
Title stata.com

file — Read and write text and binary files

Description Syntax Options Remarks and examples
Stored results Reference Also see

Description

file is a programmer’s command and should not be confused with import delimited (see
[D] import delimited), infile (see [D] infile (free format) or [D] infile (fixed format)), and infix
(see [D] infix (fixed format)), which are the usual ways that data are brought into Stata. file allows
programmers to read and write both text and binary files, so file could be used to write a program
to input data in some complicated situation, but that would be an arduous undertaking.

Files are referred to by a file handle. When you open a file, you specify the file handle that you
want to use; for example, in

. file open myfile using example.txt, write

myfile is the file handle for the file named example.txt. From that point on, you refer to the file
by its handle. Thus

. file write myfile "this is a test" _n

would write the line “this is a test” (without the quotes) followed by a new line into the file, and

. file close myfile

would then close the file. You may have multiple files open at the same time, and you may access
them in any order.

1

http://stata.com
https://www.stata.com/manuals/dimportdelimited.pdf#dimportdelimited
https://www.stata.com/manuals/dinfilefreeformat.pdf#dinfile(freeformat)
https://www.stata.com/manuals/dinfilefixedformat.pdf#dinfile(fixedformat)
https://www.stata.com/manuals/dinfixfixedformat.pdf#dinfix(fixedformat)

2 file — Read and write text and binary files

Syntax
Open file

file open handle using filename ,
{
read | write | read write

}
[[

text | binary
] [

replace | append
]
all

]
Read file

file read handle
[
specs

]
Write to file

file write handle
[
specs

]
Change current location in file

file seek handle
{
query | tof | eof | #

}
Set byte order of binary file

file set handle byteorder
{
hilo | lohi | 1 | 2

}
Close file

file close
{

handle | all
}

List file type, status, and name of handle

file query

where specs for text output is

"string" or ‘"string"’
(exp) (parentheses are required)
% fmt(exp) (see [D] format about % fmt)
skip(#)
column(#)
newline

[
(#)

]
char(#) (0 ≤ # ≤ 255)
tab

[
(#)

]
page

[
(#)

]
dup(#)

https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/dformat.pdf#dformat

file — Read and write text and binary files 3

specs for text input is localmacroname,

specs for binary output is

%{8|4}z (exp)
%{4|2|1}b

[
s|u

]
(exp)

%#s "text" (1 ≤ # ≤ max macrolen)
%#s ‘"text"’
%#s (exp)

and specs for binary input is

%{8|4}z scalarname
%{4|2|1}b

[
s|u

]
scalarname

%#s localmacroname (1 ≤ # ≤ max macrolen)

collect is allowed with file query, file read, and file seek; see [U] 11.1.10 Prefix commands.

Options

read, write, or read write is required; they specify how the file is to be opened. If the file is
opened read, you can later use file read but not file write; if the file is opened write, you
can later use file write but not file read. If the file is opened read write, you can then
use both.

read write is more flexible, but most programmers open files purely read or purely write
because that is all that is necessary; it is safer and it is faster.

When a file is opened read, the file must already exist, or an error message will be issued. The
file is positioned at the top (tof), so the first file read reads at the beginning of the file. Both
local files and files over the net may be opened for read.

When a file is opened write and the replace or append option is not specified, the file must
not exist, or an error message will be issued. The file is positioned at the top (tof), so the first
file write writes at the beginning of the file. Net files may not be opened for write.

When a file is opened write and the replace option is also specified, it does not matter whether
the file already exists; the existing file, if any, is erased beforehand.

When a file is opened write and the append option is also specified, it also does not matter
whether the file already exists; the file will be reopened or created if necessary. The file will be
positioned at the append point, meaning that if the file existed, the first file write will write at
the first byte past the end of the previous file; if there was no previous file, file write begins
writing at the first byte in the file. file seek may not be used with write append files.

When a file is opened read write, it also does not matter whether the file exists. If the file
exists, it is reopened. If the file does not exist, a new file is created. Regardless, the file will be
positioned at the top of the file. You can use file seek to seek to the end of the file or wherever
else you desire. Net files may not be opened for read write.

Before opening a file, you can determine whether it exists by using confirm file; see [P] confirm.

https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/pconfirm.pdf#pconfirm

4 file — Read and write text and binary files

text and binary determine how the file is to be treated once it is opened. text is the default.
With text, files are assumed to be composed of lines of characters, with each line ending in
a line-end character. The character varies across operating systems, being line feed under Unix,
carriage return under Mac, and carriage return/line feed under Windows. file understands all the
ways that lines might end when reading and assumes that lines are to end in the usual way for
the computer being used when writing.

