
Intro (power) — Introduction to power and sample-size analysis for hypothesis tests

Description Remarks and examples References Also see

Description
Power and sample-size (PSS) analysis is essential for designing a statistical study that uses hypothesis

testing for inference. It investigates the optimal allocation of study resources to increase the likelihood

of the successful achievement of a study objective. PSS analysis provides an estimate of the sample size

required to achieve the desired power of a test in a future study.

For precision and sample-size analysis for confidence intervals, see [PSS-3] Intro (ciwidth).

For sample-size calculations for interim analyses in group sequential designs, see [ADAPT]GSD intro.

Remarks and examples
Remarks are presented under the following headings:

Power and sample-size analysis
Hypothesis testing
Components of PSS analysis

Study design
Statistical method
Significance level
Power
Clinically meaningful difference and effect size
Sample size
One-sided test versus two-sided test
Another consideration: Dropout

Survival data
Sensitivity analysis
An example of PSS analysis in Stata
Video example

This entry describes statistical methodology for PSS analysis and terminology that will be used

throughout the manual. For a list of supported PSS methods and the description of the software, see

[PSS-2] power. To see an example of PSS analysis in Stata, see An example of PSS analysis in Stata. For

more information about PSS analysis, see Lachin (1981), Cohen (1988), Cohen (1992), Wickramaratne

(1995), Lenth (2001), Chow et al. (2018), Julious (2010), and Ryan (2013), to name a few.

For precision and sample-size analysis for confidence intervals, see [PSS-3] Intro (ciwidth).

For sample-size calculations for interim analyses in group sequential designs, see [ADAPT]GSD intro.

Power and sample-size analysis
Power and sample-size (PSS) analysis is a key component in designing a statistical study that uses

hypothesis testing for inference. It investigates the optimal allocation of study resources to increase the

likelihood of the successful achievement of a study objective.
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How many subjects do we need in a study to achieve its research objectives? A study with too few

subjects may have a low chance of detecting an important effect, and a study with too many subjects

may offer very little gain and will thus waste time and resources. What are the chances of achieving the

objectives of a study given available resources? Or what is the smallest effect that can be detected in a

study given available resources? PSS analysis helps answer all of these questions. In what follows, when

we refer to PSS analysis, we imply any of these goals.

We consider prospective PSS analysis (PSS analysis of a future study) as opposed to retrospective PSS

analysis (analysis of a study that has already happened).

In the context of PSS analysis, hypothesis testing is the inferential method used to evaluate research

objectives of a study. In this manual, we concentrate on the PSS analysis for hypothesis tests that in-

clude one-sample and two-sample tests of means, variances, proportions, correlations, and more. See

[PSS-2] power for a full list of methods.

Before we discuss the components of PSS analysis, let us first revisit the basics of hypothesis testing.

Hypothesis testing
Recall that the goal of hypothesis testing is to evaluate the validity of a hypothesis, a statement about

a population parameter of interest 𝜃, a target parameter, based on a sample from the population. For

simplicity, we consider a simple hypothesis test comparing a population parameter 𝜃 with 0. The two

complementary hypotheses are considered: the null hypothesis 𝐻0∶ 𝜃 = 0, which typically corresponds

to the case of “no effect”, and the alternative hypothesis𝐻𝑎∶ 𝜃 ≠ 0, which typically states that there is “an

effect”. An effect can be a decrease in blood pressure after taking a new drug, an increase in SAT scores

after taking a class, an increase in crop yield after using a new fertilizer, a decrease in the proportion of

defective items after the installation of new equipment, and so on.

The data are collected to obtain evidence against the postulated null hypothesis in favor of the alter-

native hypothesis, and hypothesis testing is used to evaluate the obtained data sample. The value of a test

statistic (a function of the sample that does not depend on any unknown parameters) obtained from the

collected sample is used to determine whether the null hypothesis can be rejected. If that value belongs

to a rejection or critical region (a set of sample values for which the null hypothesis will be rejected) or,

equivalently, falls above (or below) the critical values (the boundaries of the rejection region), then the

null is rejected. If that value belongs to an acceptance region (the complement of the rejection region),

then the null is not rejected. A critical region is determined by a hypothesis test.

