
Title stata.com

Dialog programming — Dialog programming

Description Remarks and examples Also see

Description
Dialog-box programs—also called dialog resource files—allow you to define the appearance of a

dialog box, specify how its controls work when the user fills it in (such as hiding or disabling specific
controls), and specify the ultimate action to be taken (such as running a Stata command) when the
user clicks on OK or Submit.

Remarks and examples stata.com

Remarks are presented under the following headings:

1. Introduction
2. Concepts

2.1 Organization of the .dlg file
2.2 Positions, sizes, and the DEFINE command
2.3 Default values
2.4 Memory (recollection)
2.5 I-actions and member functions
2.6 U-actions and communication options
2.7 The distinction between i-actions and u-actions
2.8 Error and consistency checking

3. Commands
3.1 VERSION
3.2 INCLUDE
3.3 DEFINE
3.4 POSITION
3.5 LIST
3.6 DIALOG

3.6.1 CHECKBOX on/off input control
3.6.2 RADIO on/off input control
3.6.3 SPINNER numeric input control
3.6.4 EDIT string input control
3.6.5 VARLIST and VARNAME string input controls
3.6.6 FILE string input control
3.6.7 LISTBOX list input control
3.6.8 COMBOBOX list input control
3.6.9 BUTTON special input control
3.6.10 TEXT static control
3.6.11 TEXTBOX static control
3.6.12 GROUPBOX static control
3.6.13 FRAME static control
3.6.14 COLOR input control
3.6.15 EXP expression input control
3.6.16 HLINK hyperlink input control
3.6.17 TREEVIEW tree input control

3.7 OK, SUBMIT, CANCEL, and COPY u-action buttons
3.8 HELP and RESET helper buttons
3.9 Special dialog directives

4. SCRIPT
5. PROGRAM

5.1 Concepts
5.1.1 Vnames

1

http://stata.com
http://stata.com

2 Dialog programming — Dialog programming

5.1.2 Enames
5.1.3 rstrings: cmdstring and optstring
5.1.4 Adding to an rstring

5.2 Flow-control commands
5.2.1 if
5.2.2 while
5.2.3 call
5.2.4 exit
5.2.5 close

5.3 Error-checking and presentation commands
5.3.1 require
5.3.2 stopbox

5.4 Command-construction commands
5.4.1 by
5.4.2 bysort
5.4.3 put
5.4.4 varlist
5.4.5 ifexp
5.4.6 inrange
5.4.7 weight
5.4.8 beginoptions and endoptions

5.4.8.1 option
5.4.8.2 optionarg

5.5 Command-execution commands
5.5.1 stata
5.5.2 clear

5.6 Special scripts and programs
6. Properties
7. Child dialogs

7.1 Referencing the parent
8. Example

Appendix A: Jargon
Appendix B: Class definition of dialog boxes
Appendix C: Interface guidelines for dialog boxes

Frequently asked questions

1. Introduction

At a programming level, the purpose of a dialog box is to produce a Stata command to be executed.
Along the way, it hopefully provides the user with an intuitive and consistent experience—that is
your job as a dialog-box programmer—but the ultimate output will be

list mpg weight or
regress mpg weight if foreign or
append using myfile

or whatever other Stata command is appropriate. Dialog boxes are limited to executing one Stata
command, but that does not limit what you can do with them because that Stata command can be
an ado-file. (Actually, there is another way around the one-command limit, which we will discuss in
5.1.3 rstrings: cmdstring and optstring.)

This ultimate result is called the dialog box’s u-action.

The u-action of the dialog box is determined by the code you write, called dialog code, which
you store in a .dlg file. The name of the .dlg file is important because it determines the name of
the dialog box. When a user types

. db regress

Dialog programming — Dialog programming 3

regress.dlg is executed. Stata finds the file the same way it finds ado-files—by looking along
the ado-path; see [P] sysdir. regress.dlg runs regress commands because of the dialog code that
appears inside the regress.dlg file. regress.dlg could just as well execute probit commands
or even merge commands if the code were written differently.

.dlg files describe

1. how the dialogs look,

2. how the input controls of the dialogs interact with each other, and

3. how the u-action is constructed from the user’s input.

Items 1 and 2 determine how intuitive and consistent the user finds the dialog. Item 3 determines
what the dialog box does. Item 2 determines whether some fields are disabled or hidden so that they
cannot be mistakenly filled in until the user clicks on something, checks something, or fills in a
certain result.

2. Concepts

A dialog box is composed of many elements called controls, including static text, edit fields, and
checkboxes. Input controls are those that the user fills in, such as checkboxes and text-entry fields.
Static controls are fixed text and lines that appear on the dialog box but that the user cannot change.
See Appendix A below for definitions of the various types of controls as well as other related jargon.

In the jargon we use, a dialog box is composed of dialogs, and dialogs are composed of controls.
When a dialog box contains multiple dialogs, only one dialog is shown at a time. Here access to the
dialogs is made possible through small tabs. Clicking on the tab associated with a dialog makes that
dialog active.

The dialog box may contain the helper buttons Help (shown as a small button with a question
mark on it) and Reset (shown as a small button with an R on it). These buttons appear in the dialog
box—not the individual dialogs—so in a multiple-dialog dialog box, they appear regardless of the
dialog (tab) selected.

The Help helper button displays a help file associated with the dialog box.

The Reset helper button resets the dialog box to its initial state. Each time a user invokes a
particular dialog box, it will remember the values last set for its controls. The reset button allows the
user to restore the default values for all controls in the dialog box.

The dialog box may also include the u-action buttons OK, Submit, Copy, and Cancel. Like
the helper buttons, u-action buttons appear in the dialog box—not the individual dialogs—so in a
multiple-dialog dialog box, they appear regardless of the dialog (tab) selected.

The OK u-action button constructs the u-action, sends it to Stata for execution, and closes the
dialog box.

The Submit u-action button constructs the u-action, sends it to Stata for execution, and leaves the
dialog box open.

The Copy u-action button constructs the u-action, sends it to the clipboard, and leaves the dialog
box open.

The Cancel u-action button closes the dialog box without constructing the u-action.

A dialog box does not have to include all of these u-action buttons, but it needs at least one.

https://www.stata.com/manuals/psysdir.pdf#psysdir

4 Dialog programming — Dialog programming

Thus the nesting is

Dialog box, which contains
Dialog 1, which contains

input controls and static controls
Dialog 2, which is optional and which, if defined, contains

input controls and static controls
[. . .]
Helper buttons, which are optional and which, if defined, contain

[Help button]
[Reset button]

U-action buttons, which contain
[OK button]
[Submit button]
[Copy button]
[Cancel button]

Said differently,

1. a dialog box must have at least one dialog, must have one set of u-action buttons, and may
have helper buttons;

2. a dialog must have at least one control and may have many controls; and

3. the u-action buttons may include any of OK, Submit, Copy, and Cancel and must include
at least one of them.

Here is a simple .dlg file that will execute the kappa command, although it does not allow if
exp and in range:

BEGIN mykappa.dlg

// ----------------- set version number and define size of box ---------
VERSION 18.0
POSITION . . 290 200

// --- define a dialog ---------
DIALOG main, label("kappa - Interrater agreement")
BEGIN

TEXT tx_var 10 10 270 ., label("frequency variables:")
VARLIST vl_var @ +20 @ ., label("frequencies")

END

// -------------------- define the u-action and helper buttons ---------
OK ok1, label("OK")
CANCEL can1, label("Cancel")
SUBMIT sub1, label("Submit")
COPY copy1,
HELP hlp1, view("help kappa")
RESET res1

// --------------------------- define how to assemble u-action ---------
PROGRAM command
BEGIN

put "kappa "
varlist main.vl_var

END

END mykappa.dlg

https://www.stata.com/manuals/rkappa.pdf#rkappa

Dialog programming — Dialog programming 5

2.1 Organization of the .dlg file

A .dlg file consists of seven parts, some of which are optional:

BEGIN dialogboxname.dlg
VERSION 18.0 Part 1: version number
POSITION . . . Part 2: set size of dialog box
DEFINE . . . Part 3, optional: common definitions
LIST . . .
DIALOG . . . Part 4: dialog definitions

BEGIN
FILE which contain input controls
BUTTON . . .
CHECKBOX . . .
COMBOBOX . . .
EDIT . . .
LISTBOX . . .
RADIO . . .
SPINNER . . .
VARLIST . . .
VARNAME . . .

FRAME and static controls
GROUPBOX . . .
TEXT . . .

END
repeat DIALOG. . . BEGIN. . . END as necessary

SCRIPT . . . Part 5, optional: i-action definitions
BEGIN . . . usually done as scripts

. . .
END

PROGRAM but sometimes as programs
BEGIN

. . .
END

OK . . . Part 6: u-action and helper button definitions
CANCEL . . .
SUBMIT . . .
HELP . . .
RESET . . .

PROGRAM command Part 7: u-action definition
BEGIN

. . .
END

END dialogboxname.dlg

The VERSION statement must appear at the top; the other parts may appear in any order.

I-actions, mentioned in Part 5, are intermediate actions, such as hiding or showing, disabling or
enabling a control, or opening the Viewer to display something, etc., while leaving the dialog up and
waiting for the user to fill in more or press a u-action button.

2.2 Positions, sizes, and the DEFINE command

Part of specifying how a dialog appears is defining where things go and how big they are.

Positions are indicated by a pair of numbers, x and y. They are measured in pixels and are
interpreted as being measured from the top-left corner: x is how far to the right, and y is how far
down.

6 Dialog programming — Dialog programming

Sizes are similarly indicated by a pair of numbers, xsize and ysize. They, too, are measured in
pixels and indicate the size starting at the top-left corner of the object.

Any command that needs a position or a size always takes all four numbers—position and size—
and you must specify all four. In addition to each element being allowed to be a number, some extra
codes are allowed. A position or size element is defined as

any unsigned integer number, such as 0, 1, 10, 200,

. (period) meaning the context-specific default value for this position or size element. . is
allowed only with heights of controls (heights are measured from the top down) and for
the initial position of a dialog box.

@ means the previous value for this position or size element. If @ is used for an x or a y,
then the x or y from the preceding command will be used. If @ is used for an xsize or a
ysize, then the previous xsize or ysize will be used.

+# means a positive offset from the last value (meaning to the right or down or bigger). If
+10 is used for x, the result will be 10 pixels to the right of the previous position. If +10
is used for a ysize, it means 10 pixels taller.

-# means a negative offset from the last value (meaning to the left or up or smaller). If -10
is used for y, the result will be 10 pixels above the previous position. If -10 is used for
a xsize, it means 10 pixels narrower.

name means the value last recorded for name by the DEFINE command.

The DEFINE command has the syntax

DEFINE name { . | # | +# | -# | @x | @y | @xsize | @ysize }
and may appear anywhere in your dialog code, even inside the BEGIN/END of DIALOG. Anywhere
you need to specify a position or size element, you can use a name defined by DEFINE.

The first four possibilities for defining name have the obvious meaning: . means the default, #
means the number specified, +# means a positive offset, and -# means a negative offset. The other
four possibilities—@x, @y, @xsize, and @ysize—refer to the previous x, y, xsize, and ysize values,
with “previous” meaning previous to the time the DEFINE command was issued.

2.3 Default values

You can also load input controls with initial, or default, values. For instance, perhaps, as a default,
you want one checkbox checked and another unchecked, and you want an edit field filled in with
“Default title”.

The syntax of the CHECKBOX command, which creates checkboxes, is

CHECKBOX . . .
[
, . . . default(defnumval) . . .

]
In checkboxes, the default() option specifies how the box is to be filled in initially, and 1

corresponds to checked and 0 to unchecked.

The syntax of EDIT, which creates edit fields, is

EDIT . . .
[
, . . . default(defstrval) . . .

]
In edit fields, default() specifies what the box will contain initially.

Dialog programming — Dialog programming 7

Wherever defnumval appears in a syntax diagram, you may type

defnumval Definition

meaning the number specified
literal # same as #
c(name) value of c(name); see [P] creturn
r(name) value of r(name); see [P] return
e(name) value of e(name); see [P] ereturn
s(name) value of s(name); see [P] return
global name value of global macro $name

Wherever defstrval appears in a syntax diagram, you may type

defstrval Definition

string meaning the string specified
literal string same as string
c(name) contents of c(name); see [P] creturn
r(name) contents of r(name); see [P] return
e(name) contents of e(name); see [P] ereturn
s(name) contents of s(name); see [P] return
char varname[charname] value of characteristic; see [P] char
global name contents of global macro $name

Note: If string is enclosed in double quotes (simple or compound), the first set of quotes
is stripped.

List and combo boxes present the user with a list of items from which to choose. In dialog-box
jargon, rather than having initial or default values, the boxes are said to be populated. The syntax for
creating a list-box input control is

LISTBOX . . .
[
, . . . contents(conspec) . . .

]
Wherever a conspec appears in a syntax diagram, you may type

list listname
populates the box with the specified list, which you create separately by using the LIST command.
LIST has the following syntax:

LIST
BEGIN

item to appear
item to appear
...

END

matrix
populates the box with the names of all matrices currently defined in Stata.

vector
populates the box with the names of all 1× k and k × 1 matrices currently defined in Stata.

row
populates the box with the names of all 1× k matrices currently defined in Stata.

https://www.stata.com/manuals/pcreturn.pdf#pcreturn
https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/pereturn.pdf#pereturn
https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/pcreturn.pdf#pcreturn
https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/pereturn.pdf#pereturn
https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/pchar.pdf#pchar

8 Dialog programming — Dialog programming

column
populates the box with the names of all k× 1 matrices currently defined in Stata.

square
populates the box with the names of all k× k matrices currently defined in Stata.

scalar
populates the box with the names of all scalars currently defined in Stata.

constraint
populates the box with the names of all constraints currently defined in Stata.

estimates
populates the box with the names of all saved estimates currently defined in Stata.

char varname[charname]
populates the box with the elements of the characteristic varname[charname], parsed on spaces.

e(name)
populates the box with the elements of e(name), parsed on spaces.

global
populates the box with the names of all global macros currently defined in Stata.

valuelabels
populates the box with the names of all values labels currently defined in Stata.

