ILITA INKINAL — Convert variables to matrix and vice versa						
Description	Menu	Syntax	Options			
Remarks and examples	Acknowledgment	References	Also see			

defete a terrestative en de des encores

Description

mkmat stores the variables listed in *varlist* in column vectors of the same name, that is, $N \times 1$ matrices, where $N = _N$, the number of observations in the dataset. Optionally, they can be stored as an $N \times k$ matrix, where k is the number of variables in *varlist*. The variable names are used as column names. By default, the rows are named r1, r2,

svmat takes a matrix and stores its columns as new variables. It is the reverse of the mkmat command, which creates a matrix from existing variables.

matname renames the rows and columns of a matrix. matname differs from the matrix rownames and matrix colnames commands in that matname expands variist abbreviations and allows a restricted range for the rows or columns. See [P] matrix rownames.

Menu

mkmat

Data > Matrices, ado language > Convert variables to matrix

svmat

 $\mbox{Data} > \mbox{Matrices},$ ado language $> \mbox{Convert matrix to variables}$

Syntax

Create matrix from variables

```
mkmat varlist [if] [in] [, matrix(matname) nomissing rownames(varname)
```

```
roweq(varname) rowprefix(string) obs <u>nch</u>ar(#) ]
```

Create variables from matrix

```
svmat [type] A [, mames(col|eqcol|matcol|string)]
```

Rename rows and columns of matrix

matname A namelist [, rows(range) columns(range) explicit]

where **A** is the name of an existing matrix, *type* is a storage type for the new variables, and *namelist* is one of 1) a varlist, that is, names of existing variables possibly abbreviated; 2) _cons and the names of existing variables possibly abbreviated; or 3) arbitrary names when the explicit option is specified.

Options

- matrix(matname) requests that the vectors be combined in a matrix instead of creating the column
 vectors.
- nomissing specifies that observations with missing values in any of the variables be excluded ("listwise deletion").

rownames (*varname*) and roweq(*varname*) specify that the row names and row equations of the created matrix or vectors be taken from *varname*. *varname* should be a string variable or an integer positive-valued numeric variable. [Value labels are ignored; use decode (see [D] encode) if you want to use value labels.] Within the names, spaces and periods are replaced by an underscore (_).

- rowprefix(string) specifies that the string string be prefixed to the row names of the created matrix or column vectors. In the prefix, spaces and periods are replaced by an underscore (_). If rownames() is not specified, rowprefix() defaults to r, and to nothing otherwise.
- obs specifies that the observation numbers be used as row names. This option may not be combined with rownames().
- nchar(#) specifies that row names be truncated to # characters, $1 \le \# \le 32$. The default is nchar(32).

names(col|eqcol|matcol|string) specifies how the new variables are to be named.

names(col) uses the column names of the matrix to name the variables.

names (eqcol) uses the equation names prefixed to the column names.

names (matcol) uses the matrix name prefixed to the column names.

names (*string*) names the variables *string*1, *string*2, ..., *stringn*, where *string* is a user-specified *string* and n is the number of columns of the matrix.

If names () is not specified, the variables are named A1, A2, ..., An, where A is the name of the matrix.

rows (*range*) and columns (*range*) specify the rows and columns of the matrix to rename. The number of rows or columns specified must be equal to the number of names in *namelist*. If both rows() and columns() are given, the specified rows are named *namelist*, and the specified columns are also named *namelist*. The range must be given in one of the following forms:

rows(.)	renames all the rows
rows(28)	renames rows 2-8
rows(3)	renames only row 3
rows(4)	renames row 4 to the last row

If neither rows() nor columns() is given, rows(.) columns(.) is the default. That is, the matrix must be square, and both the rows and the columns are named *namelist*.

explicit suppresses the expansion of variist abbreviations and omits the verification that the names are those of existing variables. That is, the names in *namelist* are used explicitly and can be any valid row or column names.

Remarks and examples

Remarks are presented under the following headings:

mkmat svmat

mkmat

Although cross products of variables can be loaded into a matrix with the matrix accum command (see [P] matrix accum), programmers may sometimes find it more convenient to work with the variables in their datasets as vectors instead of as cross products. mkmat allows the user a simple way to load specific variables into matrices in Stata's memory.

