
Glossary

alias. An alias is a variable that behaves like a copy of a variable from a linked frame that you could obtain

from frget. However, an alias uses very little memory, and you cannot modify its observations.

Aliases are created with fralias add.

ASCII.ASCII stands forAmerican Standard Code for Information Interchange. It is a way of representing

text and the characters that form text in computers. It can be divided into two sections: plain, or

lower,ASCII, which includes numbers, punctuation, plain letters without diacritical marks, whitespace

characters such as space and tab, and some control characters such as carriage return; and extended

ASCII, which includes letters with diacritical marks as well as other special characters.

Before Stata 14, datasets, do-files, ado-files, and other Stata files were encoded using ASCII.

Automation. Automation, formerly known as OLEAutomation, is a communication mechanism between

Microsoft Windows applications that provides an infrastructure whereby Windows applications can

access and manipulate functions and properties implemented in another application. In Stata, an

Automation object enables users to directly access Stata macros, scalars, stored results, and dataset

information in ways besides the usual log files.

binary 0. Binary 0, also known as the null character, is traditionally used to indicate the end of a string,

such as an ASCII or UTF-8 string.

Binary 0 is obtained by using char(0) and is sometimes displayed as \0. See [U] 12.4.10 strL

variables and binary strings for more information.

byte. Formally, a byte is eight binary digits (bits), the units used to record computer data. Each byte can

also be considered as representing a value from 0 through 255. Do not confuse this with Stata’s byte
variable storage type, which allows values from −127 to 100 to be stored. With regard to strings, all

strings are composed of individual characters that are encoded using either one byte or several bytes

to represent each character.

For example, in UTF-8, the encoding system used by Stata, byte value 97 encodes “a”. Byte values

195 and 161 in sequence encode “á”.

characteristics. Characteristics are one form of metadata about a Stata dataset and each of the variables

within the dataset. They are typically used in programming situations. For example, the xt commands

need to know the name of the panel variable and possibly the time variable. These variable names are

stored in characteristics within the dataset. See [U] 12.8 Characteristics for an overview and [P] char

for a technical description.

class. A class is an implementation of object-oriented programming. A class is a set of variables or

related functions or both tied together under one name. Stata has two class implementations, one for

ado-programming (see [P] class) and one for Mata (see [M-2] class).

code pages. A code page maps extended ASCII values to a set of characters, typically for a specific

language or set of languages. For example, the most commonly used code page is Windows-1252,

which maps extended ASCII values to characters used in Western European languages. Code pages

are essentially encodings for extended ASCII characters.

code point. A code point is the numerical value or position that represents a single character in a

text system such as ASCII or Unicode. The original ASCII encoding system contains only 128 code

points and thus can represent only 128 characters. Historically, the 128 additional bytes of extended

ASCII have been encoded in many different and inconsistent ways to provide additional sets of 128

code points. The formal Unicode specification has 1,114,112 possible code points, of which roughly

1

https://www.stata.com/manuals/pglossary.pdf#pGlossaryframes
https://www.stata.com/manuals/dfrget.pdf#dfrget
https://www.stata.com/manuals/dfralias.pdf#dfralias
https://www.stata.com/manuals/pglossary.pdf#pGlossaryplainascii
https://www.stata.com/manuals/pglossary.pdf#pGlossaryextascii
https://www.stata.com/manuals/pglossary.pdf#pGlossaryextascii
https://www.stata.com/manuals/pglossary.pdf#pGlossaryencode
https://www.stata.com/manuals/u12.pdf#u12.4.10strLvariablesandbinarystrings
https://www.stata.com/manuals/u12.pdf#u12.4.10strLvariablesandbinarystrings
https://www.stata.com/manuals/ddatatypes.pdf#dDatatypes
https://www.stata.com/manuals/pglossary.pdf#pGlossaryencode
https://www.stata.com/manuals/pglossary.pdf#pGlossaryutf
https://www.stata.com/manuals/u12.pdf#u12.8Characteristics
https://www.stata.com/manuals/pchar.pdf#pchar
https://www.stata.com/manuals/pglossary.pdf#pGlossaryobjectoriented
https://www.stata.com/manuals/pclass.pdf#pclass
https://www.stata.com/manuals/m-2class.pdf#m-2class
https://www.stata.com/manuals/pglossary.pdf#pGlossaryextascii
https://www.stata.com/manuals/pglossary.pdf#pGlossaryascii
https://www.stata.com/manuals/pglossary.pdf#pGlossaryextascii
https://www.stata.com/manuals/pglossary.pdf#pGlossaryextascii


