0 exclusions

150 observations remaining, representing
59 failures in single-record/single-failure data

128.985 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 1

. sts test drug if drug!=2, logrank

Failure _d: 1 (meaning all fail)
Analysis time _t: failtime

Exit on or before: time 1

Equality of survivor functions
Log-rank test

Observed Expected
drug events events

Placebo 25 22.17
Drug A 21 23.83

Total 46 46.00

chi2(1) = 0.70
Pr>chi2 = 0.4028

. sts test drug if drug!=1, logrank

Failure _d: 1 (meaning all fail)
Analysis time _t: failtime

Exit on or before: time 1

Equality of survivor functions
Log-rank test

Observed Expected
drug events events

Placebo 25 16.61
Drug B 13 21.39

Total 38 38.00

chi2(1) = 7.55
Pr>chi2 = 0.0060

From the results from sts test for the Drug A group, we fail to reject the null hypothesis of no
difference between the survivor functions in the two groups; given our simulated data, the test made
a type II error. On the other hand, for the Drug B group the one-sided p-value of 0.003, computed
as 0.006/2 = 0.003, suggests that the null hypothesis of nonsuperiority of the experimental treatment
be rejected at the 0.005 significance level. We correctly conclude that the data provide the evidence
that Drug B is superior to the Placebo.

Results from sts test, logrank for the two experimental groups agree with findings from
examples 9 and 11. For the sample size of 100, the power of the log-rank test to detect the hazard
ratio of 0.737 (10% increase in survival) is low (26%), whereas this sample size is sufficient for the
test to detect a change in a hazard of 0.42 (25% increase in survival) with approximately 80% power.
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Here we simulated our data from the alternative hypothesis and therefore can determine whether
the correct decision or a type II error was made by the test. In practice, however, there is no way
to determine the accuracy of the decision from the test. All we know is that in a long series of
trials, there is a 5% chance that a particular test will incorrectly reject the null hypothesis, a 74%
[(1− 0.25)× 100% given the power of 0.2646 obtained in example 9] chance that the test will miss
the alternative Ha: ∆ = 0.737, and a 20% [(1− 0.8)× 100% given the power of 0.8 in example 11]
chance that the test will miss the alternative Ha: ∆ = 0.42.

Stored results
power logrank stores the following in r():
Scalars

r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
r(nratio) ratio of sample sizes, N2/N1
r(nratio a) actual ratio of sample sizes
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(E) total number of events (failures)
r(hratio) hazard ratio
r(lnhratio) log hazard-ratio
r(s1) survival probability in the control group (if specified)
r(s2) survival probability in the experimental group (if specified)
r(Pr E) probability of an event (failure)
r(Pr w) proportion of withdrawals
r(t min) minimum time (if st1() is specified)
r(t max) maximum time (if st1() is specified)
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise
r(init) initial value for hazard ratio or log hazard-ratio
r(maxiter) maximum number of iterations
r(iter) number of iterations performed
r(tolerance) requested parameter tolerance
r(deltax) final parameter tolerance achieved
r(ftolerance) requested distance of the objective function from zero
r(function) final distance of the objective function from zero
r(converged) 1 if iteration algorithm converged, 0 otherwise

Macros
r(type) test
r(method) logrank
r(test) Freedman or Schoenfeld
r(effect) hratio or lnhratio
r(survvar) name of the variable containing survival probabilities (if st1() is specified)
r(timevar) name of the variable containing time points (if st1() is specified)
r(direction) lower or upper
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats

Matrices
r(pss table) table of results
r(simpmat) control-group survival probabilities (if simpson() is specified)
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Methods and formulas
Let S1(t) and S2(t) denote the survivor functions of the control and the experimental groups and

