
mark — Mark observations for inclusion

Description Syntax Options Remarks and examples Reference Also see

Description
marksample, mark, and markout are for use in Stata programs. marksample and mark are alterna-

tives; marksample links to information left behind by syntax, and mark is seldom used. Both create a

0/1 to-use variable that records which observations are to be used in subsequent code. markout sets the

to-use variable to 0 if any variables in varlist contain missing and is used to further restrict observations.

markin is for use after marksample, mark, and markout and, sometimes, provides a more efficient

encoding of the observations to be used in subsequent code. markin is rarely used.

svymarkout sets the to-use variable to 0 wherever any of the survey-characteristic variables contain

missing values; it is discussed in [SVY] svymarkout and is not further discussed here.

Syntax
Create marker variable after syntax

marksample lmacname [, novarlist strok zeroweight noby]

Create marker variable

mark newmarkvar [if] [in] [weight] [, zeroweight noby]

Modify marker variable

markout markvar [varlist] [, strok sysmissok]

Find range containing selected observations

markin [if] [in] [, name(lclname) noby]

Modify marker variable based on survey-characteristic variables

svymarkout markvar

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options
novarlist is for use with marksample. It specifies that missing values among variables in varlist not

cause the marker variable to be set to 0. Specify novarlist if you previously specified

syntax newvarlist ...

or

syntax newvarname ...

1

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/svysvymarkout.pdf#svysvymarkout
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/pmark.pdf#pmarkSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

mark — Mark observations for inclusion 2

You should also specify novarlist when missing values are not to cause observations to be excluded

(perhaps you are analyzing the pattern of missing values).

strok is used with marksample or markout. Specify this option if string variables in varlist are to be

allowed. strok changes rule 6 in Remarks and examples below to read

“The marker variable is set to 0 in observations for which any of the string variables in varlist contain

””.”

zeroweight is for use with marksample or mark. It deletes rule 1 in Remarks and examples below,

meaning that observations will not be excluded because the weight is zero.

noby is used rarely and only in byable(recall) programs. It specifies that, in identifying the sample,

the restriction to the by-group be ignored. mark and marksample are to create the marker variable

as they would had the user not specified the by prefix. If the user did not specify the by prefix,

specifying noby has no effect. noby provides a way for byable(recall) programs to identify the

overall sample. For instance, if the program needed to calculate the percentage of observations in the

by-group, the program would need to know both the sample to be used on this call and the overall

sample. The program might be coded as

program ..., byable(recall)
...
marksample touse
marksample alluse, noby

...
quietly count if ‘touse’
local curN = r(N)
quietly count if ‘alluse’
local totN = r(N)

local frac = ‘curN’/‘totN’
...

end

See [P] byable.

sysmissok is used with markout. Specify this option if numeric variables in varlist equal to system

missing (.) are to be allowed and only numeric variables equal to extended missing (.a, .b, . . .) are
to be excluded. The default is that all missing values (., .a, .b, . . .) are excluded.

name(lclname) is for use with markin. It specifies the name of the macro to be created. If name() is

not specified, the name in is used.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/pmark.pdf#pmarkRemarksandexamplesrule6
https://www.stata.com/manuals/pmark.pdf#pmarkRemarksandexamplesrule1
https://www.stata.com/manuals/pbyable.pdf#pbyable
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

mark — Mark observations for inclusion 3

Remarks and examples
marksample, mark, and markout are for use in Stata programs. They create a 0/1 variable recording

which observations are to be used in subsequent code. The idea is to determine the relevant sample early

in the code:

program ...
(parse the arguments)
(determine which observations are to be used)
rest of code ... if to be used

end

marksample, mark, and markout assist in this.

program ...
(parse the arguments)
(use mark* to create temporary variable ‘touse’ containing 0 or 1)
rest of code ... if ‘touse’

end

marksample is for use in programs where the arguments are parsed using the syntax command; see

[P] syntax. marksample creates a temporary byte variable, stores the name of the temporary variable

in lmacname, and fills in the temporary variable with 0s and 1s according to whether the observation

should be used. This determination is made by accessing information stored by syntax concerning the

varlist, if exp, etc., allowed by the program. Its typical use is

program ...
syntax ...
marksample touse
rest of code ... if ‘touse’

end

mark starts with an already created temporary variable name. It fills in newmarkvar with 0s and

