
power logistic general — Power analysis for logistic regression: General case+

+This command is part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
power logistic computes sample size, power, or effect size for a test of one coefficient in logistic

regression. This entry describes how to use power logistic to plan a study that will be modeled using

logistic regression with one covariate of interest, 𝑋, and up to 20 nuisance covariates Z = (𝑍1, 𝑍2, . . .).
Covariates 𝑋 and Z can be continuous, discrete, or a combination of both. For information about how

to use power logistic in the special cases of one or two binary covariates, see [PSS-2] power logistic

onebin and [PSS-2] power logistic twobin, respectively.

By default, power logistic computes sample size for a given power and effect size, where the effect
size may be specified as a coefficient or an odds ratio. Alternatively, it can compute power given sample

size and effect size, or it can compute the effect size given power and sample size.

Quick start
Sample size for logistic regression with one binary covariate𝑋, given a coefficient of 0.4055 for𝑋 under

the alternative hypothesis 𝐻𝑎, population prevalence of 𝑋 of 0.22, and an intercept of −2; using the

default power of 0.8 and significance level 𝛼 = 0.05

power logistic, x(distribution(bernoulli 0.22) coefficient(0.4055)) ///
intercept(-2)

Same as above, but use argument oratio𝑋 to specify the odds ratio for 𝑋 of exp(0.4055) = 1.5 instead

of the coefficient

power logistic 1.5, x(distribution(bernoulli 0.22)) intercept(-2)

Same as above, but specify the success probability of 𝑌 conditional on the means of 𝑋 and 𝑍 instead of

argument oratio𝑋
power logistic, x(distribution(bernoulli 0.22)) intercept(-2) ///

pycondxmzm(0.128892)

Same as above, but specify different values for the prevalence of 𝑋 and display the effect of 𝑋 as a

coefficient

power logistic, x(distribution(bernoulli (0.2 0.22 0.24 0.26))) ///
intercept(-2) pycondxmzm(0.128892) effect(coefficient)

Sample size for logistic regression with covariate of interest 𝑋 ∼ normal(20, 5) and nuisance covari-

ates Z = (𝑍1, 𝑍2), where 𝑍1 ∼ exponential(12) and 𝑍2 ∼ binomial(3, 0.4), and given, under the

alternative hypothesis 𝐻𝑎, an odds ratio of 1.8 for a 5-unit change in 𝑋, and odds ratios of 1.1

and 1.5 for 1-unit changes in 𝑍1 and 𝑍2; also, specify a correlation of 0.28 between 𝑋 and Z and

Pr{𝑌 = 1|𝑋 = 𝐸(𝑋),Z = 𝐸(Z)} = 0.56

power logistic, x(distribution(normal 20 5) oratio(1.8, unit(5))) ///
z1(distribution(exponential 12) oratio(1.1)) ///
z2(distribution(binomial 3 0.4) oratio(1.5)) pycondxmzm(0.56) corrxz(0.28)
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Same as above, but specify different standard deviations for 𝑋, and discretize 𝑍1 into 25 bins

power logistic, x(distribution(normal 20 (4 5 6)) oratio(1.8, unit(5))) ///
z1(distribution(exponential 12, nbins(25)) oratio(1.1)) ///
z2(distribution(binomial 3 0.4) oratio(1.5)) pycondxmzm(0.56) corrxz(0.28)

Power given a sample size of 200 and previous values of other parameters

power logistic, x(distribution(normal 20 (4 5 6)) oratio(1.8, unit(5))) ///
z1(distribution(exponential 12, nbins(25)) oratio(1.1)) ///
z2(distribution(binomial 3 0.4) oratio(1.5)) pycondxmzm(0.56) ///
corrxz(0.28) n(200)

Effect size given a sample of size 200, power of 90%, Pr{𝑌 = 1|𝑋 = 0,Z = 𝐸(Z)} = 0.108, and

previous values of other parameters

power logistic, x(distribution(normal 20 (4 5 6))) ///
z1(distribution(exponential 12, nbins(25)) oratio(1.1)) ///
z2(distribution(binomial 3 0.4) oratio(1.5)) pycondx0zm(0.108) ///
corrxz(0.28) n(200) power(0.9)

Menu
Statistics > Power, precision, and sample size

Syntax
Compute sample size

power logistic oratio𝑋, x(xzspec) [ z1(xzspec) [ z2(xzspec) [ ... ] ]
power(numlist) generalopts ]

Compute power

power logistic oratio𝑋, x(xzspec) n(numlist) [ z1(xzspec) [ z2(xzspec) [ ... ] ]
generalopts ]

Compute effect size

power logistic, x(xzspec) n(numlist) power(numlist) [ z1(xzspec) [ z2(xzspec) [ ... ] ]
generalopts ]

oratio𝑋 is the odds ratio for covariate of interest 𝑋 under the alternative hypothesis 𝐻𝑎. Argument

oratio𝑋 may be specified either as one number or as a list of values in parentheses (see [U] 11.1.8 num-

list); argument oratio𝑋 does not appear in the dialog box.
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generalopts Description

Main
∗ alpha(numlist) significance level; default is alpha(0.05)
∗ power(numlist) power; default is power(0.8)
∗ beta(numlist) probability of type II error; default is beta(0.2)
∗ n(numlist) sample size; required to compute power or effect size

nfractional allow fractional sample size
† x(xzspec) distribution and effect of covariate of interest 𝑋

effect(oratio | coefficient) specify the type of effect to display; default is effect(oratio)
z[ # ](xzspec) distribution and effect of nuisance covariate 𝑍#

∗ corrxz(numlist) coefficient of (multiple) correlation between covariate 𝑋 and all
covariates Z; default is corrxz(0)

∗ pycondxmzm(numlist) success probability of 𝑌 given mean values of 𝑋 and Z;
Pr{𝑌 = 1|𝑋 = 𝐸(𝑋), Z = 𝐸(Z)}

∗ pycondx0zm(numlist) success probability of 𝑌 given 𝑋 = 0 and mean values of
covariates Z; Pr{𝑌 = 1|𝑋 = 0, Z = 𝐸(Z)}

∗ intercept(numlist) intercept for logistic regression

direction(upper | lower) direction of the effect for effect-size determination; default is
direction(upper), which means that the postulated odds ratio
for 𝑋 is greater than 1 (thus, the coefficient is positive)

parallel treat number lists in starred options or in command arguments as
parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

Discretization
∗ minbins(numlist) minimum product of bins for all covariates
∗ nbins(numlist) number of bins to use for discretizing each binned covariate

Table

[ no ]table[ (tablespec) ] suppress table or display results as a table;
see [PSS-2] power, table

saving(filename [ , replace ]) save the table data to filename; use replace to overwrite
existing filename

Graph

graph[ (graphopts) ] graph results; see [PSS-2] power, graph

Iteration

init(#) initial odds ratio for effect-size calculation

iterate(#) maximum number of iterations; default is iterate(500)
tolerance(#) parameter tolerance; default is tolerance(1e-12)
ftolerance(#) function tolerance; default is ftolerance(1e-12)
[ no ]log suppress or display iteration log

[ no ]dots suppress or display iterations as dots

coefx(numlist) coefficient for 𝑋 in logistic regression; specify instead of
odds ratio oratio𝑋

notitle suppress the title
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†x() is required.
∗Specifying a list of values in at least two starred options, or in argument oratio𝑋 and at least one starred option, results in

computations for all possible combinations of the values; see [U] 11.1.8 numlist. Also see parallel.
collect is allowed; see [U] 11.1.10 Prefix commands.

notitle and coefx() do not appear in the dialog box.

xzspec Description

† distribution(distspec [ , ∗ nbins(numlist) ]) covariate distribution and the number of bins for
discretization

∗ oratio(numlist[ , unit(# | sd) ]) odds ratio for the covariate and the unit change;
default is unit(1)

∗ coefficient(numlist) coefficient for the covariate

†distribution() is required.
∗Specifying a list of values in at least two starred options, suboptions, or arguments results in computations for all possible

combinations of the values; also see the parallel option.

distspec Distribution

bernoulli 𝑝∗ Bernoulli with success probability 𝑝;
synonym for binomial(1 𝑝)

beta 𝑎∗ 𝑏∗ beta with shape parameters 𝑎 and 𝑏
binomial 𝑛 𝑝∗ binomial with 𝑛 trials and success probability 𝑝
exponential 𝑏∗ exponential with scale parameter 𝑏
laplace 𝑚∗ 𝑏∗ Laplace with mean 𝑚 and scale parameter 𝑏
logistic 𝑚∗ 𝑠∗ logistic with mean 𝑚 and scale parameter 𝑠
lognormal 𝜇∗ 𝜎∗ lognormal with mean 𝜇 and standard deviation 𝜎
normal 𝜇∗ 𝜎∗ normal with mean 𝜇 and standard deviation 𝜎
ordinal (𝑣∗

1 𝑝1) (𝑣∗
2 𝑝2) [ (𝑣∗

3 𝑝3) [ ... ] ] ordinal with values 𝑣∗
1, 𝑣∗

2, etc., and respective
probabilities 𝑝1, 𝑝2, etc.

poisson 𝑚∗ Poisson with mean 𝑚
uniform 𝑎∗ 𝑏∗ uniform on the interval [𝑎, 𝑏]
∗Starred parameters may be specified either as one number or as a list of values in parentheses (see [U] 11.1.8 numlist).

