
Java integration — Java integration for Stata

Description Syntax Option Remarks and examples Also see

Description
java creates an instance of a Java environment for executing Java code within Stata. In this environ-

ment, Java code does not need to be compiled or bundled into a JavaArchive (JAR) file. This allows Java

code to be executed interactively, in do-files, and in ado-files. Stata’s datasets, matrices, macros, scalars,

and more can be accessed using the Java-Stata API Specification.

java[:] creates a Java environment in which Java code can be executed in a Read-Evaluate-Print-

Loop environment, similar to JShell in Java 9 and later versions.

java: istmt executes one Java simple statement or several simple statements separated by semicolons.

java clear clears all instances of the Java environment. This means that the global environment and

all environments associated with ado-files will be destroyed.

Syntax
Syntax is presented under the following headings:

Calling Java from Stata
Instance commands

Calling Java from Stata
Enter Java environment

java [varlist] [if] [in] [, shared(keyname)] [:]

Execute Java simple statements

java [varlist] [if] [in] [, shared(keyname)] : istmt

Clear all instances of the Java environment

java clear

A colon (:) tells the Java instances to exit the interactive mode if an error is encountered.

istmt is either one Java simple statement or several simple statements separated by semicolons.

1

https://www.stata.com/java/api18
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/pjavaintegration.pdf#pJavaintegrationOptionkeyname
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/pjavaintegration.pdf#pJavaintegrationOptionkeyname
https://www.stata.com/manuals/pjavaintegration.pdf#pJavaintegrationSyntaxjavaistmt

Java integration — Java integration for Stata 2

Instance commands
The following commands can be issued inside the Java environment:

Exit the Java session

end

Show help information about the rest of the Java instance commands

/help

Set or display the class-path for the environment. When called without an argument, the current class-

path will be displayed. The class-path must be set before calling anything depending on it; otherwise,

you must call /reset.

/cp [jar file | path]

Read a Java file, and execute the source in Stata’s Java environment

/open file | path

Show all imported packages

/imports

Reset the instance as if it were completely new

/reset

Show all active and inactive variables

/vars

Show all method declarations and unresolved references if they exist

/methods

Show all type declarations and unresolved references if they exist

/types

Show all source snippets given in the current Java environment

/list

Option
shared(keyname) specifies that a shareable instance of Java, named keyname, be invoked. This allows

you to share an instance across ado-files. keyname must be a valid Stata name.

Java integration — Java integration for Stata 3

Remarks and examples
Remarks are presented under the following headings:

How the environment works
Invoking Java interactively
Executing Java in a do-file
Executing Java in an ado-file
Executing Java files
Stata Function Interface examples
Using JAR dependencies

How the environment works
java provides utilities for integrating Java with Stata. java creates an instance of the Java environ-

ment that allows you to execute Java code interactively or in do-files and ado-files.

The java environment has different behavior based on how it is used. When used interactively or

in do-files, class definitions and instance variables share a global instance of the environment. So a

class defined in a do-file can also be referenced interactively or from another do-file. On the other hand,

class definitions and instance variables that are defined in ado-files get their own unique instance of the

environment by default. The shared() option can be used to override that default behavior. By limiting

the scope of the environment associated with ado-files, you can make each ado-file behave autonomously

without worry of class definitions and instance variables colliding in other ado-files.

Each java environment automatically imports java.util.*, java.io.*, com.stata.sfi.*, and
com.stata.sfi.util* when initialized. Other packages can be imported in the usual way by using

import statements in your code.

For information on Java versions supported by this integration, see [P] Java utilities.

Invoking Java interactively
To invoke Java interactively, you must type either java or java:. Including a colon tells the Java

instances to exit the interactive mode if an error is encountered.

When you execute single statements, a semicolon at the end of the statement is optional. When you

execute multiple or complex statements, semicolons are required to delimit the statements.

Below, we demonstrate the two syntaxes:

. java
java (type end to exit and /help for help)

java> int x = 1
x ==> 1
java> int y = 2; x + y;
y ==> 2
$1 ==> 3
java> end

You may have noticed $1 ==> 3 in the output. When you execute a statement that returns some value

without assigning it to a result, it will store the value in a temporary variable for you. You can access

those variables by their names, for example, int z = $1 + 2.

