
return — Return stored results

Description Syntax Options Remarks and examples Reference Also see

Description
Results of calculations are stored by many Stata commands so that they can be easily accessed and

substituted into subsequent commands. This entry summarizes for programmers how to store results. If

your interest is in using previously stored results, see [R] Stored results.

return stores results in r().

ereturn stores results in e().

sreturn stores results in s().

Stata also has the values of system parameters and certain constants such as pi stored in c(). Be-

cause these values may be referred to but not assigned, the c-class is discussed in a different entry; see

[P] creturn.

Syntax
Return results for general commands, stored in r()

return list [, all]

return clear

return scalar name = exp

return local name = exp

return local name [”]string[”]

return matrix name [=] matname [, copy]

return add

1

https://www.stata.com/manuals/rstoredresults.pdf#rStoredresults
https://www.stata.com/manuals/pcreturn.pdf#pcreturn
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u12.pdf#u12.4Strings

return — Return stored results 2

Return results for estimation commands, stored in e()

ereturn list [, all]

ereturn clear

ereturn post [b [V [Cns]]] [weight] [, depname(string) obs(#) dof(#)

esample(varname) properties(string)]

ereturn scalar name = exp

ereturn local name = exp

ereturn local name [”]string[”]

ereturn matrix name [=] matname [, copy]

ereturn repost [b = b] [V = V] [Cns = Cns] [weight] [, esample(varname)

properties(string) rename]

Return results for parsing commands, stored in s()

sreturn list

sreturn clear

sreturn local name = exp

sreturn local name [”]string[”]

where b, V, and Cns are matnames, which is the name of an existing matrix.

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Options
all is for use with return list and ereturn list. all specifies that hidden and historical stored

results be listed along with the usual stored results. This option is seldom used. See Using hidden

and historical stored results and Programming hidden and historical stored results in Remarks and

examples for more information. These sections are written in terms of return list, but everything
said there applies equally to ereturn list.

all is not allowed with sreturn list because s() does not allow hidden or historical results.

copy specified with return matrix or ereturn matrix indicates that the matrix is to be copied; that

is, the original matrix should be left in place. The default is to “steal” or “rename” the existing matrix,

which is fast and conserves memory.

depname(string) is for use with ereturn post. It supplies the name of the dependent variable to appear

in the estimation output. The name specified need not be the name of an existing variable.

https://www.stata.com/manuals/preturn.pdf#preturnSyntaxweight
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/preturn.pdf#preturnSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/preturn.pdf#preturnRemarksandexamplesUsinghiddenandhistoricalstoredresults
https://www.stata.com/manuals/preturn.pdf#preturnRemarksandexamplesUsinghiddenandhistoricalstoredresults
https://www.stata.com/manuals/preturn.pdf#preturnRemarksandexamplesProgramminghiddenandhistoricalstoredresults
https://www.stata.com/manuals/u12.pdf#u12.4Strings

return — Return stored results 3

obs(#) is for use with ereturn post. It specifies the number of observations on which the estimation

was performed. This number is stored in e(N), and obs() is provided simply for convenience. Results

are no different from those for ereturn post followed by ereturn scalar N = #.

dof(#) is for use with ereturn post. It specifies the number of denominator degrees of freedom to

be used with 𝑡 and 𝐹 statistics and so is used in calculating 𝑝-values and confidence intervals. The

number specified is stored in e(df r), and dof() is provided simply for convenience. Results are

no different from those for ereturn post followed by ereturn scalar df r = #.

esample(varname) is for use with ereturn post and ereturn repost. It specifies the name of a 0/1

variable that is to become the e(sample) function. varnamemust contain 0 and 1 values only, with 1

indicating that the observation is in the estimation subsample. ereturn post and ereturn repost
will be able to execute a little more quickly if varname is stored as a byte variable.

varname is dropped from the dataset, or more correctly, it is stolen and stashed in a secret place.

properties(string) specifiedwith ereturn post or ereturn repost sets the e(properties)macro.

By default, e(properties) is set to b V if properties() is not specified.

rename is for use with the b = b syntax of ereturn repost. All numeric estimation results remain

unchanged, but the labels of b are substituted for the variable and equation names of the already

posted results.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Storing results in r()
Storing results in e()
Storing results in s()
Recommended names for stored results
Using hidden and historical stored results
Programming hidden and historical stored results

Introduction
This entry summarizes information that is presented in greater detail in other parts of the Stata docu-

mentation. Most particularly, we recommend that you read [U] 18 Programming Stata. The commands

listed above are used by programmers to store results, which are accessed by others using r(), e(), and
s(); see [R] Stored results.

