
display — Display strings and values of scalar expressions

Description Syntax Remarks and examples Also see

Description
display displays strings and values of scalar expressions. display produces output from the pro-

grams that you write.

Interactively, display can be used as a substitute for a hand calculator; see [R] display. You can type
things such as display 2+2.

Syntax
display [display directive [display directive [. . .]]]

where display directive is

”double-quoted string”

‘”compound double-quoted string”’

[% fmt] [=]exp

as {text | txt | result | error | input}

in smcl

asis

skip(#)

column(#)

newline[(#)]

continue

dup(#)

request(macname)

char(#)

,

„

1

https://www.stata.com/manuals/rdisplay.pdf#rdisplay
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions

display — Display strings and values of scalar expressions 2

Remarks and examples
Remarks are presented under the following headings:

Introduction
Styles
display used with quietly and noisily
Columns
display and SMCL
Displaying variable names
Obtaining input from the terminal

Introduction
Interactively, display can be used as a substitute for a hand calculator; see [R] display. You can type

things such as display 2+2.

display’s display directives are used in do-files and programs to produce formatted output. The

directives are

”double-quoted string” displays the string without the quotes

‘”compound double-quoted string”’ displays the string without the outer quotes;
allows embedded quotes

[% fmt] [=]exp allows results to be formatted;
see [U] 12.5 Formats: Controlling how data are displayed

as style sets the style (“color”) for the directives that follow;
there may be more than one as style per display

in smcl switches from asis mode to smcl mode
asis switches from smcl mode to asis mode
skip(#) skips # columns

column(#) skips to the #th column

newline goes to a new line

newline(#) skips # lines

continue suppresses automatic newline at end of display command
dup(#) repeats the next directive # times

request(macname) accepts input from the console and places
it into the macro macname

char(#) displays the character for ASCII and extended ASCII code #,
where # > 127 is treated as a Latin1-encoded character
and will be converted to the corresponding UTF-8 character

, displays one blank between two directives

„ places no blanks between two directives

https://www.stata.com/manuals/rdisplay.pdf#rdisplay
https://www.stata.com/manuals/u12.pdf#u12.5FormatsControllinghowdataaredisplayed

display — Display strings and values of scalar expressions 3

Example 1
Here is a nonsense program called silly that illustrates the directives:

. program list silly
silly:
1. set obs 10
2. gen myvar=runiform()
3. di as text _dup(59) ”-”
4. di ”hello, world”
5. di %~59s ”This is centered”
6. di ”myvar[1] = ” as result myvar[1]
7. di _col(10) ”myvar[1] = ” myvar[1] _skip(10) ”myvar[2] = ” myvar[2]
8. di ”myvar[1]/myvar[2] = ” %5.4f myvar[1]/myvar[2]
9. di ”This” _newline _col(5) ”That” _newline _col(10) ”What”

10. di ‘”She said, ”Hello””’
11. di substr(”abcI can do string expressionsXYZ”,4,27)
12. di _char(65) _char(83) _char(67) _char(73) _char(73)
13. di _dup(59) ”-” ” (good-bye)”

Here is the result of running it:

. silly
Number of observations (_N) was 0, now 10

hello, world

This is centered
myvar[1] = .13698408

myvar[1] = .13698408 myvar[2] = .64322066
myvar[1]/myvar[2] = 0.2130
This

That
What

She said, ”Hello”
I can do string expressions
ASCII
--- (good-bye)

Styles
Stata has four styles: text (synonym txt), result, error, and input. Typically, these styles are

rendered in terms of color,

text = black

result = black and bold

error = red

input = black and bold

or, at least, that is the default in the Results window when the window has a white background. On a

black background, the defaults are

text = green

result = yellow

error = red

input = white

display — Display strings and values of scalar expressions 4

In any case, users can reset the styles by selectingEdit > Preferences >General Preferences inWindows

or Unix(GUI) or by selecting Preferences > General Preferences in Mac.