The alternative to text is binary, meaning that the file is to be viewed merely as a stream of
bytes. With binary, there is an issue of byte order; consider the number 1 written as a 2-byte
integer. On some computers (called hilo), it is written as “00 01”, and on other computers (called
lohi), it is written as “01 00” (with the least significant byte written first). There are similar issues
for 4-byte integers, 4-byte floats, and 8-byte floats.

file assumes that the bytes are ordered in the way natural to the computer being used. file
set can be used to vary this assumption. file set can be issued immediately after file open,
or later, or repeatedly.

replace and append are allowed only when the file is opened for write (which does not include
read write). They determine what is to be done if the file already exists. The default is to issue
an error message and not open the file. See the description of the options read, write, and read
write above for more details.

all is allowed when the file is opened for write or for read write. It specifies that, if the file
needs to be created, the permissions on the file are to be set so that it is readable by everybody.

Text output specifications

"string" and ‘"string"’ write string into the file, without the surrounding quotes.

(exp) evaluates the expression exp and writes the result into the file. If the result is numeric, it is
written with a %10.0g format, but with leading and trailing spaces removed. If exp evaluates to a
string, the resulting string is written, with no extra leading or trailing blanks.

% fmt (exp) evaluates expression exp and writes the result with the specified % fmt. If exp evaluates to
a string, % fmt must be a string format, and, correspondingly, if exp evaluates to a real, a numeric
format must be specified. Do not confuse Stata’s standard display formats with the binary formats
%b and %z described elsewhere in this entry. file write here allows Stata’s display formats
described in [D] format and allows the centering extensions (for example, %~20s) described in
[P] display.

skip(#) inserts # blanks into the file. If # ≤ 0, nothing is written; # ≤ 0 is not considered an
error.

column(#) writes enough blanks to skip forward to column # of the line; if # refers to a prior
column, nothing is displayed. The first column of a line is numbered 1. Referring to a column
less than 1 is not considered an error; nothing is displayed then.

newline
[
(#)

]
, which may be abbreviated n

[
(#)

]
, outputs one end-of-line character if # is not

specified or outputs the specified number of end-of-line characters. The end-of-line character varies
according to your operating system, being line feed under Unix, carriage return under Mac, and
the two characters carriage return/line feed under Windows. If # ≤ 0, no end-of-line character is
output.

char(#) outputs one ASCII character, being the one given by the ASCII code # specified. # must
be between 0 and 255, inclusive.

tab
[
(#)

]
outputs one tab character if # is not specified or outputs the specified number of tab

characters. Coding tab is equivalent to coding char(9).

https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/dformat.pdf#dformat
https://www.stata.com/manuals/pdisplay.pdf#pdisplay

file — Read and write text and binary files 5

page
[
(#)

]
outputs one page feed character if # is not specified or outputs the specified number of

page feed characters. Coding page is equivalent to coding char(12). The page feed character
is often called Control-L.

dup(#) specified that the next directive is to be executed (duplicated) # times. # must be greater
than or equal to 0. If # is equal to zero, the next element is not displayed.

Remarks and examples stata.com

Remarks are presented under the following headings:

Use of file
Use of file with tempfiles
Writing text files
Reading text files
Use of seek when writing or reading text files
Writing and reading binary files
Writing binary files
Reading binary files
Use of seek when writing or reading binary files
Appendix A.1 Useful commands and functions for use with file
Appendix A.2 Actions of binary output formats with out-of-range values

Use of file

file provides low-level access to file I/O. You open the file, use file read or file write
repeatedly to read or write the file, and then close the file with file close:

file open . . .
. . .
file read or file write . . .
. . .
file read or file write . . .
. . .
file close . . .

Do not forget to close the file. Open files tie up system resources. Also, for files opened for
writing, the contents of the file probably will not be fully written until you close the file.

Typing file close all will close all open files, and the clear all command (see [D] clear)
closes all files as well. These commands, however, should not be included in programs that you write;
they are included to allow the user to reset Stata when programmers have been sloppy.

If you use file handles obtained from tempname (see [P] macro), the file will be automatically
closed when the ado-file terminates:

tempname myfile

file open ‘myfile’ using . . .