Specifying a list of values in at least two starred parameters, options, suboptions, or arguments results in computations
for all possible combinations of the values; also see the parallel option.
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where tablespec is

column[ :label ] [ column[ :label ] [ . . . ] ] [ , tableopts ]

column is one of the columns defined below, and label is a column label (may contain quotes and com-

pound quotes).

column Description Symbol

alpha significance level 𝛼
power power 1 − 𝛽
beta type-II-error probability 𝛽
N number of subjects 𝑁
delta effect size 𝛿
oratiox odds ratio for 𝑋 OR𝑋
unitx unit change in 𝑋 for odds ratio 𝑢𝑋
coefx coefficient for 𝑋 𝛽𝑋
nbinsx number of bins for discretized 𝑋 𝐵𝑋
oratioz# odds ratio for 𝑍# OR𝑍#
unitz# unit change in 𝑍# for odds ratio 𝑢𝑍#
coefz# coefficient for 𝑍# 𝜁#
nbinsz# number of bins for discretized 𝑍# 𝐵𝑍#
corrxz multiple correlation between 𝑋 and Z 𝑅
pycondxmzm success probability of 𝑌 given mean values of 𝑋 and Z,

Pr{𝑌 = 1|𝑋 = 𝐸(𝑋), Z = 𝐸(Z)} 𝑝𝑌 |𝑋=𝐸(𝑋), 𝑍𝑠=𝐸(𝑍𝑠)
pycondx0zm success probability of 𝑌 given 𝑋 is 0 and mean value of Z,

Pr{𝑌 = 1|𝑋 = 0, Z = 𝐸(Z)} 𝑝𝑌 |𝑋=0, 𝑍𝑠=𝐸(𝑍𝑠)
intercept intercept 𝜁0
nbins number of bins to use for discretizing each covariate 𝐵all

minbins minimum product of bins for all covariates 𝐵min

totalbins actual product of bins for all covariates 𝐵tot

a[ x | z# ] parameter 𝑎 from distribution of 𝑋 or 𝑍# (if specified) 𝑎𝑋 or 𝑎𝑍#
b[ x | z# ] parameter 𝑏 from distribution of 𝑋 or 𝑍# (if specified) 𝑏𝑋 or 𝑏𝑍#
m[ x | z# ] mean 𝑚 from distribution of 𝑋 or 𝑍# (if specified) 𝑚𝑋 or 𝑚𝑍#
n[ x | z# ] number of trials 𝑛 from binomial distribution of 𝑋 or 𝑍#

(if specified) 𝑛𝑋 or 𝑛𝑍#
p[ x | z# ] success probability from distribution of 𝑋 or 𝑍# (if specified) 𝑝𝑋 or 𝑝𝑍#
s[ x | z# ] scale 𝑠 from logistic distribution of 𝑋 or 𝑍# (if specified) 𝑠𝑋 or 𝑠𝑍#
mu[ x | z# ] mean 𝜇 from distribution of 𝑋 or 𝑍# (if specified) 𝜇𝑋 or 𝜇𝑍#
sigma[ x | z# ] standard deviation 𝜎 from distribution of 𝑋 or 𝑍# (if specified) 𝜎𝑋 or 𝜎𝑍#
v#[ x | z# ] level # ordinal value, v#, from ordinal distribution of 𝑋 or 𝑍#

(if specified) 𝑣#𝑋 or 𝑣#𝑍#
p#[ x | z# ] probability 𝑝# that 𝑋 or 𝑍#equals v# from ordinal distribution

(if specified) 𝑝#𝑋 or 𝑝#𝑍#
nl[ x | z# ] number of levels from ordinal distribution of 𝑋 or 𝑍# (if specified) nl𝑋 or nl𝑍#
target target parameter; odds ratio or coefficient for 𝑋
all display all supported columns

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/pss-2.pdf#pss-2powerlogisticgeneralSyntaxcolumn
https://www.stata.com/manuals/pss-2powertable.pdf#pss-2power,tableSyntaxtableopts
https://www.stata.com/manuals/pss-2.pdf#pss-2powerlogisticgeneralSyntaxcolumn


power logistic general — Power analysis for logistic regression: General case+ 6

Options

� � �
Main �

alpha(), power(), beta(), n(), nfractional; see [PSS-2] power. The nfractional option is al-

lowed only for sample-size determination.

x(xzspec) is a required option that specifies information about the covariate of interest, 𝑋. This includes

the name of the 𝑋 distribution and any parameters needed to specify that distribution, as well as the

number of bins to use when discretizing 𝑋. When calculating power or sample size, xzspec specifies

the effect of 𝑋 as a coefficient or an odds ratio.

xzspec consists of the following suboptions: distribution(distspec [ , nbins(numlist) ]),
oratio(numlist [ , unit(# | sd) ]), and coefficient(numlist).

distribution(distspec [ , nbins(numlist) ]) is a required suboption, where distspec specifies

the distribution of the covariate and nbins() specifies how it is to be discretized.

distspec consists of the distribution name and parameters. Starred parameters may be specified

as a number or numlist in parentheses. distspec is one of the following:

bernoulli 𝑝∗ specifies a Bernoulli distribution with parameter 𝑝, where 0 < 𝑝 < 1. The

Bernoulli distribution describes a binary trial with outcomes 0 (failure) or 1 (success).

Parameter 𝑝 is the probability of success, and a Bernoulli random variable has mean

𝑝. Bernoulli covariates always use two bins during discretization, one for each possible
outcome.

beta 𝑎∗ 𝑏∗ specifies a beta distribution with shape parameters 𝑎 and 𝑏, where 𝑎 > 0 and

𝑏 > 0. A random variable following a beta distribution is defined only over the interval

[0, 1], and its mean is 𝑎/(𝑎 + 𝑏).
binomial 𝑛 𝑝∗ specifies a binomial distribution with parameters 𝑛 and 𝑝, where 𝑛 is a

positive integer and 0 < 𝑝 < 1. A binomial random variable models the number of

successes in 𝑛 Bernoulli trials, each with success probability 𝑝, and its mean is 𝑛 × 𝑝.
Binomial covariates always use 𝑛 + 1 bins during discretization, one for each possible

outcome.

exponential 𝑏∗ specifies an exponential distribution with scale parameter 𝑏, where 𝑏 > 0.

A random variable following an exponential distribution can take only positive values,

and its mean is 𝑏.
laplace 𝑚∗ 𝑏∗ specifies a Laplace distribution with mean 𝑚 and scale parameter 𝑏, where

𝑏 > 0. The Laplace distribution is symmetric around its mean and is defined for all real

numbers.

logistic 𝑚∗ 𝑠∗ specifies a logistic distribution with mean 𝑚 and scale parameter 𝑠, where
𝑠 > 0. The logistic distribution is symmetric around its mean and is defined for all real

numbers.

lognormal 𝜇∗ 𝜎∗ specifies a lognormal distribution with parameters 𝜇 and 𝜎, where 𝜎 > 0.

If random variable 𝑄 is lognormal with parameters 𝜇 and 𝜎, its mean is exp(𝜇 + 𝜎2/2),
and the natural logarithm of 𝑄 follows a normal distribution with mean 𝜇 and standard

deviation 𝜎.
normal 𝜇∗ 𝜎∗ specifies a normal distribution with mean 𝜇 and standard deviation 𝜎, where

𝜎 > 0. The normal distribution is symmetric around its mean and is defined for all real

numbers.
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ordinal (𝑣∗
1 𝑝1) (𝑣∗

2 𝑝2) [ (𝑣∗
3 𝑝3) [ ... ] ] specifies an ordinal distribution with parameters

v and p, which are equal-length vectors. Parameter v is an ordered vector of values

(𝑣1, 𝑣2, . . . , 𝑣𝐽), where 𝑣1 < 𝑣2 < · · · < 𝑣𝐽 and 𝐽 ≤ 20. Parameter p is a vector of

probabilities corresponding to those values (𝑝1, 𝑝2, . . . , 𝑝𝐽), where each probability is

between 0 and 1 and 𝑝1 + 𝑝2 + · · · + 𝑝𝐽 = 1. To specify an ordinal covariate, enclose

corresponding pairs of 𝑣𝑗 and 𝑝𝑗 values in parentheses, such as x(ordinal (1 0.3)
(2 0.5) (3 0.2)). During discretization, ordinal covariates always use as many bins
as they have values: one for each possible outcome. The mean of an ordinal random

variable is 𝑣1 × 𝑝1 + 𝑣2 × 𝑝2 + · · · + 𝑣𝐽 × 𝑝𝐽.

poisson 𝑚∗ specifies a Poisson distribution with parameter 𝑚, where 𝑚 > 0. The Poisson

distribution is often used to model count data. A Poisson random variable can take only

nonnegative integer values, and its mean is 𝑚.

