
makecns — Constrained estimation

Description Syntax Options Remarks and examples Stored results Also see

Description
makecns is a programmer’s command that facilitates adding constraints to estimation commands.

makecns will create a constraint matrix and displays a note for each constraint that is dropped be-

cause of an error. When called without arguments, makecns will add missing factor-variable constraints

implied by base levels, empty levels, and omitted coefficients. The constraint matrix is stored in e(Cns).

matcproc returns matrices helpful for performing constrained estimation, including the constraint

matrix.

If your interest is simply in using constraints in a command that supports constrained estimation, see

[R] constraint.

Syntax
Build constraints

makecns [numlist |matname] [, options]

Create constraint matrix

matcproc T a C

numlist is a list of constraint numbers, separated by blanks or dashes; matname is an existing matrix

representing the constraints and must have one more column than the e(b) and e(V) matrices.

T, a, and C are names of new or existing matrices.

options Description

nocnsnotes do not display notes when constraints are dropped

displaycns display the system-stored constraint matrix

r return the accepted constraints in r(); this option overrides displaycns

collect is allowed; see [U] 11.1.10 Prefix commands.

Options
nocnsnotes prevents notes from being displayed when constraints are dropped.

displaycns displays the system-stored constraint matrix in readable form.

r returns the accepted constraints in r(). This option overrides displaycns.

1

https://www.stata.com/manuals/rconstraint.pdf#rconstraint
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands

makecns — Constrained estimation 2

Remarks and examples
Remarks are presented under the following headings:

Introduction
Overview
Mathematics
Linkage of the mathematics to Stata

Introduction
Users of estimation commands that allow constrained estimation define constraints with the

constraint command; they indicate which constraints they want to use by specifying the

constraints(numlist) option to the estimation command. This entry concerns programming such so-

phisticated estimators. If you are programming using ml, you can ignore this entry. Constraints are

handled automatically (and if you were to look inside the ml code, you would find that it uses makecns).

Before reading this entry, you should be familiar with constraints from a user’s perspective; see

[R] constraint. You should also be familiar with programming estimation commands that do not in-

clude constraints; see [P] ereturn.

Overview
You have an estimation command and wish to allow a set of linear constraints to be specified for the

parameters by the user and then to produce estimates subject to those constraints. Stata will domost of the

work for you. First, it will collect the constraints—all you have to do is add an option to your estimation

command to allow the user to specify which constraints to use. Second, it will process those constraints,

converting them from algebraic form (such as group1=group2) to a constraint matrix. Third, it will

convert the constraint matrix into two matrices that will, for maximum likelihood estimation, allow you

to write your routine almost as if there were no constraints.

There will be a “reduced-form” parameter vector, b𝑐, which your likelihood-calculation routine will

receive. That vector, multiplied by one of the almost magical matrices and then added to the other, can

be converted into a regular parameter vector with the constraints applied, so other than the few extra

matrix calculations, you can calculate the likelihood function as if there were no constraints. You can do

the same thing with respect to the first and second derivatives (if you are calculating them), except that,

after getting them, you will need to perform another matrix multiplication or two to convert them into

the reduced form.

Once the optimum is found, youwill have reduced-form parameter vector b𝑐 and variance–covariance

matrix V𝑐. Both can be easily converted into full-form-but-constrained b and V.

Finally, you will ereturn post the results along with the constraint matrix Stata made up for you

in the first place. You can, with a few lines of program code, arrange it so that, every time results are

replayed, the constraints under which they were produced are redisplayed in standard algebraic format.

Mathematics
Let Rb′ = r be the constraint for R, a 𝑐 ×𝑝 constraint matrix imposing 𝑐 constraints on 𝑝 parameters;

b, a 1 × 𝑝 parameter vector; and r, a 𝑐 × 1 vector of constraint values.

https://www.stata.com/manuals/rconstraint.pdf#rconstraint
https://www.stata.com/manuals/pereturn.pdf#pereturn

makecns — Constrained estimation 3

We wish to construct a 𝑝 ×𝑘 matrix, T, that takes b into a reduced-rank form, where 𝑘 = 𝑝 −𝑐. There
are obviously many T matrices that will do this; we choose one with the properties

b𝑐 = b0T

b = b𝑐T
′ + a

where b𝑐 is a reduced-form projection of any solution b0; that is, b𝑐 is a vector of lesser dimension (1×𝑘
rather than 1× 𝑝) that can be treated as if it were unconstrained. The second equation says that b𝑐 can be

mapped back into a higher-dimensioned, properly constrained b; 1×𝑝 vector a is a constant that depends
only on R and r.