The display directives as text, as result, as error, and as input allow you, the programmer,

to specify in which rendition subsequent items in the display statement are to be displayed. So if a

piece of your program reads

quietly summarize mpg
display as text ”mean of mpg = ” as result r(mean)

what might be displayed is

mean of mpg = 21.432432

where, above, our use of boldface for the 21.432432 is to emphasize that it would be displayed differently

from the “mean of mpg =” part. In the Results window, if we had a black background, the “mean of mpg

=” part would be in green and the 21.432432 would be in yellow.

You can switch back and forth among styles within a display statement and between display state-
ments. Here is how we recommend using the styles:

as result should be used to display things that depend on the data being used. For statistical output,
think of what would happen if the names of the dataset remained the same but all the data changed.

Clearly, calculated results would change. That is what should be displayed as result.

as text should be used to display the text around the results. Again think of the experiment where you
change the data but not the names. Anything that would not change should be displayed as text.
This will include not just the names but also table lines and borders, variable labels, etc.

as error should be reserved for displaying errormessages. as error is special in that it not only displays
the message as an error (probably meaning that the message is displayed in red) but also forces the

message to display, even if output is being suppressed. (There are two commands for suppressing

output: quietly and capture. quietly will not suppress as error messages but capture will,
the idea being that capture, because it captures the return code, is anticipating errors and will take
the appropriate action.)

as input should never be used unless you are creating a special effect. as input (white on a black

background) is reserved for what the user types, and the output your program is producing is by

definition not being typed by the user. Stata uses as input when it displays what the user types.

display — Display strings and values of scalar expressions 5

display used with quietly and noisily
display’s output will be suppressed by quietly at the appropriate times. Consider the following:

. program list example1
example1:
1. di ”hello there”

. example1
hello there
. quietly example1
. _

The output was suppressed because the program was run quietly. Messages displayed as error,
however, are considered error messages and are always displayed:

. program list example2
example2:
1. di as error ”hello there”

. example2
hello there
. quietly example2
hello there

Even though the program was run quietly, the message as error was displayed. Error messages

should always be displayed as error so that they will always be displayed at the terminal.

Programs often have parts of their code buried in capture or quietly blocks. displays inside such
blocks produce no output:

. program list example3
example3:
1. quietly {
2. display ”hello there”
3. }

. example3

. _

If the display had included as error, the text would have been displayed, but only error output should
be displayed that way. For regular output, the solution is to precede the display with noisily:

. program list example4
example4:
1. quietly {
2. noisily display ”hello there”
3. }

. example4
hello there

This method also allows Stata to correctly treat a quietly specified by the caller:

. quietly example4

. _

Despite its name, noisily does not really guarantee that the output will be shown—it restores the output

only if output would have been allowed at the instant the program was called.

For more information on noisily and quietly, see [P] quietly.

https://www.stata.com/manuals/pquietly.pdf#pquietly

display — Display strings and values of scalar expressions 6

Columns
display can move only forward and downward. The directives that take a numeric argument allow

only nonnegative integer arguments. It is not possible to back up to make an insertion in the output.

. program list cont
cont:
1. di ”Stuff” _column(9) ”More Stuff”
2. di ”Stuff” _continue
3. di _column(9) ”More Stuff”

. cont
Stuff More Stuff
Stuff More Stuff

display and SMCL
Stata Markup and Control Language (SMCL) is Stata’s output formatter, and all Stata output passes

through SMCL. See [P] smcl for a description. All the features of SMCL are available to display and so
motivate you to turn to the SMCL section of this manual.

In our opening silly example, we included the line

di as text _dup(59) ”-”

That line would have better read

di as text ”{hline 59}”

The first display produces this:

and the second produces this:

It was not display that produced that solid line—display just displayed the characters {hline 59}.
Output of Stata, however, passes through SMCL, and SMCL interprets what it hears. When SMCL heard

{hline 59}, SMCL drew a horizontal line 59 characters wide.