The commands listed above may be used only in programs—see [U] 18 Programming Stata and

[P] program—and then only when the program is declared explicitly as being rclass, eclass, or
sclass:

program ..., rclass
...
return ...
...

end

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/u18.pdf#u18ProgrammingStata
https://www.stata.com/manuals/rstoredresults.pdf#rStoredresults
https://www.stata.com/manuals/u18.pdf#u18ProgrammingStata
https://www.stata.com/manuals/pprogram.pdf#pprogram

return — Return stored results 4

program ..., eclass
...
ereturn ...
...

end

program ..., sclass
...
sreturn ...
...

end

Storing results in r()
• The program must be declared explicitly to be r-class: program . . ., rclass.

• Distinguish between r() (returned results) and return() (results being assembled that will be

returned). The program you write actually stores results in return(). Then when your program
completes, whatever is in return() is copied to r(). Thus the program you write can consume

r() results from other programs, and there is no conflict.

• return clear clears the return() class. This command is seldom used because return() starts

out empty when your program begins. return clear is for those instances when you have started

assembling results and all is going well, but given the problem at hand, you need to start all over

again.

• return scalar name = exp evaluates exp and stores the result in the scalar return(name). exp
must evaluate to a numeric result or missing. If your code has previously stored something in

return(name), whether a scalar, matrix, or whatever else, the previous value is discarded and

this result replaces it.

• return local name = exp evaluates exp and stores the result in the macro return(name). exp
may evaluate to a numeric or string result. If your code has previously stored something in

return(name), whether a scalar, matrix, or whatever else, the previous value is discarded and

this result replaces it.

Be careful with this syntax: do not code

return local name = ‘mymacro’

because that will copy just the first 2045 characters of ‘mymacro’. Instead, code

return local name ‘”‘mymacro’”’

• return local name string copies string to macro return(name). If your code has previously
stored something in return(name), whether a scalar, matrix, or whatever else, the previous value

is discarded and this result replaces it.

If you do not enclose string in double quotes, multiple blanks in string are compressed into single

blanks.

• return matrix name matname destructively copies matname into matrix return(name), mean-

ing that matname is erased (matname is renamed return(name)). If your code has previously
stored something in return(name), whether a scalar, matrix, or whatever else, the previous value

is discarded and this result replaces it.

return — Return stored results 5

• return add copies everything new in r() into return(). Say that your program performed

a summarize. return add lets you add everything just returned by summarize to the to-be-

returned results of your program. If your program had already set return(N), summarize’s r(N)
would not replace the previously set result. The remaining r() results set by summarize would

be copied.

Storing results in e()
For detailed guidance on storing in e(), see [P] ereturn. What follows is a summary.

• The program must be declared explicitly to be e-class: program . . ., eclass.

• The e-class is cleared whenever an ereturn post is executed. The e-class is a static, single-level

class, meaning that results are posted to the class the instant that they are stored.

• ereturn clear clears e(). This is a rarely used command.

• ereturn post is how you must begin storing results in e(). Because ereturn post clears e(),
anything stored in e() prior to the ereturn post is lost.

ereturn post stores matrix (vector, really) e(b), matrices e(V) and e(Cns), weight-related
macros e(wtype) and e(wexp), and function e(sample). The most common syntax is

ereturn post ‘b’ ‘V’, esample(‘touse’) ...

where ‘b’ is a row vector containing the parameter estimates, ‘V’ is a symmetricmatrix containing

the variance estimates, and ‘touse’ is a 0/1 variable recording 1 in observations that appear in

the estimation subsample.

The result of this command will be that ‘b’, ‘V’, and ‘touse’ all disappear. In fact, ereturn
post examines what you specify and, if it is satisfied with them, renames them e(b), e(V), and
e(sample).

For more advanced usage that also posts constraint and weight information, see [P] ereturn.

