
matrix — Introduction to matrix commands

Description Remarks and examples Reference Also see

Description
An introduction to matrices in Stata is found in [U] 14 Matrix expressions. This entry provides an

overview of the matrix commands and provides more background information on matrices in Stata.

Beyond the matrix commands, Stata has a complete matrix programming language, Mata, that pro-

vides more advancedmatrix functions, support for complexmatrices, fast execution speed, and the ability

to directly access Stata’s data, macros, matrices, and returned results. Mata can be used interactively as

a matrix calculator, but it is even more useful for programming; see the Mata Reference Manual.

Remarks and examples
Remarks are presented under the following headings:

Overview of matrix commands
Creating and replacing matrices
Namespace
Naming conventions in programs

Overview of matrix commands
Documentation on matrices in Stata is grouped below into three categories—Basics, Programming,

and Specialized. We recommend that you begin with [U] 14Matrix expressions and then read [P]matrix

define. After that, feel free to skip around.

Basics

[U] 14 Matrix expressions Introduction to matrices in Stata

[P] matrix define Matrix definition, operators, and functions

[P] matrix utility List, rename, and drop matrices

[P] matlist Display a matrix and control its format

Programming

[P] matrix accum Form cross-product matrices

[R] ml Maximum likelihood estimation

[P] ereturn Post the estimation results

[P] matrix rownames Name rows and columns

[P] matrix rowjoinbyname Join rows while matching on column names

[P] matrix score Score data from coefficient vectors

Specialized

[P] makecns Constrained estimation

[P] matrix mkmat Convert variables to matrix and vice versa

[P] matrix svd Singular value decomposition

[P] matrix symeigen Eigenvalues and eigenvectors of symmetric matrices

[P] matrix eigenvalues Eigenvalues of nonsymmetric matrices

[P] matrix get Access system matrices

[P] matrix dissimilarity Compute similarity or dissimilarity measures

1

https://www.stata.com/manuals/u14.pdf#u14Matrixexpressions
https://www.stata.com/manuals/m-0m.pdf#m-0mMata
https://www.stata.com/manuals/u14.pdf#u14Matrixexpressions
https://www.stata.com/manuals/pmatrixdefine.pdf#pmatrixdefine
https://www.stata.com/manuals/pmatrixdefine.pdf#pmatrixdefine
https://www.stata.com/manuals/u14.pdf#u14Matrixexpressions
https://www.stata.com/manuals/pmatrixdefine.pdf#pmatrixdefine
https://www.stata.com/manuals/pmatrixutility.pdf#pmatrixutility
https://www.stata.com/manuals/pmatlist.pdf#pmatlist
https://www.stata.com/manuals/pmatrixaccum.pdf#pmatrixaccum
https://www.stata.com/manuals/rml.pdf#rml
https://www.stata.com/manuals/pereturn.pdf#pereturn
https://www.stata.com/manuals/pmatrixrownames.pdf#pmatrixrownames
https://www.stata.com/manuals/pmatrixrowjoinbyname.pdf#pmatrixrowjoinbyname
https://www.stata.com/manuals/pmatrixscore.pdf#pmatrixscore
https://www.stata.com/manuals/pmakecns.pdf#pmakecns
https://www.stata.com/manuals/pmatrixmkmat.pdf#pmatrixmkmat
https://www.stata.com/manuals/pmatrixsvd.pdf#pmatrixsvd
https://www.stata.com/manuals/pmatrixsymeigen.pdf#pmatrixsymeigen
https://www.stata.com/manuals/pmatrixeigenvalues.pdf#pmatrixeigenvalues
https://www.stata.com/manuals/pmatrixget.pdf#pmatrixget
https://www.stata.com/manuals/pmatrixdissimilarity.pdf#pmatrixdissimilarity

matrix — Introduction to matrix commands 2

Creating and replacing matrices
Matrices generally do not have to be preallocated or dimensioned before creation, except when you

want to create an 𝑟 × 𝑐 matrix and then fill in each element one by one; see the description of the J()
function in [P]matrix define. Matrices are typically created by matrix define or matrix accum; see
[P] matrix accum.

Stata takes a high-handed approach to redefining matrices. You know that, when dealing with data,

you must distinguish between creating a new variable or replacing the contents of an existing vari-

able—Stata has two commands for this: generate and replace. For matrices, there is no such dis-

tinction. If you define a new matrix, it is created. If you give the same command and the matrix already

exists, then the currently existing matrix is destroyed and the new one is defined. This treatment is the

same as that given to macros and scalars.

Namespace
The term “namespace” refers to how names are interpreted. For instance, the variables in your dataset

occupy one namespace—other things, such as value labels, macros, and scalars, can have the same name

and not cause confusion.

Macros also have their own namespace; macros can have the same names as other things, and Stata

can still tell by context when you are referring to a macro because of the punctuation. When you type

gen newvar=myname, myname must refer to a variable. When you type gen newvar=‘myname’—note

the single quotes around myname—myname must refer to a local macro. When you type gen
newvar=$myname, myname must refer to a global macro.

Scalars and matrices share the same namespace; that is, scalars and matrices may have the same

names as variables in the dataset, etc., but they cannot have the same names as each other. Thus when

you define a matrix called, say, myres, if a scalar by that name already exists, it is destroyed, and the

matrix replaces it. Correspondingly, when you define a scalar called myres, if a matrix by that name

exists, it is destroyed, and the scalar replaces it.

Naming conventions in programs
If you are writing Stata programs or ado-files using matrices, you may have some matrices that you

wish to leave behind for other programs to build upon, but you will certainly have other matrices that

are nothing more than leftovers from calculations. Such matrices are called temporary. You should use

Stata’s tempname facility (see [P] macro) to name such matrices. These matrices will automatically be

discarded when your program ends. For example, a piece of your program might read

tempname YXX XX
matrix accum ‘YXX’ = price weight mpg
matrix ‘XX’ = ‘YXX’[2...,2...]