SMCL has many other capabilities, including creating clickable links in your output that, when you

click on them, can even execute other Stata commands.

If you carefully review the SMCL documentation, you will discover many overlap in the capabilities

of SMCL and display that will lead you to wonder whether you should use display’s capabilities or
SMCL’s. For instance, in the section above, we demonstrated the use of display’s column() feature
to skip forward to a column. If you read the SMCL documentation, you will discover that SMCL has a

similar feature, {col}. You can type

display ”Stuff” _column(9) ”More Stuff”

or you can type

display ”Stuff{col 9}More Stuff”

So, which should you type? The answer is that it makes no difference and that when you use display’s
column() directive, display just outputs the corresponding SMCL {col} directive for you. This rule
generalizes beyond column(). For instance,

display as text ”hello”

https://www.stata.com/manuals/psmcl.pdf#psmcl

display — Display strings and values of scalar expressions 7

and

display ”{text}hello”

are equivalent. There is, however, one important place where display and SMCL are different:

display as error ”error message”

is not the same as

display ”{error}error message”

Use display as error. The SMCL {error} directive sets the rendition to that of errors, but it does not
tell Stata that the message is to be displayed, even if output is otherwise being suppressed. display as
error both sets the rendition and tells Stata to override output suppression if that is relevant.

Technical note
All Stata output passes through SMCL, and one side effect of that is that open and close brace charac-

ters, { and }, are treated oddly by display. Try the following:

display as text ”{1, 2, 3}”
{1, 2, 3}

The result is just as you expect. Now try

display as text ”{result}”

The result will be to display nothing because {result} is a SMCL directive. The first displayed some-

thing, even though it contained braces, because {1, 2, 3} is not a SMCL directive.

You want to be careful when displaying something that might itself contain braces. You can do that

by using display’s asis directive. Once you specify asis, whatever follows in the display will be
displayed exactly as it is, without SMCL interpretation:

display as text _asis ”{result}”
{result}

You can switch back to allowing SMCL interpretation within the line by using the in smcl directive:

display as text _asis ”{result}” in smcl ”is a {bf:smcl} directive”
{result} is a smcl directive

Every display command in your program starts off in SMCLmode.

Displaying variable names
Let’s assume that a program we are writing is to produce a table that looks like this:

Variable Obs Mean Std. dev. Min Max

mpg 74 21.2973 5.785503 12 41
weight 74 3019.459 777.1936 1760 4840

displacement 74 197.2973 91.83722 79 425

Putting out the header in our program is easy enough:

di as text ” Variable {c |} Obs” /*
*/ _col(37) ”Mean Std. dev. Min Max”

di as text ”{hline 13}{c +}{hline 53}”

display — Display strings and values of scalar expressions 8

We use the SMCL directive {hline} to draw the horizontal line, and we use the SMCL characters {c |}
and {c +} to output the vertical bar and the “plus” sign where the lines cross.

Now let’s turn to putting out the rest of the table. Variable names can be of unequal length and can

even be long. If we are not careful, we might end up putting out something that looks like this:

Variable Obs Mean Std. dev. Min Max

miles_per_gallon 74 21.2973 5.785503 12 41
weight 74 3019.459 777.1936 1760 4840
displacement 74 197.2973 91.83722 79 425

If it were not for the too-long variable name, we could avoid the problem by displaying our lines with

something like this:

display as text %12s ”‘vname’” ” {c |}” /*
/ as result /
/ %8.0g ‘n’ ” ” /
/ %9.0g ‘mean’ ” ” %9.0g ‘sd’ ” ” /
*/ %9.0g ‘min’ ” ” %9.0g ‘max’

What we are imagining here is that we write a subroutine to display a line of output and that the display
line above appears in that subroutine:

program output_line
args vname n mean sd min max
display as text %12s ”‘vname’” ” {c |}” /*