To exit your interactive session, type end. This will exit your session; however, it will not get rid of
your work. If you go back into Java, you will be able to access your work. Let’s try going back into our

environment and looking at the variables we have set.

https://www.stata.com/manuals/pjavautilities.pdf#pJavautilities

Java integration — Java integration for Stata 4

. java
java (type end to exit and /help for help)

java> /vars
| int x = 1
| int y = 2
| int $1 = 3
java> end

You can also enter interactive mode for a single statement with the syntax java: istmt, for example,

java: /vars.

If you wish to reset your environment, you can type java: /reset to reset that instance. Alterna-

tively, you can type java clear to clear all Java instances you have, including the ones in ado-files you

may have loaded.

Executing Java in a do-file
Java code and Stata code can be executed in the same do-file. To do this, wrap your Java code in

java[:] and end, similar to Python and Mata.

For example, we have the following do-file that calculates the mean of two Stata macros:

begin java_ex1.do
local x = 10
local y = 2

java:
double mean = (‘x’ + ‘y’) / 2;
Macro.setLocal(”mean”, String.valueOf(mean));

end

di ‘mean’
end java_ex1.do

First, we define two local macros in Stata, x and y. Inside the Java block, we do basic arithmetic to
compute the mean of the two local macros. Then, we use the Stata Function Interface package to set the

value of the new mean macro in Stata. Macro substitution is a convenient way to pass values from Stata

to Java.

Below, we run this do-file:

. do java_ex1

. local x = 10

. local y = 2

. java:
java (type end to exit and /help for help)

java> double mean = (‘x’ + ‘y’)/2;
mean ==> 6.0
java> Macro.setLocal(”mean”, String.valueOf(mean));
$2 ==> 0
java> end

. di ‘mean’
6
.
end of do-file

https://www.stata.com/java/api18/com/stata/sfi/package-summary.html

Java integration — Java integration for Stata 5

Executing Java in do-files uses the same Java instance as the Command window. We call this the

global instance. That means anything you do in this do-file will carry over to the Command window and

other do-files.

Executing Java in an ado-file
Unlike do-files, ado-files will get their own instance of Java. This means that anything you do with

Java in an ado-file is bound to it by default. However, if you use the shared() option, you will be able

to access the same instance across multiple ado-files.

Java blocks may be placed in an ado-file but must be placed outside the ado program itself. Functions

defined in the java block may be called from the ado-file using the java: istmt syntax.

For example, we have the following ado-file that prints the value of x:

begin java_program.ado
program java_program

version 19.5 // (or version 19 if you do not have StataNow)
java: printX();

end

java:
int x = 123;
void printX() {

System.out.println(”x: ” + x);
}
end

end java_program.ado

To run this program in Stata, we simply type

. java_program
x: 123

After running java program.ado, if we type java: x in the Command window, we will not see a

value of 123. This is because x is defined only in the context of the ado-file it was defined in. If you ran

the example shown in Invoking Java interactively, then x would be 1; otherwise, it will not be defined.

Executing Java files
Executing Java files in Stata is a little bit different from the traditional way, in which you would

normally include dependencies and have a single entry point. With the Java integration, we allow you

to run any Java file as if it were passed in line by line into the environment; Stata will search along the

ado-path for the specified file. This could mean you simply define classes to use, or you could even set

up a dependency in your class-path and do real work in your Java file.

Let’s take this example that defines a class called Addition, which takes two arguments in its con-
structor and can return the sum of the two.

https://www.stata.com/manuals/pjavaintegration.pdf#pJavaintegrationRemarksandexamplesInvokingJavainteractively
https://www.stata.com/manuals/psysdir.pdf#psysdir

Java integration — Java integration for Stata 6

begin Addition.java
class Addition {

int x, y;

public Addition(int x, int y) {
this.x = x;
this.y = y;

}

public int result() {
return x + y;

}

@Override
public String toString() {

return ”Addition{” +
”x=” + x +
”, y=” + y +
’}’;

}

}
end Addition.java

Below, we will open and use our new class:

. java:
java (type end to exit and /help for help)

java> /open Addition.java
java> Addition addition = new Addition(4, 6);
addition ==> Addition{x=4, y=6}
java> int sum = addition.result();
sum ==> 10
java> end

Notice that the Addition class was declared in the file, but by running this file with /open, we
declare it in whatever scope calls it. In our case, running /open in the Command window results in the

Addition class being defined in the global instance.