Example 1

mkmat uses the variable name to name the single column in the vector. This feature guarantees that the variable name will be carried along in any additional matrix calculations. This feature is also useful when vectors are combined in a general matrix.

```
. use https://www.stata-press.com/data/r19/test
. describe
Contains data from https://www.stata-press.com/data/r19/test.dta
 Observations:
                           10
    Variables:
                            3
                                                13 Apr 2024 12:50
Variable
                         Display
                                     Value
              Storage
                                     label
                          format
                                                Variable label
    name
                  type
х
                float
                         %9.0g
                float
                         %9.0g
у
z
                float
                         %9.0g
```

Sorted by:

. list

	x	У	z	
1	4	10	2	
1.	1 1	10	2	
2.	2	9	4	
З.	3	8	3	
4.	4	7	5	
5.	5	6	7	
c	6	-	c	
ь.	0	Э	o	
7.	7	4	8	
8.	8	3	10	
9.	9	2	1	
10.	10	1	9	

[.] mkmat x y z, matrix(xyzmat) matrix list xyzmat xyzmat[10,3] х у z 10 2 r1 1 r2 2 9 4 3 r3 8 3 4 7 r4 5

5 7 r5 6 r6 6 5 6 r7 7 4 8 8 3 10 r8

r9 9 2 1 r10 10 1 9 If the variables contain missing values, so will the corresponding matrix or matrices. Many matrix commands, such as the matrix inversion functions inv() and invsym(), do not allow missing values in matrices. If you specify the nomissing option, mkmat will exclude observations with missing values so that subsequent matrix computations will not be hampered by missing values. Listwise deletion parallels missing-value handling in most Stata commands.

svmat

Example 2

Let's get the vector of coefficients from a regression and use svmat to save the vector as a new variable, save the dataset, load the dataset back into memory, use mkmat to create a vector from the variable, and finally, use matname to rename the columns of the row vector.

```
. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. quietly regress mpg weight gear_ratio foreign
. matrix b = get(b)
. matrix list b
b[1.4]
        weight gear_ratio
                                foreign
                                               cons
                 1.4571134 -2.2216815
y1
   -.00613903
                                          36.101353
. matrix c = b'
. svmat double c, name(bvector)
. list byector1 in 1/5
         bvector1
       -.00613903
  1.
  2.
        1.4571134
       -2.2216815
  З.
  4.
        36.101353
  5.
. save example
file example.dta saved
. use example
(1978 automobile data)
. mkmat byector1 if byector1 < .
. matrix list byector1
bvector1[4,1]
      bvector1
r1 -.00613903
    1.4571134
r2
r3 -2.2216815
r4
     36.101353
. matrix d = bvector1'
. matname d wei gear for _cons, c(.)
. matrix list d
d[1,4]
              weight
                      gear_ratio
                                      foreign
                                                     _cons
bvector1 -.00613903
                       1.4571134 -2.2216815
                                                36.101353
```

4

Acknowledgment

mkmat was written by Ken Heinecke.

References

- Gould, W. W. 1994. ip6.1: Data and matrices. *Stata Technical Bulletin* 20: 10. Reprinted in *Stata Technical Bulletin* Reprints, vol. 4, pp. 70–71. College Station, TX: Stata Press.
- Heinecke, K. 1994. ip6: Storing variables in vectors and matrices. Stata Technical Bulletin 20: 8–9. Reprinted in Stata Technical Bulletin Reprints, vol. 4, pp. 68–70. College Station, TX: Stata Press.
- Sribney, W. M. 1995. ip6.2: Storing matrices as variables. Stata Technical Bulletin 24: 9–10. Reprinted in Stata Technical Bulletin Reprints, vol. 4, pp. 71–73. College Station, TX: Stata Press.

Also see

- [P] matrix Introduction to matrix commands
- [P] matrix accum Form cross-product matrices
- [M-4] Stata Stata interface functions
- [U] 14 Matrix expressions

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.