In terms of ereturn post’s other options,

a. We recommend that you specify depname(string) if there is one dependent variable name

that you want to appear on the output. Whether you specify depname() or not, remember

later to define macro e(depvar) to contain the names of the dependent variables.

b. Specify obs(#), or remember later to define scalar e(N) to contain the number of observa-

tions.

c. Few models require specifying dof(#), or, if that is not done, remembering to later define

scalar e(df r). This all has to do with substituting 𝑡 and 𝐹 statistics on the basis of #

(denominator) degrees of freedom for asymptotic 𝑧 and 𝜒2 statistics in the estimation output.

• ereturn scalar name = exp evaluates exp and stores the result in the scalar e(name). exp must

evaluate to a numeric result or missing. If your code has previously stored something in e(name),
whether that be a scalar, matrix, or whatever else, the previous value is discarded and this result

replaces it.

• ereturn local name = exp evaluates exp and stores the result in the macro e(name). exp may

evaluate to a numeric or string result. If your code has previously stored something in e(name),
whether that be a scalar, matrix, or whatever else, the previous value is discarded and this result

replaces it.

https://www.stata.com/manuals/pereturn.pdf#pereturn
https://www.stata.com/manuals/pereturn.pdf#pereturn

return — Return stored results 6

Be careful with this syntax: do not code

ereturn local name = ‘mymacro’

because that will copy just the first 2045 characters of ‘mymacro’. Instead, code

ereturn local name ‘”‘mymacro’”’

• ereturn local name string copies string to macro e(name). If your code has previously stored
something in e(name), whether a scalar, matrix, or whatever else, the previous value is discarded

and this result replaces it.

If you do not enclose string in double quotes, multiple blanks in string are compressed into single

blanks.

• ereturn matrix name = matname destructively copies matname into matrix e(name), meaning

that matname is erased. At least, that is what happens if you do not specify the copy option. What

actually occurs is thatmatname is renamed e(name). If your code has previously stored something

in e(name), whether a scalar, matrix, or whatever else, the previous value is discarded and this

result replaces it, with two exceptions:

ereturn matrix cannot be used to store in e(b) or e(V). The only way to post matrices to these

special names is to use ereturn post and ereturn repost so that various tests can be run on

them before they are made official. Other Stata commands use e(b) and e(V) and expect to see

a valid estimation result. If e(b) is 1 × 𝑘, they expect e(V) to be 𝑘 × 𝑘. They expect that the

names of rows and columns will be the same so that the 𝑖th column of e(b) corresponds to the 𝑖th
row and column of e(V). They expect e(V) to be symmetric. They expect e(V) to have positive

or zero elements along its diagonal, and so on. ereturn post and ereturn repost check these

assumptions.

• ereturn repost allows changing e(b), e(V), e(Cns), e(wtype), e(wexp), e(properties),
and e(sample) without clearing the estimation results and starting all over again. As with

ereturn post, specified matrices and variables disappear after reposting because they are re-

named e(b), e(V), e(Cns), or e(sample) as appropriate.

• Programmers posting estimation results should remember to store

a. Macro e(cmd), containing the name of the estimation command. Make this the last thing

you store in e().
b. Macro e(cmdline), containing the command the user typed.

c. Macro e(depvar), containing the names of the dependent variables.

d. Scalar e(N), containing the number of observations.

e. Scalar e(df m), containing the model degrees of freedom.

f. Scalar e(df r), containing the denominator degrees of freedom if estimates are nonasymp-

totic; otherwise, do not define this result.

g. Scalar e(ll), containing the log-likelihood value, if relevant.
h. Scalar e(ll 0), containing the log-likelihood value for the constant-only model, if relevant.

i. Scalar e(chi2), containing the 𝜒2 test of the model against the constant-only model, if

relevant.

j. Macro e(chi2type), containing LR, Wald, or other, depending on how e(chi2) was ob-

tained.

k. Scalar e(r2), containing the value of the 𝑅2 if it is calculated.

l. Scalar e(r2 p), containing the value of the pseudo-𝑅2 if it is calculated.

return — Return stored results 7

m. Macro e(vce), containing the name of the vcetype that was specified in the vce() option;

see [R] vce option.

n. Macro e(vcetype), containing the text to appear above standard errors in estimation output,

typically Robust, or it is undefined.
o. Macro e(clustvar), containing the name of the cluster variable, if any.

p. Scalar e(N clust), containing the number of clusters.

q. Scalar e(rank), containing the rank of e(V).
r. Macro e(predict), containing the name of the command that predict is to use; if this is

blank, predict uses the default predict.
s. Macro e(estat cmd), containing the name of an estat handler program if you wish to

customize the behavior of estat.
t. Macro e(properties), containing properties of the estimation command, typically b V,
indicating that the command produces a legitimate coefficient vector and VCE matrix.