Predefined lists for use with Stata graphics:

Predefined lists Definition

symbols list of marker symbols
symbolsizes list of marker symbol sizes
colors list of colors
intensity list of fill intensities
clockpos list of clock positions
linepatterns list of line patterns
linewidths list of line widths
connecttypes list of line connecting types
textsizes list of text sizes
justification list of horizontal text justifications
alignment list of vertical text alignments
margin list of margins
tickpos list of axis-tick positions
angles list of angles; usually used for axis labels
compass list of compass directions
yesno list containing Default, Yes, and No; usually accompanied

by a user-defined values list

Dialog programming — Dialog programming 9

2.4 Memory (recollection)

All input control commands have a default() or contents() option that specifies how the
control is to be filled in, for example,

CHECKBOX . . .
[
, . . . default(defnumval) . . .

]
In this command, if defnumval evaluates to 0, the checkbox is initially unchecked; otherwise, it

is checked. If default() is not specified, the box is initially unchecked.

Dialogs remember how they were last filled in during a session, so the next time the user invokes
the dialog box that contains this CHECKBOX command, the default() option will be ignored and the
checkbox will be as the user last left it. That is, the setting will be remembered unless you specify
the input control’s nomemory option.

CHECKBOX . . .
[
, . . . default(defnumval) nomemory . . .

]
nomemory specifies that the dialog-box manager not remember between invocations how the control

is filled in; it will always reset it to the default, whether that default is explicitly specified or implied.

Whether or not you specify nomemory, explicit or implicit defaults are also restored when the user
presses the Reset helper button.

The contents of dialog boxes are only remembered during a session, not between them. Within a
session, the discard command causes Stata to forget the contents of all dialog boxes.

The issues of initialization and memory are in fact more complicated than they first appear.
Consider a list box. A list box might be populated with the currently saved estimates. If the dialog
box containing this list box is closed and reopened, the available estimates may have changed. So
list boxes are always repopulated according to the instructions given. Even so, list boxes remember
the choice that was made. If that choice is still among the possibilities, that choice will be the one
selected unless nomemory is specified; otherwise, the choice goes back to being the default—the first
choice in the list of alternatives.

The same issues arise with combo boxes, and that is why some controls have the default()
option and others have contents(). default() is used once, and after that, memory is substituted
(unless nomemory is specified). contents() is always used—nomemory or not—but the choice
made is remembered (unless nomemory is specified).

2.5 I-actions and member functions

I-actions—intermediate actions—refer to all actions taken in producing the u-action. An i-action
might disable or hide controls when another control is checked or unchecked, although there are
many other possibilities. I-actions are always optional.

I-actions are invoked by on*() options—those that begin with the letters “on”. For instance, the
syntax for the CHECKBOX command—the command for defining a checkbox control—is

CHECKBOX controlname . . .
[
, . . . onclickon(iaction) onclickoff(iaction) . . .

]
onclickon() is the i-action to be taken when the checkbox is checked, and onclickoff() is

the i-action for when the checkbox is unchecked. You do not have to fill in the onclickon() and
onclickoff() options—the checkbox will work fine taking no i-actions—but you may fill them in
if you want, say, to disable or to enable other controls when this control is checked. For instance,
you might code

CHECKBOX sw2 . . . , onclickon(d2.sw3.show) onclickoff(d2.sw3.hide) . . .

https://www.stata.com/manuals/pdiscard.pdf#pdiscard

10 Dialog programming — Dialog programming

d2.sw3 refers to the control named sw3 in the dialog d2 (for instance, the control we just defined
is named sw2). hide and show are called member functions. hide is the member function that hides
a control, and show is its inverse. Controls have other member functions as well; what member
functions are available is documented with the command that creates the specific control.

Many commands have on*() options that allow you to specify i-actions. When iaction appears
in a syntax diagram, you can specify

. (period)
Do nothing; take no action. This is the default if you do not specify the on*() option.

gaction dialogname.controlname.memberfunction [arguments]
Execute the specified memberfunction on the specified control, where memberfunction may be

{ hide | show | disable | enable | setposition | something else [arguments] }
All controls provide the memberfunctions hide, show, disable, enable, and setposition, and
some controls make other, special memberfunctions available.

hide specifies that the control disappear from view (if it has not already done so). show specifies
that it reappear (if it is not already visible).

disable specifies that the control be disabled (if it is not already). enable specifies that it be
enabled (if it is not already).

setposition specifies the new position and size of a control. setposition requires arguments
in the form of x y xsize ysize. A dot can be used with any of the four arguments to mean the
current value.

Sometimes arguments may require quotes. For instance, CHECKBOX provides a special member-
function

setlabel string

which sets the text shown next to the checkbox, so you might specify onclickon(’"gaction
main.robust.setlabel "Robust VCE""’). Anytime a string is required, you must place quotes
around it if that string contains a space. When you specify an iaction inside the parentheses of an
option, it is easier to leave the quotes off unless they are required. If quotes are required, you must
enclose the entire contents of the option in compound double quotes as in the example above.

dialogname.controlname.memberfunction [arguments]
Same as gaction; the gaction is optional.

action memberfunction [arguments]
Same as gaction currentdialog.currentcontrol.memberfunction; executes the specified member-
function on the current control.

view topic
Display topic in viewer; see [R] view.

script scriptname
Execute the specified script. A script is a set of lines, each specifying an iaction. So if you wanted
to disable three things, gaction would be insufficient. You would instead define a script containing
the three gaction lines.

program programname
Execute the specified dialog-box program. Programs can do more than scripts because they provide
if-statement flow of control (among other things), but they are more difficult to write; typically,
the extra capabilities are not needed when specifying i-actions.

https://www.stata.com/manuals/rview.pdf#rview

Dialog programming — Dialog programming 11

create STRING | DOUBLE | BOOLEAN propertyname
Creates a new instance of a dialog property. See 6. Properties for details.

create PSTRING | PDOUBLE | PBOOLEAN propertyname
Creates a new instance of a persistent dialog property. See 6. Properties for details.

create CHILD dialogname
[
AS referencename

] [
, nomodal allowsubmit allowcopy

]
Creates a new instance of a child dialog. By default, the reference name will be the name of the
dialog unless otherwise specified. See 7. Child dialogs for details.

2.6 U-actions and communication options

Remember that the ultimate goal of a dialog box is to construct a u-action—a Stata command to
be executed. What that command is depends on how the user fills in the dialog box.

You construct the command by writing a dialog-box program, also known as a PROGRAM. You
arrange that the program be invoked by specifying the uaction() option allowed with the OK,
SUBMIT, CANCEL, and COPY u-action buttons. For instance, the syntax of OK is

OK . . .
[
, . . . uaction(pgmname) target(target) . . .

]
pgmname is the name of the dialog program you write, and target() specifies how the command

constructed by pgmname is to be executed. Usually, you will simply want Stata to execute the
command, which could be coded target(stata), but because that is the default, most programmers
omit the target() option altogether.

The dialog-box program you write accesses the information the user has filled in and outputs the
Stata command to be executed. Without going into details, the program might say to construct the
command by outputting the word regress, followed by the varlist the user specified in the varlist
field of the first dialog, and followed by if exp, getting the expression from what the user filled in
an edit field of the second dialog.

Dialogs and input controls are named, and in your dialog-box program, when you want to refer
to what a user has filled in, you refer to dialogname.inputcontrolname. dialogname was determined
when you coded the DIALOG command to create the dialog

DIALOG dialogname . . .

and inputcontrolname was determined when you coded the input-control command to create the input
control, for instance,

CHECKBOX inputcontrolname . . .

The details are discussed in 5. PROGRAM, but do not get lost in the details. Think first about
coding how the dialogs look and second about how to translate what the user specifies into the
u-action.

On the various commands that specify how dialogs look, you can specify an option that will
make writing the u-action program easier: the communication option option(), which communicates
something about the control to the u-action program, is allowed with every control. For instance, on
the CHECKBOX command, you could code

CHECKBOX . . . , . . . option(robust) . . .

When you wrote your dialog-box PROGRAM, you would find it easier to associate the robust
option in the command you are constructing with this checkbox. Communication options never alter
how a control looks or works: they just make extra information available to the PROGRAM and make
writing the u-action routine easier.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

12 Dialog programming — Dialog programming

Do not worry much about communication options when writing your dialog. Wait until you are
writing the corresponding u-action program. Then it will be obvious what communication options
you should have specified, and you can go back and specify them.

2.7 The distinction between i-actions and u-actions

In this documentation, we distinguish between i-actions and u-actions, but if you read carefully,
you will realize that the distinction is more syntactical than real. One way we have distinguished
i-actions from u-actions is to note that only u-actions can run Stata commands. In fact, i-actions can
also run Stata commands; you just code them differently. In the vast majority of dialog boxes, you
will not do this.

Nevertheless, if you were writing a dialog box to edit a Stata graph, you might construct your
dialog box so that it contained no u-actions and only i-actions. Some of those i-actions might invoke
Stata commands.

As you already know, i-actions can invoke PROGRAMs, and PROGRAMs serve two purposes: coding
of i-actions and coding of u-actions. PROGRAMs themselves, however, have the ability to submit
commands to Stata, and therein lies the key. I-actions can invoke PROGRAMs, and PROGRAMs can
invoke Stata commands. How this is done is discussed in 5.1.3 rstrings: cmdstring and optstring and
5.5 Command-execution commands.

We recommend that you not program i-actions and u-actions that are virtually indistinguishable
except in rare, special circumstances. Users expect to fill in a dialog box and to be given the opportunity
to click on OK or Submit before anything too severe happens.

2.8 Error and consistency checking

In filling in the dialogs you construct, the user might make errors. One alternative is simply to
ignore that possibility and let Stata complain when it executes the u-action command you construct.
Even in well-written dialog boxes, most errors should be handled this way because discovering all
the problems would require rewriting the entire logic of the Stata command.

Nevertheless, you will want to catch easy-to-detect errors while the dialog is still open and the
user can easily fix them. Errors come in two forms: An outright error would be typing a number in
an edit field that is supposed to contain a variable name. A consistency error would be checking two
checkboxes that are, logically speaking, mutually exclusive.

You will want to handle most consistency errors at the dialog level, either by design (if two
checkboxes are mutually exclusive, perhaps the information should be collected as radio buttons) or
by i-actions (disabling or even hiding some fields depending on what has been filled in). The latter
was discussed in 2.5 I-actions and member functions.

Outright errors can be detected and handled in dialog-box programs and are usually detected
and handled in the u-action program. For instance, in your dialog-box program, you can assert that
dialogname.inputcontrolname must be filled in and pop up a custom error message if it is not, or
the program code can be written so that an automatically generated error message is presented. You
will find that all input-control commands have an error() option; for example,

VARLIST . . .
[
, . . . error(string) . . .

]
The error() string provides the text to describe the control when the dialog-box manager presents

an error. For instance, if we specified

VARLIST . . .
[
, . . . error(dependent variable) . . .

]

Dialog programming — Dialog programming 13

the dialog-box manager might use that information later to construct the error message “dependent
variable must be specified”.

If you do not specify the error() option, the dialog-box manager will use what was specified
in the label(); otherwise, "" is used. The label() option specifies the text that usually appears
near the control describing it to the user, but label() will do double duty so that you only need to
specify error() when the two strings need to differ.

3. Commands

3.1 VERSION

Syntax

VERSION #
[
.##

] [
valid operating systems

]
Description

VERSION specifies how the commands that follow are to be interpreted.

Remarks

VERSION must appear first in the .dlg file (it may be preceded by comments). In the current
version of Stata, it should read VERSION 18 or VERSION 18.0. It makes no difference; both mean
the same thing.

Optionally, VERSION can specify one or more valid operating systems. Accepted values are
WINDOWS, MACINTOSH, and UNIX. If none of these are specified, all are assumed.

Including VERSION at the top is of vital importance. Stata is under continual development, so
syntax and features can change. Including VERSION is how you ensure that your dialog box will
continue to work as you intended.

3.2 INCLUDE

Syntax

INCLUDE includefilename

where includefilename refers to includefilename.idlg and must be specified without the suffix and
without a path.

Description

INCLUDE reads and processes the lines from includefilename.idlg just as if they were part of the
current file being read. INCLUDE may appear in both .dlg and .idlg files.

Remarks

The name of the file is specified without a file suffix and without a path. .idlg files are searched
for along the ado-path, as are .dlg files.

INCLUDE may appear anywhere in the dialog code and may appear in both .dlg and .idlg files;
include files may INCLUDE other include files. Files may contain multiple INCLUDEs. The maximum
nesting depth is 10.

14 Dialog programming — Dialog programming

3.3 DEFINE

Syntax

DEFINE name { . | # | +# | -# | @x | @y | @xsize | ,@ysize }

Description

DEFINE creates name, which may be used in other commands wherever a position or size element
is required.

Remarks

The first four possibilities for defining name—., #, +#, and -#—specify default, number specified,
positive offset, and negative offset.

The other four possibilities—@x, @y, @xsize, and @ysize—refer to the previous x, y, xsize, and
ysize values, with “previous” meaning previous to the time the DEFINE command is issued, not at
the time name is used.