1s according to whether the observation should be used according to the weight, if exp, and in range

specified. markout modifies the variable created by mark by resetting it to contain 0 in observations that

have missing values recorded for any of the variables in varlist. These commands are typically used as

program ...
(parse the arguments)
tempvar touse
mark ‘touse’ ...
markout ‘touse’ ...
rest of code ... if ‘touse’

end

marksample is better than mark because there is less chance that you will forget to include some

part of the sample restriction. markout can be used after mark or marksample when there are variables

other than the varlist and when observations that contain missing values of those variables are also to be

excluded. For instance, the following code is common:

program ...
syntax ... [, Denom(varname) ...]
marksample touse
markout ‘touse’ ‘denom’
rest of code ... if ‘touse’

end

https://www.stata.com/manuals/psyntax.pdf#psyntax

mark — Mark observations for inclusion 4

Regardless of whether you use mark or marksample, followed or not by markout, the following rules
apply:

1. The marker variable is set to 0 in observations for which weight is 0 (but see the zeroweight
option).

2. The appropriate error message is issued, and everything stops if weight is invalid (such as being

less than 0 in some observation or being a noninteger for frequency weights).

3. The marker variable is set to 0 in observations for which if exp is not satisfied.

4. The marker variable is set to 0 in observations outside in range.

5. The marker variable is set to 0 in observations for which any of the numeric variables in varlist

contain a numeric missing value.

6. The marker variable is set to 0 in all observations if any of the variables in varlist are strings; see

the strok option for an exception.

7. The marker variable is set to 1 in the remaining observations.

Using the name touse is a convention, not a rule, but it is recommended for consistency between

programs.

Technical note
markin is for use after marksample, mark, and markout and should be used only with extreme

caution. Its use is never necessary, but when it is known that the specified if exp will select a small

subset of the observations (small being, for example, 6 of 750,000), using markin can result in code

that executes more quickly. markin creates local macro ‘lclname’ (or ‘in’ if name() is not specified)

containing the smallest in range that contains the if exp.

By far themost common programming error—made by us at StataCorp and others—is to use different

samples in different parts of a Stata program. We strongly recommend that programmers identify the

sample at the outset. This is easy with marksample (or alternatively, mark and markout). Consider a
Stata program that begins

program myprog
version 19.5 // (or version 19 if you do not have StataNow)
syntax varlist [if] [in]
...

end

Pretend that this programmakes a statistical calculation based on the observations specified in varlist that

do not contain missing values (such as a linear regression). The program must identify the observations

that it will use. Moreover, because the user can specify if exp or in range, these restrictions must also

be taken into account. marksample makes this easy:

version 19.5 // (or version 19 if you do not have StataNow)
syntax varlist [if] [in]
marksample touse
...

end

https://www.stata.com/manuals/pmark.pdf#pmarkOptionszeroweight
https://www.stata.com/manuals/pmark.pdf#pmarkOptionsstrok

mark — Mark observations for inclusion 5

To produce the same result, we could create the temporary variable touse and then use mark and

markout as follows:

program myprog
version 19.5 // (or version 19 if you do not have StataNow)
syntax varlist [if] [in]
tempvar touse
mark ‘touse’ ‘if’ ‘in’
markout ‘touse’ ‘varlist’
...

end

The result will be the same.

The mark command creates temporary variable ‘touse’ (temporary because of the preceding

tempvar; see [P]macro) based on the if exp and in range. If there is no if exp or in range, ‘touse’
will contain 1 for every observation in the data. If if price>1000 was specified by the user, only ob-

servations for which price is greater than 1,000 will have touse set to 1; the remaining observations

will have touse set to 0.

The markout command updates the ‘touse’ marker created by mark. For observations where

‘touse’ is 1—observations that might potentially be used—the variables in varlist are checked for

missing values. If such an observation has any variables equal to missing, the observation’s ‘touse’
value is reset to 0.

Thus observations to be used all have ‘touse’ set to 1. Including if ‘touse’ at the end of statistical

or data management commands will restrict the command to operate on the appropriate sample.

Example 1
Let’s write a program to do the same thing as summarize, except that our program will also engage

in casewise deletion—if an observation has a missing value in any of the variables, it is to be excluded

from all the calculations.

program cwsumm
version 19.5 // (or version 19 if you do not have StataNow)
syntax [varlist(fv ts)] [if] [in] [aweight fweight] [, Detail noFormat]
marksample touse
summarize ‘varlist’ [‘weight’‘exp’] if ‘touse’, ‘detail’ ‘format’

end

Technical note
Let’s now turn to markin, which is for use in those rare instances where you, as a programmer, know

that only a few of the observations are going to be selected, that those small number of observations

probably occur close together in terms of observation number, and that speed is important. That is, the

use of markin is never required, and a certain caution is required in its use, so it is usually best to avoid

it. On the other hand, when the requirements are met, markin can speed programs considerably.