With such aTmatrix and a vector, you can engage in unconstrained optimization of b𝑐. If the estimate

b𝑐 with variance–covariance matrix V𝑐 is produced, it can be mapped back into b = b𝑐T
′ + a and

V = TV𝑐T
′. The resulting b and V can then be posted.

Technical note
So how did we get so lucky? This happy solution arises if

T = first 𝑘 eigenvectors of I − R′(RR′)−1R (𝑝 × 𝑘)
L = last 𝑐 eigenvectors of I − R′(RR′)−1R (𝑝 × 𝑐)
a = r′(L′R′)−1L′

because

(b𝑐, r′) = b(T,R′)

If R consists of a set of consistent constraints, then it is guaranteed to have rank 𝑐. Thus RR′ is a 𝑐 × 𝑐
invertible matrix.

We will now show that RT = 0 and R(LL′) = R.

BecauseR: 𝑐×𝑝 is assumed to be of rank 𝑐, the first 𝑘 eigenvalues ofP = I−R′(RR′)−1R are positive

and the last 𝑐 are zero. Break R into a basis spanned by these components. If R had any components in

the first 𝑘, they could not be annihilated by P, contradicting

RP = R − RR′(RR′)−1R = 0

Therefore, T and R are orthogonal to each other. Because (T,L) is an orthonormal basis, (T,L)′ is its

inverse, so (T,L)(T,L)′ = I. Thus

TT′ + LL′ = I

(TT′ + LL′)R′ = R′

(LL′)R′ = R′

So we conclude that r = bR(LL′). RL is an invertible 𝑐 × 𝑐 matrix, so

{b𝑐, r′(L′R′)−1} = b(T,L)

Remember, (T,L) is a set of eigenvectors, meaning (T,L)−1 = (T,L)′, so b = b𝑐T
′ + r′(L′R′)−1L′.

makecns — Constrained estimation 4

If a solution is found by likelihood methods, the reduced-form parameter vector is passed to the

maximizer and from there to the program that computes a likelihood value from it. To find the likelihood

value, the inner routines can compute b = b𝑐T
′ +a. The routine may then go on to produce a set of 1×𝑝

first derivatives, d, and 𝑝 × 𝑝 second derivatives, H, even though the problem is of lesser dimension.

These matrices can be reduced to the 𝑘-dimensional space via

d𝑐 = dT

H𝑐 = T′HT

Technical note
Alternatively, if a solution were to be found by direct matrix methods, the programmer must derive

a new solution based on b = b𝑐T
′ + a. For example, the least-squares normal equations come from

differentiating (y − Xb)2. Setting the derivative with respect to b to zero results in

T′X′{y − X(Tb′
𝑐 + a′)} = 0

yielding

b′
𝑐 = (T′X′XT)−1(T′X′y − T′X′Xa′)

b′ = T{(T′X′XT)−1(T′X′y − T′X′Xa′)} + a′

Using the matrices T and a, the solution is not merely to constrain the b′ obtained from an unconstrained

solution (X′X)−1X′y, even though you might know that, here, with further substitutions this could be

reduced to

b′ = (X′X)−1X′y + (X′X)−1R′{R(X′X)−1R′}−1{r − R(X′X)−1X′y}

Linkage of the mathematics to Stata
Users define constraints using the constraint command; see [R] constraint. The constraints are

numbered, and Stata stores them in algebraic format—the same format in which the user typed them.