Stata Function Interface examples
Integrating Java code with Stata requires use of the Java-Stata API Specification. This package pro-

vides tools to interact with Stata’s datasets, matrices, macros, scalars, and more.

https://www.stata.com/java/api18

Java integration — Java integration for Stata 7

For example, if we want to print a list of all the variables in Stata in auto.dta, we can type

. sysuse auto, clear
(1978 automobile data)
. java:

java (type end to exit and /help for help)
java> int parsedVariables = Data.getParsedVarCount();
parsedVariables ==> 12
java> for (int v = 1; v <= parsedVariables; v++) {
...> /* Get the real index of parsed vars for varlist support */
...> int varIndex = Data.mapParsedVarIndex(v);
...> System.out.println(Data.getVarName(varIndex));
...> }

make
price
mpg
rep78
headroom
trunk
weight
length
turn
displacement
gear_ratio
foreign
java> end

To interpret varlist, if, and in qualifiers, we can make use of a few notable functions in the

com.stata.sfi.Data class.

To interpret varlist, we must first get a count of the variables set to be used in the environ-

ment. For this, we use Data.getParsedVarCount(). From there, we create an association be-

tween variables 1 through 𝑁 in the environment and their location in the dataset as a whole. We

can use Data.mapParsedVarIndex(v), with v being the 1-based index starting with the first vari-

able you passed into the environment with varlist. For example, if you call java mpg price:,
Data.mapParsedVarIndex(1) will return the index in the dataset where the mpg variable is located,

which would be 3. Alternatively, Data.mapParsedVarIndex(2) will return the index in the dataset

where the price variable is located, which would be 2. We need this function because any of the func-

tions in com.stata.sfi.Data that take an index as an argument refer to the entire dataset. For example:

. java mpg price:
java (type end to exit and /help for help)

java> int parsedVariables = Data.getParsedVarCount();
parsedVariables ==> 2
java> for (int v = 1; v <= parsedVariables; v++) {
...> int varIndex = Data.mapParsedVarIndex(v);
...> SFIToolkit.displayln(Data.getVarName(varIndex));
...> }

mpg
price
java> end

Java integration — Java integration for Stata 8

To interpret if, use the Data.isParsedIfTrue(int obs) method. If it returns false, you should

not process the observation.

To interpret in, use the Data.getObsParsedIn1() and Data.getObsParsedIn2() methods. For

example, if you type java in 10/50:, then the return values of Data.getObsParsedIn1() and

Data.getObsParsedIn2() will be 10 and 50, respectively. From there, you can set up a loop to it-

erate over only those observations, like so:

. sysuse auto, clear

. java in 1/50:
java> long obsStart = Data.getObsParsedIn1();
java> long obsEnd = Data.getObsParsedIn2();
java> for (long i = obsStart; i <= obsEnd; i++) {
...> ...
...> }

java> end

Using JAR dependencies
To set up dependencies in the environment’s class-path, you will use the /cp instance command.

Say you have a JAR file named myjar.jar in your ado-path. You can run the instance command /cp
myjar.jar to include it in the class-path. After you include it, you may run code that uses that de-

pendency. There is one caveat. If you try to run code that uses the dependency before adding it to the

class-path, the class loader will try to load your nonexistent dependency and will require a /reset to

reload it. Alternatively, you may provide an absolute path or a path relative to your current Stata working

directory to search for dependencies.

Technical note
Note that the Stata version statement affects only the Stata command interpreter and does not affect

the execution or behavior of the Java Virtual Machine.

Also see
[P] Java intro — Introduction to Java in Stata

[P] Java plugin — Introduction to Java plugins

[P] Java utilities — Java utilities

[P] javacall — Call a Java plugin

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/pversion.pdf#pversion
https://www.stata.com/manuals/pjavaintro.pdf#pJavaintro
https://www.stata.com/manuals/pjavaplugin.pdf#pJavaplugin
https://www.stata.com/manuals/pjavautilities.pdf#pJavautilities
https://www.stata.com/manuals/pjavacall.pdf#pjavacall
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