A hypothesis test can make one of two types of errors: a type I error of incorrectly rejecting the

null hypothesis and a type II error of incorrectly accepting the null hypothesis. The probability of a

type I error is Pr(reject 𝐻0|𝐻0 is true), and the probability of a type II error is commonly denoted as

𝛽 = Pr(fail to reject 𝐻0|𝐻0 is false).
A power function is a function of 𝜃 defined as the probability that the observed sample belongs to the

rejection region of a test for a given parameter 𝜃. A power function unifies the two error probabilities. A

good test has a power function close to 0 when the population parameter belongs to the parameter’s null

space (𝜃 = 0 in our example) and close to 1 when the population parameter belongs to the alternative

space (𝜃 ≠ 0 in our example). In a search for a good test, it is impossible to minimize both error

probabilities for a fixed sample size. Instead, the type-I-error probability is fixed at a small level, and

the best test is chosen based on the smallest type-II-error probability.

https://www.stata.com/manuals/pss-2power.pdf#pss-2power
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An upper bound for a type-I-error probability is a significance level, commonly denoted as 𝛼, a value
between 0 and 1 inclusively. Many tests achieve their significance level—that is, their type-I-error prob-

ability equals 𝛼, Pr(reject 𝐻0|𝐻0 is true) = 𝛼—for any parameter in the null space. For other tests,

𝛼 is only an upper bound; see example 6 in [PSS-2] power oneproportion for an example of a test for

which the nominal significance level is not achieved. In what follows, we will use the terms “significance

level” and “type-I-error probability” interchangeably, making the distinction between them only when

necessary.

Typically, researchers control the type I error by setting the significance level to a small value such

as 0.01 or 0.05. This is done to ensure that the chances of making a more serious error are very small.

With this in mind, the null hypothesis is usually formulated in a way to guard against what a researcher

considers to be the most costly or undesirable outcome. For example, if we were to use hypothesis testing

to determine whether a person is guilty of a crime, we would choose the null hypothesis to correspond

to the person being not guilty to minimize the chances of sending an innocent person to prison.

The power of a test is the probability of correctly rejecting the null hypothesis when the null hy-

pothesis is false. Power is inversely related to the probability of a type II error as 𝜋 = 1 − 𝛽 =
Pr(reject 𝐻0|𝐻0 is false). Minimizing the type-II-error probability is equivalent to maximizing power.

The notion of power is more commonly used in PSS analysis than is the notion of a type-II-error proba-

bility. Typical values for power in PSS analysis are 0.8, 0.9, or higher depending on the study objective.

Hypothesis tests are subdivided into one sided and two sided. A one-sided or directional test asserts

that the target parameter is large (an upper one-sided test 𝐻∶ 𝜃 > 𝜃0) or small (𝐻∶ 𝜃 ≤ 𝜃0), whereas

a two-sided or nondirectional test asserts that the target parameter is either large or small (𝐻∶ 𝜃 ≠ 𝜃0).

One-sided tests have higher power than two-sided tests. They should be used in place of a two-sided test

only if the effect in the direction opposite to the tested direction is irrelevant; see One-sided test versus

two-sided test below for details.

Another concept important for hypothesis testing is that of a 𝑝-value or observed level of significance.
𝑃-value is a probability of obtaining a test statistic as extreme or more extreme as the one observed in a
sample assuming the null hypothesis is true. It can also be viewed as the smallest level of 𝛼 that leads to

the rejection of the null hypothesis. For example, if the 𝑝-value is less than 0.05, a test is considered to
reject the null hypothesis at the 5% significance level.

For more information about hypothesis testing, see, for example, Casella and Berger (2002).

Next we review concepts specific to PSS analysis.