3.4 POSITION

Syntax

POSITION x y xsize ysize

Description

POSITION is used to set the location and size of the dialog box. x and y refer to the upper-left-hand
corner of the dialog box. xsize and ysize refer to the width and height of the dialog box.

Remarks

The positions x and y may each be specified as ., and Stata will determine where the dialog box
will be displayed; this is recommended.

xsize and ysize may not be specified as . because they specify the overall size of the dialog box.
You can discover the size by experimentation. If you specify a size that is too small, some elements
will flow off the dialog box. If you specify a size that is too large, there will be large amounts of
white space on the right and bottom of the dialog box. Good initial values for xsize and ysize are
400 and 300.

POSITION may be specified anywhere in the dialog code outside BEGIN . . . END blocks. It does
not matter where it is specified because the entire .dlg file is processed before the dialog box is
displayed.

Dialog programming — Dialog programming 15

3.5 LIST

Syntax

LIST newlistname
BEGIN

item
item
. . .

END

Description

LIST creates a named list for populating list and combo boxes.

Example
LIST choices

BEGIN
Statistics
Graphics
Data management

END
. . .
DIALOG . . .

BEGIN
. . .
LISTBOX . . . , . . . contents(choices) . . .
. . .

END

3.6 DIALOG

Syntax

DIALOG newdialogname
[
, title(" string") tabtitle(" string")

]
BEGIN

{ control definition statements | INCLUDE | DEFINE }
. . .

END

Description

DIALOG defines a dialog. Every .dlg file should define at least one dialog. Only control definition
statements, INCLUDE, and DEFINE are allowed between BEGIN and END.

Options

title("string") defines the text to be displayed in the dialog’s title bar.

tabtitle("string") defines the text to be displayed on the dialog’s tab. Dialogs are tabbed if more
than one dialog is defined. When a user clicks on the tab, the dialog becomes visible and active.
If only one dialog is specified, the contents of tabtitle() are irrelevant.

16 Dialog programming — Dialog programming

Member functions

settabtitle string sets tab title to string
settitle string sets overall dialog box title to string

settitle may be called as a member function of any dialog tab, but it is more appropriate to
call it as a member function of the dialog box. This is accomplished by calling it in the local scope
of the dialog.

Example:
settitle "sort - Sort data"

3.6.1 CHECKBOX on/off input control

Syntax

CHECKBOX newcontrolname x y xsize ysize
[
, label("string") error("string")

default(defnumval) nomemory groupbox onclickon(iaction) onclickoff(iaction)

option(optionname) tooltip("string")
]

Member functions

setlabel string sets text to string
setoff unchecks checkbox
seton checks checkbox
setoption optionname associates optionname with the value of the checkbox
setdefault value sets the default value for the checkbox; this does not change the

selected state
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

Returns numeric, 0 or 1, depending on whether the box is checked.

Description

CHECKBOX defines a checkbox control, which indicates an option that is either on or off.

Options

label("string") specifies the text to be displayed next to the control. You should specify text that
clearly implies two opposite states so that it is obvious what happens when the checkbox is checked
or unchecked.

error("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

default(defnumval) specifies whether the box is checked or unchecked initially; it will be unchecked
if defnumval evaluates to 0, and it will be checked otherwise. If default() is not specified,
default(0) is assumed.

Dialog programming — Dialog programming 17

nomemory specifies that the checkbox not remember how it was filled in between invocations.

groupbox makes this checkbox control also a group box into which other controls can be placed to
emphasize that they are related. The group box is just an outline; it does not cause the controls
“inside” to be disabled or hidden or in any other way act differently than they would if they were
outside the group box. On some platforms, radio buttons have precedence over checkbox group
boxes. You may place radio buttons within a checkbox group box, but do not place a checkbox
group box within a group of radio buttons. If you do, you may not be able to click on the checkbox
control on some platforms.

onclickon(iaction) and onclickoff(iaction) specify the i-actions to be invoked when the checkbox
is clicked on or off. This could be used, for instance, to hide, show, disable, or enable other input
controls. The default i-action is to do nothing. The onclickon() or onclickoff() i-action will
be invoked the first time the checkbox is displayed.

option(optionname) is a communication option that associates optionname with the value of the
checkbox.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example
CHECKBOX robust 10 10 100 ., label(Robust VCE)

3.6.2 RADIO on/off input control

Syntax

RADIO newcontrolname x y xsize ysize
[
,

[
first | middle | last

]
label("string")

error("string") default(defnumval) nomemory onclickon(iaction)

onclickoff(iaction) option(optionname) tooltip("string")
]

Member functions

setlabel string sets text to string
seton checks the radio button and unchecks any other buttons in the group
setoption optionname associates optionname with the value of the radio
setdefault value sets the default value for the radio; this does not change the

selected state
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

Returns numeric, 0 or 1, depending on whether the button is checked.

18 Dialog programming — Dialog programming

Description

RADIO defines a radio button control in a radio-button group. Radio buttons are used in groups of
two or more to select mutually exclusive, but related, choices when the number of choices is small.
Selecting one radio button automatically unselects the others in its group.

Options

first, middle, and last specify whether this radio button is the first, a middle, or the last member
of a group. There must be one first and one last. There can be zero or more middle members.
middle is the default if no option is specified.

label("string") specifies the text to be displayed next to the control.

error("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

default(defnumval) specifies whether the radio button is to start as selected or unselected; it will
be unselected if defnumval evaluates to 0 and will be selected otherwise. If default() is not
specified, default(0) is assumed unless first is also specified, in which case default(1) is
assumed. It is considered bad style to use anything other than the first button as the default, so
this option is rarely specified.

nomemory specifies that the radio button not remember how it was filled in between invocations.

onclickon(iaction) and onclickoff(iaction) specify that i-action be invoked when the radio button
is clicked on or clicked off. This could be used, for instance, to hide, show, disable, or enable other
input controls. The default i-action is to do nothing. The onclickon() i-action will be invoked
the first time the radio button is displayed if it is selected.

option(optionname) is a communication option that associates optionname with the value of the
radio button.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example
RADIO r1 10 10 100 ., first label("First choice")
RADIO r2 @ +20 @ ., middle label("Second choice")
RADIO r3 @ +20 @ ., middle label("Third choice")
RADIO r4 @ +20 @ ., last label("Last choice")

3.6.3 SPINNER numeric input control

Syntax

SPINNER newcontrolname x y xsize ysize
[
, label("string") error("string")

default(defnumval) nomemory min(defnumval) max(defnumval) onchange(iaction)

option(optionname) tooltip("string")
]

Dialog programming — Dialog programming 19

Member functions

setvalue value sets the actual value of the spinner to value
setrange min# max# sets the range of the spinner to min# max#
setoption optionname associates optionname with the value of the spinner
setdefault # sets the default of the spinner to #; this does not change the value

shown in the spinner control.
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

Returns numeric, the value of the spinner.

Description

SPINNER defines a spinner, which displays an edit field that accepts an integer number, which the
user may either increase or decrease by clicking on an up or down arrow.

Options

label("string") specifies a description for the control, but it does not display the label next to the
spinner. If you want to label the spinner, you must use a TEXT static control.

error("string") specifies the text to be displayed in describing this field to the user in automatically
generated error boxes.

default(defnumval) specifies the initial integer value of the spinner. If not specified, min() is
assumed, and if that is not specified, 0 is assumed.

nomemory specifies that the spinner not remember how it was filled in between invocations.

min(defnumval) and max(defnumval) set the minimum and maximum integer values of the spinner.
min(0) and max(100) are the defaults.

onchange(iaction) specifies the i-action to be invoked when the spinner is changed. The default
i-action is to do nothing. The onchange() i-action will be invoked the first time the spinner is
displayed.

option(optionname) is a communication option that associates optionname with the value of the
spinner.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example
SPINNER level 10 10 60 ., label(Sig. level) min(5) max(100) ///

default(c(level)) option(level)

20 Dialog programming — Dialog programming

3.6.4 EDIT string input control

Syntax

EDIT newcontrolname x y xsize ysize
[
, label("string") error("string")

default(defstrval) nomemory max(#) numonly password onchange(iaction)

option(optionname) tooltip("string")
]

Member functions

setlabel string sets the label for the edit field
setvalue strvalue sets the value shown in the edit field
append string appends string to the value in the edit field
prepend string prepends string to the value of the edit field
insert string inserts string at the current cursor position of the edit field
smartinsert string inserts string at the current cursor position in the edit field with

leading and trailing spaces around it
setfocus causes the control to obtain keyboard focus
setoption optionname associates optionname with the contents of the edit field
setdefault string sets the default value for the edit field; this does not change

what is displayed
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

Returns string, the contents of the edit field.

Description

EDIT defines an edit field. An edit field is a box into which the user may enter text or in which
the user may edit text; the width of the box does not limit how much text can be entered.

Options

label("string") specifies a description for the control, but it does not display the label next to the
edit field. If you want to label the edit field, you must use a TEXT static control.

error("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

default(defstrval) specifies the default contents of the edit field. If not specified, default("") is
assumed.

nomemory specifies that the edit field is not to remember how it was filled in between invocations.

max(#) specifies the maximum number of characters that may be entered into the edit field.

numonly specifies that the edit field be able to contain only a period, numeric characters 0 through
9, and - (minus).

password specifies that the characters entered into the edit field be shown on the screen as asterisks
or bullets, depending on the operating system.

Dialog programming — Dialog programming 21

onchange(iaction) specifies the i-action to be invoked when the contents of the edit field are changed.
The default i-action is to do nothing. Note that the onchange() i-action will be invoked the first
time the edit field is displayed.

option(optionname) is a communication option that associates optionname with the contents of the
edit field.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example

TEXT tlab 10 10 200 ., label("Title")
EDIT title @ +20 @ ., label("title")

3.6.5 VARLIST and VARNAME string input controls

Syntax

{ VARLIST | VARNAME } newcontrolname x y xsize ysize
[
, label("string")

error("string") default(defstrval) nomemory fv ts option(optionname)

tooltip("string")
]

Member functions

setlabel string sets the label for the varlist edit field
setvalue strvalue sets the value shown in the varlist edit field
append string appends string to the value in the varlist edit field
prepend string prepends string to the value of the varlist edit field
insert string inserts string at the current cursor position of the varlist edit field
smartinsert string inserts string at the current cursor position in the varlist edit field

with leading and trailing spaces around it
setfocus causes the control to obtain keyboard focus
setoption optionname associates optionname with the contents of the edit field
setdefault string sets the default value for the edit field; this does not change

what is displayed
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

Returns string, the contents of the varlist edit field.

Description

VARLIST and VARNAME are special cases of an edit field. VARLIST provides an edit field into which
one or more Stata variable names may be entered (along with standard Stata varlist abbreviations),
and VARNAME provides an edit field into which one Stata variable name may be entered (with standard
Stata varname abbreviations allowed).

22 Dialog programming — Dialog programming

Options

label("string") specifies a description for the control, but does not display the label next to the
varlist edit field. If you want to label the control, you must use a TEXT static control.

error("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

default(defstrval) specifies the default contents of the edit field. If not specified, default("") is
assumed.

nomemory specifies that the edit field not remember how it was filled in between invocations.

fv specifies that the control add a factor-variable dialog button.

ts specifies that the control add a time-series-operated variable dialog button.

option(optionname) is a communication option that associates optionname with the contents of the
edit field.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example
TEXT dvlab 10 10 200 ., label("Dependent variable")
VARNAME depvar @ +20 @ ., label("dep. var")
TEXT ivlab @ +30 @ ., label("Independent variables")
VARLIST idepvars @ +20 @ ., label("ind. vars.")

3.6.6 FILE string input control

Syntax

FILE newcontrolname x y xsize ysize
[
, label("string") error("string")

default(defstrval) nomemory buttonwidth(#) dialogtitle(string) save

multiselect directory filter(string) onchange(iaction) option(optionname)

tooltip("string")
]

Member functions

setlabel string sets the label shown on the edit button
setvalue strvalue sets the value shown in the edit field
append string appends string to the value in the edit field
prepend string prepends string to the value of the edit field
insert string inserts string at the current cursor position of the edit field
smartinsert string inserts string at the current cursor position in the edit field

with leading and trailing spaces around it
setoption optionname associates optionname with the contents of the edit field
setdefault string sets the default value for the edit field; this does not change

what is displayed
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Dialog programming — Dialog programming 23

Returned values for use in PROGRAM

Returns string, the contents of the edit field (the file chosen).

Description

FILE is a special edit field with a button on the right for selecting a filename. When the user
clicks on the button, a file dialog is displayed. If the user selects a filename and clicks on OK, that
filename is put into the edit field. The user may alternatively type a filename into the edit field.