/ as result /
/ %8.0g ‘n’ ” ” /
/ %9.0g ‘mean’ ” ” %9.0g ‘sd’ ” ” /
*/ %9.0g ‘min’ ” ” %9.0g ‘max’

end

In our main routine, we would calculate results and then just call output line with the variable name
and results to be displayed. This subroutine would be sufficient to produce the following output:

Variable Obs Mean Std. dev. Min Max

miles_per_gallon 74 21.2973 5.785503 12 41
weight 74 3019.459 777.1936 1760 4840

displacement 74 197.2973 91.83722 79 425

The short variable name weight would be spaced over because we specified the %12s format. The right
way to handle the miles per gallon variable is to display its abbreviation with Stata’s abbrev()
function:

program output_line
args vname n mean sd min max
display as text %12s abbrev(”‘vname’”,12) ” {c |}” /*

/ as result /
/ %8.0g ‘n’ ” ” /
/ %9.0g ‘mean’ ” ” %9.0g ‘sd’ ” ” /
*/ %9.0g ‘min’ ” ” %9.0g ‘max’

end

With this improved subroutine, we would get the following output:

Variable Obs Mean Std. dev. Min Max

miles_per_~n 74 21.2973 5.785503 12 41
weight 74 3019.459 777.1936 1760 4840

displacement 74 197.2973 91.83722 79 425

display — Display strings and values of scalar expressions 9

The point of this is to persuade you to learn about and use Stata’s abbrev() function.

abbrev(”‘vname’”,12) returns ‘vname’ abbreviated to 12 characters.

If we now wanted to modify our program to produce the following output,

Variable Obs Mean Std. dev. Min Max

miles_per_~n 74 21.2973 5.785503 12 41
weight 74 3019.459 777.1936 1760 4840

displacement 74 197.2973 91.83722 79 425

all we would need to do is add a display at the end of the main routine that reads

di as text ”{hline 13}{c BT}{hline 53}”

Note the use of {c BT}. The characters that we use to draw lines in and around tables are summarized in

[P] smcl.

Technical note
Much of the output of Stata’s official commands and of community-contributed commands is for-

matted to look good in a Results window that is 80 display columns wide. If you write a Stata program

that you want to share with others, we recommend that you design it such that its output will fit in an

80-column-wide Results window. The abbrev() function described above is useful for abbreviating

variable names such that output tables fit within 80 columns.

Your program can determine the current width of the Results window by checking the value of

c(linesize). Some Stata commands, such as official estimation commands that output a coefficient
table, use the value of c(linesize) to determine by howmuch, if at all, they need to abbreviate variable

names.

We can modify the output line program above to respect c(linesize). For every column the
Results window is wider than 80, we can allow our variable name abbreviation to be one character longer.

If the Results window is 100 or more columns wide, we may not need to abbreviate variable names at all,

because the maximum length of a variable name is 32 characters, and we were already able to display

12 characters of the variable name at a line size of 80. Note that if your variable names contain Unicode

characters, some of those characters may occupy two display columns. See [U] 12.4.2.2 Displaying

Unicode characters.

program output_line
args vname n mean sd min max
if (c(linesize) >= 100)

local abname = ”‘vname’”

else if (c(linesize) > 80)
local abname = abbrev(”‘vname’”, 12+(c(linesize)-80))

else
local abname = abbrev(”‘vname’”, 12)

local abname = abbrev(”‘vname’”,12)
display as text %12s ”‘abname’” ” c |” /*

/ as result /
/ %8.0g ‘n’ ” ” /
/ %9.0g ‘mean’ ” ” %9.0g ‘sd’ ” ” /
*/ %9.0g ‘min’ ” ” %9.0g ‘max’

end

https://www.stata.com/manuals/psmcl.pdf#psmcl
https://www.stata.com/manuals/u12.pdf#u12.4.2.2DisplayingUnicodecharacters
https://www.stata.com/manuals/u12.pdf#u12.4.2.2DisplayingUnicodecharacters

display — Display strings and values of scalar expressions 10

Technical note
Let’s now consider outputting the table in the form

Variable Obs Mean Std. dev. Min Max

miles_per_~n 74 21.2973 5.785503 12 41
weight 74 3019.459 777.1936 1760 4840

displacement 74 197.2973 91.83722 79 425

where the boldfaced entries are clickable and, if you click on them, the result is to execute summarize
followed by the variable name. We assume that you have already read [P] smcl and so know that the

relevant SMCL directive to create the link is {stata}, but continue reading even if you have not read
[P] smcl.