Components of PSS analysis
The general goal of PSS analysis is to help plan a study such that the chosen statistical method has

high power to detect an effect of interest if the effect exists. For example, PSS analysis is commonly

used to determine the size of the sample needed for the chosen statistical test to have adequate power to

detect an effect of a specified magnitude at a prespecified significance level given fixed values of other

study parameters. We will use the phrase “detect an effect” to generally mean that the collected data will

support the alternative hypothesis. For example, detecting an effect may be detecting that the means of

two groups differ, or that there is an association between the probability of a disease and an exposure

factor, or that there is a nonzero correlation between two measurements.

https://www.stata.com/manuals/pss-2poweroneproportion.pdf#pss-2poweroneproportionRemarksandexamplesex6
https://www.stata.com/manuals/pss-2poweroneproportion.pdf#pss-2poweroneproportion
https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)Remarksandexamplesonevstwo
https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)Remarksandexamplesonevstwo
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The general goal of PSS analysis can be achieved in several ways. You can

• compute sample size directly given specified significance level, power, effect size, and other

study parameters;

• evaluate the power of a study for a range of sample sizes or effect sizes for a given significance

level and fixed values of other study parameters;

• evaluate the magnitudes of an effect that can be detected with reasonable power for specific

sample sizes given a significance level and other study parameters;

• evaluate the sensitivity of the power or sample-size requirements to various study parameters.

The main components of PSS analysis are

• study design;

• statistical method;

• significance level, 𝛼;
• power, 1 − 𝛽;
• a magnitude of an effect of interest or clinically meaningful difference, often expressed as an

effect size, 𝛿;
• sample size, 𝑁.

Below we describe each of the main components of PSS analysis in more detail.

Study design

Awell-designed statistical study has a carefully chosen study design and a clearly specified research

objective that can be formulated as a statistical hypothesis. A study can be observational, where subjects

are followed in time, such as a cross-sectional study, or it can be experimental, where subjects are assigned

a certain procedure or treatment, such as a randomized, controlled clinical trial. A study can involve one,

two, or more samples. A study can be prospective, where the outcomes are observed given the exposures,

such as a cohort study, or it can be retrospective, where the exposures are observed given the outcomes,

such as a case–control study. Astudy can also usematching, where subjects are grouped based on selected

characteristics such as age or race. A common example of matching is a paired study, consisting of pairs

of observations that share selected characteristics.

Statistical method

A well-designed statistical study also has well-defined methods of analysis to be used to evaluate

the objective of interest. For example, a comparison of two independent populations may involve an

independent two-sample 𝑡 test of means or a two-sample 𝜒2 test of variances, and so on. PSS computa-

tions are specific to the chosen statistical method and design. For example, the power of a balanced- or

equal-allocation design is typically higher than the power of the corresponding unbalanced design.

Significance level

A significance level 𝛼 is an upper bound for the probability of a type I error. With a slight abuse

of terminology and notation, we will use the terms “significance level” and “type-I-error probability”

interchangeably, and we will also use 𝛼 to denote the probability of a type I error. When the two

are different, such as for tests with discrete sampling distributions of test statistics, we will make a

https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)Remarksandexamplesesize
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distinction between them. In other words, unless stated otherwise, we will assume a size-𝛼 test, for

which Pr(reject𝐻0|𝐻0 is true) = 𝛼 for any 𝜃 in the null space, as opposed to a level-𝛼 test, for which

Pr(reject 𝐻0|𝐻0 is true) ≤ 𝛼 for any 𝜃 in the null space.
As we mentioned earlier, researchers typically set the significance level to a small value such as 0.01

or 0.05 to protect the null hypothesis, which usually represents a state for which an incorrect decision is

more costly.

Power is an increasing function of the significance level.

Power

The power of a test is the probability of correctly rejecting the null hypothesis when the null hypothesis

is false. That is, 𝜋 = 1 − 𝛽 = Pr(reject 𝐻0|𝐻0 is false). Increasing the power of a test decreases the

probability of a type II error, so a test with high power is preferred. Common choices for power are 90%

and 80%, depending on the study objective.

We consider prospective power, which is the power of a future study.

Clinically meaningful difference and effect size

Clinically meaningful difference and effect size represent the magnitude of an effect of interest. In

the context of PSS analysis, they represent the magnitude of the effect of interest to be detected by a test

with a specified power. They can be viewed as a measure of how far the alternative hypothesis is from

the null hypothesis. Their values typically represent the smallest effect that is of clinical significance or

the hypothesized population effect size.

