
foreach — Loop over items

Description Syntax Remarks and examples References Also see

Description
foreach repeatedly sets local macro lname to each element of the list and executes the commands

enclosed in braces. The loop is executed zero or more times; it is executed zero times if the list is null or

empty. Also see [P] forvalues, which is the fastest way to loop over consecutive values, such as looping

over numbers from 1 to 𝑘.
foreach lname in list {. . .} allows a general list. Elements are separated from each other by one or

more blanks.

foreach lname of local list {. . .} and foreach lname of global list {. . .} obtain the list from

the indicated place. This method of using foreach produces the fastest executing code.

foreach lname of varlist list {. . .}, foreach lname of newlist list {. . .}, and foreach lname

of numlist list {. . .} are much like foreach lname in list {. . .}, except that the list is given the ap-

propriate interpretation. For instance,

foreach x in mpg weight-turn {
...

}

has two elements, mpg and weight-turn, so the loop will be executed twice.

foreach x of varlist mpg weight-turn {
...

}

has four elements, mpg, weight, length, and turn, because listwas given the interpretation of a varlist.

foreach lname of varlist list {. . .} gives list the interpretation of a varlist. The list is expanded

according to standard variable abbreviation rules, and the existence of the variables is confirmed.

foreach lname of newlist list {. . .} indicates that the list is to be interpreted as new variable

names; see [U] 11.4.2 Lists of new variables. A check is performed to see that the named variables

could be created, but they are not automatically created.

foreach lname of numlist list {. . .} indicates a number list and allows standard number-list nota-

tion; see [U] 11.1.8 numlist.

1

https://www.stata.com/manuals/pforvalues.pdf#pforvalues
https://www.stata.com/manuals/u11.pdf#u11.4.2Listsofnewvariables
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist

foreach — Loop over items 2

Syntax
foreach lname { in | of listtype } list {

commands referring to ‘lname’
}

Allowed are

foreach lname in any list {

foreach lname of local lmacname {

foreach lname of global gmacname {

foreach lname of varlist varlist {

foreach lname of newlist newvarlist {

foreach lname of numlist numlist {

Braces must be specified with foreach, and

1. the open brace must appear on the same line as foreach;

2. nothing may follow the open brace except, of course, comments; the first command to be exe-

cuted must appear on a new line;

3. the close brace must appear on a line by itself.

Remarks and examples
Remarks are presented under the following headings:

Introduction
foreach ... of local and foreach ... of global
foreach ... of varlist
foreach ... of newlist
foreach ... of numlist
Use of foreach with continue
The unprocessed list elements

Introduction
foreach has many forms, but it is just one command, and what it means is

foreach value of a list of things, set x equal to each and {
execute these instructions once per value
and in the loop we can refer to ‘x’ to refer to the value

}

foreach — Loop over items 3

and this is coded

foreach x ... {
... ‘x’ ...

}

We use the name x for illustration; you may use whatever name you like. The list itself can come from a

variety of places and can be given a variety of interpretations, but foreach x in is easiest to understand:

foreach x in a b mpg 2 3 2.2 {
... ‘x’ ...

}

The list is a, b, mpg, 2, 3, and 2.2, and appears right in the command. In some programming instances,

you might know the list ahead of time, but often what you know is that you want to do the loop for each

value of the list contained in a macro, for instance, ‘varlist’. Then you could code

foreach x in ‘varlist’ {
... ‘x’ ...

}

but your code will execute more quickly if you code

foreach x of local varlist {
... ‘x’ ...

}

Both work, but the second is quicker to execute. In the first, Stata has to expand the macro and substitute

it into the command line, whereupon foreach must then pull back the elements one at a time and store

them. In the second, all of that is already done, and foreach can just grab the local macro varlist.

The two forms we have just shown,

foreach x in ... {
... ‘x’ ...

}

and

foreach x of local ... {
... ‘x’ ...

}

are the two ways foreach is most commonly used. The other forms are for special occasions.

In the event that you have something that you want to be given the interpretation of a varlist, new-

varlist, or numlist before it is interpreted as a list, you can code

foreach x of varlist mpg weight-turn g* {
... ‘x’ ...