uniform 𝑎∗ 𝑏∗ specifies a continuous uniform distribution over the interval [𝑎, 𝑏], where
𝑎 < 𝑏. The mean of a uniformly distributed random variable is (𝑎 + 𝑏)/2.

nbins(numlist) specifies the number of bins to use when discretizing the covariate; the number
of bins must be an integer between 2 and 100,000,000. For this covariate, the nbins()
suboption overrides any value set by the nbins() global option. The nbins() suboption is

not allowed with the bernoulli, binomial, or ordinal distribution.

oratio(numlist[ , unit(# | sd) ]) specifies the odds ratio for the covariate in the logistic re-

gression. The odds ratio must be positive, and only one of the oratio() or coefficient()
suboption may be specified for each covariate. When you specify the covariate of interest 𝑋,

the oratio() suboption may not take the value 1, and oratio() is not a valid suboption of

x() when calculating effect size or when argument oratio𝑋 is specified.

unit(# | sd) specifies the unit change for the odds ratio. Specifying unit(sd) indicates that

the odds ratio is for a 1-standard-deviation increase in the covariate. The relationship be-

tween the odds ratio and the coefficient is oratio = exp(coefficient×unit). The default
is unit(1).

coefficient(numlist) specifies the coefficient for the covariate in the logistic regression. Only

one of the coefficient() or oratio() suboption may be specified for each covariate. When

you specify the covariate of interest 𝑋, the coefficient() suboption may not take the value

0, and coefficient() is not a valid suboption of x() when calculating effect size or when

argument oratio𝑋 is specified.

effect(oratio | coefficient) specifies how to report the effect size in the output. By default, the

effect is output as the odds ratio for𝑋 unless the coefficient for𝑋 is specified, in which case it defaults

to the coefficient. The effect() option is used to override the default.

z[ # ](xzspec) specifies information about nuisance covariate 𝑍#. This includes the distribution and its

parameters for 𝑍#, the coefficient or odds ratio for 𝑍#, and the number of bins to use when discretiz-

ing 𝑍#. Up to 20 𝑍 covariates may be specified, and 𝑍 covariates are assumed to be uncorrelated

with each other (correlation with 𝑋 is allowed; see the corrxz() option).

corrxz(numlist) specifies the correlation between 𝑋 and Z, labeled 𝑅, where −1 < 𝑅 < 1. If there

is just one 𝑍 covariate, this is Pearson’s correlation coefficient. If there are multiple 𝑍 covariates,

corrxz() specifies the coefficient of multiple correlation, a generalization of Pearson’s correlation

coefficient. The default is corrxz(0), which indicates no correlation between 𝑋 and Z.
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https://www.stata.com/manuals/pss-2powerlogisticgeneral.pdf#pss-2powerlogisticgeneralOptionsopt_xzspec
https://www.stata.com/manuals/pss-2powerlogisticgeneral.pdf#pss-2powerlogisticgeneralOptionsopt_corrxz
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pycondxmzm(numlist) specifies the conditional success probability of 𝑌 given mean values of 𝑋 and all

Z covariates, Pr{𝑌 = 1|𝑋 = 𝐸(𝑋),Z = 𝐸(Z)}, where 0 < Pr{𝑌 = 1|𝑋 = 𝐸(𝑋),Z = 𝐸(Z)} <
1. This option is not allowed with effect-size determination.

pycondx0zm(numlist) specifies the conditional success probability of 𝑌 given 𝑋 = 0 and mean values

of all Z covariates, Pr{𝑌 = 1|𝑋 = 0,Z = 𝐸(Z)}, where 0 < Pr{𝑌 = 1|𝑋 = 0,Z = 𝐸(Z)} < 1.

pycondx0zm() may not be combined with the intercept() option.

intercept(numlist) specifies the intercept for the logistic regression, 𝜁0. The intercept() option

may not be combined with the pycondx0zm() option.

direction(), parallel; see [PSS-2] power.

� � �
Discretization �

minbins(numlist) specifies the minimum product of the bins for all covariates 𝐵min, where 𝐵min is an

integer between 2 and 100,000,000. Covariates with Bernoulli, binomial, and ordinal distributions

always use one bin for each value they can take, and the nbins() suboption of x() and z#() sets

the number of bins for one covariate at a time. The value of minbins() is used when determining

howmany bins to allocate to the remaining covariates; they are discretized such that the product of the

number of bins of each covariate exceeds minbins(). 𝐵min ≤ 𝐵𝑋 ×𝐵𝑍1
×𝐵𝑍2

. . ., where 𝐵𝑋 is the

number of bins for𝑋,𝐵𝑍1
is the number of bins for𝑍1, and so on. The default is minbins(10000) for

power and sample-size calculations and minbins(1000) for effect-size calculations. The minbins()
optionmay not be combinedwith the nbins() global option (but it can be combinedwith the nbins()
suboption of x() or z#()).

nbins(numlist) specifies the number of bins to use when discretizing each covariate; the number of

bins must be an integer between 2 and 100,000,000. The nbins() option can be overridden on a

per-covariate basis by specifying the nbins() suboption of x() or z#(). Covariates with Bernoulli,
binomial, and ordinal distributions always use one bin for each value they can take, so they do not

respect nbins(). The nbins() option may not be combined with the minbins() option (but the

nbins() suboption of x() or z#() can be combined with minbins()). Note that the product of the
number of bins for all covariates, 𝐵tot, may not exceed 100,000,000. (𝐵tot = 𝐵𝑋 ×𝐵𝑍1

×𝐵𝑍2
· · · ≤

100,000,000, where 𝐵𝑋 is the number of bins for 𝑋, 𝐵𝑍1
is the number of bins for 𝑍1, and so on).

Thus, the maximum of nbins(100000000) may be specified only if there is a single covariate of

interest without any nuisance covariates.

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by the

graphs.

� � �
Iteration �

init(#) specifies the initial value of the odds ratio for 𝑋 during effect-size determination. The default

is init(1.5) with direction(upper) and init(0.67) with direction(lower).

iterate(), tolerance(), ftolerance(), log, nolog, dots, nodots; see [PSS-2] power.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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The following options are available with power logistic but are not shown in the dialog box:

coefx(numlist) specifies the coefficient for covariate 𝑋 in the logistic regression, 𝛽𝑋, where 𝛽𝑋 ≠ 0.

The coefx() option may be specified instead of argument oratio𝑋. This option is not allowed with

effect-size determination.

notitle; see [PSS-2] power.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using power logistic with arbitrary covariates
Computing sample size
Computing power
Computing effect size
Performing hypothesis tests with logistic regression

This entry describes the power logistic command and the methodology for power and sample-

size analysis for logistic regression with one covariate of interest, 𝑋, and up to 20 nuisance covariates

Z = (𝑍1, 𝑍2, . . .). Covariates 𝑋 and Z can be continuous, discrete, or a combination of both. See

[PSS-2] Intro (power) for a general introduction to power and sample-size analysis, and see [PSS-2] power

for a general introduction to using the power command for hypothesis tests.

Introduction
Logistic regression is a commonly used statistical method for analyzing binary outcome variables.

Researchers often need to determine the appropriate sample size to ensure sufficient power for detecting

the association between a covariate of interest (𝑋) and a binary outcome variable (𝑌) while controlling
for the effect of nuisance covariates (Z).

For example, consider a study that examines factors influencing whether migratory birds return to the

same nesting site from one year to the next. Binary outcome 𝑌 is an indicator of whether the nesting site

was reused, where the observed 𝑦𝑖 = 1 if bird 𝑖 returns to the nesting site it used last year and 𝑦𝑖 = 0 if

bird 𝑖 does not. We will use logistic regression to test whether birds of one sex are more likely to return to

the same nesting site than birds of the other sex. We define binary covariate of interest 𝑋 as an indicator

for female birds, where the observed 𝑥𝑖 = 1 if bird 𝑖 is female and 𝑥𝑖 = 0 if bird 𝑖 is male. Previous
observations suggest that birds that mate with the same partner as last year are more likely to return to

the same nesting site, as are heavier birds. We are not interested in studying the effect of a bird’s mate or

weight, but it would be foolhardy to ignore these effects. We include mate in our logistic regression as

nuisance covariate 𝑍1, where the observed 𝑧1𝑖 = 1 if bird 𝑖 has the same mate as last year and 𝑧1𝑖 = 0

if not. And we include weight as nuisance covariate 𝑍2, where the observed 𝑧2𝑖 is the weight of bird 𝑖.
The logistic regression can be written as

Pr(𝑦𝑖 = 1|𝑥𝑖, z𝑖) = 𝐻(𝛽𝑋𝑥𝑖 + 𝜁0 + 𝜁1𝑧1𝑖 + 𝜁2𝑧2𝑖) 𝑖 = 1, 2, . . . , 𝑛

where 𝛽𝑋 is the coefficient quantifying the effect of covariate 𝑋, a bird’s sex, on nesting-site reuse; 𝜁0
is the logistic intercept; 𝜁1 is the effect of covariate 𝑍1, partnering with the same mate; 𝜁2 is the effect

of covariate 𝑍2, weight; and 𝑛 is the sample size. Function 𝐻(𝜂) = {1 + exp(−𝜂)}−1 is the logistic

distribution function.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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The effect of covariate 𝑋 can also be expressed in terms of an odds ratio,

OR𝑋 = exp(𝛽𝑋u𝑋) = Pr(𝑌 = 1|𝑋 = 1)Pr(𝑌 = 0|𝑋 = 0)/{Pr(𝑌 = 0|𝑋 = 1)Pr(𝑌 = 1|𝑋 = 0)}

where u𝑋 is the unit change in𝑋 for the odds ratio and u𝑋 > 0. In this example, u𝑋 must equal 1 because

𝑋 is a Bernoulli random variable. The null hypothesis is 𝐻0 ∶ 𝛽𝑋 = 0, which can also be expressed as

𝐻0 ∶ OR𝑋 = 1. The alternative hypothesis is 𝐻𝑎 ∶ 𝛽𝑋 ≠ 0 or, equivalently, 𝐻𝑎 ∶ OR𝑋 ≠ 1.