The interpretation of “clinically meaningful” is determined by the researcher and will usually vary

from study to study. For example, in clinical trials, if no prior knowledge is available about the per-

formance of the considered clinical procedure, then a standardized effect size (adjusted for standard

deviation) between 0.25 and 0.5 may be considered clinically meaningful.

The definition of effect size is specific to the study design, analysis endpoint, and employed statistical

model and test. For example, for a comparison of two independent proportions, an effect size may be

defined as the difference between two proportions, the ratio of the two proportions, or the odds ratio.

Effect sizes also vary in magnitude across studies: a treatment effect of 1% corresponding to an increase

in mortality may be clinically meaningful, whereas a treatment effect of 10% corresponding to a decrease

in a circumference of an ankle affected by edema may be of little importance. Effect size is usually

defined in such a way that power is an increasing function of it (or its absolute value).

More generally, in PSS analysis, effect size summarizes the disparity between the alternative and null

sampling distributions (sampling distributions under the alternative hypothesis and the null hypothesis,

respectively) of a test statistic. The larger the overlap between the two distributions, the smaller the

effect size and the more difficult it is to reject the null hypothesis, and thus there is less power to detect

an effect.

For example, consider a 𝑧 test for a comparison of a mean 𝜇 with 0 from a population with a known

standard deviation 𝜎. The null hypothesis is 𝐻0∶ 𝜇 = 0, and the alternative hypothesis is 𝐻𝑎∶ 𝜇 ≠ 0. The

test statistic is a sample mean or sample average. It has a normal distribution with mean 0 and standard

deviation 𝜎 as its null sampling distribution, and it has a normal distribution with mean 𝜇 different from 0

and standard deviation 𝜎 as its alternative sampling distribution. The overlap between these distributions

is determined by the mean difference 𝜇−0 = 𝜇 and standard deviation 𝜎. The larger 𝜇 or, more precisely,

the larger its absolute value, the larger the difference between the two populations, and thus the smaller
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the overlap and the higher the power to detect the differences 𝜇. The larger the standard deviation 𝜎, the
more overlap between the two distributions and the lower the power to detect the difference. Instead of

being viewed as a function of 𝜇 and 𝜎, power can be viewed as a function of their combination expressed
as the standardized difference 𝛿 = (𝜇 − 0)/𝜎. Then, the larger |𝛿|, the larger the power; the smaller |𝛿|,
the smaller the power. The effect size is then the standardized difference 𝛿.

To read more about effect sizes in Stata, see [R] esize, although PSS analysis may sometimes use

different definitions of an effect size.

Sample size

Sample size is usually the main component of interest in PSS analysis. The sample size required to

successfully achieve the objective of a study is determined given a specified significance level, power,

effect size, and other study parameters. The larger the significance level, the smaller the sample size,

with everything else being equal. The higher the power, the larger the sample size. The larger the effect

size, the smaller the sample size.

When you compute sample size, the actual power (power corresponding to the obtained sample size)

will most likely be different from the power you requested because sample size is an integer. In the com-

putation, the resulting fractional sample size that corresponds to the requested power is usually rounded

to the nearest integer. To be conservative, the sample size is rounded up to ensure that the actual power is

at least as large as the requested power. For multiple-sample designs, fractional sample sizes may arise

when you specify sample size to compute power or effect size. For example, to accommodate an odd

total sample size of, say, 51 in a balanced two-sample design, each individual sample size must be 25.5.

To be conservative, sample sizes are rounded down on input. The actual sample sizes in our example

would be 25, 25, and 50. See Fractional sample sizes in [PSS-4] Unbalanced designs for details about

sample-size rounding.

For multiple samples, the allocation of subjects between groups also affects power. A balanced- or

equal-allocation design—a design with equal numbers of subjects in each sample or group—generally

has higher power than the corresponding unbalanced- or unequal-allocation design—a design with dif-

ferent numbers of subjects in each sample or group.