Glossary 2

250,000 have been assigned to actual characters. Stata uses UTF-8 encoding for Unicode. Note that

the UTF-8–encoded version of a code point does not have the same numeric value as the code point

itself.

display column. A display column is the space required to display one typical character in the fixed-

width display used by Stata’s Results window and Viewer. Some characters are too wide for one display

column. Each character is displayed in one or two display columns.

All plain ASCII characters (for example, “M” and “9”) and many UTF-8 characters that are not plain

ASCII (for example, “é”) require the same space when using a fixed-width font. That is to say, they

all require a single display column.

Characters from non-Latin alphabets, such as Chinese, Cyrillic, Japanese, and Korean, may require

two display columns.

See [U] 12.4.2.2 Displaying Unicode characters for more information.

encodings. An encoding is a way of representing a character as a byte or series of bytes. Examples of

encoding systems are ASCII and UTF-8. Stata uses UTF-8 encoding.

For more information, see [U] 12.4.2.3 Encodings.

extendedASCII. ExtendedASCII, also known as higherASCII, is the byte values 128 to 255, which were

not defined as part of the original ASCII specification. Various code pages have been defined over the

years to map the extended ASCII byte values to many characters not supported in the original ASCII

specification, such as Latin letters with diacritical marks, such as “á” and “Á”; non-Latin alphabets,

such as Chinese, Cyrillic, Japanese, and Korean; punctuation marks used in non-English languages,

such as “<”, complex mathematical symbols such as “±”, and more.

Although extendedASCII characters are stored in a single byte inASCII encoding, UTF-8 stores the same

characters in two to four bytes. Because each code page maps the extended ASCII values differently,

another distinguishing feature of extended ASCII characters is that their meaning can change across

fonts and operating systems.

frames. Frames, also known as data frames, are in-memory areas where datasets are analyzed. Stata can

hold multiple datasets in memory, and each dataset is held in a memory area called a frame. A variety

of commands exist to manage frames and manipulate the data in them. See [D] frames.

global macro. See local macro and global macro.

higherASCII. See extended ASCII.

local macro and global macro. A local macro is private, meaning it can be viewed only by the program

in which it is defined. Aglobal macro is public, meaning the global macro is available to all programs.

See [U] 18.3.1 Local macros, [U] 18.3.2 Global macros, [U] 18.3.3 The difference between local

and global macros, and [P] macro. Also see macro, macroname, and macro contents.

locale. A locale is a code that identifies a community with a certain set of rules for how their language

should be written. A locale can refer to something as general as an entire language (for example, “en”

for English) or something as specific as a language in a particular country (for example, “en HK” for

English in Hong Kong).

A locale specifies a set of rules that govern how the language should be written. Stata uses locales

to determine how certain language-specific operations are carried out. For more information, see

[U] 12.4.2.4 Locales in Unicode.

https://www.stata.com/manuals/pglossary.pdf#pGlossaryutf
https://www.stata.com/manuals/pglossary.pdf#pGlossaryplainascii
https://www.stata.com/manuals/pglossary.pdf#pGlossaryutf
https://www.stata.com/manuals/u12.pdf#u12.4.2.2DisplayingUnicodecharacters
https://www.stata.com/manuals/pglossary.pdf#pGlossaryascii
https://www.stata.com/manuals/pglossary.pdf#pGlossaryutf
https://www.stata.com/manuals/u12.pdf#u12.4.2.3Encodings
https://www.stata.com/manuals/pglossary.pdf#pGlossaryascii
https://www.stata.com/manuals/pglossary.pdf#pGlossarycode_pages
https://www.stata.com/manuals/pglossary.pdf#pGlossaryencode
https://www.stata.com/manuals/dframes.pdf#dframes
https://www.stata.com/manuals/pglossary.pdf#pGlossarylocalmacro
https://www.stata.com/manuals/pglossary.pdf#pGlossaryextascii
https://www.stata.com/manuals/u18.pdf#u18.3.1Localmacros
https://www.stata.com/manuals/u18.pdf#u18.3.2Globalmacros
https://www.stata.com/manuals/u18.pdf#u18.3.3Thedifferencebetweenlocalandglobalmacros
https://www.stata.com/manuals/u18.pdf#u18.3.3Thedifferencebetweenlocalandglobalmacros
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/pglossary.pdf#pGlossarymacro
https://www.stata.com/manuals/u12.pdf#u12.4.2.4LocalesinUnicode