}

or

foreach x of newlist id values1-values9 {
... ‘x’ ...

}

or

foreach x of numlist 1/3 5 6/10 {
... ‘x’ ...

}

foreach — Loop over items 4

Just as with foreach x in . . ., you put the list right on the command line, and, if you have the list in a

macro, you can put ‘macroname’ on the command line.

If you have the list in a macro, you have no alternative but to code ‘macroname’; there is no special
foreach x of local macroname variant for varlist, newvarlist, and numlist because, in those cases,

foreach x of local macroname itself is probably sufficient. If you have the list in a macro, then how

did it get there? Well, it probably was something that the user typed and that your program has already

parsed. Then the list has already been expanded, and treating the list as a general list is adequate; it need

not be given the special interpretation again, at least as far as foreach is concerned.

Example 1: Using foreach, interactively
foreach is generally used in programs, but it may be used interactively, and for illustration we will

use it that way. Three files are appended to the dataset in memory. The dataset currently in memory and

each of the three files has only one string observation.

. list
x

1. data in memory

. foreach file in this.dta that.dta theother.dta {
2. append using ”‘file’”
3. }

. list
x

1. data in memory
2. data from this.dta
3. data from that.dta
4. data from theother.dta

Quotes may be used to allow elements with blanks.

. foreach name in ”Annette Fett” ”Ashley Poole” ”Marsha Martinez” {
2. display length(”‘name’”) ” characters long -- ‘name’”
3. }

12 characters long -- Annette Fett
12 characters long -- Ashley Poole
15 characters long -- Marsha Martinez

foreach — Loop over items 5

foreach . . . of local and foreach . . . of global
foreach lname of local lmacname obtains the blank-separated list (which may contain quotes)

from local macro lmacname. For example,

foreach file of local flist {
...

}

produces the same results as typing

foreach file in ‘flist’ {
...

}

except that foreach file of local flist is faster, uses less memory, and allows the list to be modified

in the body of the loop.

If the contents of flist are modified in the body of foreach file in ‘flist’, foreach will not

notice, and the original list will be used. The contents of flist may, however, be modified in foreach
file of local flist, but only to add new elements onto the end.

foreach lname of global gmacname is the same as foreach lname in $gmacname, with the same

three caveats as to speed, memory use, and modification in the loop body.

Example 2: Looping over the elements of local and global macros
. local grains ”rice wheat flax”

. foreach x of local grains {
2. display ”‘x’”
3. }

rice
wheat
flax

. global money ”Dollar Lira Pound”

. foreach y of global money {
2. display ”‘y’”
3. }

Dollar
Lira
Pound

foreach — Loop over items 6

foreach . . . of varlist
foreach lname of varlist varlist allows specifying an existing variable list.

Example 3: Looping over existing variables
. foreach var of varlist pri-rep t* {

2. quietly summarize ‘var’
3. summarize ‘var’ if ‘var’ > r(mean)
4. }

Variable Obs Mean Std. dev. Min Max

price 22 9814.364 3022.929 6229 15906
Variable Obs Mean Std. dev. Min Max

mpg 31 26.67742 4.628802 22 41
Variable Obs Mean Std. dev. Min Max

rep78 29 4.37931 .493804 4 5
Variable Obs Mean Std. dev. Min Max

trunk 40 17.1 2.351214 14 23
Variable Obs Mean Std. dev. Min Max

turn 41 43.07317 2.412367 40 51

foreach lname of varlist varlist can be useful interactively but is rarely used in programming

contexts. You can code

syntax [varlist] ...
foreach var of varlist ‘varlist’ {

...
}

but that is not as efficient as coding

syntax [varlist] ...
foreach var of local varlist {

...
}

because ‘varlist’ has already been expanded by the syntax command according to the macro rules.