∆(t) = ln{S2(t)}/ ln{S1(t)} denote the hazard ratio at time t of the experimental to the control
groups. Thus, for a given constant hazard ratio ∆, the survivor function of the experimental group at
any time t > 0 may be computed as S2(t) = {S1(t)}∆ under the assumption of proportional hazards.
Define E and n to be the total number of events and the total number of subjects required for the
study, respectively; pw to be the proportion of subjects withdrawn from the study (lost to follow-up);
and z(1−α/k) and z(1−β) to be the (1− α/k)th and the (1− β)th quantiles of the standard normal
distribution, respectively, with k = 1 for the one-sided test and k = 2 for the two-sided test. Let R
be the allocation ratio to the experimental group with respect to the control group, that is, n2 = Rn1.

The total number of events required to be observed in a study to ensure a power of π = 1− β of
the log-rank test to detect the hazard ratio ∆ with significance level α, according to Freedman (1982),
is

E =
1

R
(z1−α/k + z1−β)2

(
R∆ + 1

∆− 1

)2

and, according to Schoenfeld (1983) and Collett (2015, 473), is

E =
1

R
(z1−α/k + z1−β)2

{
1 +R

ln(∆)

}2

Both formulas are approximations and rely on a set of assumptions such as distinct failure times, all
subjects completing the course of the study (no withdrawal), and a constant ratio, R, of subjects at
risk in two groups at each failure time.

The total sample size required to observe the total number of events, E, is given by

n =
E

pE

The number of subjects required to be recruited in each group is obtained as n1 = n/(1 + R)
and n2 = nR/(1 +R). If nfractional is not specified, sample sizes and the number of events are
rounded to integer values; see Fractional sample sizes in [PSS-4] Unbalanced designs for details.

By default, the probability of an event (failure), pE , is approximated as suggested by Freed-
man (1982),

pE = 1− S1(t∗) +RS2(t∗)

1 +R

where t∗ is the minimum follow-up time, f , or, in the presence of an accrual period, the average
follow-up time, (f + T )/2 = f + 0.5r.

If simpson() is specified, the probability of an event is approximated using Simpson’s rule as
suggested by Schoenfeld (1983):

pE = 1− 1

6

{
S̃(f) + 4S̃(0.5r + f) + S̃(T )

}
where S̃(t) = {S1(t) + RS2(t)}/(1 + R) and f , r, and T = f + r are the follow-up period, the
accrual period, and the total duration of the study, respectively.

https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4UnbalanceddesignsRemarksandexamplesFractionalsamplesizes
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4Unbalanceddesigns
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The methods do not incorporate time explicitly but rather use it to determine values of the survival
probabilities S1(t) and S2(t) used in the computations.

If st1() is used, the integral in the expression for the probability of an event

pE = 1− 1

r

∫ T

f

S̃(t)dt

is computed numerically using cubic splines (see [R] dydx). The value of r is computed as the
difference between the maximum and the minimum values of varnamet in st1(), r = T − f =
max(varnamet)− min(varnamet).

To account for the proportion of subjects, pw, withdrawn from the study (lost to follow-up), a
conservative adjustment to the total sample size is applied as follows:

nw =
n

1− pw

Equal withdrawal rates are assumed in the adjustment of the group sample sizes for the withdrawal
of subjects. Equal withdrawals do not affect the estimates of the number of events, provided that
withdrawal is independent of event times and the ratio of subjects at risk in two groups remains
constant at each failure time.

The power for each method is estimated using the formula

π = 1− β = Φ{|ψ|−1(RnpE)1/2 − z1−α/k}

where Φ(·) is the standard normal cumulative distribution function; ψ = (R∆ + 1)/(∆ − 1) or
ψ = (1 +R)/ ln(∆) if the schoenfeld option is specified.

The estimate of the hazard ratio (or log hazard-ratio) for fixed power and sample size is computed
(iteratively for censoring) using the formulas for the sample size given above. The value of the hazard
ratio (log hazard-ratio) corresponding to the reduction in a hazard of the experimental group relative
to the control group is reported by default.
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