Glossary 3

looping. Looping is repeatedly executing a piece of code as long as a condition is true. In Stata, while,
foreach, and forvalues are all looping commands. See [P] while, [P] foreach, and [P] forvalues.

Also see [M-2] for, [M-2] do, and [M-2] while.

lowerASCII. See plain ASCII.

macro, macroname, and macro contents. Amacro is a string of characters, called the macroname, that

stands for another string of characters, called the macro contents. When a macroname is referenced,

the macro contents are substituted in place of the macroname. See [U] 18.3 Macros and [P] macro.

Also see local macro and global macro.

macro expansion. Macro expansion is the process of substituting the macro contents for the macro

name. See [P] macro.

null-terminator. See binary 0.

numlist. A numlist is a list of numbers. That list can be one or more arbitrary numbers or can use

certain shorthands to indicate ranges, such as 5/9 to indicate integers 5, 6, 7, 8, and 9. Ranges can be

ascending or descending and can include an optional increment or decrement amount, such as 10.5(-
2)4.5 to indicate 10.5, 8.5, 6.5, and 4.5. See [U] 11.1.8 numlist for a list of shorthands to indicate

ranges.

object-oriented programming. Object-oriented programming is a programming style where code is

based around objects, and those objects may have both data and code methods that can operate on the

data associated with an object. An object is constructed, and other objects inherit from or are built

on top of that object. For instance, an object could be a point, an object built on top of that could

be a line, and objects built on top of that could be polygons. Mata, C++, and Java are examples of

programming languages that support object-oriented programming.

OLEAutomation. See Automation.

plain ASCII. We use plain ASCII as a nontechnical term to refer to what computer programmers call

lower ASCII. These are the plain Latin letters “a” to “z” and “A” to “Z”; numbers “0” through “9”;

many punctuation marks, such as “!”; simple mathematical symbols, such as “+”; and whitespace and

control characters such as space (“ ”), tab, and carriage return.

Each plain ASCII character is stored as a single byte with a value between 0 and 127. Another dis-

tinguishing feature is that the byte values used to encode plain ASCII characters are the same across

different operating systems and are common between ASCII and UTF-8.

Also see ASCII and encodings.

plugin. A plugin is a piece of software written in another language that adds features to a software

package. Stata can call pluginswritten in C/C++ or Java. Plugins are useful when desired functionality

is not available in Stata’s ado or Mata languages or for custommethods that require speed and involve

heavy looping, recursion, or other computationally demanding approaches. See [P] plugin, [P] Java

intro, and [P] PyStata integration.

PyStata. PyStata refers to the integration between Python and Stata. PyStata includes Python integration

via the python suite of commands, which enables you to call Python from within Stata; the pystata

Python package, which allows you to invoke Stata from a standalone Python environment; and the

Stata Function Interface module. See [P] PyStata intro, [P] PyStata integration, and [P] PyStata

module.

recursion. Recursion is a programming technique where a problem is solved by a function calling itself

repeatedly in a nested fashion. Each call is intended to solve a smaller piece of the original problem.