This is the only case when not closing the file is appropriate. Use of temporary names for file
handles offers considerable advantages because programs can be stopped because of errors or because
the user presses Break.

http://stata.com
https://www.stata.com/manuals/dclear.pdf#dclear
https://www.stata.com/manuals/pmacro.pdf#pmacro

6 file — Read and write text and binary files

Use of file with tempfiles

In the rare event that you file open a tempfile, you must obtain the handle from tempname;
see [P] macro. Temporary files are automatically deleted when the ado- or do-file ends. If the file is
erased before it is closed, significant problems are possible. Using a tempname will guarantee that
the file is properly closed beforehand:

tempname myfile

tempfile tfile

file open ‘myfile’ using "‘tfile’" . . .

Writing text files

This is easy to do:

file open handle using filename, write text

file write handle . . .
. . .
file close handle

The syntax of file write is similar to that of display; see [P] display. The significant difference
is that expressions must be bound in parentheses. In display, you can code

display 2+2

but using file write, you must code

file write handle (2+2)

The other important difference between file write and display is that display assumes you
want the end-of-line character output at the end of each display (and display provides continue
for use when you do not want this), but file write assumes you want an end-of-line character only
when you specify it. Thus rather than coding “file write handle (2+2)”, you probably want to
code

file write handle (2+2) n

Because Stata outputs end-of-line characters only where you specify, coding

file write handle "first part is " (2+2) n

has the same effect as coding

file write handle "first part is "

file write handle (2+2) n

https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/pdisplay.pdf#pdisplay

file — Read and write text and binary files 7

or even

file write handle "first part is "

file write handle (2+2)

file write handle n

There is no limit to the line length that file write can write because, as far as file write
is concerned, n is just another character. The col(#) directive, however, will lose count if you
write lines of more than 2,147,483,646 characters (col(#) skips forward to the specified column).
In general, we recommend that you do not write lines longer than 165,199 characters because reading
lines longer than that is more difficult using file read.

We say that n is just another character, but we should say character or characters. n outputs
the appropriate end-of-line character for your operating system, meaning the two-character carriage
return followed by line feed under Windows, the one-character carriage return under Mac, and the
one-character line feed under Unix.

Reading text files

The commands for reading text files are similar to those for writing them:

file open handle using filename, read text

file read handle localmacroname
. . .
file close handle

The file read command has one syntax:

file read handle localmacroname

One line is read from the file, and it is put in localmacroname. For instance, to read a line from
the file myfile and put it in the local macro line, you code

file read myfile line

Thereafter in your code, you can refer to ‘line’ to obtain the contents of the line just read. The
following program will do a reasonable job of displaying the contents of the file, putting line numbers
in front of the lines:

program ltype
version 18.0
local 0 ‘"using ‘0’"’
syntax using/
tempname fh
local linenum = 0
file open ‘fh’ using ‘"‘using’"’, read
file read ‘fh’ line
while r(eof)==0 {

local linenum = ‘linenum’ + 1
display %4.0f ‘linenum’ _asis ‘" ‘macval(line)’"’
file read ‘fh’ line

}
file close ‘fh’

end

8 file — Read and write text and binary files

In the program above, we used tempname to obtain a temporary name for the file handle. Doing
that, we ensure that the file will be closed, even if the user presses Break while our program is
displaying lines, and so never executes file close ‘fh’. In fact, our file close ‘fh’ line is
unnecessary.

We also used r(eof) to determine when the file ends. file read sets r(eof) to contain 0 before
end of file and 1 once end of file is encountered; see Stored results below.

We included asis in the display in case the file contained braces or SMCL commands. These
would be interpreted, and we wanted to suppress that interpretation so that ltype would display lines
exactly as written in the file; see [P] smcl. We also used the macval() macro function to obtain
what was in ‘line’ without recursively expanding the contents of line.

Use of seek when writing or reading text files

You may use file seek when reading or writing text files, although, in fact, it is seldom used,
except with read write files, and even then, it is seldom used with text files.

See Use of seek when writing or reading binary files below for a description of file seek—seek
works the same way with both text and binary files—and then bear the following in mind:

• The # in “file seek handle #” refers to byte position, not line number. “file seek handle 5”
means to seek to the fifth byte of the file, not the fifth line.

• When calculating byte offsets by hand, remember that the end-of-line character is 1 byte under
Mac and Unix but is 2 bytes under Windows.

• Rewriting a line of an text file works as expected only if the new and old lines are of the same
length.