Options

label("string") specifies the text to appear on the button. The default is ("Browse . . . ").

error("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

default(defstrval) specifies the default contents of the edit field. If not specified, default("") is
assumed.

nomemory specifies that the edit field not remember how it was filled in between invocations.

buttonwidth(#) specifies the width in pixels of the button. The default is buttonwidth(80). The
overall size specified in xsize includes the button.

dialogtitle(string) is the title to show on the file dialog when you click on the file button.

save specifies that the file dialog allow the user to choose a filename for saving rather than one for
opening.

multiselect specifies that the file dialog allow the user to select multiple filenames rather than only
one filename.

directory specifies that the file dialog select a directory rather than a filename. If specified, any
nonrelevant options will be ignored.

filter(string) consists of pairs of descriptions and wildcard file selection strings separated by “|”,
such as

filter("Stata Graphs|*.gph|All Files|*.*")

onchange(iaction) specifies an i-action to be invoked when the user changes the chosen file. The
default i-action is to do nothing. The onchange() i-action will be invoked the first time the file
chooser is displayed.

option(optionname) is a communication option that associates optionname with the contents of the
edit field.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example
FILE fname 10 10 300 ., error("Filename to open") label("Browse . . . ")

24 Dialog programming — Dialog programming

3.6.7 LISTBOX list input control

Syntax

LISTBOX newcontrolname x y xsize ysize
[
, label("string") error("string")

nomemory contents(conspec) values(listname) default(defstrval)

ondblclick(iaction)
[
onselchange(iaction) | onselchangelist(listname)

]
option(optionname) tooltip("string")

]
Member functions

setlabel string sets the label for the list box
setvalue strvalue sets the currently selected item
setfocus causes the control to obtain keyboard focus
setoption optionname associates optionname with the element chosen from the list
setdefault string sets the default value for the list box; this does not change

what is displayed
repopulate causes the associated contents list to rebuild itself and then

updates the control with the new values from that list
forceselchange forces an onselchange event to occur
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

Returns string, the text of the item chosen, or, if values(listname) is specified, the text from the
corresponding element of listname.

Description

LISTBOX defines a list box control. Like radio buttons, a list box allows the user to make a selection
from a number of mutually exclusive, but related, choices. A list box control is more appropriate
when the number of choices is large.

Options

label("string") specifies a description for the control but does not display the label next to the
control. If you want to label the list box, you must use a TEXT static control.

error("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

nomemory specifies that the list box not remember the item selected between invocations.

contents(conspec) specifies the items to be shown in the list box. If contents() is not specified,
the list box will be empty.

values(listname) specifies the list (see 3.5 LIST) for which the values of contents() should match
one to one. When the user chooses the kth element from contents(), the kth element of listname
will be returned. If the lists do not match one to one, extra elements of listname are ignored, and
extra elements of contents() return themselves.

Dialog programming — Dialog programming 25

default(defstrval) specifies the default selection. If not specified, or if defstrval does not exist, the
first item is the default.

ondblclick(iaction) specifies the i-action to be invoked when an item in the list is double clicked.
The double-clicked item is selected before the iaction is invoked.

onselchange(iaction) and onselchangelist(listname) are alternatives. They specify the i-action
to be invoked when a selection in the list changes.

onselchange(iaction) performs the same i-action, regardless of which element of the list was
chosen.

onselchangelist(listname) specifies a vector of iactions that should match one to one with
contents(). If the user selects the kth element of contents(), the kth i-action from listname
is invoked. See 3.5 LIST for information on creating listname. If the elements of listname do not
match one to one with the elements of contents(), extra elements are ignored, and if there are
too few elements, the last element will be invoked for the extra elements of contents().

option(optionname) is a communication option that associates optionname with the element chosen
from the list.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example
LIST ourlist

BEGIN
Good
Common or average
Poor

END
. . .
DIALOG . . .

BEGIN
. . .
TEXT ourlab 10 10 200 ., label("Pick a rating")
LISTBOX rating @ +20 150 200, contents(ourlist)
. . .

END

3.6.8 COMBOBOX list input control

Syntax

COMBOBOX newcontrolname x y xsize ysize
[
, label("string") error("string")[

regular | dropdown | dropdownlist
]
default(defstrval) nomemory

contents(conspec) values(listname) append[
onselchange(iaction) | onselchangelist(listname)

]
option(optionname)

tooltip("string")
]

26 Dialog programming — Dialog programming

Member functions

setlabel string sets the label for the combo box
setvalue strvalue in the case of regular and drop-down combo boxes, sets the value

of the edit field; in the case of a dropdownlist, sets the
currently selected item

setfocus causes the control to obtain keyboard focus
setoption optionname associates optionname with the element chosen from the list
setdefault string sets the default value for the combo box; this does not change

what is displayed or selected
repopulate causes the associated contents list to rebuild itself and then

updates the control with the new values from that list
forceselchange forces an onselchange event to occur
settooltip string sets the tooltip text to string

Also, except for drop-down lists (option dropdownlist specified), the following member functions
are also available:

append string appends string to the value in the edit field
prepend string prepends string to the value of the edit field
insert string inserts string at the current cursor position of the edit field
smartinsert string inserts string at the current cursor position in the edit field

with leading and trailing spaces around it

The standard member functions hide, show, disable, enable, and setposition are also always
provided.

Returned values for use in PROGRAM

Returns string, the contents of the edit field.

Description

COMBOBOX defines regular combo boxes, drop-down combo boxes, and drop-down-list combo
boxes. By default, COMBOBOX creates a regular combo box; it creates a drop-down combo box if the
dropdown option is specified, and it creates a drop-down-list combo box if the dropdownlist option
is specified.

A regular combo box contains an edit field and a visible list box. The user may make a selection
from the list box, which is entered into the edit field, or type in the edit field. Multiple selections are
allowed using the append option. Regular combo boxes are useful for allowing multiple selections
from the list as well as for allowing the user to type in an item not in the list.

A drop-down combo box contains an edit field and a list box that appears when the control is
clicked on. The user may make a selection from the list box, which is entered into the edit field,
or type in the edit field. The control has the same functionality and options as a regular combo box
but requires less space. Multiple selections are allowed using the append option. Drop-down combo
boxes may be cumbersome to use if the number of choices is large, so use them only when the
number of choices is small or when space is limited.

A drop-down-list combo box contains a list box that displays only the current selection. Clicking
on the control displays the entire list box, allowing the user to make a selection without typing in
the edit field; the user chooses among the given alternatives. Drop-down-list combo boxes should be
used only when the number of choices is small or when space is limited.

Dialog programming — Dialog programming 27

Options

label("string") specifies a description for the control but does not display the label next to the
combo box. If you want to label a combo box, you must use a TEXT static control.

error("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

regular, dropdown, and dropdownlist specify the type of combo box to be created.

If regular is specified, a regular combo box is created. regular is the default.

If dropdown is specified, a drop-down combo box is created.

If dropdownlist is specified, a drop-down-list combo box is created.

default(defstrval) specifies the default contents of the edit field. If not specified, default("") is
assumed. If dropdownlist is specified, the first item is the default.

nomemory specifies that the combo box not remember the item selected between invocations. Even
for drop-down lists—where there is no default()—combo boxes remember previous selections
by default.

contents(conspec) specifies the items to be shown in the list box from which the user may choose.
If contents() is not specified, the list box will be empty.

values(listname) specifies the list (see 3.5 LIST) for which the values of contents() should match
one to one. When the user chooses the kth element from contents(), the kth element of listname
is copied into the edit field. If the lists do not match one to one, extra elements of listname are
ignored, and extra elements of contents() return themselves.

append specifies that selections made from the combo box’s list box be appended to the contents of
the combo box’s edit field. By default, selections replace the contents of the edit field. append is
not allowed if dropdownlist is also specified.

onselchange(iaction) and onselchangelist(listname) are alternatives that specify the i-action
to be invoked when a selection in the list changes.

onselchange(iaction) performs the same i-action, regardless of the element of the list that was
chosen.

onselchangelist(listname) specifies a vector of iactions that should match one to one with
contents(). If the user selects the kth element of contents(), the kth i-action from listname
is invoked. See 3.5 LIST for information on creating listname. If the elements of listname do not
match one to one with the elements of contents(), extra elements are ignored, and if there
are too few elements, the last element will be invoked for the extra elements of contents().
onselchangelist() should not be specified with dropdown.

option(optionname) is a communication option that associates optionname with the element chosen
from the list.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

28 Dialog programming — Dialog programming

Example

LIST namelist
BEGIN

John
Sue
Frank

END
. . .
DIALOG . . .

BEGIN
. . .
TEXT ourlab 10 10 200 ., label("Pick one or more names")
COMBOBOX names @ +20 150 200, contents(namelist) append
. . .

END

3.6.9 BUTTON special input control

Syntax

BUTTON newcontrolname x y xsize ysize
[
, label("string") error("string")

onpush(iaction) tooltip("string")
]

Member functions

setlabel string sets the label for the button
setfocus causes the control to obtain keyboard focus
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

None.

Description

BUTTON creates a push button that performs instantaneous actions. Push buttons do not indicate a
state, such as on or off, and do not return anything for use by the u-action PROGRAM. Buttons are
used to invoke i-actions.

Options

label("string") specifies the text to display on the button. You should specify text that contains
verbs that describe the action to perform.

error("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

onpush(iaction) specifies the i-action to be invoked when the button is clicked on. If onpush() is
not specified, the button does nothing.

Dialog programming — Dialog programming 29

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example
BUTTON help 10 10 80 ., label("Help") onpush("view help example")

3.6.10 TEXT static control

Syntax

TEXT newcontrolname x y xsize ysize
[
, label("string")

[
left | center | right

]]
Member functions

setlabel string sets the text shown

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

None.

Description

TEXT displays text.

Options

label("string") specifies the text to be shown.

left, center, and right are alternatives that specify the horizontal alignment of the text with
respect to x. left is the default.

Example
TEXT dvlab 10 10 200 ., label("Dependent variable")

3.6.11 TEXTBOX static control

Syntax

TEXTBOX newcontrolname x y xsize ysize
[
, label("string")

[
left | center | right

]]
Member functions

setlabel string sets the text shown

The standard member functions hide, show, disable, enable, and setposition are also
provided.

30 Dialog programming — Dialog programming

Returned values for use in PROGRAM

None.

Description

TEXTBOX displays multiline text.

Options

label("string") specifies the text to be shown.

left, center, and right are alternatives that specify the horizontal alignment of the text with
respect to x. left is the default.

Example
TEXTBOX tx_note 10 10 200 45, label("Note ...")

3.6.12 GROUPBOX static control

Syntax

GROUPBOX newcontrolname x y xsize ysize
[
, label("string")

]
Member functions

setlabel string sets the text shown above the group box

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

None.

Description

GROUPBOX displays a frame (an outline) with text displayed above it. Group boxes are used for
grouping related controls together. The grouped controls are sometimes said to be inside the group
box, but there is no meaning to that other than the visual effect.

Options

label("string") specifies the text to be shown at the top of the group box.

Example
GROUPBOX weights 10 10 300 200, label("Weight type")

RADIO w1 . . . , . . . label(fweight) first . . .
RADIO w2 . . . , . . . label(aweight) . . .
RADIO w3 . . . , . . . label(pweight) . . .
RADIO w4 . . . , . . . label(iweight) last . . .

Dialog programming — Dialog programming 31

3.6.13 FRAME static control

Syntax

FRAME newcontrolname x y xsize ysize
[
, label("string")

]
Member functions

There are no special member functions provided.

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

None.

Description

FRAME displays a frame (an outline).

Options

label("string") specifies the label for the frame, which is not used in any way, but some programmers
use it to record comments documenting the purpose of the frame.

Remarks

The distinction between a frame and a group box with no label is that a frame draws its outline
using the entire dimensions of the control. A group box draws its outline a few pixels offset from the
top of the control, whether there is a label or not. A frame is useful for horizontal alignment with
other controls.

Example
FRAME box 10 10 300 200

RADIO w1 . . . , . . . label(fweight) first . . .
RADIO w2 . . . , . . . label(aweight) . . .
RADIO w3 . . . , . . . label(pweight) . . .
RADIO w4 . . . , . . . label(iweight) last . . .

3.6.14 COLOR input control

Syntax

COLOR newcontrolname x y xsize ysize
[
, label("string") error("string")

default(rgbvalue) nomemory onchange(iaction) option(optionname)

tooltip("string")
]

32 Dialog programming — Dialog programming

Member functions

setvalue rgbvalue sets the rgb value of the color selector
setoption optionname associates optionname with the selected color
setdefault rgbvalue sets the default rgb value of the color selector; this does not

change the selected color
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

Returns rgbvalue of the selected color as a string.

Description

COLOR defines a button to access a color selector. The button shows the color that is currently
selected.

Options

label("string") specifies a description for the control, but it does not display the label next to the
button. If you want to label the color control, you must use a TEXT static control.

error("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

default(rgbvalue) specifies the default color of the color control. If not specified, default(255
0 0) is assumed.

nomemory specifies that the color control not remember the set color between invocations.

onchange(iaction) specifies the i-action to be invoked when the color is changed. The default i-action
is to do nothing. Note that the onchange() i-action will be invoked the first time the color control
is displayed.

option(optionname) is a communication option that associates optionname with the selected color.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example

COLOR box_color 10 10 40 ., default(0 0 0)

3.6.15 EXP expression input control

Syntax

EXP newcontrolname x y xsize ysize
[
, label("string") error("string")

default(defstrval) nomemory onchange(iaction) option(optionname)

tooltip("string")
]

Dialog programming — Dialog programming 33

Member functions

setlabel string sets the label for the button
setvalue strvalue sets the value shown in the edit field
append string appends string to the value in the edit field
prepend string prepends string to the value of the edit field
insert string inserts string at the current cursor position of the edit field
smartinsert string inserts string at the current cursor position in the edit field

with leading and trailing spaces around it
setoption optionname associates optionname with the contents of the edit field
setdefault string sets the default value for the edit field; this does not

change what is displayed
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

Returns string, the contents of the edit field.

Description

EXP defines an expression control that consists of an edit field and a button for launching the
Expression Builder.