Logistic regression is commonly used to analyze binary outcomes in observational studies, such as

the study of nesting-site reuse. But it can also be used to analyze data from a randomized controlled trial,

where trial participants are randomly assigned to a treatment. For instance, a public health study might

investigate whether attending a support group helps smokers quit smoking. In this example, participation

in the support group is binary covariate𝑋: Some participants will be randomly assigned to attend support

groupmeetings for, say, threemonths, whereas other participants will be randomized to the control group,

which does not attend support group meetings. At the end of three months, smoking status is recorded;

this is binary outcome 𝑌. Based on previous research, we anticipate males and females will have different
success rates at quitting smoking, and we expect younger smokers to be more successful at quitting than

older smokers. We are not interested in studying the effect of sex or age on smoking cessation, but

it would be foolhardy to ignore these effects, so we include sex in our logistic regression as nuisance

covariate 𝑍1, and we include age as nuisance covariate 𝑍2.

The power logistic command provides power and sample-size analysis for the test of 𝛽𝑋 = 0

in logistic regression. The formula for power, sample-size, and effect-size calculations is based on the

likelihood-ratio test of 𝛽𝑋 = 0. However, Bush (2015) demonstrates that sample-size requirements for

Wald and score tests are generally equivalent to the sample-size requirement for the likelihood-ratio test.

Thus, these calculations may be used to plan studies that will be analyzed using the logit command,

which conducts a Wald test of 𝛽𝑋 = 0, or the logistic command, which conducts an equivalent Wald

test of OR𝑋 = 1. If you prefer a likelihood-ratio test, you can use the lrtest command.

Using power logistic with arbitrary covariates
power logistic computes sample size, power, or effect size for a test of one coefficient in logis-

tic regression. This entry describes how to use power logistic when the logistic regression can have

multiple discrete and continuous covariates, only one of which is of interest (𝑋), while the others are nui-

sance covariates (Z). All computations are performed for a two-sided hypothesis test where, by default,

the significance level is set to 0.05. You may change the significance level by specifying the alpha()
option. You must specify the distribution of covariate 𝑋 in the target population with the x() option.

Nuisance covariates can be specified in z1(), z2(), and so on.

Power and sample-size calculations require that you specify information about three types of parame-

ters from the logistic regression: the 𝑋 coefficient (𝛽𝑋), the 𝑍 coefficients (𝜁1, 𝜁2, . . .), and the intercept
(𝜁0). For each nuisance covariate 𝑍# in the logistic regression, you must specify information about 𝜁#
using either z#(oratio()) or z#(coefficient()).

The information about the 𝑋 coefficient (𝛽𝑋) can be specified directly in the x(coefficient())
option or indirectly as an argument oratio𝑋, in the x(oratio()) option, or in the pycondxmzm() option.
The information about the intercept (𝜁0) can be specified directly in the intercept() option or indirectly
in the pycondx0zm() or pycondxmzm() option. See figure 1 for a graphical depiction of various ways

to provide information about 𝛽𝑋 and 𝜁0.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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intercept (ζ0)

oratiox

X coefficient (βx)

pycondxmzm()

pycondx0zm()

intercept()
x(oratio())

x(coefficient())

Figure 1. Specifying information about 𝛽𝑋 and 𝜁0

Valid ways of specifying the 𝑋 coefficient and intercept include, for example, oratio𝑋 and

intercept() or pycondxmzm() and pycondx0zm(). However, the combination of intercept() and

pycondx0zm() is invalid because no information is provided about the 𝑋 coefficient. When you com-

pute sample size, the power of the test may be specified using the power() option, which has a default

of 0.8. When you compute power, the sample size must be specified using the n() option.

When power logistic is used to calculate effect size 𝛽𝑋, the command specification cannot in-

clude oratio𝑋 or options that provide information about the 𝑋 coefficient, such as the pycondxmzm()
or x(oratio()) option. In this case, the procedure for specifying the 𝑍 coefficient or 𝑍 coefficients is

unchanged, but information about the intercept must be specified using intercept() or pycondx0zm().

To calculate effect size, you must specify sample size using the n() option, power using the power()
option, and, optionally, the direction of the effect using the direction() option. The default is

direction(upper), which means that coefficient 𝛽𝑋 is assumed to be positive. This is equivalent

to assuming that the odds ratio OR𝑋 is greater than 1. You can change the direction to lower, which
means that 𝛽𝑋 < 0 or, equivalently, OR𝑋 < 1.

The effect() option can be used to specify the type of effect to be reported in the output. Valid

choices are effect(oratio) and effect(coefficient). If the coefficient for 𝑋 is specified, the

default output parameterizes the effect size as a coefficient; otherwise, the default is an odds ratio. The

effect() option is used to override the default.

By default, the computed sample size is rounded up. You can specify the nfractional option to see

the corresponding fractional sample size; see Fractional sample sizes in [PSS-4] Unbalanced designs for

an example. The nfractional option is allowed only for sample-size determination.

Some of the computations of power logistic require iteration, specifically, the computations used

in effect-size determination. The default initial value for OR𝑋 is 1.5 with direction(upper) and 0.67

with direction(lower). This may be changed by specifying the init() option. See [PSS-2] power

for descriptions of other options that control the iteration procedure.

In the following sections, we describe the use of power logistic to compute sample size, power,

and effect size.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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Computing sample size
To compute sample size, you must specify the distribution of the covariate of interest 𝑋 using the

distribution() suboption of x(); the distributions and coefficients or odds ratios of any nuisance

covariates using z1(), z2(), and so on; the information necessary to determine parameters 𝛽𝑋 and 𝜁0,

as described in Using power logistic with arbitrary covariates; and, optionally, the power of the test using

the power() option or the type-II-error probability using the beta() option. A default power of 0.8 is

assumed if the power of the test is not specified. The level of the test is specified using the alpha()
option, with a default of alpha(0.05).

Example 1: Sample size with a standard normal covariate of interest
Consider an example from the seminal work on sample-size calculation for logistic regression by

Whittemore (1981, 31) that describes the design of a study testing “the null hypothesis that risk of coro-

nary heart disease (CHD) among white males aged 39–59 is unaffected by serum cholesterol levels”.

In example 1 of [PSS-2] power logistic onebin and example 1 of [PSS-2] power logistic twobin, we

approached this scenario using a binary indicator variable for elevated cholesterol, but here we model

serum cholesterol as a normally distributed random variable, just as Whittemore did.

Normally distributed covariate of interest𝑋 is serum cholesterol, which has been standardized to have

mean 0 and standard deviation 1. Wewant to control for the effects of triglyceride, nuisance covariate𝑍1,

which is a known risk factor for CHD. Log-triglyceride levels are standardized and modeled as a normal

random variable with mean 0 and standard deviation 1. Following Whittemore (1981), we anticipate the

odds ratio for a one-unit change in 𝑍1 to be 1.25, and the correlation between 𝑋 and 𝑍1 is estimated to

be 0.4. Based on data from Hulley et al. (1980), we assume a probability of 0.07 that an individual in the

target population will develop CHD during an 18-month study period if he has average values for serum

cholesterol and triglycerides; this will be entered as pycondxmzm(0.07).

Like Whittemore, we will calculate the sample size required to detect an odds ratio of 1.65 at the

𝛼 = 0.05 level, but we will use the default power of 80%.