Note the single quotes around the names after they are obtained from tempname; see [U] 18.3 Macros.

Technical note
Let’s consider writing a regression program in Stata. (There is actually no need for such a program

because Stata already has the regress command.) Awell-written estimation command would allow the

level() option for specifying the width of confidence intervals, and it would replay results when the

command is typed without arguments. Here is a well-written version:

https://www.stata.com/manuals/pmatrixdefine.pdf#pmatrixdefine
https://www.stata.com/manuals/pmatrixaccum.pdf#pmatrixaccum
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/u18.pdf#u18.3Macros

matrix — Introduction to matrix commands 3

program myreg, eclass
version 19.5 // (or version 19 if you do not have StataNow)
if !replay() {

syntax varlist(min=2 numeric) [if] [in] [, Level(cilevel)]
marksample touse // mark the sample
tempname YXX XX Xy b hat V
// compute cross products YXX = (Y’Y , Y’X \ X’Y , X’X)
quietly matrix accum ‘YXX’ = ‘varlist’ if ‘touse’
local nobs = r(N)
local df = ‘nobs’ - (rowsof(‘YXX’) - 1)
matrix ‘XX’ = ‘YXX’[2...,2...]
matrix ‘Xy’ = ‘YXX’[1,2...]
// compute the beta vector
matrix ‘b’ = ‘Xy’ * invsym(‘XX’)
// compute the covariance matrix
matrix ‘hat’ = ‘b’ * ‘Xy’’
matrix ‘V’ = invsym(‘XX’) * (‘YXX’[1,1] - ‘hat’[1,1])/‘df’
// post the beta vector and covariance matrix
ereturn post ‘b’ ‘V’, dof(‘df’) obs(‘nobs’) depname(‘1’) /*

*/ esample(‘touse’)
// save estimation information
tokenize ”‘varlist’” // put varlist into numbered arguments
ereturn local depvar ”‘1’”
ereturn local cmd ”myreg”

}
else { // replay

syntax [, Level(cilevel)]
}
if ”‘e(cmd)’”!=”myreg” error 301
// print the regression table
ereturn display, level(‘level’)

end

The syntax of our new command is

myreg depvar indepvars [if] [in] [, level(#)]

myreg, typed without arguments, redisplays the output of the last myreg command. After estimation

with myreg, the user may use correlate to display the covariance matrix of the estimators, predict to

obtain predicted values or standard errors of the prediction, and test to test linear hypotheses about the

estimated coefficients. The command is indistinguishable from any other Stata estimation command.

Despite the excellence of our work, we do have some criticisms:

• myreg does not display theANOVA table, 𝑅2, etc.; it should and could be made to, although we would

have to insert our own display statements before the ereturn display instruction.

• The programmakes copious use of matrices with different names, resulting in extra memory use while

the estimation is being made; the code could be made more economical, if less readable, by reusing

matrices.

• myreg makes the least-squares calculation by using the absolute cross-product matrix, an invitation

to numerical problems if the data are not consistently scaled. Stata’s own regress command is more

careful, and we could be, too: matrix accum does have an option for forming the cross-product

matrix in deviation form, but its use would complicate this program. This does not overly concern

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange

matrix — Introduction to matrix commands 4

us, although we should make a note of it when we document myreg. Nowadays, users expect to be

protected in linear regression but have no such expectations for more complicated estimation schemes

because avoiding the problem can be difficult.

There is one nice feature of our program that did not occur to us when we wrote it. We use invsym() to

form the inverse of the cross-product matrix, and invsym() can handle singular matrices. If there is a

collinearity problem, myreg behaves just like regress: it omits the offending variables and notes that

they are omitted when it displays the output (at the ereturn display step).

Technical note
Our linear regression program is longer than we might have written in an exclusively matrix program-

ming language. After all, the coefficients can be obtained from (X′X)−1X′y, and in a dedicated matrix

language, we would type nearly that, and obtaining the standard errors would require only a few more

matrix calculations. In fact, we did type nearly that to make the calculation; the extra lines in our program

have to do mostly with syntax issues and linking to the rest of Stata. In writing your own programs, you

might be tempted not to bother linking to the rest of Stata. Fight this temptation.

Linking to the rest of Stata pays off: here we do not merely display the numerical results, but we

display them in a readable form, complete with variable names. We made a command that is indistin-

guishable from Stata’s other estimation commands. If the user wants to test b[denver]= b[la], the
user types literally that; there is no need to remember the matrix equation and to count variables (such

as constrain the third minus the 15th variable to sum to zero).

Reference
Gould, W. W. 2011. Understanding matrices intuitively, part 1. The Stata Blog: Not Elsewhere Classified. https://blog.

stata.com/2011/03/03/understanding-matrices-intuitively-part-1/.

Also see
[P] ereturn — Post the estimation results

[P] matrix define — Matrix definition, operators, and functions

[R] ml — Maximum likelihood estimation

[U] 14 Matrix expressions

[U] 18 Programming Stata

Mata Reference Manual

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://blog.stata.com/2011/03/03/understanding-matrices-intuitively-part-1/
https://blog.stata.com/2011/03/03/understanding-matrices-intuitively-part-1/
https://www.stata.com/manuals/pereturn.pdf#pereturn
https://www.stata.com/manuals/pmatrixdefine.pdf#pmatrixdefine
https://www.stata.com/manuals/rml.pdf#rml
https://www.stata.com/manuals/u14.pdf#u14Matrixexpressions
https://www.stata.com/manuals/u18.pdf#u18ProgrammingStata
https://www.stata.com/manuals/m-0m.pdf#m-0mMata
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