One-sided test versus two-sided test

Among other things that affect power is whether the employed test is directional (upper or lower one

sided) or nondirectional (two sided). One-sided or one-tailed tests are more powerful than the corre-

sponding two-sided or two-tailed tests. It may be tempting to choose a one-sided test over a two-sided

test based on this fact. Despite having higher power, one-sided tests are generally not as common as

two-sided tests. The direction of the effect, whether the effect is larger or smaller than a hypothesized

value, is unknown in many applications, which requires the use of a two-sided test. The use of a one-

sided test in applications in which the direction of the effect may be known is still controversial. The use

of a one-sided test precludes the possibility of detecting an effect in the opposite direction, which may

be undesirable in some studies. You should exercise caution when you decide to use a one-sided test

because you will not be able to rule out the effect in the opposite direction if one were to happen. The

results from a two-sided test have stronger justification.

https://www.stata.com/manuals/resize.pdf#resize
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4UnbalanceddesignsRemarksandexamplesFractionalsamplesizes
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4Unbalanceddesigns
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Another consideration: Dropout

During the planning stage of a study, another important consideration is whether the data collection

effort may result in missing observations. In clinical studies, the common term for this is dropout, when

subjects fail to complete the study for reasons unrelated to study objectives.

If dropout is anticipated, its rate must be taken into consideration when determining the required

sample size or computing other parameters. For example, if subjects are anticipated to drop out from

a study with a rate of 𝑅𝑑, an ad hoc way to inflate the estimated sample size 𝑛 is as follows: 𝑛𝑑 =
𝑛/(1 − 𝑅𝑑). Similarly, the input sample size must be adjusted as 𝑛 = 𝑛𝑑(1 − 𝑅𝑑), where 𝑛𝑑 is the

anticipated sample size.

Survival data
The prominent feature of survival data is that the outcome is the time from an origin to the occurrence

of a given event (failure), often referred to as the analysis time. Analyses of such data use the information

from all subjects in a study, both those who experience an event by the end of the study and those who

do not. However, inference about the survival experience of subjects is based on the event times and

therefore depends on the number of events observed in a study. Indeed, if none of the subjects fails

in a study, then the survival rate cannot be estimated and survivor functions of subjects from different

groups cannot be compared. Therefore, power depends on the number of events observed in a study and

not directly on the number of subjects recruited to the study. As a result, to obtain the estimate of the

required number of subjects, the probability that a subject experiences an event during the course of the

study needs to be estimated in addition to the required number of events. This distinguishes sample-size

determination for survival studies from that for other studies in which the endpoint is not measured as a

time to failure.

All the above leads us to consider the following two types of survival studies. The first type (a type I

study) is a study in which all subjects experience an event by the end of the study (no censoring), and

the second type (a type II study) is a study that terminates after a fixed period regardless of whether all

subjects experienced an event by that time. For a type II study, subjects who did not experience an event

at the end of the study are known to be right-censored. For a type I study, when all subjects fail by the

end of the study, the estimate of the probability of a failure in a study is one and the required number of

subjects is equal to the required number of failures. For a type II study, the probability of a failure needs

to be estimated and therefore various aspects that affect this probability (and usually do not come into

play at the analysis stage) must be taken into account for the computation of the sample size.

Under the assumption of random censoring (Lachin 2011, 431; Lawless 2003, 52; Chow and Liu

2014, 391), the type of censoring pattern is irrelevant to the analysis of survival data in which the goal

is to make inferences about the survival distribution of subjects. It becomes important, however, for

sample-size determination because the probability that a subject experiences an event in a study depends

on the censoring distribution. We consider the following two types of random censoring: administrative

censoring and loss to follow-up.

Under administrative censoring, a subject is known to have experienced either of the two outcomes

at the end of a study: survival or failure. The probability of a subject failing in a study depends on the

duration of the study. Often in practice, subjects may withdraw from a study, say, because of severe side

effects from a treatment or may be lost to follow-up because of moving to a different location. Here

the information about the outcome that subject would have experienced at the end of the study had he

completed the course of the study is unavailable, and the probability of experiencing an event by the

end of the study is affected by the process governing withdrawal of subjects from the study. In the
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literature, this type of censoring is often referred to as subject loss to follow-up, subject withdrawal, or

sometimes subject dropout (Freedman 1982, Machin and Campbell 2005). Generally, great care must be

taken when using this terminology because it may have slightly different meanings in different contexts.

power logrank and power cox apply a conservative adjustment to the estimate of the sample size for

withdrawal. power exponential assumes that losses to follow-up are exponentially distributed.