Writing and reading binary files

Consider whether you wish to read this section. There are many potential pitfalls associated with
binary files, and, at least in theory, a poorly written binary-I/O program can cause Stata to crash.

Binary files are made up of binary elements, of which Stata can understand the following:

Element Corresponding format

single- and multiple-character strings %1s and %#s
signed and unsigned 1-byte binary integers %1b, %1bs, and %1bu

signed and unsigned 2-byte binary integers %2b, %2bs, and %2bu

signed and unsigned 4-byte binary integers %4b, %4bs, and %4bu

4-byte IEEE floating-point numbers %4z

8-byte IEEE floating-point numbers %8z

The differences between all of these types are only of interpretation. For instance, the decimal
number 72, stored as a 1-byte binary integer, also represents the character H. If a file contained the
1-byte integer 72 and you were to read the byte by using the format %1s, you would get back the
character “H”, and if a file contained the character “H” and you were to read the byte by using
the format %1bu, you would get back the number 72; 72 and H are indistinguishable in that they
represent the same bit pattern. Whether that bit pattern represents 72 or H depends on the format
you use, meaning the interpretation you give to the field.

https://www.stata.com/manuals/psmcl.pdf#psmcl
https://www.stata.com/manuals/pmacro.pdf#pmacroRemarksandexamplesmacval()

file — Read and write text and binary files 9

Similar equivalence relations hold between the other elements. A binary file is nothing more
than a sequence of unsigned 1-byte integers, where those integers are sometimes given different
interpretations or are grouped and given an interpretation. In fact, all you need is the format %1bu to
read or write anything. The other formats, however, make programming more convenient.

Missing
Format Length Type Minimum Maximum values?

%1bu 1 unsigned byte 0 255 no
%1bs 1 signed byte −127 127 no
%1b 1 Stata byte −127 100 yes

%2bu 2 unsigned short int 0 65,535 no
%2bs 2 signed short int −32,767 32,767 no
%2b 2 Stata int −32,767 32,740 yes

%4bu 4 unsigned int 0 4,294,967,295 no
%4bs 4 signed int −2,147,483,647 2,147,483,647 no
%4b 4 Stata long −2,147,483,647 2,147,483,620 yes

%4z 4 float −1038 1038 yes
%8z 8 double −10307 10307 yes

When you write a binary file, you must decide on the format that you will use for every element
that you will write. When you read a binary file, you must know ahead of time the format that was
used for each element.

Writing binary files

As with text files, you open the file, write repeatedly, and then close the file:

file open handle using filename, write binary
file write handle . . .
. . .
file close handle

The file write command may include the following elements:

%{8|4}z (exp)
%{4|2|1}b

[
s|u

]
(exp)

%#s "text" (1 ≤ # ≤ max macrolen)
%#s ‘"text"’
%#s (exp)

For instance, to write “test file” followed by 2, 2 + 2, and 3× 2 represented in its various forms,
you could code

. file write handle %9s "test file" %8z (2) %4b (2+2) %1bu (3*2)

or
. file write handle %9s "test file"
. file write handle %8z (2) %4b (2+2) %1bu (3*2)

10 file — Read and write text and binary files

or even

. file write handle %9s "test file"

. file write handle %8z (2)

. file write handle %4b (2+2) %1bu (3*2)

etc.

You write strings with the %#s format and numbers with the %b or %z formats. Concerning strings,
the # in %#s should be greater than or equal to the length of the string to be written in bytes. If # is
too small, only that many characters of the string will be written. Thus

. file write handle %4s "test file"

would write “test” into the file and leave the file positioned at the fifth byte. There is nothing wrong
with coding that (the “test” can be read back easily enough), but this is probably not what you
intended to write.

Also concerning strings, you can output string literals—just enclose the string in quotes—or you
can output the results of string expressions. Expressions, as for using file write to output text files,
must be enclosed in parentheses:

. file write handle %4s (substr(a,2,6))

The following program will output a user-specified matrix to a user-specified file; the syntax of
the command being implemented is

mymatout1 matname using filename
[
, replace

]
and the code is

program mymatout1
version 18.0
gettoken mname 0 : 0
syntax using/ [, replace]

local r = rowsof(‘mname’)
local c = colsof(‘mname’)

tempname hdl
file open ‘hdl’ using ‘"‘using’"’, ‘replace’ write binary

file write ‘hdl’ %2b (‘r’) %2b (‘c’)
forvalues i=1(1)‘r’ {

forvalues j=1(1)‘c’ {
file write ‘hdl’ %8z (‘mname’[‘i’,‘j’])