The obvious fix to our subroutine would be simply to add the {stata} directive, although to do that
we will have to store abbrev(”‘vname’”,12) in a macro so that we can refer to it:

program output_line
args vname n mean sd min max
local abname = abbrev(”‘vname’,12)
display as text %12s ”{stata summarize ‘vname’:‘abname’}” /*

/ ” {c |}” /
/ as result /
/ %8.0g ‘n’ ” ” /
/ %9.0g ‘mean’ ” ” %9.0g ‘sd’ ” ” /
*/ %9.0g ‘min’ ” ” %9.0g ‘max’

end

The SMCL directive {stata summarize ‘vname’:‘abname’} says to display ‘abname’ as clickable,
and, if the user clicks on it, to execute summarize ‘vname’. We used the abbreviated name to display

and the unabbreviated name in the command.

The one problemwith this fix is that our table will not align correctly because display does not know
that “{stata summarize ‘vname’:‘abname’}” displays only ‘abname’. To display, the string looks
long and is not going to fit into a %12s field. The solution to that problem is

program output_line
args vname n mean sd min max
local abname = abbrev(”‘vname’,12)
display as text ”{ralign 12:{stata summarize ‘vname’:‘abname’}}” /*

/ ” {c |}” /
/ as result /
/ %8.0g ‘n’ ” ” /
/ %9.0g ‘mean’ ” ” %9.0g ‘sd’ ” ” /
*/ %9.0g ‘min’ ” ” %9.0g ‘max’

end

The SMCL {ralign #:text} macro right-aligns text in a field 12 wide and so is equivalent to %12s. The
text that we are asking be aligned is “{stata summarize ‘vname’:‘abname’}”, but SMCL understands

that the only displayable part of the string is ‘abname’ and so will align it correctly.

If we wanted to duplicate the effect of a %-12s format by using SMCL, we would use {lalign 12:text}.

https://www.stata.com/manuals/psmcl.pdf#psmcl
https://www.stata.com/manuals/psmcl.pdf#psmcl

display — Display strings and values of scalar expressions 11

Obtaining input from the terminal
display’s request(macname) option accepts input from the console and places it into the macro

macname. For example,

. display ”What is Y? ” _request(yval)
What is Y? i don’t know
. display ”$yval”
i don’t know

If yval had to be a number, the code fragment to obtain it might be

global yval ”junk”
capture confirm number $yval
while _rc!=0 {

display ”What is Y? ” _request(yval)
capture confirm number $yval

}

You will typically want to store such input into a local macro. Local macros have names that really

begin with a ‘ ’:

local yval ”junk”
capture confirm number ‘yval’
while _rc!=0 {

display ”What is Y? ” _request(_yval)
capture confirm number ‘yval’

}

Also see
[P] capture — Capture return code

[P] quietly — Quietly and noisily perform Stata command

[P] return — Return stored results

[P] smcl — Stata Markup and Control Language

[D] list — List values of variables

[D] outfile — Export dataset in text format

[U] 12.5 Formats: Controlling how data are displayed

[U] 18 Programming Stata

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/pcapture.pdf#pcapture
https://www.stata.com/manuals/pquietly.pdf#pquietly
https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/psmcl.pdf#psmcl
https://www.stata.com/manuals/dlist.pdf#dlist
https://www.stata.com/manuals/doutfile.pdf#doutfile
https://www.stata.com/manuals/u12.pdf#u12.5FormatsControllinghowdataaredisplayed
https://www.stata.com/manuals/u18.pdf#u18ProgrammingStata
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