https://www.stata.com/manuals/pwhile.pdf#pwhile
https://www.stata.com/manuals/pforeach.pdf#pforeach
https://www.stata.com/manuals/pforvalues.pdf#pforvalues
https://www.stata.com/manuals/m-2for.pdf#m-2for
https://www.stata.com/manuals/m-2do.pdf#m-2do
https://www.stata.com/manuals/m-2while.pdf#m-2while
https://www.stata.com/manuals/pglossary.pdf#pGlossaryplainascii
https://www.stata.com/manuals/u18.pdf#u18.3Macros
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/pglossary.pdf#pGlossarylocalmacro
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/pglossary.pdf#pGlossarybin0
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/pglossary.pdf#pGlossaryautomation
https://www.stata.com/manuals/pglossary.pdf#pGlossaryencode
https://www.stata.com/manuals/pglossary.pdf#pGlossaryutf
https://www.stata.com/manuals/pglossary.pdf#pGlossaryascii
https://www.stata.com/manuals/pglossary.pdf#pGlossaryencode
https://www.stata.com/manuals/pplugin.pdf#pplugin
https://www.stata.com/manuals/pjavaintro.pdf#pJavaintro
https://www.stata.com/manuals/pjavaintro.pdf#pJavaintro
https://www.stata.com/manuals/ppystataintegration.pdf#pPyStataintegration
https://www.stata.com/manuals/ppystataintro.pdf#pPyStataintro
https://www.stata.com/manuals/ppystataintegration.pdf#pPyStataintegration
https://www.stata.com/manuals/ppystatamodule.pdf#pPyStatamodule
https://www.stata.com/manuals/ppystatamodule.pdf#pPyStatamodule


Glossary 4

str1, str2, . . . , str2045. See strL.

strL. strL is a storage type for string variables. The full list of string storage types is str1, str2, . . .,
str2045, and strL.

str1, str2, . . ., str2045 are fixed-length storage types. If variable mystr is str8, then 8 bytes are
allocated in each observation to store mystr’s value. If you have 2,000 observations, then 16,000

bytes in total are allocated.

Distinguish between storage length and string length. If myvar is str8, that does not mean the strings
are 8 characters long in every observation. The maximum length of strings is 8 characters. Individual

observations may have strings of length 0, 1, . . . , 8. Even so, every string requires 8 bytes of storage.

You need not concern yourself with the storage length because string variables are automatically

promoted. If myvar is str8, and you changed the contents of myvar in the third observation to

“Longer than 8”, then myvar would automatically become str13.

If you changed the contents of myvar in the third observation to a string longer than 2,045 characters,

myvar would become strL.

strL variables are not necessarily longer than 2,045 characters; they can be longer or shorter than

2,045 characters. The real difference is that strL variables are stored as varying length. Pretend that

myothervar is a strL and its third observation contains “this”. The total memory consumed by the

observation would be 64 + 4 + 1 = 69 bytes. There would be 64 bytes of tracking information,

4 bytes for the contents (there are 4 characters), and 1 more byte to terminate the string. If the fifth

observation contained a 2,000,000-character string, then 64+2,000,000+1 = 2,000,069 bytes would

be used to store it.

Another difference between str1, str2, . . ., str2045, and strLs is that the str# storage types can
store only ASCII strings. strL can store ASCII or binary strings. Thus a strL variable could contain,

for instance, the contents of a Word document or a JPEG image or anything else.

strL is pronounce sturl.

titlecase, title-cased string, and Unicode title-cased string. In grammar, titlecase refers to the capital-

ization of the key words in a phrase. In Stata, titlecase refers to (a) the capitalization of the first letter

of each word in a string and (b) the capitalization of each letter after a nonletter character. There is

no judgment of the word’s importance in the string or whether the letter after a nonletter character is

part of the same word. For example, “it’s” in titlecase is “It’S”.

A title-cased string is any string to which the above rules have been applied. For example, if we

used the strproper() function with the book title Zen and theArt of Motorcycle Maintenance, Stata

would return the title-cased string Zen And The Art Of Motorcycle Maintenance.

A Unicode title-cased string is a string that has had Unicode title-casing rules applied to Unicode

words. This is almost, but not exactly, like capitalizing the first letter of each Unicode word. Like

capitalization, title-casing letters is locale-dependent, which means that the same letter might have

different titlecase forms in different locales. For example, in some locales, capital letters at the be-

ginning of words are not supposed to have accents on them, even if that capital letter by itself would

have an accent.

If you do not have characters beyond plain ASCII and your locale is English, there is no distinction in

results. For example, ustrtitle() with an English locale locale also would return the title-cased

string Zen And The Art Of Motorcycle Maintenance.