Another important component of sample-size and power determination that affects the estimate of

the probability of a failure is the pattern of accrual of subjects into the study. The duration of a study

is often divided into two phases: an accrual phase, during which subjects are recruited to the study,

and a follow-up phase, during which subjects are followed up until the end of the study and no new

subjects enter the study. For a fixed-duration study, fast accrual increases the average analysis time

(average follow-up time) and increases the chance of a subject failing in a study, whereas slow accrual

decreases the average analysis time and consequently decreases this probability. power logrank and

power exponential provide facilities to account for uniform accrual, and for power exponential
only, truncated exponential accrual.

All sample-size formulas used by power’s survival methods rely on the proportional-hazards assump-
tion, that is, the assumption that the hazard ratio does not depend on time. See the documentation entry of

each subcommand for the additional assumptions imposed by the methods it uses. In the case when the

proportional-hazards assumption is suspect, or in the presence of other complexities associated with the

nature of the trial (for example, lagged effect of a treatment, more than two treatment groups, clustered

data) and with the behavior of participants (for example, noncompliance of subjects with the assigned

treatment, competing risks), one may consider obtaining required sample size or power by simulation.

Feiveson (2002) demonstrates an example of such simulation for clustered survival data. Also see Roys-

ton (2012) and Crowther and Lambert (2012) for ways of simulating complicated survival data. Barthel

et al. (2006); Barthel, Royston, and Babiker (2005); Royston and Babiker (2002); Barthel, Royston, and

Parmar (2009); and Royston and Barthel (2010) present sample-size and power computation for multiarm

trials under more flexible design conditions.

Sensitivity analysis
Because of limited resources, it may not always be feasible to conduct a study under the original ideal

specification. In this case, you may vary study parameters to find an appropriate balance between the

desired detectable effect, sample size, available resources, and an objective of the study. For example,

a researcher may decide to increase the detectable effect size to decrease the required sample size, or,

rarely, to lower the desired power of the test. In some situations, it may not be possible to reduce the

required sample size, in which case more resources must be acquired before the study can be conducted.

Power is a complicated function of all the components we described in the previous section—none of

the components can be viewed in isolation. For this reason, it is important to perform sensitivity analysis,

which investigates power for various specifications of study parameters, and refine the sample-size re-

quirements based on the findings prior to conducting a study. Tables of power values (see [PSS-2] power,

table) and graphs of power curves (see [PSS-2] power, graph) may be useful for this purpose.

An example of PSS analysis in Stata
Consider a study of math scores from the SAT exam. Investigators would like to test whether a new

coaching program increases the average SATmath score by 20 points compared with the national average

in a given year of 514. They do not anticipate the standard deviation of the scores to be larger than the

https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrank
https://www.stata.com/manuals/pss-2powercox.pdf#pss-2powercox
https://www.stata.com/manuals/pss-2powerexponential.pdf#pss-2powerexponential
https://www.stata.com/manuals/pss-2powertable.pdf#pss-2power,table
https://www.stata.com/manuals/pss-2powertable.pdf#pss-2power,table
https://www.stata.com/manuals/pss-2powergraph.pdf#pss-2power,graph
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national value of 117. Investigators are planning to test the differences between scores by using a one-

sample 𝑡 test. Prior to conducting the study, investigators would like to estimate the sample size required
to detect the anticipated difference by using a 5%-level two-sided test with 90% power. We can use the

power onemean command to estimate the sample size for this study; see [PSS-2] power onemean for

more examples.

Below we demonstrate PSS analysis of this example interactively, by typing the commands; see

[PSS-2] GUI (power) for point-and-click analysis of this example.

We specify the reference or null mean value of 514 and the comparison or alternative value of 534

as command arguments following the command name. The values of standard deviation and power are

specified in the corresponding sd() and power() options. power onemean assumes a 5%-level two-

sided test, so we do not need to specify any additional options.