Options

label("string") specifies the text for labeling the button.

error("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

default(defstrval) specifies the default contents of the edit field. If not specified, default("") is
assumed.

nomemory specifies that the edit field not remember how it was filled in between invocations.

onchange(iaction) specifies the i-action to be invoked when the contents of the edit field are changed.
The default i-action is to do nothing. Note that the onchange() i-action will be invoked the first
time the expression control is displayed.

option(optionname) is a communication option that associates optionname with the contents of the
edit field.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example
TEXT tlab 10 10 200 ., label("Expression:")
EXP exp @ +20 @ ., label("Expression")

34 Dialog programming — Dialog programming

3.6.16 HLINK hyperlink input control

Syntax

HLINK newcontrolname x y xsize ysize
[
, label("string")

[
left | center | right

]
onpush(iaction)

]
Member functions

setlabel string sets the text shown

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

None.

Description

HLINK creates a hyperlink that performs instantaneous actions. Hyperlinks do not indicate a state,
such as on or off, and do not return anything for use by the u-action PROGRAM. Hyperlinks are used
to invoke i-actions.

Options

label("string") specifies the text to be shown.

left, center, and right are alternatives that specify the horizontal alignment of the text with
respect to x. left is the default.

onpush(iaction) specifies the i-action to be invoked when the hyperlink is clicked on. If onpush()
is not specified, the hyperlink does nothing.

Example
HLINK help 10 10 80 ., label("Help") onpush("view help example")

3.6.17 TREEVIEW tree input control

Syntax

TREEVIEW newcontrolname x y xsize ysize
[
, label("string") error("string")

nomemory contents(conspec) values(listname) default(defstrval)

ondblclick(iaction)
[
onselchange(iaction) | onselchangelist(listname)

option(optionname) tooltip("string")
]

Dialog programming — Dialog programming 35

Member functions

setlabel string sets the label for the tree
setvalue strvalue sets the currently selected item
setfocus causes the control to obtain keyboard focus
setoption optionname associates optionname with the element chosen from the tree
setdefault string sets the default value for the tree; this does not change what is displayed
forceselchange forces an onselchange event to occur
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

Returns string, the text of the item chosen, or, if values(listname) is specified, the text from the
corresponding element of listname.

Description

TREEVIEW defines a tree control, which is used to display a hierarchical view of labeled items. A
tree view allows the user to select from several mutually exclusive but related choices. By clicking
on an item, the user can expand or collapse the associated list of subitems.

Options

label("string") specifies a description for the control but does not display the label next to the
control. If you want to label a tree view, you must use a TEXT static control.

error("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

nomemory specifies that the control not remember the item selected between invocations.

contents(conspec) specifies the items to be shown in the control. If contents() is not specified,
the tree view control will be empty.

values(listname) specifies the list (see 3.5 LIST) for which the values of contents() should match
one to one. When the user chooses the kth element from contents(), the kth element of listname
will be returned. If the lists do not match one to one, extra elements of listname are ignored, and
extra elements of contents() return themselves.

default(defstrval) specifies the default selection. If not specified, or if defstrval does not exist, the
first item is the default.

ondblclick(iaction) specifies the i-action to be invoked when an item in the control is double
clicked. The double-clicked item is selected before the iaction is invoked.

onselchange(iaction) and onselchangelist(listname) are alternatives. They specify the i-action
to be invoked when a selection in the control changes.

onselchange(iaction) performs the same i-action, regardless of which element of the control
was chosen.

onselchangelist(listname) specifies a vector of iactions that should match one to one with
contents(). If the user selects the kth element of contents(), the kth i-action from listname
is invoked. See 3.5 LIST for information on creating listname. If the elements of listname do not
match one to one with the elements of contents(), extra elements are ignored, and if there are
too few elements, the last element will be invoked for the extra elements of contents().

36 Dialog programming — Dialog programming

option(optionname) is a communication option that associates optionname with the element chosen
from the tree view control.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Organize data

TREEVIEW represents a hierarchical view of information where each item may have a number of
subitems. Items (nodes) in the tree view can be expanded or collapsed to show or hide subitems. For
example,

Root 1
SubItem A

SubItem A1
SubItem A2

SubItem B
Root 2

SubItem C

The parent–child relationship data are stored in a content list. Each item in the list represents a
node of the tree. The string labeling each item contains two parts. The first part encloses a nonnegative
integer in square brackets to denote the level or depth of each node. The second part following the
square brackets is the content shown in the tree.

Example
LIST ourcontentlist

BEGIN
[0]Root 1
[1]SubItem A
[2]SubItem A1
[2]SubItem A2
[1]SubItem B
[0]Root 2
[1]SubItem C

END
. . .
DIALOG . . .

BEGIN
. . .
TEXT ourlab 10 10 200 ., label("Pick an item")
TREEVIEW ourtree @ +20 150 200, contents(ourcontentlist)
. . .

END

3.7 OK, SUBMIT, CANCEL, and COPY u-action buttons

Syntax

{ OK | SUBMIT | COPY } newbuttonname
[
, label("string") uaction(programname)

target(target)
]

CANCEL newbuttonname
[
, label("string")

]

Dialog programming — Dialog programming 37

Description

OK, CANCEL, SUBMIT, and COPY define buttons that, when clicked on, invoke a u-action. At least
one of the buttons should be defined (or the dialog will have no associated u-action); only one of
each button may be defined; and usually, good style dictates defining all four.

OK executes programname, removes the dialog box from the screen, and submits the resulting
command produced by programname to target. If no other buttons are defined, clicking on the close
icon of the dialog box does the same thing.

SUBMIT executes programname, leaves the dialog box on the screen, and submits the resulting
command produced by programname to target.

CANCEL removes the dialog from the screen and does nothing. If this button is defined, clicking
on the close icon of the dialog box does the same thing.

COPY executes programname, leaves the dialog box on the screen, and copies the resulting command
produced by programname to target. By default, the target is the clipboard.

You do not specify the location or size of these controls. They will be placed in the dialog box
where the user would expect to see them.

Options

label("string") defines the text to appear on the button. The default label() is OK, Submit, and
Cancel for each individual button.

uaction(programname) specifies the PROGRAM to be executed. uaction(command) is the default.

target(target) defines what is to be done with the resulting string (command) produced by
programname. The alternatives are

target(stata): The command is to be executed by Stata. This is the default.

target(stata hidden): The command is to be executed by Stata, but the command itself is not to
appear in the Results window. The output from the command will appear normally. This option
may change in the future and should be avoided when possible.
target(cmdwin): The command is to be placed in the Command window so that the user can
edit it and then press Enter to submit it.

target(clipboard): The command is to be placed on the clipboard so that the user can paste it
into the desired editor.

Example
OK ok1
CANCEL can1
SUBMIT sub1
COPY copy1

3.8 HELP and RESET helper buttons

Syntax

HELP newbuttonname
[
, view("viewertopic")

]
RESET newbuttonname

38 Dialog programming — Dialog programming

Description

HELP defines a button that, when clicked on, presents viewertopic in the Viewer. viewertopic is
typically specified as "view helpfile".

RESET defines a button that, when clicked on, resets the values of the controls in the dialog box to
their initial state, just as if the dialog box were invoked for the first time. Each time a user invokes
a dialog box, its controls will be filled in with the values the user last entered. RESET restores the
control values to their defaults.

You do not specify the location, size, or appearance of these controls. They will be placed in the
lower-left corner of the dialog box. The HELP button will have a question mark on it, and the RESET
button will have an R on it.

Option

view("viewertopic") specifies the topic to appear in the Viewer when the user clicks on the button.
The default is view("help contents").

Example
HELP hlp1, view("help mycommand")
RESET res1

3.9 Special dialog directives

Syntax

{ MODAL | SYNCHRONOUS ONLY }

Description

MODAL instructs the dialog to have modal behavior.

SYNCHRONOUS ONLY allows the dialog to invoke stata hidden immediate at special times during
the initialization process. See 5.5.1 stata for more information on this topic.

4. SCRIPT

Syntax

SCRIPT newscriptname
BEGIN

iaction
. . .

END

where iaction is

.

action memberfunction
gaction dialogname.controlname.memberfunction

Dialog programming — Dialog programming 39

dialogname.controlname.memberfunction
script scriptname
view topic
program programname

See 2.5 I-actions and member functions for more information on iactions.

Description

SCRIPT defines the newscriptname, which in turn defines a compound i-action. I-actions are
invoked by the on *() options of the input controls. When a script is invoked, the lines are executed
sequentially, and any errors are ignored.

Remarks

CHECKBOX provides onclickon(iaction) and onclickoff(iaction) options. Let’s focus on the
onclickon(iaction) option. If you wanted to take just one action when the box was checked—say,
disabling d1.s2—you could code

CHECKBOX . . . , . . . onclickon(d1.s2.disable) . . .

If you wanted to take two actions, say, disabling d1.s3 as well, you would have to use a SCRIPT.
On the CHECKBOX command, you would code

CHECKBOX . . . , . . . onclickon(script buttonsoff) . . .

and then somewhere else in the .dlg file (it does not matter where), you would code

SCRIPT buttonsoff
BEGIN

d1.s2.disable
d1.s3.disable

END

5. PROGRAM

Syntax

PROGRAM programname
BEGIN[

program_line | INCLUDE
][

. . .
]

END

Description

PROGRAM defines a dialog program. Dialog programs are used to describe complicated i-actions
and to implement u-actions.

40 Dialog programming — Dialog programming

Remarks

Dialog programs are used to describe complicated i-actions when flow control (if/then) is necessary
or when you wish to create heavyweight i-actions that are like u-actions because they invoke Stata
commands; otherwise, you should use a SCRIPT. Used this way, programs are invoked when the
specified iaction is program programname in an on*() option of an input control command; for
instance, you could code

CHECKBOX . . . , . . . onclickon(program complicated) . . .

or use a SCRIPT:

CHECKBOX . . . , . . . onclickon(script multi) . . .
. . .
SCRIPT multi

BEGIN
. . .
program complicated
. . .

END

The primary use of dialog programs, however, is to implement u-actions. The program constructs
and returns a string, which the dialog-box manager will then interpret as a Stata command. The
program is invoked by the uaction() options of OK and SUBMIT; for instance,

OK . . . , . . . uaction(program command) . . .

The u-action program is nearly always named command because, if the uaction() option is not
specified, command is assumed. The u-action program may, however, be named as you please.

Here is an example of a dialog program being used to implement an i-action with if/then flow
control:

PROGRAM testprog
BEGIN

if sample.cb1 & sample.cb2 {
call sample.txt1.disable

}
if !(sample.cb1 & sample.cb2) {

call sample.txt1.enable
}

END

Here is an example of a dialog program being used to implement the u-action:

PROGRAM command
BEGIN

put "mycmd "
varlist main.vars // varlist [main.vars] would make optional
ifexp main.if
inrange main.obs1 main.obs2
beginoptions

option options.detail
optionarg options.title

endoptions
END

Using programs to implement heavyweight i-actions is much like implementing u-actions, except
the program might not be a function of the input controls, and you must explicitly code the stata
command to execute what is constructed. Here is an example of a dialog program being used to
implement a heavyweight i-action:

Dialog programming — Dialog programming 41

PROGRAM heavyweight
BEGIN

put "myeditcmd, resume"
stata

END

5.1 Concepts

5.1.1 Vnames

Vname stands for value name and refers to the “value” of a control. Vnames are of the form
dialogname.controlname; for example, d2.s2 and d2.list would be vnames if input controls s2
and list were defined in DIALOG d2:

DIALOG d2 . . .
BEGIN

. . .
CHECKBOX s2 . . .
EDIT list . . .
. . .

END

A vname can be numeric or string depending on the control to which it corresponds. For CHECKBOX,
it was documented under “Returned value for use in PROGRAM” that CHECKBOX “returns numeric, 0
or 1, depending on whether box is checked”, so d2.s2 is a numeric. For the EDIT input control, it
was documented that EDIT returns a string representing the contents of the edit field, so d2.list is
a string.

Different words are sometimes used to describe whether vname is numeric or string, including

vname is numeric

vname is string

vname is a numeric control

vname is a string control

vname returns a numeric result

vname returns a string result

In a program, you may not assign values to vnames; you may only examine their values and, for
u-action (and heavyweight i-action) programs, output them. Thus dialog programs are pretty relaxed
about types. You can ask whether d2.s2 is true or d2.list is true, even though d2.list is a string.
For a string, it is true if it is not "". Numeric vnames are true if the numeric result is not 0.

5.1.2 Enames

Enames are an extension of vnames. An ename is defined as

vname
or(vname vname . . . vname)
radio(dialogname controlname . . . controlname)

42 Dialog programming — Dialog programming

or() returns the vname of the first in the list that is true (filled in). For instance, the varlist u-
action dialog-programming command “outputs” a varlist (see 5.1.3 rstrings: cmdstring and optstring).
If you knew that the varlist was in either control d1.field1 or d1.field2 and knew that both could
not be filled in, you might code

varlist or(d1.field1 d1.field2)

which would have the same effect as

if d1.field1 {
varlist d1.field1

}
if (!d1.field1) & d2.field2 {

varlist d2.field2
}

radio() is for dealing with radio buttons. Remember that each radio button is a separate control,
and yet, in the set, we know that exactly one is clicked on. radio finds the clicked one. Typing

option radio(d1 b1 b2 b3 b4)

would be equivalent to typing

option or(d1.b1 d1.b2 d1.b3 d1.b4)

which would be equivalent to typing

option d1.b2

assuming that the second radio button is selected. (The option command outputs the option corre-
sponding to a control.)

5.1.3 rstrings: cmdstring and optstring

Rstrings, cmdstring and optstring, are relevant only in u-action and heavyweight i-action
programs.