. power logistic 1.65, x(distribution(normal 0 1))
> z1(distribution(normal 0 1) oratio(1.25))
> corrxz(0.4) pycondxmzm(0.07)
Estimated sample size for logistic regression odds-ratio test
Likelihood-ratio test
H0: OR_X = 1 versus Ha: OR_X != 1
Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.6500 (odds ratio)

corrxz = 0.4000
pycondxmzm = 0.0700

Covariate of interest X: Normal(mux, sigmax), bins = 100
oratiox = 1.6500

mux = 0.0000
sigmax = 1.0000

Nuisance covariate Z1: Normal(muz1, sigmaz1), bins = 100
oratioz1 = 1.2500

muz1 = 0.0000
sigmaz1 = 1.0000

Estimated sample size:
N = 521

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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The output of power logistic begins by displaying information about the test to be conducted and

its null and alternative hypotheses. The study parameters we specified are listed next, followed by in-

formation about covariates 𝑋 and 𝑍1. For both 𝑋 and 𝑍1, we see the odds ratios we specified, along

with means and standard deviations. We also see that these normal distributions were discretized into

100 bins each. We did not specify the number of bins to use, so power logistic used the default of

minbins(10000) for sample-size calculations. The minbins() option specifies the minimum value for

the product of bins for all covariates rather than directly specifying the number of bins per covariate

(which can be done with the nbins() option or the nbins() suboption of the x(distribution()) and

z#(distribution()) options). With 100 bins per covariate, we have a product of 100×100 = 10,000,

satisfying the default minbins(10000).

Finally, we find that a sample of 521 subjects is required to detect an odds ratio of 1.65 with 80%

power using a 5% level test. But how sensitive is this sample-size estimate to our discretization process?

We repeat the previous calculation, but this time, we specify different values for the minimum product

of bins for all covariates. For demonstration purposes, we move the specification of OR𝑋 from argument

oratio𝑋 to suboption x(oratio()).

. power logistic, x(distribution(normal 0 1) oratio(1.65))
> z1(distribution(normal 0 1) oratio(1.25))
> corrxz(0.4) pycondxmzm(0.07)
> minbins(100 1000 10000 100000 1000000)
Estimated sample size for logistic regression odds-ratio test
Likelihood-ratio test
H0: OR_X = 1 versus Ha: OR_X != 1
Covariate of interest X: Normal(mux, sigmax)

Nuisance covariate Z1: Normal(muz1, sigmaz1)

alpha power N delta oratiox mux sigmax nbinsx oratioz1

.05 .8 600 1.65 1.65 0 1 10 1.25

.05 .8 539 1.65 1.65 0 1 32 1.25

.05 .8 521 1.65 1.65 0 1 100 1.25

.05 .8 514 1.65 1.65 0 1 317 1.25

.05 .8 512 1.65 1.65 0 1 1000 1.25

muz1 sigmaz1 nbinsz1 corrxz pycondxmzm minbins totalbins

0 1 10 .4 .07 100 100
0 1 32 .4 .07 1000 1024
0 1 100 .4 .07 10000 10000
0 1 317 .4 .07 1.0e+05 1.0e+05
0 1 1000 .4 .07 1.0e+06 1.0e+06

Whenwe specifymultiple values for one ormore parameters or arguments, power logistic presents the
results as a table. Above the table is information about the test to be conducted, with null and alternative

hypotheses followed by the distributions of covariates 𝑋 and 𝑍1. The table has columns for each of

the logistic regression parameters we specified, as well as estimated sample size N and additional details

about discretization (nbinsx, nbinsz1, and totalbins).

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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By increasing the minimum product of bins from 100 to 1,000,000 by successive orders of magnitude,

we caused the number of bins for each covariate to increase from 10 all the way to 1,000. Using more

bins to discretize the covariates increased the precision of our sample-size calculation, but it came at the

expense of increased computational time, with diminishing returns above minbins() values of 10,000.

Example 2: Sample size with continuous covariates
Instead of standardizing serum cholesterol and log triglycerides as in example 1, we now input the

means and standard deviations in the x(distribution()) and z1(distribution()) suboptions. To

indicate that the odds ratios now refer to a 1-standard-deviation increase in the covariates, we include sub-

option unit(sd) when specifying the odds ratios of these covariates. We leave the rest of the command

specification unchanged.

. power logistic, x(distribution(normal 212 38) oratio(1.65, unit(sd)))
> z1(distribution(normal 4.9 0.3) oratio(1.25, unit(sd)))
> corrxz(0.4) pycondxmzm(0.07)
Estimated sample size for logistic regression odds-ratio test
Likelihood-ratio test
H0: OR_X = 1 versus Ha: OR_X != 1
Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.0133 (odds ratio)

corrxz = 0.4000
pycondxmzm = 0.0700

Covariate of interest X: Normal(mux, sigmax), bins = 100
oratiox = 1.6500

unitx = 38.0000
mux = 212.0000

sigmax = 38.0000
Nuisance covariate Z1: Normal(muz1, sigmaz1), bins = 100

oratioz1 = 1.2500
unitz1 = 0.3000

muz1 = 4.9000
sigmaz1 = 0.3000

Estimated sample size:
N = 521

The output of this command is similar to that of example 1, but now information about unitx and unitz1
is included in the descriptions of those covariates. The estimated sample size, however, is unchanged.
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Example 3: Sample size with continuous and discrete covariates
We now include an additional nuisance covariate, smoking status, as 𝑍2. The probability that an

individual in the target population is a smoker is 0.38, and the odds ratio for 𝑍2 is 3. Smoking status is

uncorrelated with the covariate of interest, so the coefficient of multiple correlation remains 0.4. We leave

the rest of the command specification unchanged except for the addition of the effect(coefficient)
option to display the effect of 𝑋 as a coefficient instead of an odds ratio.

. power logistic, x(distribution(normal 212 38) oratio(1.65, unit(sd)))
> z1(distribution(normal 4.9 0.3) oratio(1.25, unit(sd)))
> z2(distribution(bernoulli 0.38) oratio(3))
> corrxz(0.4) pycondxmzm(0.07) effect(coefficient)
Estimated sample size for logistic regression coefficient test
Likelihood-ratio test
H0: beta_X = 0 versus Ha: beta_X != 0
Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.0132 (coefficient)

corrxz = 0.4000
pycondxmzm = 0.0700

Covariate of interest X: Normal(mux, sigmax), bins = 71
coefx = 0.0132

mux = 212.0000
sigmax = 38.0000

Nuisance covariate Z1: Normal(muz1, sigmaz1), bins = 71
oratioz1 = 1.2500

unitz1 = 0.3000
muz1 = 4.9000

sigmaz1 = 0.3000
Nuisance covariate Z2: Bernoulli(pz2), bins = 2

oratioz2 = 3.0000
pz2 = 0.3800

Estimated sample size:
N = 494

Under Covariate of interest X:, we now see coefx instead of oratiox and unitx. But the major
change is the addition of covariate𝑍2, which reduces the estimated sample size to 494. Bernoulli random

covariate 𝑍2 can take only 2 values, which is why it is discretized into 2 bins. discretized into 71 bins

each, yielding a product of 71 × 71 × 2 = 10,082 bins.
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Computing power
To compute power, you must specify the distribution of covariate of interest 𝑋 using the

x(distribution()) option; the distributions and coefficients or odds ratios of any nuisance covari-

ates using z1(), z2(), and so on; the information necessary to determine parameters 𝛽𝑋 and 𝜁0, as

described in Using power logistic with arbitrary covariates ; and the sample size using the n() option.

The level of the test is specified using the alpha() option, with a default of alpha(0.05).

Example 4: Power of a logistic regression odds-ratio test
Continuing with example 3, we anticipate a sample of 600 subjects and would like to compute the

power corresponding to this sample size. We specify the same study parameters we used in example 3,

but now we use the n() option to specify a sample size of 600.

. power logistic, x(distribution(normal 212 38) oratio(1.65, unit(sd)))
> z1(distribution(normal 4.9 0.3) oratio(1.25, unit(sd)))
> z2(distribution(bernoulli 0.38) oratio(3))
> corrxz(0.4) pycondxmzm(0.07) n(600)
Estimated power for logistic regression odds-ratio test
Likelihood-ratio test
H0: OR_X = 1 versus Ha: OR_X != 1
Study parameters:

alpha = 0.0500
N = 600

delta = 1.0133 (odds ratio)
corrxz = 0.4000

pycondxmzm = 0.0700
Covariate of interest X: Normal(mux, sigmax), bins = 71

oratiox = 1.6500
unitx = 38.0000

mux = 212.0000
sigmax = 38.0000

Nuisance covariate Z1: Normal(muz1, sigmaz1), bins = 71
oratioz1 = 1.2500

unitz1 = 0.3000
muz1 = 4.9000

sigmaz1 = 0.3000
Nuisance covariate Z2: Bernoulli(pz2), bins = 2

oratioz2 = 3.0000
pz2 = 0.3800

Estimated power:
power = 0.8707

If the study recruits 600 participants, the power to detect an odds ratio of 1.65 climbs to 87.07%.
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Example 5: Multiple values of study parameters
To investigate the effect of sample size on power, we can specify a list of sample sizes in the n()

option:

. power logistic, x(distribution(normal 212 38) oratio(1.65, unit(sd)))
> z1(distribution(normal 4.9 0.3) oratio(1.25, unit(sd)))
> z2(distribution(bernoulli 0.38) oratio(3))
> corrxz(0.4) pycondxmzm(0.07) n(400 500 600 700)
Estimated power for logistic regression odds-ratio test
Likelihood-ratio test
H0: OR_X = 1 versus Ha: OR_X != 1
Covariate of interest X: Normal(mux, sigmax)
Nuisance covariates:

Z1: Normal(muz1, sigmaz1)
Z2: Bernoulli(pz2)

alpha power N delta oratiox unitx mux sigmax oratioz1

.05 .7132 400 1.013 1.65 38 212 38 1.25

.05 .8052 500 1.013 1.65 38 212 38 1.25

.05 .8707 600 1.013 1.65 38 212 38 1.25

.05 .9158 700 1.013 1.65 38 212 38 1.25

unitz1 muz1 sigmaz1 oratioz2 pz2 corrxz pycondxmzm

.3 4.9 .3 3 .38 .4 .07

.3 4.9 .3 3 .38 .4 .07

.3 4.9 .3 3 .38 .4 .07

.3 4.9 .3 3 .38 .4 .07

As expected, when the sample size increases, the power increases toward 1.