Technical note
syntax [varlist] ...
foreach var of local varlist {

...
}

is also preferable to

syntax [varlist] ...
tokenize ‘varlist’
while ”‘1’” != ”” {

...
macro shift

}

foreach — Loop over items 7

or

syntax [varlist] ...
tokenize ‘varlist’
local i = 1
while ”‘‘i’’” != ”” {

...
local i = ‘i’ + 1

}

because it is not only more readable but also faster.

foreach . . . of newlist
newlist signifies to foreach that the list is composed of new variables. foreach verifies that the

list contains valid new variable names, but it does not create the variables. For instance,

. foreach var of newlist z1-z4 {
2. generate ‘var’ = runiform()
3. }

would create variables z1, z2, z3, and z4.

foreach . . . of numlist
foreach lname of numlist numlist provides a method of looping through a list of numbers. Stan-

dard number-list notation is allowed; see [U] 11.1.8 numlist. For instance,

. foreach num of numlist 1/4 8 103 {
2. display ‘num’
3. }

1
2
3
4
8
103

If you wish to loop over many equally spaced values, do not code, for instance,

foreach x in 1/1000 {
...

}

Instead, code

forvalues x = 1/1000 {
...

}

foreach must store the list of elements, whereas forvalues obtains the elements one at a time by

calculation; see [P] forvalues.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/pforvalues.pdf#pforvalues

foreach — Loop over items 8

Use of foreach with continue
The lname in foreach is defined only in the loop body. If you code

foreach x ... {
// loop body, ‘x’ is defined

}
// ‘x’ is now undefined, meaning it contains ””

‘x’ is defined only within the loop body, which is the case even if you use continue, break (see

[P] continue) to exit the loop early:

foreach x ... {
...
if ... {

continue, break
}

}
// ‘x’ is still undefined, even if continue, break is executed

If you later need the value of ‘x’, code

foreach x ... {
...
if ... {

local lastx ‘”‘x’”’
continue, break

}
}
// ‘lastx’ defined

The unprocessed list elements
The macro ‘ferest()’ may be used in the body of the foreach loop to obtain the unprocessed list

elements.

Example 4
. foreach x in alpha ”one two” three four {

2. display
3. display ‘” x is |‘x’|”’
4. display ‘”ferest() is |‘ferest()’|”’
5. }

x is |alpha|
ferest() is |”one two” three four|

x is |one two|
ferest() is |three four|

x is |three|
ferest() is |four|

x is |four|
ferest() is ||

https://www.stata.com/manuals/pcontinue.pdf#pcontinue

foreach — Loop over items 9

‘ferest()’ is available only within the body of the loop; outside that, ‘ferest()’ evaluates to ””.
Thus you might code

foreach x ... {
...
if ... {

local lastx ‘”‘x’”’
local rest ‘”‘ferest()’”’
continue, break

}
}
// ‘lastx’ and ‘rest’ are defined

References
Canette, I. 2014. Using resampling methods to detect influential points. The Stata Blog: Not Elsewhere Classified. https:

//blog.stata.com/2014/05/08/using-resampling-methods-to-detect-influential-points/.

Cox, N. J. 2020. Speaking Stata: Loops, again and again. Stata Journal 20: 999–1015.

———. 2021a. Erratum: Speaking Stata: Loops, again and again. Stata Journal 21: 555.

———. 2021b. Speaking Stata: Loops in parallel. Stata Journal 21: 1047–1064.

Also see
[P] continue — Break out of loops

[P] forvalues — Loop over consecutive values

[P] if — if programming command

[P] levelsof — Distinct levels of a variable

[P] while — Looping

[U] 18 Programming Stata

[U] 18.3 Macros

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://blog.stata.com/2014/05/08/using-resampling-methods-to-detect-influential-points/
https://blog.stata.com/2014/05/08/using-resampling-methods-to-detect-influential-points/
https://doi.org/10.1177/1536867X20976340
https://doi.org/10.1177/1536867X211025839
https://doi.org/10.1177/1536867X211063415
https://www.stata.com/manuals/pcontinue.pdf#pcontinue
https://www.stata.com/manuals/pforvalues.pdf#pforvalues
https://www.stata.com/manuals/pif.pdf#pif
https://www.stata.com/manuals/plevelsof.pdf#plevelsof
https://www.stata.com/manuals/pwhile.pdf#pwhile
https://www.stata.com/manuals/u18.pdf#u18ProgrammingStata
https://www.stata.com/manuals/u18.pdf#u18.3Macros
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