. power onemean 514 534, sd(117) power(0.9)
Performing iteration ...
Estimated sample size for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0
Study parameters:

alpha = 0.0500
power = 0.9000
delta = 0.1709

m0 = 514.0000
ma = 534.0000
sd = 117.0000

Estimated sample size:
N = 362

The estimated required sample size is 362.

Investigators do not have enough resources to enroll that many subjects. They would like to esti-

mate the power corresponding to a smaller sample of 300 subjects. To compute power, we replace the

power(0.9) option with the n(300) option in the above command.

. power onemean 514 534, sd(117) n(300)
Estimated power for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0
Study parameters:

alpha = 0.0500
N = 300

delta = 0.1709
m0 = 514.0000
ma = 534.0000
sd = 117.0000

Estimated power:
power = 0.8392

For a smaller sample of 300 subjects, the power decreases to 84%.

Investigators would also like to estimate the minimum detectable difference between the scores given

a sample of 300 subjects and a power of 90%. To compute the standardized difference between the

scores, or effect size, we specify both the power in the power() option and the sample size in the n()
option.

https://www.stata.com/manuals/pss-2poweronemean.pdf#pss-2poweronemean
https://www.stata.com/manuals/pss-2guipower.pdf#pss-2GUI(power)
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. power onemean 514, sd(117) power(0.9) n(300)
Performing iteration ...
Estimated target mean for a one-sample mean test
t test
H0: m = m0 versus Ha: m != m0; ma > m0
Study parameters:

alpha = 0.0500
power = 0.9000

N = 300
m0 = 514.0000
sd = 117.0000

Estimated effect size and target mean:
delta = 0.1878

ma = 535.9671

The minimum detectable standardized difference given the requested power and sample size is 0.19,

which corresponds to an average math score of roughly 536 and a difference between the scores of 22.

Continuing their analysis, investigators want to assess the impact of different sample sizes and score

differences on power. They wish to estimate power for a range of alternative mean scores between 530

and 550 with an increment of 5 and a range of sample sizes between 200 and 300 with an increment of

10. They would like to see results on a graph.

We specify the range of alternative means as numlist (see [U] 11.1.8 numlist) in parentheses as the

second command argument. We specify the range of sample sizes as a numlist in the n() option. We

request a graph by specifying the graph option.

. power onemean 514 (535(5)550), sd(117) n(200(10)300) graph

.7

.8

.9

1

P
ow

er
 (

1-
β)

200 220 240 260 280 300
Sample size (N)

535
540
545
550

Alternative mean (µa)

Parameters: α = .05, µ0 = 514, σ = 117

t test
H0: µ = µ0  versus  Ha: µ ≠ µ0

Estimated power for a one-sample mean test

The default graph plots the estimated power on the 𝑦 axis and the requested sample size on the 𝑥 axis.

A separate curve is plotted for each of the specified alternative means. Power increases as the sample

size increases or as the alternative mean increases. For example, for a sample of 220 subjects and an

alternative mean of 535, the power is approximately 75%; and for an alternative mean of 550, the power

is nearly 1. For a sample of 300 and an alternative mean of 535, the power increases to 87%. Investigators

may now determine a combination of an alternative mean and a sample size that would satisfy their study

objective and available resources.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist


Intro (power) — Introduction to power and sample-size analysis for hypothesis tests 11

If desired, we can also display the estimated power values in a table by additionally specifying the

table option:

. power onemean 514 (530(5)550), sd(117) n(200(10)300) graph table
(output omitted )

The power command performs PSS analysis for a number of hypothesis tests for continuous, binary,

and survival outcomes; see [PSS-2] power and method-specific entries for more examples. Also, in

the absence of readily available PSS methods, consider performing PSS analysis by simulation; see, for

example, Huber (2019a), Feiveson (2002), and Hooper (2013) for examples of how you can do this

in Stata. You can also add your own methods to the power command as described in [PSS-2] power

usermethod; also see Huber (2019b).

Video example
A conceptual introduction to power and sample-size calculations
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