
estat programming — Controlling estat after community-contributed commands

Description Remarks and examples Also see

Description
Programmers of estimation commands can customize how estat works after their commands. If

you want to use only the standard estat subcommands, ic, summarize, and vce, you do not need to

do anything; see [R] estat. Stata will automatically handle those cases.

Remarks and examples
Remarks are presented under the following headings:

Standard subcommands
Adding subcommands to estat
Overriding standard behavior of a subcommand

Standard subcommands
For estat to work, your estimation command must be implemented as an e-class program, and it

must store its name in e(cmd).

estat vce requires that the covariance matrix be stored in e(V), and estat summarize requires that

the estimation sample be marked by the function e(sample). Both requirements can be met by using

ereturn post with the esample() option in your program; see [P] ereturn.

Finally, estat ic requires that your program store the final log likelihood in e(ll) and the sample

size in e(N). If your program also stores the log likelihood of the null (constant only) model in e(ll 0),
it will appear in the output of estat ic, as well.

Adding subcommands to estat
To add new features (subcommands) to estat for use after a particular estimation command, you

write a handler, which is nothing more than an ado-file command. The standard is to name the new

command cmd estat, where cmd is the name of the corresponding estimation command. For instance,

the handler that provides the special estat features after regress is named regress estat, and the

handler that provides the special features after pca is named pca estat.

Next you must let estat know about your new handler, which you do by filling in e(estat cmd)
in the corresponding estimation command. For example, in the code that implements pca is the line

ereturn local estat_cmd ”pca_estat”

Finally, you must write cmd estat. The syntax of estat is

estat subcmd ...

When the estat command is invoked, the first and only thing it does is call ‘e(estat cmd)’ if

‘e(estat cmd)’ exists. This way, your handler can even do something special in the standard cases, if

that is necessary. We will get to that, but in the meantime, understand that the handler receives just what

estat received, which is exactly what the user typed. The outline for a handler is

1

https://www.stata.com/manuals/restat.pdf#restat
https://www.stata.com/manuals/pereturn.pdf#pereturn


estat programming — Controlling estat after community-contributed commands 2

begin cmd estat.ado
program cmd_estat, rclass

version 19.5 // (or version 19 if you do not have StataNow)
if ”‘e(cmd)’” != ”cmd” {

error 301
}
gettoken subcmd rest : 0, parse(” ,”)
if ”‘subcmd’”==”first_special_subcmd” {

First_special_subcmd ‘rest’
}
else if ”‘subcmd’”==”second_special_subcmd” {

Second_special_subcmd ‘rest’
}
...
else {

estat_default ‘0’
}
return add

end
program First_special_subcmd, rclass

syntax . . .
. . .

end
program Second_special_subcmd, rclass

syntax . . .
. . .

end
end cmd estat.ado

The ideas underlying the above outline are simple:

1. You check that e(cmd) matches cmd.

2. You isolate the subcmd that the user typed and then see if it is one of the special cases that you wish

to handle.

3. If subcmd is a special case, you call the code you wrote to handle it.

4. If subcmd is not a special case, you let Stata’s estat default handle it.

When you check for the special cases, those special cases can be new subcmds that you wish to add, or

they can be standard subcmds whose default behavior you wish to override.

Example 1
Suppose that we have written the estimation command myreg and want the estat subcommands fit

and sens to work after it, in addition to the standard subcommands. Moreover, we want to be able to

abbreviate sens as se or sen. The following code fragment illustrates the structure of our myreg estat
handler program:



estat programming — Controlling estat after community-contributed commands 3

begin myreg estat.ado
program myreg_estat, rclass

version 19.5 // (or version 19 if you do not have StataNow)
gettoken subcmd rest : 0 , parse(”, ”)
local lsubcmd= length(”‘subcmd’”)
if ”‘subcmd’” == ”fit” {

Fit ‘rest’
}
else if ”‘subcmd’” == substr(”sens”,1,max(2,‘lsubcmd’)) {

Sens ‘rest’
}
else {

estat_default ‘0’
}
return add

end
program Fit, rclass

syntax ...
...

end
program Sens, rclass

syntax ...
...

end
end myreg estat.ado

Say that we issue the command

estat sen, myoption(”Circus peanuts”)

The only way that the above differs from the standard outline is the complication we added to

handle the abbreviation of subcmd sens. Rather than asking if ”‘subcmd’”==”sens”, we asked if

”‘subcmd’”==substr(”sens”,1,max(2,‘lsubcmd’)), where ‘lsubcmd’ was previously filled in

with length(”‘subcmd’”).

Overriding standard behavior of a subcommand
Occasionally, you may want to override the behavior of a subcommand normally handled by

estat default. This is accomplished by providing a local handler. Consider, for example, summarize
after pca. The standard way of invoking estat summarize is not appropriate here—estat summarize
extracts the list of variables to be summarized from e(b). This does not work after pca. Here the varlist
has to be extracted from the column names of the correlation or covariance matrix e(C). This varlist
is transferred to estat summarize (or more directly to estat summ) as the argument of the standard

estat summ program.

program Summarize
syntax [, *]
tempname C
matrix ‘C’ = e(C)
estat_summ ‘:colnames ‘C’’, ‘options’

end

You add the local handler by inserting an additional switch in cmd estat to ensure that the

summarize subcommand is not handled by the default handler estat default. As a detail, we have
to make sure that the minimal abbreviation is summarize.



estat programming — Controlling estat after community-contributed commands 4

begin pca estat.ado
program pca_estat, rclass

version 19.5 // (or version 19 if you do not have StataNow)
gettoken subcmd rest : 0 , parse(”, ”)
local lsubcmd= length(”‘subcmd’”)
if ‘”‘subcmd’”’ == substr(”summarize”, 1, max(2, ‘lsubcmd’)) {

Summarize ‘rest’
}
else {

estat_default ‘0’
}
return add

end
program Summarize

syntax ...
...

end
end pca estat.ado

Also see
[R] estat — Postestimation statistics

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/restat.pdf#restat
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