Use the ustrtitle() function to apply the appropriate capitalization rules for your language (locale).

https://www.stata.com/manuals/pglossary.pdf#pGlossarystrL
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionsstrproper()
https://www.stata.com/manuals/pglossary.pdf#pGlossarylocale
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionsustrtitle()


Glossary 5

token. A token is a single piece of a text string. Tokens are usually delimited by whitespace or special

characters such as commas, brackets, and parentheses.

Unicode. Unicode is a standard for encoding and dealing with text written in almost any conceivable

living or dead language. Unicode specifies a set of encoding systems that are designed to hold (and,

unlike extendedASCII, to keep separate) characters used in different languages. The Unicode standard

defines not only the characters and encodings for them, but also rules on how to perform various

operations on words in a given language (locale), such as capitalization and ordering. The most

common Unicode encodings are mUTF-8, UTF-16, and UTF-32. Stata uses UTF-8.

Unicode character. Technically, a Unicode character is any character with a Unicode encoding. Collo-

quially, we use the term to refer to any character other than the plain ASCII characters.

Unicode normalization. Unicode normalization allows us to use a common representation and therefore

compare Unicode strings that appear the same when displayed but could have more than one way of

being encoded. This rarely arises in practice, but because it is possible in theory, Stata provides the

ustrnormalize() function for converting between different normalized forms of the same string.

For example, suppose we wish to search for “ñ” (the lowercase n with a tilde over it from the Spanish

alphabet). This letter may have been encoded with the single code point U+00F1. However, the

sequence U+006E (the Latin lowercase “n”) followed by U+0303 (the tilde) is defined by Unicode

to be equivalent to U+00F1. This type of visual identicalness is called canonical equivalence. The

one-code-point form is known as the canonical composited form, and the multiple-code-point form

is known as the canonical decomposed form. Normalization modifies one or the other string to the

opposite canonical equivalent form so that the underlying byte sequences match. If we had strings

in a mixture of forms, we would want to use this normalization when sorting or when searching for

strings or substrings.

Another form of Unicode normalization allows characters that appear somewhat different to be given

the same meaning or interpretation. For example, when sorting or indexing, we may want the code

point U+FB00 (the typographic ligature “ff”) to match the sequence of two Latin “f” letters encoded

as U+0066 U+0066. This is called compatible equivalence.

Unicode title-cased string. See titlecase, title-cased string, and Unicode title-cased string.

UTF-8. UTF-8 stands for Universal character set + Transformation Format—8-bit. It is a type of Unicode

encoding system that was designed for backward compatibility with ASCII and is used by Stata 14.

version and version control. Version refers to the internal number to which Stata’s command interpreter

is set. Version control is the process of specifying which version Stata should use for the command

interpreter when it processes a command, do-file, or ado-file. For instance, if you write a Stata ado-

file and you put version 15 at the top of your ado-file, then Stata will interpret your ado-file using

the syntax that Stata 15 supported even if the version of Stata is now Stata 19 or even Stata 25. Version

control is an important feature of Stata because it ensures reproducibility. See [P] version.

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/pglossary.pdf#pGlossaryencode
https://www.stata.com/manuals/pglossary.pdf#pGlossaryutf
https://www.stata.com/manuals/pglossary.pdf#pGlossaryencode
https://www.stata.com/manuals/pglossary.pdf#pGlossaryplainascii
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionsustrnormalize()
https://www.stata.com/manuals/pglossary.pdf#pGlossaryencode
https://www.stata.com/manuals/pglossary.pdf#pGlossarycodep
https://www.stata.com/manuals/pglossary.pdf#pGlossarycodep
https://www.stata.com/manuals/pglossary.pdf#pGlossarycodep
https://www.stata.com/manuals/pglossary.pdf#pGlossaryencode
https://www.stata.com/manuals/pglossary.pdf#pGlossarytitlecase
https://www.stata.com/manuals/pglossary.pdf#pGlossaryunicode
https://www.stata.com/manuals/pglossary.pdf#pGlossaryencode
https://www.stata.com/manuals/pglossary.pdf#pGlossaryascii
https://www.stata.com/manuals/pversion.pdf#pversion
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