}
}
file close ‘hdl’

end

A significant problem with mymatout1 is that, if we wrote a matrix on our Unix computer (an
Intel-based computer) and copied the file to a SPARC-based computer, we would discover that we
could not read the file. Intel computers write multiple-byte numbers with the least-significant byte
first; SPARC-based computers write the most-significant byte first. Who knows what your computer
does? Thus even though there is general agreement across computers on how numbers and characters
are written, this byte-ordering difference is enough to stop binary files.

file can handle this problem for you, but you have to insert a little code. The recommended
procedure is this: before writing any numbers in the file, write a field saying which byte order
this computer uses (see byteorder() in [FN] Programming functions). Later, when we write the
command to read the file, it will read the ordering that we recorded. We will then tell file which

https://www.stata.com/manuals/fnprogrammingfunctions.pdf#fnProgrammingfunctionsbyteorder()
https://www.stata.com/manuals/fnprogrammingfunctions.pdf#fnProgrammingfunctions

file — Read and write text and binary files 11

byte ordering the file is using, and file itself will reorder the bytes if that is necessary. There
are other ways that we could handle this—such as always writing in a known byte order—but the
recommended procedure is better because it is, on average, faster. Most files are read on the same
computer that wrote them, and thus the computer wastes no time rearranging bytes then.

The improved version of mymatout1 is

program mymatout2
version 18.0
gettoken mname 0 : 0
syntax using/ [, replace]

local r = rowsof(‘mname’)
local c = colsof(‘mname’)

tempname hdl
file open ‘hdl’ using ‘"‘using’"’, ‘replace’ write binary

/* new */ file write ‘hdl’ %1b (byteorder())

file write ‘hdl’ %2b (‘r’) %2b (‘c’)
forvalues i=1(1)‘r’ {

forvalues j=1(1)‘c’ {
file write ‘hdl’ %8z (‘mname’[‘i’,‘j’])

}
}
file close ‘hdl’

end

byteorder() returns 1 if the machine is hilo and 2 if lohi, but all that matters is that it is small
enough to fit in a byte. The important thing is that we write this number using %1b, about which
there is no byte-ordering disagreement. What we do with this number we will deal with later.

The second significant problem with our program is that it does not write a signature. Binary files
are difficult to tell apart: they all look like binary junk. It is important that we include some sort
of marker at the top saying who wrote this file and in what format it was written. That is called a
signature. The signature that we will use is

mymatout 1.0.0

We will write that 14-byte-long string first thing in the file so that later, when we write mymatin,
we can read the string and verify that it contains what we expect. Signature lines should always
contain a generic identity (mymatout here) along with a version number, which we can change if we
modify the output program to change the output format. This way, the wrong input program cannot
be used with a more up-to-date file format.

12 file — Read and write text and binary files

Our improved program is
program mymatout3

version 18.0
gettoken mname 0 : 0
syntax using/ [, replace]

local r = rowsof(‘mname’)
local c = colsof(‘mname’)

tempname hdl
file open ‘hdl’ using ‘"‘using’"’, ‘replace’ write binary

/* new */ file write ‘hdl’ %14s "mymatout 1.0.0"
file write ‘hdl’ %1b (byteorder())

file write ‘hdl’ %2b (‘r’) %2b (‘c’)
forvalues i=1(1)‘r’ {

forvalues j=1(1)‘c’ {
file write ‘hdl’ %8z (‘mname’[‘i’,‘j’])

}
}
file close ‘hdl’

end

This program works well. After we wrote the corresponding input routine (see Reading binary
files below), however, we noticed that our restored matrices lacked their original row and column
names, which led to a final round of changes:

program mymatout4
version 18.0
gettoken mname 0 : 0
syntax using/ [, replace]

local r = rowsof(‘mname’)
local c = colsof(‘mname’)

tempname hdl

file open ‘hdl’ using ‘"‘using’"’, ‘replace’ write binary

/* changed */ file write ‘hdl’ %14s "mymatout 1.0.1"
file write ‘hdl’ %1b (byteorder())
file write ‘hdl’ %2b (‘r’) %2b (‘c’)

/* new */ local names : rownames ‘mname’
/* new */ local len : length local names
/* new */ file write ‘hdl’ %4b (‘len’) %‘len’s ‘"‘names’"’