The purpose of a u-action program is to build and return a string, which Stata will ultimately
execute. To do that, dialog programs have an rstring to which the dialog-programming commands
implicitly contribute. For example,

put "kappa"

would add “kappa” (without the quotes) to the end of the rstring currently under construction, known as
the current rstring. Usually, the current rstring is cmdstring, but within a beginoptions/endoptions
block, the current rstring is switched to optstring:

beginoptions
put "kappa"

endoptions

The above would add “kappa” (without the quotes) to optstring.

When the program concludes, the cmdstring and the optstring are put together—separated by
a comma—and that is the command Stata will execute. In any case, any command that can be used
outside beginoptions/endoptions can be used inside them, and the only difference is the rstring
to which the output is directed. Thus if our entire u-action program read

Dialog programming — Dialog programming 43

PROGRAM command
BEGIN

put "kappa"
beginoptions

put "kappa"
endoptions

END

the result would be to execute the command “kappa, kappa”.

The difference between a u-action program and a heavyweight i-action program is that you must,
in your program, specify that the constructed command be executed. You do this with the stata
command. The stata command can also be used in u-action programs if you wish to execute more
than one Stata command:

PROGRAM command
BEGIN

put, etc. // construct first command
stata // execute first command
clear // clear cmdstring and optstring
put, etc. // construct second command

// execution will be automatic
END

5.1.4 Adding to an rstring

When adding to an rstring, be aware of some rules in using spaces. Call A the rstring and B the
string being added (say “kappa”). The following rules apply:

1. If A does not end in a space and B does not begin with a space, the two strings are joined
to form “AB”. If A is “this” and B is “that”, the result is “thisthat”.

2. If A ends in one or more spaces and B does not begin with a space, the spaces at the end
of A are removed, one space is added, and B is joined to form “rightstrip(A) B”. If A is
“this ” and B is “that”, the result is “this that”.

3. If A does not end in a space and B begins with one or more spaces, the spaces at the
beginning of B are ignored and treated as if there is one space, and the two strings are
joined to form “A leftstrip(B)”. If A is “this” and B is “ that”, the result is “this that”.

4. If A ends in one or more spaces and B begins with one or more spaces, the spaces at the
end of A are removed, the spaces at the beginning of B are ignored, and the two strings are
joined with one space in between to form “rightstrip(A) leftstrip(B)”. If A is “this ” and B
is “ that”, the result is “this that”.

These rules ensure that multiple spaces do not end up in the resulting string so that the string will
look better and more like what a user might have typed.

When string literals are put, they are nearly always put with a trailing space

put "kappa "

to ensure that they do not join up with whatever is put next. If what is put next has a leading space,
that space will be ignored.

44 Dialog programming — Dialog programming

5.2 Flow-control commands

5.2.1 if

Syntax

if ifexp {
. . .

}

or

if ifexp {
. . .

}
else {

. . .
}

where ifexp may be

ifexp Meaning

(ifexp) order of evaluation
!ifexp logical not
ifexp | ifexp logical or
ifexp & ifexp logical and
vname true if vname is not 0 and not ""
vname.booleanfunction true if vname.booleanfunction evaluates to true
rc see 5.5 Command-execution commands
stbusy true if Stata is busy

H(vname) true if vname is hidden or disabled
default(vname) true if vname is its default value

Note the recursive definition: An ifexp may be substituted into itself to produce more complicated
expressions, such as ((!d1.s1) & d1.s2) | d1.s3.isdefault().

Dialog programming — Dialog programming 45

Also note that the order of evaluation is left to right; use parentheses.

booleanfunction Meaning

isdefault() true if the value of vname is its default value
isenabled() true if vname is enabled
isnumlist() true if the value of vname is a numlist
isvisible() true if vname is visible
isvalidname() true if the value of vname is a valid Stata name
isvarname() true if the value of vname is the name of a variable in the

current dataset
iseq(argument) true if the value of vname is equal to argument
isneq(argument) true if the value of vname is not equal to argument
isgt(argument) true if the value of vname is greater than argument
isge(argument) true if the value of vname is greater than or equal to argument
islt(argument) true if the value of vname is less than argument
isle(argument) true if the value of vname is less than or equal to argument
isNumlistEQ(argument) true if every value of vname is equal to argument, where

vname may be a numlist
isNumlistLT(argument) true if every value of vname is less than argument, where

vname may be a numlist
isNumlistLE(argument) true if every value of vname is less than or equal to argument,

where vname may be a numlist
isNumlistGT(argument) true if every value of vname is greater than argument, where

vname may be a numlist
isNumlistGE(argument) true if every value of vname is greater than or equal to argument,

where vname may be a numlist
isNumlistInRange(arg1,arg2) true if every value of vname is in between arg1 and arg2 inclusive,

where vname may be a numlist
startswith(argument) true if the value of vname starts with argument
endswith(argument) true if the value of vname ends with argument
contains(argument) true if the value of vname contains argument
iseqignorecase(argument) true if the value of vname is equal to argument ignoring case

An argument can be a dialog control, a dialog property, or a literal. If the argument is a literal it can
be either string or numeric, depending on the type of control the booleanfunction references. String
controls require that literals be quoted, and numeric controls require that literals not be quoted.

Description

if executes the code inside the braces if ifexp evaluates to true and skips it otherwise. When an
else has been specified, the code within its braces will be executed if ifexp evaluates to false. if
commands may be nested.

Example
if d1.v1.isvisible() {

put "thing=" d1.v1
}
else {

put "thing=" d1.v2
}

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist

46 Dialog programming — Dialog programming

5.2.2 while

Syntax

while condition {
. . .

}

where condition may be

condition Meaning

(condition) order of evaluation
!condition logical not
condition | condition logical or
condition & condition logical and

Description

A while loop is for circumstances where you want to do the same thing repeatedly. It is controlled
by a counter. For a while loop to execute correctly, you must do the following:

1. Initialize a start value for the counter before the loop.

2. Specify a condition that tests the value of the counter against its expected final value such
that the logical condition evaluates to false and the loop is forced to end at some point.

3. Specify a command that modifies the value of the counter inside the loop.

Example
PROGRAM testprog

call create DOUBLE i
call create ARRAY testlist
while(i.islt(10)) {

call i.withvalue testlist.Arrpush @
call i.increment

}
END

Dialog programming — Dialog programming 47

5.2.3 call

Syntax

call iaction

where iaction is

.

action memberfunction
gaction dialogname.controlname.memberfunction
dialogname.controlname.memberfunction
script scriptname
view topic
program programname

iaction “action memberfunctionname” is invalid in u-action programs because there is no concept
of a current control.

Description

call executes the specified iaction. If an iaction is not specified, gaction is assumed.

Example
PROGRAM testprog

BEGIN
if sample.cb1 & sample.cb2 {

call gaction sample.txt1.disable
}
if !(sample.cb1 & sample.cb2) {

call gaction sample.txt1.enable
}

END

5.2.4 exit

Syntax

exit
[

#
]

where # ≥ 0. The following exit codes have special meaning:

Definition

0 exit without error
>0 exit with error
101 program exited because of a missing required object

48 Dialog programming — Dialog programming

Description

exit causes the program to exit and, optionally, to return #.

exit without an argument is equivalent to “exit 0”. In u-action programs, the cmdstring,
optstring will be sent to Stata for execution.

exit #, # > 0, indicates an error. In u-action programs, the cmdstring, optstring will not
be executed. exit 101 has special meaning. When a u-action program exits, Stata checks the exit
code for that program and, if it is 101, presents an error box stating that the user forgot to fill in a
required element of the dialog box.

Example
if !sample.var1 {

exit 101
}

5.2.5 close

Syntax

close

Description

close causes the dialog box to close.

5.3 Error-checking and presentation commands

5.3.1 require

Syntax

require ename
[

ename
[
. . .

]]
where each ename must be string.

Description

require does nothing on each ename that is disabled or hidden.

For other enames, require requires that the controls specified not be empty ("") and produces
a stop-box error message such as “dependent variable must be defined” for any that are empty. The
“dependent variable” part of the message will be obtained from the control’s error() option or, if
that was not specified, from the control’s label() option; if that was not specified, a generic error
message will be displayed.

Example
require main.grpvar

Dialog programming — Dialog programming 49

5.3.2 stopbox

Syntax

stopbox { stop | note | rusure }
[
"line1"

[
"line2"

[
"line3"

[
"line4"

]]]]
Description

stopbox displays a message box containing up to four lines of text. Three types are available:

stop: Displays a message box in which there is only one button, OK, which means that the
user must accept that he or she made an error and correct it. The program will exit
after stopbox stop.

note: Displays a message box in which there is only one button, OK, which confirms that the
user has read the message. The program will continue after stopbox note.

rusure: Displays a message box in which there are two buttons, Yes and No. The program will
continue if the user clicks on Yes or exit if the user clicks on No.

Also see [P] window stopbox for more information.

Example
stopbox stop "Nothing has been selected"

5.4 Command-construction commands

The command-construction commands are

by

bysort

put

varlist

ifexp

inrange

weight

beginoptions/option/optionarg/endoptions

allowxi/xi

clear

Most correspond to the part of Stata syntax for which they are named:

by varlist: cmd varlist
[

if
] [

in
] [

weight
][
, options

]
put corresponds to cmd (although it is useful for other things as well), and allowxi/xi corresponds

to putting xi: in front of the entire command; see [R] xi.
The command-construction commands (with the exception of xi) build cmdstring and optstring

in the order the commands are executed (see 5.1.3 rstrings: cmdstring and optstring), so you should
issue them in the same order they are used in Stata syntax.

https://www.stata.com/manuals/pwindowstopbox.pdf#pwindowstopbox
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/rxi.pdf#rxi

50 Dialog programming — Dialog programming

Added to the syntax diagrams that follow is a new header:

Use of option() communication.

This refers to the option() option on the input control definition, such as CHECKBOX and EDIT;
see 2.6 U-actions and communication options.

5.4.1 by

Syntax

by ename

where ename must contain a string and should refer to a VARNAME, VARLIST, or EDIT control.

Use of option() communication: None.

Description

by adds nothing to the current rstring if ename is hidden, disabled, or empty. Otherwise, by outputs
“by varlist:”, followed by a blank, obtaining a varlist from ename.

Example
by d2.by

5.4.2 bysort

Syntax

bysort ename

where ename must contain a string and should probably refer to a VARNAME, VARLIST, or EDIT
control.

Use of option() communication: None.

Description

bysort adds nothing to the current rstring if ename is hidden, disabled, or empty. Otherwise,
bysort outputs “by varlist, sort :”, followed by a blank, obtaining a varlist from ename.

Example
bysort d2.by

Dialog programming — Dialog programming 51

5.4.3 put

Syntax

put
[
% fmt

]
putel

[[
% fmt

]
putel

[
. . .

]]
where putel may be

""

"string"
vname
/hidden vname
/on vname
/program programname

The word “output” means “add to the current result” in what follows. The put directives are
defined as

"" and "string"
Outputs the fixed text specified.

vname
Outputs the value of the control.

/hidden vname
Outputs the value of the control, even if it is hidden or disabled.

/on vname
Outputs nothing if vname==0. vname must be numeric and should be the result of a CHECKBOX or
RADIO control. /on outputs the text from the control’s option() option. Also see 5.4.8.1 option
for an alternative using the option command.

/program programname
Outputs the cmdstring, optstring returned by programname.

If any vname is disabled or hidden and not preceded by /hidden, put outputs nothing.

If the directive is preceded by % fmt, the specified % fmt is always used to format the result.
Otherwise, string results are displayed as is, and numeric results are displayed in %10.0g format and
stripped of resulting leading and trailing blanks. See [D] format.

Use of option() communication: See /on above.

Description

put adds to the current rstring (outputs) what is specified.

Remarks

put "string" is often used to add the Stata command to the current rstring. When used in that
way, the right way to code is

put "commandname "

Note the trailing blank on commandname; see 5.1.4 Adding to an rstring.

put displays nothing if any element specified is hidden or disabled. For instance,
put "thing=" d1.v1

https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/dformat.pdf#dformat

52 Dialog programming — Dialog programming

will output nothing (not even "thing=") if d1.v1 is hidden or disabled. This saves you from having
to code

if !H(d1.v1) {
put "thing=" d1.v1

}

5.4.4 varlist

Syntax

varlist el
[

el
[
. . .

]]
where an el is ename or [ename] (brackets significant).

Each ename must be string and should be the result from a VARLIST, VARNAME, or EDIT control.

If ename is not enclosed in brackets, it must not be hidden or disabled.

Use of option() communication: None.

Description

varlist considers it an error if any of the specified enames that are not enclosed in brackets are
hidden or disabled or empty (contain "").

In these cases, varlist displays a stop-message box indicating that the varlist must be filled in and
exits the program.

varlist adds nothing to the current rstring if any of the specified enames that are enclosed in
brackets are hidden or disabled.

Otherwise, varlist outputs with leading and trailing blanks the contents of each ename that is
not hidden, is not disabled, and does not contain "".

Remarks

varlist is most often used to output the varlist of a Stata command, such as

varlist main.depvar
[
main.indepvars

]
varlist can also be used for other purposes. You might code

if d1.vl {
put " exog("
varlist d2.vl
put ") "

}

although coding

optionarg d2.vl

would be an easier way to achieve the same effect.

Dialog programming — Dialog programming 53

5.4.5 ifexp

Syntax

ifexp ename

where ename must be a string control.

Use of option() communication: None.

Description

ifexp adds nothing to the current rstring if ename is hidden, disabled, or empty. Otherwise, output
is “if exp”, with spaces added before and after.

Example
if d2.if

5.4.6 inrange

Syntax

inrange ename 1 ename 2

where ename 1 and ename 2 must be numeric controls.

Use of option() communication: None.

