
Title stata.com

macro lists — Manipulate lists

Description Syntax Remarks and examples Also see

Description

The macro function list manipulates lists. See [P] macro for other macro functions.

uniq A returns A with duplicate elements removed. The resulting list has the same ordering of its
elements as A; duplicate elements are removed from their rightmost position. If A = “a b a c
a”, uniq returns “a b c”.

dups A returns the duplicate elements of A. If A = “a b a c a”, dups returns “a a”.

sort A returns A with its elements placed in alphabetical (ascending ASCII or code-point) order.

rsort A returns A with its elements placed in reverse alphabetical (descending ASCII or code-point)
order.

retokenize A returns A with single spaces between elements. Logically speaking, it makes no
difference how many spaces a list has between elements, and thus retokenize leaves the list
logically unchanged.

clean A returns A retokenized and with each element adorned minimally. An element is said to
be unadorned if it is not enclosed in quotes (for example, a). An element may also be adorned
in simple or compound quotes (for example, "a" or ‘"a"’). Logically speaking, it makes no
difference how elements are adorned, assuming that they are adorned adequately. The list

‘"a"’ ‘"b c"’ ‘"b "c" d"’

is equal to

a "b c" ‘"b "c" d"’

clean, in addition to performing the actions of retokenize, adorns each element minimally: not
at all if the element contains no spaces or quotes, in simple quotes (" and ") if it contains spaces
but not quotes, and in compound quotes (‘" and "’) otherwise.

A | B returns the union of A and B, the result being equal to A with elements of B not found in
A added to the tail. For instance, if A = “a b c” and B = “b d e”, A | B is “a b c d e”. If
you instead want list concatenation, you code,

local newlist ‘"‘A’ ‘B’"’

In the example above, this would return “a b c b d e”.

A & B returns the intersection of A and B. If A = “a b c d” and B = “b c f g”, then A & B =
“b c”.

A - B returns a list containing elements of A with the elements of B removed, with the resulting
elements in the same order as A. For instance, if A = “a b c d” and B = “b e”, the result is “a
c d”.

A == B returns 0 or 1; it returns 1 if A is equal to B, that is, if A has the same elements as B and
in the same order. Otherwise, 0 is returned.

1

http://stata.com
https://www.stata.com/manuals/pmacro.pdf#pmacro

2 macro lists — Manipulate lists

A === B returns 0 or 1; it returns 1 if A is equivalent to B, that is, if A has the same elements as
B regardless of the order in which the elements appear. Otherwise, 0 is returned.

A in B returns 0 or 1; it returns 1 if all elements of A are found in B. If A is empty, in returns
1. Otherwise, 0 is returned.

sizeof A returns the number of elements of A. If A = “a b c”, sizeof A is 3. (sizeof returns
the same result as the macro function word count; see Macro functions for parsing under Syntax
in [P] macro.)

posof "element" in A returns the location of macname in A or returns 0 if not found. For instance,
if A contains “a b c d”, then posof "b" in A returns 2. (word # of may be used to extract
positional elements from lists, as can tokenize and gettoken; see Macro functions for parsing
under Syntax in [P] macro and also see [P] tokenize and [P] gettoken.)

It is the element itself and not a macroname that you type as the first argument. In a program
where macro tofind contained an element to be found in list (macro) variables, you might
code

local i : list posof ‘"‘tofind’"’ in variables

element must be enclosed in simple or compound quotes.

Syntax
{ local | global } macname : list uniq macname

{ local | global } macname : list dups macname

{ local | global } macname : list sort macname

{ local | global } macname : list rsort macname

{ local | global } macname : list retokenize macname

{ local | global } macname : list clean macname

{ local | global } macname : list macname | macname

{ local | global } macname : list macname & macname

{ local | global } macname : list macname - macname

{ local | global } macname : list macname == macname

{ local | global } macname : list macname === macname

{ local | global } macname : list macname in macname

{ local | global } macname : list sizeof macname

{ local | global } macname : list posof "element" in macname

https://www.stata.com/manuals/pmacro.pdf#pmacroSyntaxMacrofunctionsforparsing
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/pmacro.pdf#pmacroSyntaxMacrofunctionsforparsing
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/ptokenize.pdf#ptokenize
https://www.stata.com/manuals/pgettoken.pdf#pgettoken

macro lists — Manipulate lists 3

Note: Where macname appears above, it is the name of a macro and not its contents that you are to
type. For example, you are to type

local result : list list1 | list2

and not

local result : list "‘list1’" | "‘list2’"

macnames that appear to the right of the colon are assumed to be the names of local macros. You
may type local(macname) to emphasize that fact. Type global(macname) if you wish to refer to
a global macro.

Remarks and examples stata.com

Remarks are presented under the following headings:

Treatment of adornment
Treatment of duplicate elements in lists

A list is a space-separated set of elements listed one after the other. The individual elements may
be enclosed in quotes, and elements containing spaces obviously must be enclosed in quotes. The
following are examples of lists:

this that what

"first element" second "third element" 4

this that what this that

Also a list could be empty.

Do not confuse varlist with list. Varlists are a special notation, such as "id m* pop*", which is a
shorthand way of specifying a list of variables; see [U] 11.4 varname and varlists. Once expanded,
however, a varlist is a list.

Treatment of adornment

An element of a list is said to be adorned if it is enclosed in quotes. Adornment, however, plays
no role in the substantive interpretation of lists. The list

a "b" c

is identical to the list

a b c

Treatment of duplicate elements in lists

With the exception of uniq and dups, all list functions treat duplicates as being distinct. For
instance, consider the list A,

a b c b

Notice that b appears twice in this list. You want to think of the list as containing a, the first
occurrence of b, c, and the second occurrence of b:

a b1 c b2

http://stata.com
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

4 macro lists — Manipulate lists

Do the same thing with the duplicate elements of all lists, carry out the operation on the now
unique elements, and then erase the subscripts from the result.

If you were to ask whether B = “b b” is in A, the answer would be yes, because A contains
two occurrences of b. If B contained “b b b”, however, the answer would be no because A does not
contain three occurrences of b.

Similarly, if B = “b b”, then A | B = “a b c b”, but if B = “b b b”, then A | B = “a b c b b”.

Also see
[P] macro — Macro definition and manipulation

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

https://www.stata.com/manuals/pmacro.pdf#pmacro

