
Title stata.com

sortpreserve — Sort within programs

Description Syntax Option Remarks and examples Also see

Description
This entry discusses the use of sort (see [D] sort) within programs.

Syntax
program

[
define

]
program name

[
, . . . sortpreserve . . .

]
Option

sortpreserve specifies that the program, during its execution, will re-sort the data and that therefore
Stata itself should take action to preserve the order of the data so that the order can be reestablished
afterward.

sortpreserve is in fact independent of whether a program is byable() but byable() programs
often specify this option.

Pretend you are writing the program myprog and that, in performing its calculations, it needs to
sort the data. It is very jolting for a user to experience,

. by pid: myprog ...

. by pid: sum newvar
not sorted
r(5);

Specifying sortpreserve will prevent this and still allow myprog to sort the data freely.
byable() programs that sort the data should specify sortpreserve. It is not necessary to
specify sortpreserve if your program does not change the sort order of the data and, in that
case, things are a little better if you do not specify sortpreserve.

sortpreserve takes time, although less than you might suspect. sortpreserve does not actually
have to re-sort the data at the conclusion of your program—an O(n ln n) operation—it is able to
arrange things so that it can reassert the original order of the data in O(n) time, and sortpreserve
is, in fact, very quick about it. Nonetheless, there is no reason to waste the time if the data never
got out of order.

Concerning sort order, when your byable() program is invoked for the first time, it will be sorted
on byvars but, in subsequent calls (in the case of byable(recall) programs), the sort order
will be just as your program leaves it even if you specify sortpreserve. sortpreserve restores
the original order after your program has been called for the last time.

1

http://stata.com
https://www.stata.com/manuals/dsort.pdf#dsort
https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(5)


2 sortpreserve — Sort within programs

Remarks and examples stata.com

Remarks are presented under the following headings:
Introduction
sortpreserve
The cost of sortpreserve
How sortpreserve works
Use of sortpreserve with preserve
Use of sortpreserve with subroutines that use sortpreserve

Introduction
Properly written programs do one of three things:

1. Report results
2. Add new variables to the dataset
3. Modify the data in memory

These are known as class-1, class-2, and class-3 programs.

However, you do not want to get carried away with the idea. A properly written program might,
for instance, report results and yet still have an option to add a new variable to the dataset, but a
properly written program would not do all three. The user should be able to obtain reports over and
over again by simply retyping the command, and if a command both reports results and modifies the
data, that will not be possible.

Properly written programs of the first two types should also not change the sort order of the data.
If the data are sorted on mpg and foreign before the command is given, and all the command does is
report results, the data should still be sorted on mpg and foreign at the conclusion of the command.
Yet the command might find it necessary to sort the data to obtain the results it calculates.

This entry deals with how to easily satisfy both needs.

sortpreserve

You may include sort commands inside your programs and leave the user’s data in the original
order when your program concludes by specifying the sortpreserve option on the program definition
line:

program whatever, sortpreserve
. . .

end

That is all there is to it. sortpreserve tells Stata when it starts your program to first record the
information about how the data are currently sorted and then later use that information to restore the
order to what it previously was. Stata will do this no matter how your program ends, whether as you
expected, with an error, or because the user pressed the Break key.

The cost of sortpreserve

There is a cost to sortpreserve, so you do not want to specify the option when it is not
needed, but the cost is not much. sortpreserve will consume a little computer time in restoring
the sort order at the conclusion of your program. Rather than talking about this time in seconds or
milliseconds, which can vary according to the computer you use, let’s define our unit of time as the
time to execute:

. generate long x = _n

http://stata.com


sortpreserve — Sort within programs 3

Pretend that you added that command to your program, just as we have typed it, without using
temporary variables. You could then make careful timings of your program to find out just how much
extra time your program would take to execute. It would not be much. Let’s call that amount of time
one genlong unit. Then

• sortpreserve, if it has to restore the order because your program has changed it, takes 2
genlong units.

• sortpreserve, if it does not need to change the order because your program has not
changed it yet, takes one-half a genlong unit.

The above results are based on empirical timings using 100,000 and 1,000,000 observations.

How sortpreserve works

sortpreserve works by adding a temporary variable to the dataset before your program starts,
and if you are curious about the name of that variable, it is recorded in the macro ‘ sortindex’.
Sometimes you will want to know that name. It is important that the variable ‘ sortindex’ still
exist at the conclusion of your program. If your program concludes with something like

keep ‘id’ ‘varlist’

you must change that line to read

keep ‘id’ ‘varlist’ ‘_sortindex’

If you fail to do that, Stata will report the error message “could not restore sort order because variables
were dropped”. Actually, even that little change may be insufficient because the dataset in its original
form might have been sorted on something other than ‘id’ and ‘varlist’. What you really need
to do is add, early in your program and before you change the sort order,

local sortvars : sort

and then change the keep statement to read

keep ‘id’ ‘varlist’ ‘sortvars’ ‘_sortindex’

This discussion concerns only the use of the keep command. Few programs would even include a
keep statement because we are skirting the edge of what is a properly written program.

sortpreserve is intended for use in programs that report results or add new variables to the
dataset, not programs that modify the data in memory. Including keep at the end of your program
really makes it a class-3 program, and then the idea of preserving the sort order makes no sense
anyway.

Use of sortpreserve with preserve

sortpreserve may be used with preserve (see [P] preserve for a description of preserve).
We can imagine a complicated program that re-sorts the data, and then, under certain conditions,
discovers it has to do real damage to the data to calculate its results, and so then preserves the data
to boot:

https://www.stata.com/manuals/ppreserve.pdf#ppreserve


4 sortpreserve — Sort within programs

program . . . , sortpreserve
. . .
sort . . .
. . .
if . . . {

preserve
. . .

}
. . .

end

The above program will work. When the program ends, Stata will first restore any preserved data
and then reestablish the sort of the original dataset.

Use of sortpreserve with subroutines that use sortpreserve

Programs that use sortpreserve may call other programs that use sortpreserve, and this can
be a good way to speed up code. Consider a calculation where you need the data first sorted by ‘i’
‘j’, then by ‘j’ ‘i’, and finally by ‘i’ ‘j’ again. You might code

program . . . , sortpreserve
. . .
sort ‘i’ ‘j’
. . .
sort ‘j’ ‘i’
. . .
sort ‘i’ ‘j’
. . .

end

but executing

program . . . , sortpreserve
. . .
sort ‘i’ ‘j’
mysubcalculation ‘i’ ‘j’ . . .
. . .

end

program mysubcalculation, sortpreserve
args i j . . .
sort ‘j’ ‘i’
. . .

end

will be faster.

Also see
[P] byable — Make programs byable

[P] program — Define and manipulate programs

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

https://www.stata.com/manuals/pbyable.pdf#pbyable
https://www.stata.com/manuals/pprogram.pdf#pprogram