/* new */ local names : colnames ‘mname’
/* new */ local len : length local names
/* new */ file write ‘hdl’ %4b (‘len’) %‘len’s ‘"‘names’"’

forvalues i=1(1)‘r’ {
forvalues j=1(1)‘c’ {

file write ‘hdl’ %8z (‘mname’[‘i’,‘j’])
}

}
file close ‘hdl’

end

In this version, we added the lines necessary to write the row and column names into the file. We
write the row names by coding

local names : rownames ‘mname’
local len : length local names
file write ‘hdl’ %4b (‘len’) %‘len’s ‘"‘names’"’

and we similarly write the column names. The interesting thing here is that we need to write a string
into our binary file for which the length of the string varies. One solution would be

file write ‘hdl’ %165199s ‘"‘mname’"’

file — Read and write text and binary files 13

but that would be inefficient because, in general, the names are much shorter than 165,199 bytes.
The solution is to obtain the length of the string to be written and then write the length into the file.
In the above code, macro ‘len’ contains the length, we write ‘len’ as a 4-byte integer, and then
we write the string using a %‘len’s format. Consider what happens when ‘len’ is, say, 50. We
write 50 into the file, and then we write the string using a %50s format. Later, when we read back
the file, we can reverse this process, reading the length and then using the appropriate format.

We also changed the signature from “mymatout 1.0.0” to “mymatout 1.0.1” because the file format
changed. Making that change ensures that an old read program does not attempt to read a more
modern format (and so produce incorrect results).

Technical note

You may write strings using %#s formats that are narrower than, equal to, or wider than the length
of the string being written. When the format is too narrow, only that many characters of the string
are written. When the format and string are of the same width, the entire string is written. When the
format is wider than the string, the entire string is written, and then the excess positions in the file
are filled with binary zeros.

Binary zeros are special in strings because binary denotes the end of the string. Thus when you
read back the string, even if it was written in a field that was too wide, it will appear exactly as it
appeared originally.

Reading binary files

You read binary files just as you wrote them,

file open handle using filename, read binary

file read handle . . .
. . .
file close handle

When reading them, you must be careful to specify the same formats as you did when you wrote
the file.

The program that will read the matrices written by mymatout1, presented below, has the syntax

mymatin1 matname filename

14 file — Read and write text and binary files

and the code is
program mymatin1

version 18.0
gettoken mname 0 : 0
syntax using/

tempname hdl
file open ‘hdl’ using ‘"‘using’"’, read binary

tempname val
file read ‘hdl’ %2b ‘val’
local r = ‘val’
file read ‘hdl’ %2b ‘val’
local c = ‘val’

matrix ‘mname’ = J(‘r’, ‘c’, 0)
forvalues i=1(1)‘r’ {

forvalues j=1(1)‘c’ {
file read ‘hdl’ %8z ‘val’
matrix ‘mname’[‘i’,‘j’] = ‘val’

}
}
file close ‘hdl’

end

When file read reads numeric values, they are always stored into scalars (see [P] scalar), and
you specify the name of the scalar directly after the binary numeric format. Here we are using the
scalar named ‘val’, where ‘val’ is a name that we obtained from tempname. We could just as
well have used a fixed name, say, myscalar, so the first file read would read

file read ‘hdl’ %2b myscalar

and we would similarly substitute myscalar everywhere ‘val’ appears, but that would make our
program less elegant. If the user had previously stored a value under the name myscalar, our values
would replace it.

In the second version of mymatout, we included the byte order. The correspondingly improved
version of mymatin is

program mymatin2
version 18.0
gettoken mname 0 : 0
syntax using/

tempname hdl
file open ‘hdl’ using ‘"‘using’"’, read binary

tempname val
/* new */ file read ‘hdl’ %1b ‘val’
/* new */ local border = ‘val’
/* new */ file set ‘hdl’ byteorder ‘border’

file read ‘hdl’ %2b ‘val’
local r = ‘val’
file read ‘hdl’ %2b ‘val’
local c = ‘val’

matrix ‘mname’ = J(‘r’, ‘c’, 0)
forvalues i=1(1)‘r’ {

forvalues j=1(1)‘c’ {
file read ‘hdl’ %8z ‘val’
matrix ‘mname’[‘i’,‘j’] = ‘val’

}
}
file close ‘hdl’

end

https://www.stata.com/manuals/pscalar.pdf#pscalar

file — Read and write text and binary files 15

We simply read back the value we recorded and then file set it. We cannot directly file set
handle byteorder ‘val’ because ‘val’ is a scalar, and the syntax for file set byteorder is

file set handle byteorder {hilo|lohi|1|2}

That is, file set is willing to see a number (1 and hilo mean the same thing, as do 2 and lohi),
but that number must be a literal (the character 1 or 2), so we had to copy ‘val’ into a macro before
we could use it. Once we set the byte order, however, we could from then on depend on file to
reorder the bytes for us should that be necessary.