Description

If ename 1 is hidden or disabled, results are as if ename 1 were not hidden and contained 1.
If ename 2 is hidden or disabled, results are as if ename 1 were not hidden and contained N, the
number of observations in the dataset.

If ename 1==1 and ename 2== N, nothing is output (added to the current rstring).

Otherwise, “in range” is output with spaces added before and after, with the range obtained from
ename 1 and ename 2.

Example
inrange d2.in1 d2.in2

5.4.7 weight

Syntax

weight ename t ename e

where ename t may be a string or numeric control and must have had option() filled in with a
weight type (one of weight, fweight, aweight, pweight, or iweight), and ename e must be a
string evaluating to the weight expression or variable name.

Use of option() communication: ename t must have option() filled in the weight type.

54 Dialog programming — Dialog programming

Description

weight adds nothing to the current rstring if ename t or ename e are hidden, disabled, or empty.
Otherwise, output is [weighttype=exp] with leading and trailing blanks.

Remarks

weight is typically used as

weight radio(d1 w1 w2 . . . wk) d1.wexp

where d1.w1, d1.w2, . . . , d1.wk are radio buttons, which could be defined as
DIALOG d1 . . .

BEGIN
. . .

RADIO w1 . . . , . . . label(fweight) first . . .
RADIO w2 . . . , . . . label(aweight) . . .
RADIO w3 . . . , . . . label(pweight) . . .
RADIO w4 . . . , . . . label(iweight) last . . .
. . .

END

Not all weight types need to be offered. If a command offers only one kind of weight, you do not
need to use radio buttons. You could code

weight d1.wt d1.wexp

where d1.wt was defined as
CHECKBOX wt . . . , . . . label(fweight) . . .

5.4.8 beginoptions and endoptions

Syntax

beginoptions
any dialog-programming command except beginoptions
. . .

endoptions

Use of option() communication: None.

Description

beginoptions/endoptions indicates that you wish what is enclosed to be treated as Stata options
in constructing cmdstring, optstring.

The current rstring is, by default, cmdstring. beginoptions changes the current rstring to
optstring. endoptions changes it back to cmdstring. So there are two strings being built. When
the dialog program exits normally, if there is anything in optstring, trailing spaces are removed
from cmdstring, a comma and a space are added, the contents of optstring are added, and all
that is returned. Thus a dialog program can have many beginoptions/endoptions blocks, but all
the options will appear at the end of the cmdstring.

The command-construction commands option and optionarg are documented below because
they usually appear inside a beginoptions/endoptions block, but they can be used outside
beginoptions/endoptions blocks, too. Also all the other command-construction commands can
be used inside a beginoptions/endoptions block, and using put is particularly common.

Dialog programming — Dialog programming 55

5.4.8.1 option

Syntax

option ename
[

ename
[
. . .

]]
where ename must be a numeric control with 0 indicating that the option is not desired.

Use of option() communication: option() specifies the name of the option.

Description

option adds nothing to the current rstring if any of the enames specified are hidden or disabled.
Otherwise, for each ename specified, if ename is not equal to 0, the contents of its option() are
displayed.

Remarks

option is an easy way to output switch options such as noconstant and detail. You simply
code

option d1.sw

where you have previously defined

CHECKBOX sw . . . , option(detail) . . .

Here detail will be output if the user checked the box.

5.4.8.2 optionarg

Syntax

optionarg
[

style
]

ename
[[

style
]

ename
[
. . .

]]
where each ename may be a numeric or string control and style is

style Meaning

/asis do not quote
/quoted do quote
/oquoted quote if necessary
% fmt for use with numeric

Use of option() communication: option() specifies the name of the option.

Description

optionarg adds nothing to the current rstring if any of the enames specified are hidden or disabled.
Otherwise, for each ename specified, if ename is not equal to "", the ename’s option() is output,
followed by “(”, the ename’s contents, and “)” with blanks added before and after.

https://www.stata.com/manuals/d.pdf#dformat

56 Dialog programming — Dialog programming

Remarks

optionarg is an easy way to output single-argument options such as title() or level(); for
example,

optionarg /oquoted d1.ttl

if ! d1.level.isdefault() {
optionarg d1.level

}

where you have previously defined

EDIT ttl . . . , . . . label(title) . . .
SPINNER level . . . , . . . label(level) . . .

5.5 Command-execution commands

Commands are executed automatically when a program is invoked by an input control’s uaction()
option. Programs so invoked are called u-action programs. No command is executed when a program
is invoked by an input control’s iaction() option. Programs so invoked are called i-action programs.

The stata and clear commands are for use if

1. you want to write a u-action program that executes more than one Stata command, or

2. you want to write an i-action program that executes one or more Stata commands (also
known as heavyweight i-action programs).

5.5.1 stata

Syntax

stata

stata hidden
[
immediate | queue

]
Use of option() communication: None.

Description

stata executes the current cmdstring, optstring and displays the command in the Results
window before execution, just as if the user had typed it.

stata hidden executes the current cmdstring, optstring but does not display the command
in the Results window before execution. stata hidden may optionally be called with either of two
modifiers: queue or immediate. If neither modifier is specified, immediate is implied.

immediate causes the command to execute at once, waits for the command to finish, and sets rc
to contain the return code. Because the command is to be executed immediately, the dialog engine
will complain if Stata is not idle.

queue causes the command to be placed into the command buffer, allowing it to be executed as
soon as Stata becomes idle. The behavior of stata and stata hidden queue are identical except
that stata hidden queue does not echo the command.

Dialog programming — Dialog programming 57

Important notes about stata hidden immediate

A unique situation can occur when stata hidden immediate is used in an initialization script or
program. Stata dialogs are considered asynchronous, meaning that Stata dialogs can be loaded through
the menu and help systems even when Stata is busy processing an ado program. Because stata
hidden immediate relies on ado processing and because ado processing is synchronous, dialogs that
call stata hidden immediate during initialization can only be used synchronously. That means
these types of dialogs cannot be loaded while Stata is busy processing other tasks. Because of this,
the dialog must be notified that it is special in this regard. This is done by placing the dialog directive
SYNCHRONOUS ONLY in the dialog box program just after the VERSION statement.

SYNCHRONOUS ONLY performs one other important function. Dialogs that are launched by using
the db command cause Stata to become busy and remain busy until the dialog is completely loaded.
After all, db is an ado program, and until the dialog loads and db subsequently exits execution, Stata
is busy. The SYNCHRONOUS ONLY directive lets the dialog engine know that executing stata hidden
immediate during initialization routines is allowed even when the dialog is launched with an ado
program.

5.5.2 clear

Syntax

clear
[
curstring | cmdstring | optstring

]
Use of option() communication: None.

Description

clear is seldom used and is typically specified without arguments. clear clears (resets to "")
the specified return string or, if it is specified without arguments, clears cmdstring and optstring.
If curstring is specified, clear clears the current return string, which is cmdstring by default or
optstring within a beginoptions/endoptions block.

5.6 Special scripts and programs

Sometimes, it may be useful to have a script or program run automatically, either just before
dialog-box controls are created or just after. The following scripts and programs are special, and when
they are defined, they run automatically.

Name Function

PREINIT SCRIPT script that runs before any dialog box controls are created
PREINIT PROGRAM program that runs before any dialog box controls are created

POSTINIT SCRIPT script that runs after all dialog box controls are created
POSTINIT PROGRAM program that runs after all dialog box controls are created

PREINIT shortcut for PREINIT SCRIPT

POSTINIT shortcut for POSTINIT SCRIPT

ON DOTPROMPT program that runs when Stata returns from executing an
interactive command; ON DOTPROMPT program should
never call the dialog system’s stata command, because that
would result in infinite recursion

58 Dialog programming — Dialog programming

Often it is desirable to encapsulate individual dialog tabs into .idlg files, particularly when a
dialog tab is used in many different dialog boxes. In those circumstances, a dialog tab can use its own
initialization script or program. The following naming conventions are used to define these scripts
and programs.

Name Function

tabname PREINIT SCRIPT script that runs before controls on dialog tabname are created
tabname PREINIT PROGRAM program that runs before controls on dialog tabname are created

tabname POSTINIT SCRIPT script that runs after controls on dialog tabname are created
tabname POSTINIT PROGRAM program that runs after controls on dialog tabname are created

tabname PREINIT shortcut for tabname PREINIT SCRIPT

tabname POSTINIT shortcut for tabname POSTINIT SCRIPT

The order of execution for dialog initialization is as follows:

1. Execute PREINIT script or program for the dialog box.

2. Execute PREINIT scripts and programs for each dialog tab using the order in which the tabs
are created.

3. Create all controls for the entire dialog box.

4. Execute POSTINIT scripts and programs for each dialog tab using the order in which the
tabs are created.

5. Execute POSTINIT script or program for the dialog box.

6. Properties

Properties are used to store information that is useful for dialog box programming. Properties may
be of type STRING, DOUBLE, or BOOLEAN and do not have a visual representation on the dialog box.
Special variants of these basic types are available. These variants, PSTRING, PDOUBLE, and PBOOLEAN,
are considered persistent and are identical to their counterparts. The contents of these persistent types
do not get destroyed when a dialog is reset. Usually, the base types should be used. Application of
the persistent types should be reserved for special circumstances. See create for information about
creating new instances of a property.

Member functions

STRING propertyname.setvalue strvalue
propertyname.setstring strvalue; synonym for .setvalue
propertyname.append strvalue
propertyname.tokenize classArrayName
propertyname.tokenizeOnStr classArrayName strvalue
propertyname.tokenizeOnChars classArrayName strvalue
propertyname.expandNumlist
propertyname.storeDialogClassName
propertyname.storeClsArrayToQuotedStr classArrayName

DOUBLE propertyname.setvalue value
propertyname.increment

Dialog programming — Dialog programming 59

propertyname.decrement
propertyname.add value
propertyname.subtract value
propertyname.multiply value
propertyname.divide value
propertyname.storeClsArraySize classArrayName

BOOLEAN propertyname.settrue
propertyname.setfalse
propertyname.storeClsObjectExists objectName

Special definitions

strvalue Definition

"string" quoted string literal
literal string same as string
c(name) contents of c(name); see [P] creturn
r(name) contents of r(name); see [P] return
e(name) contents of e(name); see [P] ereturn
s(name) contents of s(name); see [P] return
char varname[charname] value of characteristic; see [P] char
global name contents of global macro $name
class objectName contents of a class system object; object name may be a

fully qualified object name, or it may be given in the scope of
the dialog box

value Definition

a numeric literal
literal # same as #
c(name) value of c(name); see [P] creturn
r(name) value of r(name); see [P] return
e(name) value of e(name); see [P] ereturn
s(name) value of s(name); see [P] return
global name value of global macro $name
class objectName contents of a class system object. The object name may be a

fully qualified object name or it may be given in the scope of
the dialog box.

7. Child dialogs

Syntax

create CHILD dialogname
[
AS referenceName

] [
, nomodal allowsubmit

allowcopy message(string)
]

https://www.stata.com/manuals/pcreturn.pdf#pcreturn
https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/pereturn.pdf#pereturn
https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/pchar.pdf#pchar
https://www.stata.com/manuals/pcreturn.pdf#pcreturn
https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/pereturn.pdf#pereturn
https://www.stata.com/manuals/preturn.pdf#preturn

60 Dialog programming — Dialog programming

Member functions

settitle string sets the title text of the child dialog box

setExitString string informs the child where to save the command string when the OK or
Submit button is clicked on

setOkAction string informs the child that it is to invoke a specific action in the parent
when the OK button is clicked on and the child exits

setSubmitAction string informs the child that it is to invoke a specific action in the parent
when the Submit button is clicked on

setExitAction string informs the child that it is to invoke a specific action in the parent when
the OK or Submit button is clicked on; note that setExitAction has
the same effect as calling both setOkAction and setSubmitAction
with the same argument

create property allows the parent to create properties in the child; see 6. Properties

callthru gaction allows the parent to call global actions in the context of the child

Description

Child dialogs are dialogs that are spawned by another dialog. These dialogs form a relationship
where the initial dialog is referred to as the parent and all dialogs spawned from that parent are
referred to as its children. In most circumstances, the children collect information and return that
information to the parent for later use. Unless AS referencename has been specified, children are
referenced through the dialogname.

Options

nomodal suppresses the default modal behavior of a child dialog unless the MODAL directive was
specifically used inside the child dialog resource file.

allowsubmit allows for the use of the Submit button on the dialog box. By default, the Submit
button is removed if it has been declared in the child dialog resource file.

allowcopy allows for the use of the Copy button on the dialog box. By default, the Copy button is
removed if it has been declared in the child dialog resource file.

message(string) specifies that string be passed to the child dialog box, where it can be referenced
from STRING property named MESSAGE.

7.1 Referencing the parent

While it is normally not necessary, it is sometimes useful for a child dialog box to give special
instructions or information to its parent. All child dialog boxes contain a special object named PARENT,
which can be used with a member program named callthru. PARENT.callthru can be used to
call any intermediate action in the context of the parent dialog box.