The safe way to use markin is to first write the program without it and then splice in its use. Form a

touse variable in the usual way by using marksample, mark, and markout. Once you have identified

the touse sample, use markin to construct an in range from it. Then add ‘in’ on every command in

which if ‘touse’ appears, without removing the if ‘touse’.

https://www.stata.com/manuals/pmacro.pdf#pmacro

mark — Mark observations for inclusion 6

That is, pretend that our original code reads like the following:

program ...
syntax ...
marksample touse
markout ‘touse’ ... // touse now fully set

generate ... if ‘touse’
replace ... if ‘touse’
summarize ... if ‘touse’
replace ... if ‘touse’
...

end

We now change our code to read as follows:

program ...
syntax ...
marksample touse
markout ‘touse’ ... // touse now fully set
markin if ‘touse’ // <- new

// we add ‘in’:
generate ... if ‘touse’ ‘in’
replace ... if ‘touse’ ‘in’
summarize ... if ‘touse’ ‘in’
replace ... if ‘touse’ ‘in’
...

end

This new version will, under certain conditions, run faster. Why? Consider the case when the program

is called and there are 750,000 observations in memory. Let’s imagine that the 750,000 observations are

a panel dataset containing 20 observations each on 37,500 individuals. Let’s further imagine that the

dataset is sorted by subjectid, the individual identifier, and that the user calls our program and includes

the restriction if subject id==4225.

Thus our programmust select 20 observations from the 750,000. That’s fine, but think about the work

that generate, replace, summarize, and replace must each go to in our original program. Each must

thumb through 750,000 observations, asking themselves whether ‘touse’ is true, and 749,980 times,

the answer is no. That will happen four times.

markin will save Stata work here. It creates a macro named ‘in’ of the form “in 𝑗1/𝑗2”, where 𝑗1
to 𝑗2 is the narrowest range that contains all the ‘touse’ ≠ 0 values. Under the assumptions we made,

that range will be exactly 20 long; perhaps it will be in 84500/84520. Now the generate, replace,
summarize, and replace commands will each restrict themselves to those 20 observations. This will

save them much work and the user much time.

Because there is a speed advantage, why not always use markin in our programs? Assume that

between the summarize and the replace there was a sort command in our program. The in range

constructed by markin would be inappropriate for our last replace; we would break our program. If

we use markin, we must make sure that the in range constructed continues to be valid throughout our

program (our construct a new one when it changes). So that is the first answer: you cannot add markin
without thinking. The second answer is that markin takes time to execute, albeit just a little, and that

time is usually wasted because in range will not improve performance because the data are not ordered

as required. Taking the two reasons together, adding markin to most programs is simply not worth the

effort.

mark — Mark observations for inclusion 7

When it is worth the effort, you may wonder why, when we added ‘in’ to the subsequent commands,

we did not simultaneously remove if ‘touse’. The answer is that ‘in’ is not a guaranteed substitute for

if. In our example, under the assumptions made, the ‘in’ happens to substitute perfectly, but that was

just an assumption, and we have no guarantees that the user happens to have his or her data sorted in the

desired way. If, in our program, we sorted the data, and then we used markin to produce the range, we

could omit if ‘touse’, but even then, we do not recommend it. We always recommend programming

defensively, and the cost of evaluating if ‘touse’, when ‘in’ really does restrict the sample to the

relevant observations, is barely measurable.

Reference
Jann, B. 2007. Stata tip 44: Get a handle on your sample. Stata Journal 7: 266–267.

Also see
[P] byable — Make programs byable

[P] syntax — Parse Stata syntax

[SVY] svymarkout — Mark observations for exclusion on the basis of survey characteristics

[U] 18 Programming Stata

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata-journal.com/article.html?article=dm0030
https://www.stata.com/manuals/pbyable.pdf#pbyable
https://www.stata.com/manuals/psyntax.pdf#psyntax
https://www.stata.com/manuals/svysvymarkout.pdf#svysvymarkout
https://www.stata.com/manuals/u18.pdf#u18ProgrammingStata
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