For multiple values of parameters, the results are automatically displayed in a table, as we see above.

For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot, see

[PSS-2] power, graph.

Computing effect size
By default, effect size 𝛿 for a logistic regression odds-ratio test is defined as the odds ratio for 𝑋:

𝛿 = OR𝑋 = exp(𝛽𝑋/u𝑋). Sometimes, we want to know the smallest effect that can be detected with a

level 𝛼 test at a prespecified power and sample size.

To compute the effect size, you must specify the distribution of the covariate of interest 𝑋 using the

x(distribution()) option; the distributions and coefficients or odds ratios of any nuisance covariates

using z1(), z2(), and so on; parameter 𝜁0 using the pycondx0zm() or intercept() option; the sample
size using the n() option; and the power of the test using the power() option or the type II error probabil-
ity using the beta() option. In addition, you must pick the level of the test and the direction of the effect.
The level of the test is specified using the alpha() option, with a default of alpha(0.05). The direc-
tion of the effect is specified using the direction() option; the default is direction(upper), which
means that OR𝑋 > 1 or, equivalently, 𝛽𝑋 > 0. Specifying direction(lower) means that OR𝑋 < 1

and 𝛽𝑋 < 0. The estimated minimum detectable effect size is reported as an odds ratio by default. To

display it as a coefficient, specify effect(coefficient).
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Example 6: Minimum detectable odds ratio
We continue with example 4, where we learned that a size 0.05 test with 600 subjects would have

87.07% power to detect an odds ratio of 1.65. How much larger would the odds ratio need to be to detect

it with 90% power? We use power logistic to find out.

Instead of specifying the untransformed mean and standard deviation of serum cholesterol, we re-

turn to using standardized values as we did in example 1. The reason for this is twofold: First, there

is no closed-form solution for the effect-size calculation, so it requires a nonlinear solver, which per-

forms much more efficiently on the standardized values. Second, it allows us to use a trick to specify

pycondx0zm() (which is allowed for effect-size calculations) instead of pycondxmzm() (which is not).

The mean of 𝑋 is 0 after standardizing, so Pr{𝑌 = 1|𝑋 = 𝐸(𝑋),Z = 𝐸(Z)} = Pr{𝑌 = 1|𝑋 = 0,Z =
𝐸(Z)}, which means that we can specify pycondx0zm(0.07).

. power logistic, x(distribution(normal 0 1))
> z1(distribution(normal 4.9 0.3) oratio(1.25, unit(sd)))
> z2(distribution(bernoulli 0.38) oratio(3))
> corrxz(0.4) pycondx0zm(.07) n(600) power(0.9)
Performing iteration ...
Estimated odds ratio for logistic regression odds-ratio test
Likelihood-ratio test
H0: OR_X = 1 versus Ha: OR_X != 1
Study parameters:

alpha = 0.0500
power = 0.9000

N = 600
corrxz = 0.4000

pycondx0zm = 0.0700
Covariate of interest X: Normal(mux, sigmax), bins = 23

mux = 0.0000
sigmax = 1.0000

Nuisance covariate Z1: Normal(muz1, sigmaz1), bins = 23
oratioz1 = 1.2500

unitz1 = 0.3000
muz1 = 4.9000

sigmaz1 = 0.3000
Nuisance covariate Z2: Bernoulli(pz2), bins = 2

oratioz2 = 3.0000
pz2 = 0.3800

Estimated effect size and odds ratio:
delta = 1.7077 (odds ratio)

oratiox = 1.7077

We see that a slightly larger odds ratio of 1.7077 can be detected with 90% power. The two normal

covariates are discretized into only 23 bins each because the default value of minbins() for effect-size

calculations is 1,000, and 23 × 23 × 2 = 1,058.
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In the above, we assumed the effect to be in the upper direction. By symmetry, there exists an effect

size in the lower direction that can also be detected with 90% power. We specify direction(lower)
to find it, and we add the effect(coefficient) option to display it as a coefficient instead of an odds

ratio.

. power logistic, x(distribution(normal 0 1))
> z1(distribution(normal 4.9 0.3) oratio(1.25, unit(sd)))
> z2(distribution(bernoulli 0.38) oratio(3))
> corrxz(0.4) pycondx0zm(.07) n(600) power(0.9)
> direction(lower) effect(coefficient)
Performing iteration ...
Estimated coefficient for logistic regression coefficient test
Likelihood-ratio test
H0: beta_X = 0 versus Ha: beta_X != 0
Study parameters:

alpha = 0.0500
power = 0.9000

N = 600
corrxz = 0.4000

pycondx0zm = 0.0700
Covariate of interest X: Normal(mux, sigmax), bins = 23

mux = 0.0000
sigmax = 1.0000

Nuisance covariate Z1: Normal(muz1, sigmaz1), bins = 23
oratioz1 = 1.2500

unitz1 = 0.3000
muz1 = 4.9000

sigmaz1 = 0.3000
Nuisance covariate Z2: Bernoulli(pz2), bins = 2

oratioz2 = 3.0000
pz2 = 0.3800

Estimated effect size and coefficient:
delta = -0.5351 (coefficient)
coefx = -0.5351

By specifying direction(lower), we anticipate coefficient 𝛽𝑋 < 0, which is what we see. Had

we omitted the effect(coefficient) option, the odds ratio OR𝑋 = exp(𝛽𝑋/1) would have been

displayed as exp(−0.5351) = 0.5856.

Performing hypothesis tests with logistic regression
In this section, we briefly demonstrate the use of the logit command for testing logistic regression

coefficients; see [R] logit for details. Alternatively, we could use the logistic command to perform

logistic regression because logistic performs the same calculations as logit but reports odds ratios

instead of coefficients; see [R] logistic for details, and see example 7 of [PSS-2] power logistic onebin

for a demonstration of how logistic can be used to analyze the results of a pilot study.

Example 7: Analyzing a pilot study
The nlsw88 dataset contains employment data from the 1988 extract of the National Longitudinal

Study of Young Women. We will treat this dataset as if it came from a pilot study investigating the rela-

tionship between union membership (union) and years of job experience (ttl exp) and use it to plan a
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follow-up study. Our target population isAmerican youngwomen, some of whom are married (married)
and some of whom are college graduates (collgrad). These are both factors known to influence union
membership, so we include them as nuisance covariates in our logistic regression.

. use https://www.stata-press.com/data/r19/nlsw88
(NLSW, 1988 extract)
. logit union ttl_exp married collgrad, nolog
Logistic regression Number of obs = 1,878

LR chi2(3) = 25.42
Prob > chi2 = 0.0000

Log likelihood = -1033.9131 Pseudo R2 = 0.0121

union Coefficient Std. err. z P>|z| [95% conf. interval]

ttl_exp .0213728 .0120162 1.78 0.075 -.0021785 .0449241
married -.2328041 .1117316 -2.08 0.037 -.4517941 -.0138141

collgrad .4777123 .1192228 4.01 0.000 .24404 .7113846
_cons -1.380919 .1854974 -7.44 0.000 -1.744487 -1.017351

Years of job experience is our covariate of interest 𝑋, so the output tells us that 𝛽𝑋, the coefficient for

ttl exp, is 0.02. This suggests that women are more likely to be union members as they accumulate

more job experience, but the evidence is not strong enough to reject 𝐻0 ∶ 𝛽𝑋 = 0 at the 0.05 level. We

want to design a follow-up study that has 80% power to detect a coefficient of 0.02 with a 0.05-level test,

and we will use the parameter estimates from our pilot study to do so.

In addition to an estimate of 𝛽𝑋, the output of the logit command provides estimates of the coeffi-

cients for married (𝜁1 = −0.23), collgrad (𝜁2 = 0.48), and the logistic intercept cons (𝜁0 = −1.38).

To use power logistic, we need additional information about the distributions of our covariates.

To visually examine the distribution of 𝑋 covariate ttl exp, we use the histogram command with

the normal option to draw a histogram of ttl exp values with a normal density for reference; see

[R] histogram for details. We include the expression if e(sample) to restrict the computation so that it

includes only the 1,878 participants whose data were used to fit the logistic regression; see [U] 20.7 Spec-

ifying the estimation subsample for details about e(sample).

