
Java plugin — Introduction to Java plugins

Description Remarks and examples References Also see

Description
Java plugins are Java programs that you can call from Stata. When called from Stata, a Java plugin

can interact with Stata’s datasets, matrices, macros, scalars, and more. Programmers familiar with Java

can use Java’s extensive language features. There are also many third-party libraries available. If you

are not an experienced Java programmer and you intend to implement a Java plugin, you should start by

learning Java. Once you become a proficient Java programmer, writing a Java plugin for Stata should be

relatively easy.

If you are interested in writing plugins for Stata in another language such as C or C++, see [P] plugin.

Also see [P] Java utilities for system information for your Java environment.

Remarks and examples
A Java plugin is called or executed using Stata’s javacall command. For a Java plugin to be useful,

it needs to have access to a set of Stata’s core features. Stata provides Java packages that allow plugins

to interact with Stata; refer to Java-StataAPI Specification for details. When compiling your Java plugin

to use these features, the sfi-api.jar file needs to be added to the class path of your Java compiler.

This file is located in utilities/jar/, which can be found in the directory where Stata was installed.

Once Java source code has been compiled, a Java plugin can be executed from Stata by bundling your

plugin in a JAR file and then placing the JAR file in Stata’s ado-path. See [P] javacall for examples and

additional details about loading plugins.

Java plugins can be redistributed just like any other Stata program. To redistribute your Java plugin

through Stata’s net command, you must bundle your compiled program into a JAR file because net
copies .class files as text instead of binary. Additionally, you should always write a Stata ado-program

as a wrapper to javacall to parse your syntax.

A typical Java standalone program has an entry point through a main() method, which looks like

this:

static void main(String[] args)

To call a Java plugin from Stata, you must define a similar entry point. However, there are two

important distinctions. First, you may name your method whatever you like, as long as it conforms to

standard Java naming requirements. Second, your method must have a return type of int instead of

void. Here is an example of a valid method signature that Stata can call:

static int mymethod(String[] args)

Let’s assume that mymethod() exists and that the compiled Java files have been placed in an appropri-

ate location. To call mymethod(), we use Stata’s javacall command. javacall allows you to invoke

any static method in the class path if that method follows the correct signature as described above. For

details on class-path behavior, see [P] javacall.

1

https://www.stata.com/manuals/pplugin.pdf#pplugin
https://www.stata.com/manuals/pjavautilities.pdf#pJavautilities
https://www.stata.com/java/api18
https://www.stata.com/manuals/psysdir.pdf#psysdir
https://www.stata.com/manuals/pjavacall.pdf#pjavacall
https://www.stata.com/manuals/rnet.pdf#rnet
https://www.stata.com/manuals/pjavacall.pdf#pjavacall


Java plugin — Introduction to Java plugins 2

References
Crow, K. 2017a. Working with Java plugins (Part 1). The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/

2017/10/11/working-with-java-plugins-part-1/.

———. 2017b. Working with Java plugins (Part 2). The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/

2017/10/24/working-with-java-plugins-part-2/.

Drukker, D. M. 2018a. Programming an estimation command in Stata: Preparing to write a plugin. The Stata Blog: Not

Elsewhere Classified. https://blog.stata.com/2018/02/15/programming-an-estimation-command-in-stata-preparing-to-

write-a-plugin/.

———. 2018b. Programming an estimation command in Stata: Writing a Java plugin. The Stata Blog: Not Elsewhere

Classified. https://blog.stata.com/2018/02/23/programming-an-estimation-command-in-stata-writing-a-java-plugin/.

Also see
[P] Java intro — Introduction to Java in Stata

[P] Java integration — Java integration for Stata

[P] Java utilities — Java utilities

[P] javacall — Call a Java plugin

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://blog.stata.com/2017/10/11/working-with-java-plugins-part-1/
https://blog.stata.com/2017/10/11/working-with-java-plugins-part-1/
https://blog.stata.com/2017/10/24/working-with-java-plugins-part-2/
https://blog.stata.com/2017/10/24/working-with-java-plugins-part-2/
https://blog.stata.com/2018/02/15/programming-an-estimation-command-in-stata-preparing-to-write-a-plugin/
https://blog.stata.com/2018/02/15/programming-an-estimation-command-in-stata-preparing-to-write-a-plugin/
https://blog.stata.com/2018/02/23/programming-an-estimation-command-in-stata-writing-a-java-plugin/
https://www.stata.com/manuals/pjavaintro.pdf#pJavaintro
https://www.stata.com/manuals/pjavaintegration.pdf#pJavaintegration
https://www.stata.com/manuals/pjavautilities.pdf#pJavautilities
https://www.stata.com/manuals/pjavacall.pdf#pjavacall
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

