
Title stata.com

gettoken — Low-level parsing

Description Syntax Options Remarks and examples Also see

Description
gettoken is a low-level parsing command designed for programmers who wish to parse input for

themselves. The syntax command (see [P] syntax) is an easier-to-use, high-level parsing command.

gettoken obtains the next token from the macro emname3 and stores it in the macro emname1.
If macro emname2 is specified, the rest of the string from emname3 is stored in the emname2 macro.
emname1 and emname3, or emname2 and emname3, may be the same name. The first token is
determined based on the parsing characters pchars, which default to a space if not specified.

Syntax
gettoken emname1

[
emname2

]
: emname3

[
, parse("pchars") quotes

qed(lmacname) match(lmacname) bind
]

where pchars are the parsing characters, lmacname is a local macro name, and emname is described
in the following table:

emname is . . . Refers to a . . .

macroname local macro
(local) macroname local macro
(global) macroname global macro

Options
parse("pchars") specifies the parsing characters. If parse() is not specified, parse(" ") is

assumed, meaning tokens are identified by blanks.

quotes specifies that the outside quotes are not to be stripped in what is stored in emname1. This
option has no effect on what is stored in emname2 because it always retains outside quotes. quotes
is a rarely specified option; usually you want the quotes stripped. You would not want the quotes
stripped if you wanted to make a perfect copy of the contents of the original macro for parsing
at a later time.

qed(lmacname) specifies a local macroname that is to be filled in with 1 or 0 according to whether
the returned token was enclosed in quotes in the original string. qed() does not change how
parsing is done; it merely returns more information.

match(lmacname) specifies that parentheses be matched in determining the token. The outer level of
parentheses, if any, are removed before the token is stored in emname1. The local macro lmacname
is set to “(” if parentheses were found; otherwise, it is set to an empty string.

bind specifies that expressions within parentheses and those within brackets are to be bound together,
even when not parsing on () and [].

1

http://stata.com
http://www.stata.com/manuals/psyntax.pdf#psyntax

2 gettoken — Low-level parsing

Remarks and examples stata.com

Often we apply gettoken to the macro ‘0’ (see [U] 18.4.6 Parsing nonstandard syntax), as in

gettoken first : 0

which obtains the first token (with spaces as token delimiters) from ‘0’ and leaves ‘0’ unchanged.
Or, alternatively,

gettoken first 0 : 0

which obtains the first token from ‘0’ and saves the rest back in ‘0’.

Example 1

Even though gettoken is typically used as a programming command, we demonstrate its use
interactively:

. local str "cat+dog mouse++horse"

. gettoken left : str

. display ‘"‘left’"’
cat+dog

. display ‘"‘str’"’
cat+dog mouse++horse

. gettoken left str : str, parse(" +")

. display ‘"‘left’"’
cat

. display ‘"‘str’"’
+dog mouse++horse

. gettoken next str : str, parse(" +")

. display ‘"‘next’"’
+

. display ‘"‘str’"’
dog mouse++horse

Both global and local variables may be used with gettoken. Strings with nested quotes are also
allowed, and the quotes option may be specified if desired. For more information on compound
double quotes, see [U] 18.3.5 Double quotes.

. global weird ‘"‘""some" strings"’ are ‘"within "strings""’"’

. gettoken (local)left (global)right : (global)weird

. display ‘"‘left’"’
"some" strings

. display ‘"$right"’
are ‘"within "strings""’

. gettoken left (global)right : (global)weird , quotes

. display ‘"‘left’"’
‘""some" strings"’

. display ‘"$right"’
are ‘"within "strings""’

The match() option is illustrated below.

http://stata.com
http://www.stata.com/manuals/u18.pdf#u18.4.6Parsingnonstandardsyntax
http://www.stata.com/manuals/u18.pdf#u18.3.5Doublequotes

gettoken — Low-level parsing 3

. local pstr "(a (b c)) ((d e f) g h)"

. gettoken left right : pstr

. display ‘"‘left’"’
(a

. display ‘"‘right’"’
(b c)) ((d e f) g h)

. gettoken left right : pstr , match(parns)

. display ‘"‘left’"’
a (b c)

. display ‘"‘right’"’
((d e f) g h)

. display ‘"‘parns’"’
(

Example 2

One use of gettoken is to process two-word commands. For example, mycmd list does one
thing and mycmd generate does another. We wish to obtain the word following mycmd, examine it,
and call the appropriate subroutine with a perfect copy of what followed.

program mycmd
version 15.1
gettoken subcmd 0 : 0
if "‘subcmd’" == "list" {

mycmd_l ‘0’
}
else if "‘subcmd’" == "generate" {

mycmd_g ‘0’
}
else error 199

end

program mycmd_l
. . .

end

program mycmd_g
. . .

end

Example 3

Suppose that we wish to create a general prefix command with the syntax

newcmd . . . : stata_command

where . . . represents some possibly complicated syntax. We want to split this entire command line at
the colon, making a perfect copy of what precedes the colon, which will be parsed by our program,
and what follows the colon, which will be passed along to stata command.

4 gettoken — Low-level parsing

program newcmd
version 15.1
gettoken part 0 : 0, parse(" :") quotes
while ‘"‘part’"’ != ":" & ‘"‘part’"’ != "" {

local left ‘"‘left’ ‘part’"’
gettoken part 0 : 0, parse(" :") quotes

}

(‘left’ now contains what followed newcmd up to the colon)
(‘0’ now contains what followed the colon)

. . .
end

Notice the use of the quotes option. We also used compound double quotes when accessing
‘part’ and ‘left’ because these macros might contain embedded quotation marks.

Technical note
We strongly encourage you to specify space as one of your parsing characters. For instance, with

the last example, you may have been tempted to use gettoken but to parse only on colon instead
of on colon and space, as in

gettoken left 0 : 0, parse(":") quotes
gettoken colon 0 : 0, parse(":")

and thereby avoid the while loop. This is not guaranteed to work for two reasons. First, if the length
of the string up to the colon is large, then you run the risk of having it truncated. Second, if ‘left’
begins with a quotation mark, then the result will not be what you expect.

Our recommendation is always to specify a space as one of your parsing characters and to grow
your desired macro as demonstrated in our last example.

Technical note
If one of the parsing characters specified is the equal sign, for example, parse("= "), then not

only is the equal sign treated as one token, but so is Stata’s equality operator, ==. For instance,
parsing “y=x if z==3” results in the tokens “y”, “=”, “x”, “if”, “z”, “==”, and “3”.

Also see
[P] syntax — Parse Stata syntax

[P] tokenize — Divide strings into tokens

[P] while — Looping

[M-5] invtokens() — Concatenate string rowvector into string scalar

[M-5] tokenget() — Advanced parsing

[M-5] tokens() — Obtain tokens from string

[U] 18 Programming Stata

http://www.stata.com/manuals/psyntax.pdf#psyntax
http://www.stata.com/manuals/ptokenize.pdf#ptokenize
http://www.stata.com/manuals/pwhile.pdf#pwhile
http://www.stata.com/manuals/m-5invtokens.pdf#m-5invtokens()
http://www.stata.com/manuals/m-5tokenget.pdf#m-5tokenget()
http://www.stata.com/manuals/m-5tokens.pdf#m-5tokens()
http://www.stata.com/manuals/u18.pdf#u18ProgrammingStata