. histogram ttl_exp if e(sample), normal
(bin=32, start=.11538462, width=.89903845)
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Figure 2. Histogram of total work experience
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Total work experience is not quite normally distributed, but the fit is close enough to use a normal distribu-

tion to conduct a sensitivity analysis for sample-size calculations. Next we use the summarize command
to calculate the means and standard deviations of our covariates; see [R] summarize for details.

. summarize ttl_exp married collgrad if e(sample)
Variable Obs Mean Std. dev. Min Max

ttl_exp 1,878 12.81837 4.606392 .1153846 28.88461
married 1,878 .6506922 .4768783 0 1

collgrad 1,878 .2470714 .4314235 0 1

The mean of ttl exp is 12.8, and the standard deviation is 4.6, but to account for uncertainty, we will

perform a sensitivity analysis by specifying a numlist of values from 4 to 5 for the standard deviation of

𝑋. Binary covariates married and collgrad follow Bernoulli distributions where parameter 𝑝 is equal

to the mean, so we use 0.65 and 0.25 as their respective values of 𝑝.
The easiest way to calculate the multiple correlation coefficient between 𝑋 and the Z covariates is to

perform a linear regression of 𝑋 on 𝑍 and take the square root of the coefficient of determination, 𝑅2.

We use the regress command to perform linear regression of ttl exp on married and collgrad to

calculate the coefficient of multiple correlation; see [R] regress for details.

. regress ttl_exp married collgrad if e(sample), notable
Source SS df MS Number of obs = 1,878

F(2, 1875) = 14.73
Model 615.91641 2 307.958205 Prob > F = 0.0000

Residual 39211.8662 1,875 20.9129953 R-squared = 0.0155
Adj R-squared = 0.0144

Total 39827.7826 1,877 21.2188506 Root MSE = 4.5731

. display ”Multiple correlation coefficient: ” sqrt(e(r2))
Multiple correlation coefficient: .12435631

Putting this all together, we calculate the required sample size for a 5% test with 80% power to detect a

coefficient 𝛽𝑋 of 0.02.

. power logistic, x(distribution(normal 12.8 (4(0.2)5)) coefficient(0.02))
> z1(distribution(bernoulli 0.65) coefficient(-0.23))
> z2(distribution(bernoulli 0.25) coefficient(0.48))
> corrxz(0.124) intercept(-1.38)
Estimated sample size for logistic regression coefficient test
Likelihood-ratio test
H0: beta_X = 0 versus Ha: beta_X != 0
Covariate of interest X: Normal(mux, sigmax)
Nuisance covariates:

Z1: Bernoulli(pz1)
Z2: Bernoulli(pz2)

alpha power N delta coefx mux sigmax coefz1 pz1

.05 .8 6,866 .02 .02 12.8 4 -.23 .65

.05 .8 6,228 .02 .02 12.8 4.2 -.23 .65

.05 .8 5,675 .02 .02 12.8 4.4 -.23 .65

.05 .8 5,192 .02 .02 12.8 4.6 -.23 .65

.05 .8 4,769 .02 .02 12.8 4.8 -.23 .65

.05 .8 4,395 .02 .02 12.8 5 -.23 .65
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coefz2 pz2 corrxz intercept

.48 .25 .124 -1.38

.48 .25 .124 -1.38

.48 .25 .124 -1.38

.48 .25 .124 -1.38

.48 .25 .124 -1.38

.48 .25 .124 -1.38

Depending on the standard deviation of 𝑋, the test will require between 4,395 and 6,866 participants to

have 80% power. We have the budget to recruit 6,866 participants, so we perform a power analysis to

see what the power of the test would be with a sample size of 6,866 over a range of standard deviations.

To display the result visually, we use the graph option.

. power logistic, x(distribution(normal 12.8 (4(0.2)5)) coefficient(0.02))
> z1(distribution(bernoulli 0.65) coefficient(-0.23))
> z2(distribution(bernoulli 0.25) coefficient(0.48))
> corrxz(0.124) intercept(-1.38) n(6866) graph
Covariate of interest X: Normal(mux, sigmax)
Nuisance covariates:

Z1: Bernoulli(pz1)
Z2: Bernoulli(pz2)
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Estimated power for logistic regression coefficient test

Figure 3. Power curve for a sample of 6,866

With 6,866 participants, the power of our test ranges from 80% when ttl exp has a standard deviation

of 4 to over 90% when the standard deviation is greater than 4.6.

Instead of specifying the intercept, we could calculate Pr{𝑌 = 1|𝑋 = 𝐸(𝑋),Z = 𝐸(Z)} =
invlogit(𝑋𝛽𝑋 + 𝜁0 + 𝑍1𝜁1 + 𝑍2𝜁2) = invlogit(12.8×0.02−1.38+0.65× −0.23+0.25×0.48)
to specify pycondxmzm(0.23985). Alternatively, we could calculate Pr{𝑌 = 1|𝑋 = 0,Z = 𝐸(Z)}
= invlogit(𝜁0 + 𝑍1𝜁1 + 𝑍2𝜁2) = invlogit(−1.38 + 0.65 × −0.23 + 0.25 × 0.48) to specify

pycondx0zm(0.19631). Either alternative parameterization will yield the same result; doing so is left
as an exercise for the reader.
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One detail that bears mentioning is that these power and sample-size calculations are for likelihood-

ratio tests, but the logit and logistic commands report Wald tests of coefficients. Fortunately, an

extensive simulation study by Bush (2015) demonstrates that sample-size requirements for Wald and

likelihood-ratio tests of logistic regression coefficients are nearly identical. If you prefer a likelihood-

ratio test, you can use the lrtest command; see [R] lrtest for details.

Stored results
power logistic in the general case stores the following in r():

Scalars

r(alpha) significance level

r(power) power

r(beta) probability of a type II error

r(delta) effect size

r(N) sample size

r(nfractional) 1 if nfractional is specified, 0 otherwise

r(pycondxmzm) success probability of 𝑌 given mean values of 𝑋 and Z

r(pycondx0zm) success probability of 𝑌 given 𝑋 = 0 and mean values of covariates Z

r(intercept) intercept from logistic regression

r(corrxz) correlation between 𝑋 and Z

r(coefx) coefficient for 𝑋
r(oratiox) odds ratio for 𝑋
r(unitx) unit change in 𝑋 for odds ratio

r(nbinsx) number of bins for discretized 𝑋
r(coefz#) coefficient for 𝑍# (if 𝑍# is specified)

r(oratioz#) odds ratio for 𝑍#
r(unitz#) unit change in 𝑍# for odds ratio

r(nbinsz#) number of bins for discretized 𝑍#
r(ax) parameter a of the distribution of 𝑋
r(az#) parameter a of the distribution of 𝑍#
r(bx) parameter b of the distribution of 𝑋
r(bz#) parameter b of the distribution of 𝑍#
r(mx) parameter m of the distribution of 𝑋
r(mz#) parameter m of the distribution of 𝑍#
r(nx) parameter n of the distribution of 𝑋
r(nz#) parameter n of the distribution of 𝑍#
r(px) parameter p of the distribution of 𝑋
r(pz#) parameter p of the distribution of 𝑍#
r(sx) parameter s of the distribution of 𝑋
r(sz#) parameter s of the distribution of 𝑍#
r(mux) parameter 𝜇 of the distribution of 𝑋
r(muz#) parameter 𝜇 of the distribution of 𝑍#
r(sigmax) parameter 𝜎 of the distribution of 𝑋
r(sigmaz#) parameter 𝜎 of the distribution of 𝑍#
r(v#x) parameter 𝑣# of ordinal distribution of 𝑋
r(v#z#) parameter 𝑣# of ordinal distribution of 𝑍#
r(p#x) parameter 𝑝# of ordinal distribution of 𝑋
r(p#z#) parameter 𝑝# of ordinal distribution of 𝑍#
r(nlx) number of levels of ordinal distribution of 𝑋
r(nlz#) number of levels of ordinal distribution of 𝑍#
r(nbins) requested number of bins per covariate (if specified)

r(minbins) minimum requested product of all bins

r(totalbins) actual product of all bins

r(separator) number of lines between separator lines in the table

r(divider) 1 if divider is requested in the table, 0 otherwise
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r(init) initial value for odds ratio (if specified)

r(maxiter) maximum number of iterations (for effect-size calculation)

r(iter) number of iterations performed (for effect-size calculation)

r(tolerance) requested parameter tolerance (for effect-size calculation)

r(deltax) final parameter tolerance achieved (for effect-size calculation)

r(ftolerance) requested distance of the objective function from zero (for effect-size calculation)

r(function) final distance of the objective function from zero (for effect-size calculation)

r(converged) 1 if iteration algorithm converged, 0 otherwise (for effect-size calculation)

Macros

r(type) test
r(method) logistic
r(direction) upper or lower (for effect-size calculation)

r(columns) displayed table columns

r(labels) table column labels

r(widths) table column widths

r(formats) table column formats

r(distx) distribution of 𝑋
r(distz#) distribution of 𝑍# (if 𝑍# is specified)

Matrices

r(pss table) table of results

r(ordinalx) values and probabilities for ordinal covariate 𝑋 (if specified)

r(ordinalz#) values and probabilities for ordinal covariate 𝑍# (if specified)

Methods and formulas
Methods and formulas are presented under the following headings:

Coefficient tests in logistic regression
Logistic regression
Power, sample-size, and effect-size calculations
Discretization

Coefficient tests in logistic regression
Shieh (2000a) used simulation to compare the performance of two sample-size formulas for coefficient

tests in logistic regression: the method of Whittemore (1981) and that of Self, Mauritsen, and Ohara

(1992). Shieh generalized the superior of those two methods, that of Self, Mauritsen, and Ohara, in

Shieh (2000b), which provides the formulas implemented in power logistic for power, sample-size,

and effect-size calculations for likelihood-ratio tests in logistic regression.