In the third version of mymatout, we added a signature. In the modification below, we read the
signature by using a %14s format. Strings are copied into local macros, and we must specify the
name of the local macro following the format:

program mymatin3
version 18.0
gettoken mname 0 : 0
syntax using/

tempname hdl
file open ‘hdl’ using ‘"‘using’"’, read binary

/* new */ file read ‘hdl’ %14s signature
/* new */ if "‘signature’" != "mymatout 1.0.0" {
/* new */ disp as err "file not mymatout 1.0.0"
/* new */ exit 610
/* new */ }

tempname val
file read ‘hdl’ %1b ‘val’
local border = ‘val’
file set ‘hdl’ byteorder ‘border’

file read ‘hdl’ %2b ‘val’
local r = ‘val’
file read ‘hdl’ %2b ‘val’
local c = ‘val’

matrix ‘mname’ = J(‘r’, ‘c’, 0)
forvalues i=1(1)‘r’ {

forvalues j=1(1)‘c’ {
file read ‘hdl’ %8z ‘val’
matrix ‘mname’[‘i’,‘j’] = ‘val’

}
}
file close ‘hdl’

end

In the fourth and final version, we wrote the row and column names. We wrote the names by first
preceding them with a 4-byte integer recording their width:

16 file — Read and write text and binary files

program mymatin4
version 18.0
gettoken mname 0 : 0
syntax using/

tempname hdl
file open ‘hdl’ using ‘"‘using’"’, read binary

file read ‘hdl’ %14s signature
/* changed */ if "‘signature’" != "mymatout 1.0.1" {
/* changed */ disp as err "file not mymatout 1.0.1"

exit 610
}

tempname val
file read ‘hdl’ %1b ‘val’
local border = ‘val’
file set ‘hdl’ byteorder ‘border’

file read ‘hdl’ %2b ‘val’
local r = ‘val’
file read ‘hdl’ %2b ‘val’
local c = ‘val’

matrix ‘mname’ = J(‘r’, ‘c’, 0)

/* new */ file read ‘hdl’ %4b ‘val’
/* new */ local len = ‘val’
/* new */ file read ‘hdl’ %‘len’s names
/* new */ matrix rownames ‘mname’ = ‘names’

/* new */ file read ‘hdl’ %4b ‘val’
/* new */ local len = ‘val’
/* new */ file read ‘hdl’ %‘len’s names
/* new */ matrix colnames ‘mname’ = ‘names’

forvalues i=1(1)‘r’ {
forvalues j=1(1)‘c’ {

file read ‘hdl’ %8z ‘val’
matrix ‘mname’[‘i’,‘j’] = ‘val’

}
}
file close ‘hdl’

end

Use of seek when writing or reading binary files

Nearly all I/O programs are written without using file seek. file seek changes your location
in the file. Ordinarily, you start at the beginning of the file and proceed sequentially through the
bytes. file seek lets you back up or skip ahead.

file seek handle query actually does not change your location in the file; it merely returns in
scalar r(loc) the current position, with the first byte in the file being numbered 0, the second 1,
and so on. In fact, all the file seek commands return r(loc), but file seek query is unique
because that is all it does.

file seek handle tof moves to the beginning (top) of the file. This is useful with read files
when you want to read the file again, but you can seek to tof even with write files and, of course,
with read write files. (Concerning read files: you can seek to top, or any point, before or after
the end-of-file condition is raised.)

file seek handle eof moves to the end of the file. This is useful only with write files (or read
write files) but may be used with read files, too.

file — Read and write text and binary files 17

file seek handle # moves to the specified position. # is measured in bytes from the beginning
of the file and is in the same units as reported in r(loc). ‘file seek handle 0’ is equivalent to
‘file seek handle tof’.

Technical note

When a file is opened write append, you may not use file seek. If you need to seek in the
file, open the file read write instead.

Appendix A.1 Useful commands and functions for use with file

• When opening a file read write or write append, file’s actions differ depending upon
whether the file already exists. confirm file (see [P] confirm) can tell you whether a file
exists; use it before opening the file.