Storing results in s()
• The program must be declared explicitly to be s-class: program . . ., sclass.

• The s-class is not cleared automatically. It is a static, single-level class. Results are posted to s()
the instant they are stored.

• sreturn clear clears s(). We recommend that you use this command near the top of s-class

routines. sreturn clear may be used in non–s-class programs, too.

• The s-class provides macros only and is intended for returning results of subroutines that parse

input. At the parsing step, it is important that the r-class not be changed or cleared because some

of what still awaits being parsed might refer to r(), and the user expects those results to substitute
according to what was in r() when he or she typed the command.

• sreturn local name = exp evaluates exp and stores the result in the macro s(name). exp

may evaluate to a numeric or string result. If your code has previously stored something else

in s(name), the previous value is discarded and this result replaces it.

Be careful with this syntax: do not code

sreturn local name = ‘mymacro’

because that will copy just the first 2045 characters of ‘mymacro’. Instead, code

sreturn local name ‘”‘mymacro’”’

• sreturn local name string copies string to macro s(name). If your code has previously stored
something else in s(name), the previous value is discarded and this result replaces it.

If you do not enclose string in double quotes, multiple blanks in string are compressed into single

blanks.

Recommended names for stored results
Users will appreciate it if you use predictable names for your stored results. We use these rules:

• Mathematical and statistical concepts such as number of observations and degrees of freedom are

given short mathematical-style names. Subscripting is indicated with ‘ ’. Names are to proceed

from the general to the specific. If N means number of observations, N 1 might be the number of

observations in the first group.

https://www.stata.com/manuals/rvce_option.pdf#rvce_option

return — Return stored results 8

Suffixes are to be avoided where possible. For instance, a 𝜒2 statistic would be recorded in a

variable starting with chi2. If, in the context of the command, a statement about “the 𝜒2 statistic”

would be understood as referring to this statistic, then the name would be chi2. If it required

further modification, such as 𝜒2 for the comparison test, then the name might be chi2 c.

Common prefixes are

N number of observations
df degrees of freedom
k count of parameters
n generic count
lb and ub lower and upper bound of confidence interval
chi2 𝜒2 statistic
t 𝑡 statistic
F 𝐹 statistic
p 𝑝-values
p and pr probability
ll log likelihood
D deviance
r2 𝑅2

• Programming concepts, such as lists of variable names, are given English-style names. Names

should proceed from the specific to the general. The name of the dependent variable is depvar,
not vardep.

Some examples are
depvar dependent variable names
eqnames equation names
model name of model fit
xvar 𝑥 variable
title title used

• Popular usage takes precedence over the rules. For example:

a. mss is model sum of squares, even though, per the first rule of this section, it ought to be

ss m.

b. mean is used as the prefix to record means.

c. Var is used as the prefix to mean variance.

d. The returned results from most Stata commands follow this rule.

Using hidden and historical stored results
Most results stored in r() and e() are visible—type return list. Sometimes, other stored results

exist, too. For instance, consider the Stata command summarize. Let’s pretend that in addition to every-
thing that summarize stores in r()—you know about r(N), r(mean), r(sd), etc.—summarize also

stores r(secret) and r(sigma). summarize does not do this, but pretend that it did. If summarize
stored r(secret) as hidden and r(sigma) as historical, you would not know they existed from the

output of return list unless you typed return list, all. If you typed that command, you would

discover r(secret) and r(sigma), and you might learn from the output that r(secret) was hidden

whereas r(sigma) was historical. The output is trying to tell you 1) the two stored results exist, 2) you

may use them just as you use any other stored result, and 3) the reason why the two stored results were

not listed by default.

There are two reasons why summarize might not store results so that you can see them when you

type return list.

return — Return stored results 9

The first reason is that summarize is designed to work tightly with some other Stata subroutine and is

using r() to pass complicated information. The information that is stored is so arcane that you would not

want to read documentation about it. Stata puts such stored results into the hidden categorywhere youwill

not see them by default. If you type return list, all and find hidden stored results, we recommend

that you do not use their contents in your own do- and ado-files. Because hidden stored results are not

documented, their names, contents, and even their existence could change in future releases.