Stata does this because, until the estimation problem is defined, it cannot know how to interpret the

constraint. Think of the constraint b[group1]= b[group2], meaning that two coefficients are to be

constrained to equality, along with the constraint b[group3]=2. The constraint matrices R and r are

defined so that Rb′ = r imposes the constraint. The matrices might be

(0 0 1 −1 0 0
0 0 0 0 1 0)

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑏1
𝑏2
𝑏3
𝑏4
𝑏5
𝑏6

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= (0
2)

https://www.stata.com/manuals/rconstraint.pdf#rconstraint

makecns — Constrained estimation 5

if it just so happened that the third and fourth coefficients corresponded to group1 and group2 and

the fifth corresponded to group3. Then again, it might look different if the coefficients were organized

differently.

Therefore, Stata must wait until estimation begins to define the R and r matrices. Stata learns about

the organization of a problem from the names bordering the coefficient vector and variance–covariance

matrix. Therefore, Stata requires you to ereturn post a dummy estimation result that has the correct

names. From that, it can now determine the organization of the constraint matrix and make it for you.

Once an (dummy) estimation result has been posted, makecns can make the constraint matrices, and,

once they are built, you can obtain copies of them from e(Cns). Stata stores the constraint matrices

R and r as a 𝑐 × (𝑝 + 1) matrix C = (R, r). Putting them together makes it easier to pass them to

subroutines.

The second step in the process is to convert the constrained problem to a reduced-form problem. We

outlined the mathematics above; the matcproc command will produce the T and a matrices. If you are

performing maximum likelihood, your likelihood, gradient, and Hessian calculation subroutines can still

work in the full metric by using the same T and a matrices to translate the reduced-format parameter

vector back to the original metric. If you do this, and if you are calculating gradients or Hessians, you

must remember to compress them to reduced form using the T and a matrices.

When you have a reduced-form solution, you translate this back to a constrained solution using T

and a. You then ereturn post the constrained solutions, along with the original Cns matrix, and use

ereturn display to display the results.

Thus the outline of a program to perform constrained estimation is

program myest, eclass properties(...)
version 19.5 // (or version 19 if you do not have StataNow)
if replay() { // replay the results

if (”‘e(cmd)’” != ”myest”) error 301
syntax [, Level(cilevel)]
makecns , displaycns

}
else { // fit the model

syntax whatever [, ///
whatever ///
Constraints(string) ///
Level(cilevel) ///

]
// any other parsing of the user’s estimate request
tempname b V C T a bc Vc
local p=number of parameters
// define the model (set the row and column
// names) in ‘b’
if ”‘constraints’” != ”” {

matrix ‘V’ = ‘b’’*‘b’
ereturn post ‘b’ ‘V’ // a dummy solution
makecns ‘constraints’, display
matcproc ‘T’ ‘a’ ‘C’
// obtain solution in ‘bc’ and ‘Vc’
matrix ‘b’ = ‘bc’*‘T’’ + ‘a’ // note prime
matrix ‘V’ = ‘T’*‘Vc’*‘T’’ // note prime
ereturn post ‘b’ ‘V’ ‘C’, options

}
else {

// obtain standard solution in ‘b’ and ‘V’
ereturn post ‘b’ ‘V’, options

}

makecns — Constrained estimation 6

// store whatever else you want in e()
ereturn local cmd ”myest”

}
// output any header above the coefficient table
ereturn display, level(‘level’)

end

There is one point that might escape your attention: Immediately after obtaining the constraint, we

display the constraints even before we undertake the estimation. This way, a user who has made amistake

may press Break rather than waiting until the estimation is complete to discover the error. Our code

displays the constraints every time the results are reported, even when typing myest without arguments.

Stored results
makecns stores the following in r():

Scalars

r(k autoCns) number of base, empty, and omitted constraints

Macros

r(clist) constraints used (numlist or matrix name)

Also see
[R] constraint — Define and list constraints

[P] ereturn — Post the estimation results

[P] macro — Macro definition and manipulation

[P] matrix — Introduction to matrix commands

[P] matrix get —Access system matrices

[R] cnsreg — Constrained linear regression

[R] ml — Maximum likelihood estimation

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/rconstraint.pdf#rconstraint
https://www.stata.com/manuals/pereturn.pdf#pereturn
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/pmatrix.pdf#pmatrix
https://www.stata.com/manuals/pmatrixget.pdf#pmatrixget
https://www.stata.com/manuals/rcnsreg.pdf#rcnsreg
https://www.stata.com/manuals/rml.pdf#rml
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