Dialog programming — Dialog programming 61

8. Example

The following example will execute the summarize command. In addition to the copy below, a
copy can be found among the Stata distribution materials. You can type

. which sumexample.dlg

to find out where it is.

sumexample.dlg
// sumexample
// version 1.0.0

VERSION 18.0

POSITION . . 320 200

DIALOG main, title("Example simple summarize dialog") tabtitle("Main")
BEGIN

TEXT lab 10 10 300 ., label("Variables to summarize:")
VARLIST vars @ +20 @ ., label("Variables to sum")

END

DIALOG options, tabtitle("Options")
BEGIN

CHECKBOX detail 10 10 300 ., ///
label("Show detailed statistics") ///
option("detail") ///
onclickoff(‘"options.status.setlabel "(detail is off)""’) ///
onclickon(‘"gaction options.status.setlabel "(detail is on)""’)

TEXT status @ +20 @ ., ///
label("This label won’t be seen")

BUTTON btnhide @ +30 200 ., ///
label("Hide other controls") push("script hidethem")

BUTTON btnshow @ +30 @ ., ///
label("Show other controls") push("script showthem")

BUTTON btngrey @ +30 @ ., ///
label("Disable other controls") push("script disablethem")

BUTTON btnnorm @ +30 @ ., ///
label("Enable other controls") push("script enablethem")

END

SCRIPT hidethem
BEGIN

gaction main.lab.hide
main.vars.hide
options.detail.hide
options.status.hide

END

SCRIPT showthem
BEGIN

main.lab.show
main.vars.show
options.detail.show
options.status.show

END

SCRIPT disablethem
BEGIN

main.lab.disable
main.vars.disable
options.detail.disable
options.status.disable

END

62 Dialog programming — Dialog programming

SCRIPT enablethem
BEGIN

main.lab.enable
main.vars.enable
options.detail.enable
options.status.enable

END

OK ok1, label("Ok")
CANCEL can1
SUBMIT sub1
HELP hlp1, view("help summarize")
RESET res1

PROGRAM command
BEGIN

put "summarize"
varlist main.vars /* varlist [main.vars] to make it optional */
beginoptions

option options.detail
endoptions

END
sumexample.dlg

Appendix A: Jargon

action: See i-action and u-action.

browser: See file chooser.

button: A type of input control; a button causes an i-action to occur when it is clicked on. Also see
u-action buttons, helper buttons, and radio buttons.

checkbox: A type of numeric input control; the user may either check or uncheck what is presented;
suitable for obtaining yes/no responses. A checkbox has value 0 or 1, depending on whether the
item is checked.

combo box: A type of string input control that has an edit field at the top and a list box underneath.
Combo boxes come in three types:

A regular combo box has an edit field and a list below it. The user may choose from the list or
type into the edit field.

A drop-down combo box also has an edit field and a list, but only the edit field shows. The user
can click to expose the list. The user may choose from the list or type in the edit field.

A drop-down-list combo box is more like a list box. An edit field is displayed. The list is hidden,
and the user can click to expose the list, but the user can only choose elements from the list; he
or she cannot type in the edit field.

control: See input control and static control.

control status: Whether a control (input or static) is disabled or enabled, hidden or shown.

dialog(s): The main components of a dialog box in that the dialogs contain all the controls except
for the u-action buttons.

dialog box: Something that pops up onto the screen that the user fills in; when the user clicks on an
action button, the dialog box causes something to happen (namely, Stata to execute a command).

A dialog box is made up of one or more dialogs, u-action buttons, and a title bar.

Dialog programming — Dialog programming 63

If the dialog box contains more than one dialog, only one of the dialogs shows at a time, which
one being determined by the tab selected.

dialog program: See PROGRAM.

disabled and enabled: A control that is disabled is visually grayed out; otherwise, it is enabled. The
user cannot modify disabled input controls. Also see hidden and exposed.

.dlg file: The file containing the code defining a dialog box and its actions. If the file is named
xyz.dlg, the dialog box is said to be named xyz.

dlg-program: The entire contents of a .dlg file; the code defining a dialog box and its actions.

edit field: A type of string input control; a box in which the user may type text.

enabled and disabled: See disabled and enabled.

exposed and hidden: See hidden and exposed.

file browser: See file chooser.

file chooser: A type of string input control; presents a list of files from which the user may choose
one or type a filename.

frame: A type of static control; a rectangle drawn around a group of controls.

group box: A type of static control; a rectangle drawn around a group of controls with descriptive
text at the top.

helper buttons: The buttons Help and Reset. When Help is clicked on, the help topic for the dialog
box is displayed. When Reset is clicked on, the control values of the dialog box are reset to their
defaults.

hidden and exposed: A control that is removed from the screen is said to be hidden; otherwise, it is
exposed. Hidden input controls cannot be manipulated by the user. A control would also not be
shown when it is contained in a dialog that does not have its tab selected in a multidialog dialog
box; in this case, it may be invisible, but whether it is hidden or exposed is another matter. Also
see disabled and enabled.

i-action: An intermediate action usually caused by the interaction of a user with an input control,
such as hiding or showing and disabling or enabling other controls; opening the Viewer to display
something; or executing a SCRIPT or a PROGRAM.

input control: A screen element that the user fills in or sets. Controls include checkboxes, buttons,
radio buttons, edit fields, spinners, file choosers, etc. Input controls have (set) values, which can
be string, numeric, or special. These values reflect how the user has “filled in” the control. Input
controls are said to be string or numeric depending on the type of result they obtain (and how
they store it).

Also see static control.

label or title: See title or label.

list: A programming concept; a vector of elements.

list box: A type of string input control; presents a list of items from which the user may choose. A
list box has (sets) a string value.

numeric input control: An input control that returns a numeric value associated with it.

position: Where something is located, measured from the top left by how far to the right it is (x)
and how far down it is (y).

64 Dialog programming — Dialog programming

PROGRAM: A programming concept dealing with the implementation of dialogs. PROGRAMs may
be used to implement i-actions or u-actions. Also see SCRIPT.

radio buttons: A set of numeric input controls, each a button, of which only one may be selected
at a time; suitable for obtaining categorical responses. Each radio button in the set has (sets) a
numeric value, 0 or 1, depending on which button is selected. Only one in the set will be 1.

SCRIPT: A programming concept dealing with the implementation of dialogs. An array of i-actions
to be executed one after the other; errors that occur do not stop subsequent actions from being
attempted. Also see PROGRAM.

size: How large something is, measured from its top-left corner, as a width (xsize) and height (ysize).
Height is measured from the top down.

spinner: A type of numeric input control; presents a numeric value that the user may increase or
decrease over a range. A spinner has (sets) a numeric value.

static control: A screen element similar to an input control, except that the end user cannot interact
with it. Static controls include static text and lines drawn around controls visually to group them
together (group boxes and frames). Also see control and input control.

static text: A static control specifying text to be placed on a dialog.

string input control: An input control that returns a string value associated with it.

tabs: The small labels at the top of each dialog (when there is more than one dialog associated with
the dialog box) and on which the user clicks to select the dialog to be filled in.

title or label: The fixed text that appears above or on objects such as dialog boxes and buttons.
Controls are usually said to be labeled, whereas dialog boxes are said to be titled.

u-action: What a dialog box causes to happen after the user has filled it in and clicked on a u-action
(ultimate action) button. The point of a dialog box is to result in a u-action.

u-action buttons: The buttons OK, Submit, Cancel, and Copy; clicking on one causes the ultimate
action (u-action) associated with the button to occur and, perhaps, the dialog box to close.

varlist or varname control: A type of string input control; an edit field that also accepts input from
the Variables window. This control also contains a combo-box-style list of the variables. A varlist
or varname control has (sets) a string value.

Appendix B: Class definition of dialog boxes

Dialog boxes are implemented in terms of class programming; see [P] class.

The top-level class instance of a dialog box defined in dialogbox.dlg is .dialogbox dlg. Dialogs
and controls are nested within that, so .dialogbox dlg.dialogname would refer to a dialog, and
.dialogbox dlg.dialogname.controlname would refer to a control in the dialog.

.dialogbox dlg.dialogname.controlname.value is the current value of the control, which will
be either a string or a double. You must not change this value.

The member functions of the controls are implemented as member functions of .dialog-
box dlg.dialogname.controlname and may be called in the standard way.

https://www.stata.com/manuals/pclass.pdf#pclass

Dialog programming — Dialog programming 65

Appendix C: Interface guidelines for dialog boxes

One of Stata’s strengths is its strong support for cross-platform use—datasets and programs are
completely compatible across platforms. This includes dialogs written in the dialog-programming
language. Although Mac, Windows, and X Windows share many common graphical user-interface
elements and concepts, they all vary slightly in their appearance and implementation. This variation
makes it difficult to design dialogs that look and behave the same across all platforms. Dialogs should
look pleasant on screen to enhance their usability, and achieving this goal often means being platform
specific when laying out controls. This often leads to undesirable results on other platforms.

The dialog-programming language was written with this in mind, and dialogs that appear and
behave the same across multiple operating systems and appear pleasant can be created by following
some simple guidelines.

Use default heights where applicable: Varying vertical-size requirements of controls across different
operating systems can cause a dialog that appears properly on one platform to display controls
that overlap one another on another platform. Using the default ysize of . takes these variations
into account and allows for much easier placement and alignment of controls. Some controls (list
boxes, regular combo boxes, group boxes, and frames) still require their ysize to be specified
because their vertical size determines how much information they can reveal.

Use all horizontal space available: Different platforms use different types of fonts to display text
labels and control values. These variations can cause some control labels to be truncated (or even
word wrapped) if their xsize is not large enough for a platform’s system font. To prevent this from
happening, specify an xsize that is as large as possible. For each column of controls, specify the
entire column width for each control’s xsize, even for controls where it is obviously unnecessary.
This reduces the chances of a control’s label being truncated on another platform and also allows
you to make changes to the label without constantly having to adjust the xsize. If your control
barely fits into the space allocated to it, consider making your dialog slightly larger.

Use the appropriate alignment for static text controls: The variations in system fonts also make it
difficult to horizontally align static text controls with other controls. Placing a static text control
next to an edit field may look good on one platform but show up with too much space between
the controls on another or even show up truncated.

One solution is to place static text controls above controls that have an edit field and make the
static text control as wide as possible. This gives more room for the static text control and makes
it easier to left-justify it with other controls.

When placing a static text control to the left of a control is more appropriate (such as From: and
To: edit fields), use right-alignment rather than the default left-alignment. The two controls will
then be equally spaced apart on all platforms. Again be sure to make the static text control slightly
wider than necessary—do not try to left-justify a right-aligned static text control with controls
above and below it because it may not appear left-justified on other platforms or may even be
truncated.

Do not crowd controls: Without making your dialog box unnecessarily large, use all the space that is
available. Organize related controls close together, and put some distance between unrelated ones.
Do not overload users with lots of controls in one dialog. If necessary, group controls in separate
dialogs. Most importantly, be consistent in how you layout controls.

All vertical size and spacing of controls involves multiples of 10 pixels: The default ysize for most
controls is 20 pixels. Related controls are typically spaced 10 pixels apart, and unrelated ones are
at least 20 pixels apart.

Use the appropriate control for the job: Checkboxes have two states: on or off. A radio-button
group consisting of two radio buttons similarly has two states. A checkbox is appropriate when the

66 Dialog programming — Dialog programming

action taken is either on or off or easy to infer (for example, Use constant). A two-radio-button
group is appropriate when the opposite state cannot be inferred (for example, Display graph and
Display table).

Radio-button groups should contain at least two radio buttons and no more than about seven. If
you need more choices, consider using a drop-down-list combo box or, if the number of choices is
greater than about 12, a list box. If you require a control that allows multiple selections, consider
a regular combo box or drop-down combo box. Drop-down combo boxes can be cumbersome to
use if the number of choices is great, so use a regular combo box unless space is limited.

Understand control precedence for mouse clicks: Because of the limited size of dialogs, you may
want to place several controls within the same area and hide and show them as necessary. It is also
useful to place controls within other controls, such as group boxes and frames, for organizational
and presentational purposes. However, the order of creation and placement and size of controls
can affect which controls receive mouse clicks first or whether they receive them at all.

The control where this can be problematic is the radio button. On some platforms, the space
occupied by a group of radio buttons is not the space occupied by the individual radio buttons.
It is inclusive to the space occupied by the radio button that is closest to the top-left corner of
the dialog, the widest radio button, and the bottommost radio button. To prevent a group of radio
buttons from preventing mouse clicks being received by other controls, Stata gives precedence to
all other controls except for group boxes and frames. The order of precedence for controls that
can receive mouse clicks is the following: first, all controls other than radio buttons and checkbox
group boxes, then radio buttons, then checkbox group boxes.

If you intend to place two or more groups of radio buttons in the same area and show and hide
them as necessary, be sure that when you hide the radio buttons from a group, you hide all radio
buttons from a group. The radio-button group with precedence over other groups will continue to
have precedence as long as any of its radio buttons are visible. Mouse clicks in the space occupied
by nonvisible radio buttons in a group with precedence will not pass through to any other groups
occupying the same space.

It is always safe to place controls within frames, group boxes, and checkbox group boxes because
all other controls take precedence over those controls.

In practice, you should never hide a radio button from a group without hiding the rest of the radio
buttons from the group. Consider simply disabling the radio button or buttons instead. It is also
not a good idea to hide or show radio buttons from different groups to make them appear that
they are from the same group. That simply will not work on some platforms and is generally a
bad idea, anyway.

Radio buttons have precedence over checkbox group boxes. You may place radio buttons within
a checkbox group box, but do not place a checkbox group box within the space occupied by a
group of radio buttons. If you do, you may not be able to click on the checkbox control on some
platforms.

Frequently asked questions

See dialog programming FAQs on the Stata website.

Also see
[P] window programming — Programming menus and windows

[R] db — Launch dialog

https://www.stata.com/support/faqs/lang/#dialog
https://www.stata.com/manuals/pwindowprogramming.pdf#pwindowprogramming
https://www.stata.com/manuals/rdb.pdf#rdb

Dialog programming — Dialog programming 67

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. Other brand and product names are registered trademarks or
trademarks of their respective companies. Copyright c© 1985–2023 StataCorp LLC,
College Station, TX, USA. All rights reserved.

®