• To obtain the length of strings when writing binary files, use the macro function length:

local length : length local mystr

file write handle %‘length’s ‘"‘mystr’"’

See Macro functions for parsing in [P] macro for details.

• To write portable binary files, we recommend writing in natural byte order and recording
the byte order in the file. Then the file can be read by reading the byte order and setting it:

Writing:

file write handle %1b (byteorder())

Reading:
tempname mysca

file read handle %1b ‘mysca’

local b order = ‘mysca’

file set handle byteorder ‘b order’

The byteorder() function returns 1 or 2, depending on whether the computer being used
records data in hilo or lohi format. See [FN] Programming functions.

Appendix A.2 Actions of binary output formats with out-of-range values

Say that you write the number 2,137 with a %1b format. What value will you later get back when
you read the field with a %1b format? Here the answer is ., Stata’s missing value, because the %1b
format is a variation of %1bs that supports Stata’s missing value. If you wrote 2,137 with %1bs, it
would read back as 127; if you wrote it with %1bu, it would read back as 255.

In general, in the Stata variation, missing values are supported, and numbers outside the range are
written as missing. In the remaining formats, the minimum or maximum is written as

https://www.stata.com/manuals/pconfirm.pdf#pconfirm
https://www.stata.com/manuals/pmacro.pdf#pmacroRemarksandexamplesMacrofunctionsforparsing
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/fnprogrammingfunctions.pdf#fnProgrammingfunctionsbyteorder()
https://www.stata.com/manuals/fnprogrammingfunctions.pdf#fnProgrammingfunctions

18 file — Read and write text and binary files

Value written when value is . . .
Format Min value Max value Too small Too large

%1bu 0 255 0 255

%1bs −127 127 −127 127
%1b −127 100 . .
%2bu 0 65,535 0 65,535
%2bs −32,767 32,767 −32,767 32,767

%2b −32,767 32,740 . .
%4bu 0 4,294,967,295 0 4,294,967,295

%4bs −2,147,483,647 2,147,483,647 −2,147,483,647 2,147,483,647
%4b −2,147,483,647 2,147,483,620 . .
%4z −1038 1038 . .
%8z −10307 10307 . .

In the above table, if you write a missing value, take that as writing a value larger than the
maximum allowed for the type.

If you write a noninteger value with an integer format, the result will be truncated to an integer.
For example, writing 124.75 with a %2b format is the same as writing 124.

Stored results
file read stores the following in r():

Scalars
r(eof) 1 on end of file, 0 otherwise

Macros
r(status) (if text file) win line read; line ended in cr-lf

mac line read; line ended in cr
unix line read; line ended in lf
split line read; line was too long and so split
none line read; line was not terminated
eof line not read because of end of file

r(status) = split indicates that c(macrolen)−1(33maxvar+199 for Stata/MP and Stata/SE, 165,199
for Stata/BE) characters of the line were returned and that the next file read will pick up where
the last read left off.

r(status) = none indicates that the entire line was returned, that no line-end character was found,
and that the next file read will return r(status) = eof.

If r(status) = eof (r(eof) = 1), then the local macro into which the line was read contains "".
The local macro containing "", however, does not imply end of file because the line might simply
have been empty.

file — Read and write text and binary files 19

file seek stores the following in r():

Scalars
r(loc) current position of the file

file query stores the following in r():

Scalars
r(N) number of open files

Reference
Slaymaker, E. 2005. Using the file command to produce formatted output for other applications. Stata Journal 5:

239–247.

Also see
[P] display — Display strings and values of scalar expressions

[D] filefilter — Convert ASCII or binary patterns in a file

[D] hexdump — Display hexadecimal report on file

[D] import — Overview of importing data into Stata

[D] import delimited — Import and export delimited text data

[D] infix (fixed format) — Import text data in fixed format

[M-4] IO — I/O functions

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

http://www.stata-journal.com/article.html?article=dm0015
https://www.stata.com/manuals/pdisplay.pdf#pdisplay
https://www.stata.com/manuals/dfilefilter.pdf#dfilefilter
https://www.stata.com/manuals/dhexdump.pdf#dhexdump
https://www.stata.com/manuals/dimport.pdf#dimport
https://www.stata.com/manuals/dimportdelimited.pdf#dimportdelimited
https://www.stata.com/manuals/dinfixfixedformat.pdf#dinfix(fixedformat)
https://www.stata.com/manuals/m-4io.pdf#m-4IO