The other reason summarize might omit a stored result from return list concerns backward com-

patibility. Assume that for Stata 4, summarize stored the standard deviation in r(sigma) instead of

r(sd). Assume that the editors at StataCorp decided later that r(sd) would be a better name. The

programmers at StataCorp could not simply change the name from r(sigma) to r(sd), because users
might have already written do- or ado-files before the change. Changing the name could break old do-

and ado-files, and it is a hallmark of Stata that your code will continue to work regardless of how long

ago users wrote it. Thus the programmers at StataCorp could choose to store the standard deviation in

both r(sigma) and r(sd) in all cases, or they could store the standard deviation in r(sd) and store

it in r(sigma) only when the old do- or ado-file explicitly included a version 4 or earlier statement.

Either way, r(sigma) is of no interest to modern Stata users, and so the programmers mark r(sigma)
as historical. Now when you type return list, you will not see r(sigma) mentioned; and when you

type return list, all, you will see r(sigma) listed, and you are told that it was not mentioned earlier

because it is marked as historical.

Typing return list, all can be useful when you are debugging or adding new features to an old

program and want to see the historical stored results to better understand your old program.

What was just said about r() and return list applies equally to e() and ereturn list, and it

applies equally to community-contributed additions to Stata and to official Stata commands. That’s the

story of all.

Programmers wishing to exploit the hidden and historical markings in their own programs should see

the next section.

Programming hidden and historical stored results
You can mark stored results as hidden or historical by specifying the optional hcat argument with the

appropriate return or ereturn command:

return [hcat] scalar name = exp

return [hcat] local name = exp

return [hcat] local name [”]string[”]
return [hcat] matrix name [=] matname [, copy]

ereturn [hcat] scalar name = exp

ereturn [hcat] local name = exp

ereturn [hcat] local name [”]string[”]
ereturn [hcat] matrix name [=] matname [, copy]

return — Return stored results 10

hcat specifies the hiddenness of the result and may be

visible
hidden
historical[(relno)]

where relno is #[#][.[#[#]]] such as 2, 10, 10., 10.1, or 10.12. visible is the default when hcat

is not specified.

Thus if you are writing an r-class command and wish to store r(private) as a hidden scalar, you

can code

return hidden scalar private = . . .

If you wish to store r(lastvar) as a hidden local, you can code

return hidden local lastvar ”. . .”

If you wanted r(lastvar) to be historical rather than hidden, you would code

return historical local lastvar ”. . .”

If you wanted r(lastvar) to be historical as of Stata 19, meaning that r(lastvar) was current up to

but not including Stata 19, you would code

return historical(19) local lastvar ”. . .”

If you wish to create r(X) as a hidden matrix, you can code

return hidden matrix X = . . .

All the above examples could be performed using ereturn instead of return. They could not be per-
formed using sreturn because s() does not allow hidden or historical results.

The Mata commands for setting r() and e() also allow an optional argument to set hcat; see

[M-5] st numscalar(), [M-5] st global(), and [M-5] st matrix().

Reference
Crow, K. 2013. Export tables to Excel. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2013/09/25/

export-tables-to-excel/.

Also see
[P] creturn — Return c-class values

[P] ereturn — Post the estimation results

[P] estimates — Manage estimation results

[P] return — Preserve stored results

[RPT] putexcel — Export results to an Excel file

[R] Stored results — Stored results

[U] 18 Programming Stata

[U] 18.10 Storing results

https://www.stata.com/manuals/m-5st_numscalar.pdf#m-5st_numscalar()
https://www.stata.com/manuals/m-5st_global.pdf#m-5st_global()
https://www.stata.com/manuals/m-5st_matrix.pdf#m-5st_matrix()
https://blog.stata.com/2013/09/25/export-tables-to-excel/
https://blog.stata.com/2013/09/25/export-tables-to-excel/
https://www.stata.com/manuals/pcreturn.pdf#pcreturn
https://www.stata.com/manuals/pereturn.pdf#pereturn
https://www.stata.com/manuals/p_estimates.pdf#p_estimates
https://www.stata.com/manuals/p_return.pdf#p_return
https://www.stata.com/manuals/rptputexcel.pdf#rptputexcel
https://www.stata.com/manuals/rstoredresults.pdf#rStoredresults
https://www.stata.com/manuals/u18.pdf#u18ProgrammingStata
https://www.stata.com/manuals/u18.pdf#u18.10Storingresults

return — Return stored results 11

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