In practice, it is more common to use the Wald test of logistic regression coefficients than the

likelihood-ratio test, so there has been some concern about whether these calculations are appropriate for

use with a Wald test (Demidenko 2007). Demidenko notes that the Wald and likelihood-ratio tests have

asymptotically equivalent type I errors and that they are “locally equivalent, so that the power functions

are close when the alternative approaches the null” (Demidenko 2007, 3385). Nevertheless, Demidenko

raises the point that the two tests are not globally equivalent, so there is no theoretical guarantee that the

power functions will be similar under the alternative hypothesis. Thankfully, an extensive simulation

study by Bush (2015) found little difference between the power curves of theWald, likelihood-ratio, and

score tests over a range of scenarios. Additionally, Bush compared the performance of seven sample-

size formulas for logistic regression and determined that the method of Shieh (2000b) was consistently

accurate, regardless of the test that was used.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow


power logistic general — Power analysis for logistic regression: General case+ 25

Logistic regression
The logistic regression can be written as

Pr(𝑦𝑖 = 1|𝑥𝑖, z𝑖) = 𝐻(𝑥𝑖𝛽𝑋 + 𝜁0 + z𝑖ζ𝑍) 𝑖 = 1, 2, . . . , 𝑛

where 𝑥𝑖 is the observed value of covariate of interest 𝑋 for subject 𝑖, 𝛽𝑋 is the 𝑋 coefficient, 𝜁0 is the

logistic intercept, z𝑖 = (𝑧1𝑖, 𝑧2𝑖, . . . , 𝑧𝐾𝑖) is the row vector of observed values of 𝐾 nuisance covariates

𝑍1 through 𝑍𝐾 for subject 𝑖, ζ𝑍 = (𝜁1, 𝜁2, . . . , 𝜁𝐾)′ is the column vector of 𝐾 coefficients for the nui-

sance covariates, and 𝑛 is the sample size. Function 𝐻(𝜂) = {1+exp(−𝜂)}−1 is the logistic distribution

function.

The effect of covariate 𝑋 can also be expressed in terms of an odds ratio, OR𝑋 = exp(𝛽𝑋u𝑋), where
u𝑋 > 0 is the unit change in 𝑋 for the odds ratio. The null hypothesis is 𝐻0 ∶ 𝛽𝑋 = 0, which can also be

expressed as 𝐻0 ∶ OR𝑋 = 1. The alternative hypothesis is 𝐻𝑎 ∶ 𝛽𝑋 ≠ 0 or, equivalently, 𝐻𝑎 ∶ OR𝑋 ≠ 1.

Parameters 𝜁1, 𝜁2, . . . , 𝜁𝐾 must be specified as coefficients or odds ratios in the respective z#() op-

tions. Intercept 𝜁0 may be specified directly in the intercept() option or the information necessary

to calculate 𝜁0 may be specified using either the pycondxmzm() or pycondx0zm() option. Coefficient

𝛽𝑋 may be specified as a coefficient or odds ratio, or the information necessary to calculate 𝛽𝑋 may be

specified using the pycondxmzm() option. When one or both of pycondxmzm() and pycondx0zm() are

specified, we solve for the unknown parameters (𝛽𝑋, 𝜁0, or both) using the equations

Pr{𝑌 = 1|𝑋 = 𝐸(𝑋),Z = 𝐸(Z)} = 𝐻{𝐸(𝑋)𝛽𝑋 + 𝜁0 + 𝐸(Z)ζ𝑍}
Pr{𝑌 = 1|𝑋 = 0,Z = 𝐸(Z)} = 𝐻{𝜁0 + 𝐸(Z)ζ𝑍}

where expected values 𝐸(𝑋) and 𝐸(Z) are determined based on the specified distributions.

Power, sample-size, and effect-size calculations
Shieh (2000b) builds on the work of Self, Mauritsen, and Ohara (1992) and Self andMauritsen (1988)

to estimate the distribution of the likelihood-ratio statistic: 2{𝑙( ̂𝛽𝑋, ̂c) − 𝑙(0, ̂c0)}. Here 𝑙(⋅) is the log-
likelihood function for the logistic regression, and c = (𝜁0, ζ𝑍

′) is a vector of nuisance parameters. ̂𝛽𝑋
and ̂c are the maximum likelihood estimates of 𝛽𝑋 and c under the alternative hypothesis, and ̂c0 is the

maximum likelihood estimate of c under the null hypothesis. If the null hypothesis is not true, ̂c0 is not a

consistent estimate of c but instead converges to c∗
0 = (𝜁∗

0, ζ𝑍
′), where 𝜁∗

0 = 𝜁0 +𝐸(𝑋)𝛽𝑋, as described

in Self and Mauritsen (1988, eq. 2.2). For a full decomposition of the likelihood-ratio statistic, see Shieh

(2000b, 1193).

To calculate sample size, we begin by specifying the desired size of the test (also known as the type I

error, 𝛼) and the desired power (which equals 1 − 𝛽, where 𝛽 is the desired type II error of the test). We

equate the (1 − 𝛼)100th percentile of a central 𝜒2 distribution with 1 degree of freedom to the 𝛽100th
percentile of a noncentral 𝜒2 distribution with noncentrality parameter 𝜆 = 𝑛Δ∗. Here Δ∗ = 2𝐸(𝑊 ∗),
and we define 𝑊 ∗ as

𝑊 ∗ = 𝐻(𝜂)(𝜂 − 𝜂∗) − log{1 + exp(𝜂)} + log{1 + exp(𝜂∗)}

where 𝜂 = 𝑋𝛽𝑋 + (1,Z)c′ and 𝜂∗ = (1,Z)c∗
0

′. Sample size is calculated as 𝑛 = 𝜆/{Δ∗(1 − 𝑅2)},
where 𝑅 is the coefficient of (multiple) correlation between 𝑋 and Z. 𝑅 is specified using the corrxz()
option, with a default of corrxz(0); the adjustment for correlated covariates is based on Whittemore

(1981). Power is computed similarly by starting with a known value of 𝑛 and solving for the power

required to yield the desired value of 𝜆.
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There is no closed-form expression that can be used to calculate effect size 𝛿, either coefficient 𝛽𝑋 or

odds ratio OR𝑋. Effect size is estimated iteratively, and the default starting value for OR𝑋 is 1.5 with the

default direction(upper) or 0.67 with direction(lower); see [M-5] solvenl( ) for details. You

can use the init() option to specify a starting odds ratio for the nonlinear solver. You can control the

iteration process with the iterate(), tolerance(), ftolerance(), log, nolog, dots, and nodots
options.

Discretization
To approximate the expected value of 𝑊 ∗ when calculating Δ∗, we discretize the covariates into bins.

Bernoulli, binomial, and ordinal random variables have a fixed number of possible outcomes, so they

always use one bin per outcome. For covariates with other distributions, the number of bins is determined

as follows. If the nbins() option is specified, then the specified number of bins is used. If the nbins()
suboption is specified in the distribution() option, this number overrides the number specified with

the nbins() option for the specified covariate. All other covariates for which the number of bins was

not specified are assigned an equal number of bins, such that the product of bins is greater than or equal

to minbins(). The default value for minbins() is 10,000 for power and sample-size calculations and

1,000 for effect-size calculations. The formula for the total number of bins is Btot = B𝑋 ∏𝐾
𝑘=1 B𝑍𝑘

,

where Btot ≤ 100,000,000 is the product of the bins for all covariates, B𝑋 is the number of bins for

discretized 𝑋, and B𝑍𝑘
is the number of bins for discretized 𝑍𝑘.

For Bernoulli, binomial, and ordinal random variables, the probability of each outcome is defined by

the distribution. For all other distributions, bins are assigned such that their midpoints yield quantiles of

equal probability. To calculate the expectation, we use all Btot possible combinations of binned variables,

with each combination weighted by its probability: 𝐸(𝑊 ∗) ≈ ∑Btot

𝑐=1 𝑊 ∗
𝑐 𝜋𝑐, where 𝑊 ∗

𝑐 is 𝑊 ∗ calculated

at combination 𝑐 and 𝜋𝑐 is the probability of observing combination 𝑐, calculated under the assumption
of independence between covariates.
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