
Dialog programming — Dialog programming

Description Remarks and examples Also see

Description
Dialog-box programs—also called dialog resource files—allow you to define the appearance of a

dialog box, specify how its controls work when the user fills it in (such as hiding or disabling specific

controls), and specify the ultimate action to be taken (such as running a Stata command) when the user

clicks on OK or Submit.

Remarks and examples
Remarks are presented under the following headings:

1. Introduction
2. Concepts

2.1 Organization of the .dlg file
2.2 Positions, sizes, and the DEFINE command
2.3 Default values
2.4 Memory (recollection)
2.5 I-actions and member functions
2.6 U-actions and communication options
2.7 The distinction between i-actions and u-actions
2.8 Error and consistency checking

3. Commands
3.1 VERSION
3.2 INCLUDE
3.3 DEFINE
3.4 POSITION
3.5 LIST
3.6 DIALOG

3.6.1 CHECKBOX on/off input control
3.6.2 RADIO on/off input control
3.6.3 SPINNER numeric input control
3.6.4 EDIT string input control
3.6.5 VARLIST and VARNAME string input controls
3.6.6 FILE string input control
3.6.7 LISTBOX list input control
3.6.8 COMBOBOX list input control
3.6.9 BUTTON special input control
3.6.10 TEXT static control
3.6.11 TEXTBOX static control
3.6.12 GROUPBOX static control
3.6.13 FRAME static control
3.6.14 COLOR input control
3.6.15 EXP expression input control
3.6.16 HLINK hyperlink input control
3.6.17 TREEVIEW tree input control

3.7 OK, SUBMIT, CANCEL, and COPY u-action buttons
3.8 HELP and RESET helper buttons
3.9 Special dialog directives

4. SCRIPT
5. PROGRAM

5.1 Concepts
5.1.1 Vnames
5.1.2 Enames
5.1.3 rstrings: cmdstring and optstring

1

Dialog programming — Dialog programming 2

5.1.4 Adding to an rstring
5.2 Flow-control commands

5.2.1 if
5.2.2 while
5.2.3 call
5.2.4 exit
5.2.5 close

5.3 Error-checking and presentation commands
5.3.1 require
5.3.2 stopbox
5.3.3 repfile
5.3.4 smartquote

5.4 Command-construction commands
5.4.1 by
5.4.2 bysort
5.4.3 put
5.4.4 varlist
5.4.5 ifexp
5.4.6 inrange
5.4.7 weight
5.4.8 beginoptions and endoptions

5.4.8.1 option
5.4.8.2 optionarg

5.5 Command-execution commands
5.5.1 stata
5.5.2 clear

5.6 Special scripts and programs
6. Properties
7. Child dialogs

7.1 Referencing the parent
8. Example

Appendix A. Jargon
Appendix B. Class definition of dialog boxes
Appendix C. Interface guidelines for dialog boxes

Frequently asked questions

1. Introduction
At a programming level, the purpose of a dialog box is to produce a Stata command to be executed.

Along the way, it hopefully provides the user with an intuitive and consistent experience—that is your

job as a dialog-box programmer—but the ultimate output will be

list mpg weight or
regress mpg weight if foreign or
append using myfile

or whatever other Stata command is appropriate. Dialog boxes are limited to executing one Stata com-

mand, but that does not limit what you can do with them because that Stata command can be an ado-file.

(Actually, there is another way around the one-command limit, which we will discuss in 5.1.3 rstrings:

cmdstring and optstring.)

This ultimate result is called the dialog box’s u-action.

The u-action of the dialog box is determined by the code you write, called dialog code, which you

store in a .dlg file. The name of the .dlg file is important because it determines the name of the dialog
box. When a user types

. db regress

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples5.1.3rstringscmdstringandoptstring
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples5.1.3rstringscmdstringandoptstring

Dialog programming — Dialog programming 3

regress.dlg is executed. Stata finds the file the same way it finds ado-files—by looking along the

ado-path; see [P] sysdir. regress.dlg runs regress commands because of the dialog code that appears
inside the regress.dlg file. regress.dlg could just as well execute probit commands or even merge
commands if the code were written differently.

.dlg files describe

1. how the dialogs look,

2. how the input controls of the dialogs interact with each other, and

3. how the u-action is constructed from the user’s input.

Items 1 and 2 determine how intuitive and consistent the user finds the dialog. Item 3 determines what

the dialog box does. Item 2 determines whether some fields are disabled or hidden so that they cannot

be mistakenly filled in until the user clicks on something, checks something, or fills in a certain result.

2. Concepts
A dialog box is composed of many elements called controls, including static text, edit fields, and

checkboxes. Input controls are those that the user fills in, such as checkboxes and text-entry fields.

Static controls are fixed text and lines that appear in the dialog box but that the user cannot change. See

Appendix A below for definitions of the various types of controls as well as other related jargon.

In the jargon we use, a dialog box is composed of dialogs, and dialogs are composed of controls.

When a dialog box contains multiple dialogs, only one dialog is shown at a time. Here access to the

dialogs is made possible through small tabs. Clicking on the tab associated with a dialog makes that

dialog active.

The dialog box may contain the helper buttons Help (shown as a small button with a question mark

on it) and Reset (shown as a small button with an R on it). These buttons appear in the dialog box—not

the individual dialogs—so in a multiple-dialog dialog box, they appear regardless of the dialog (tab)

selected.

The Help helper button displays a help file associated with the dialog box.

The Reset helper button resets the dialog box to its initial state. Each time a user invokes a particular

dialog box, it will remember the values last set for its controls. The reset button allows the user to restore

the default values for all controls in the dialog box.

The dialog boxmay also include the u-action buttonsOK, Submit,Copy, andCancel. Like the helper

buttons, u-action buttons appear in the dialog box—not the individual dialogs—so in a multiple-dialog

dialog box, they appear regardless of the dialog (tab) selected.

The OK u-action button constructs the u-action, sends it to Stata for execution, and closes the dialog

box.

The Submit u-action button constructs the u-action, sends it to Stata for execution, and leaves the

dialog box open.

The Copy u-action button constructs the u-action, sends it to the clipboard, and leaves the dialog box

open.

The Cancel u-action button closes the dialog box without constructing the u-action.

A dialog box does not have to include all of these u-action buttons, but it needs at least one.

https://www.stata.com/manuals/psysdir.pdf#psysdir
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesAppendixA.Jargon

Dialog programming — Dialog programming 4

Thus the nesting is

Dialog box, which contains

Dialog 1, which contains

input controls and static controls

Dialog 2, which is optional and which, if defined, contains

input controls and static controls

[. . .]

Helper buttons, which are optional and which, if defined, contain

[Help button]

[Reset button]

U-action buttons, which contain

[OK button]

[Submit button]

[Copy button]

[Cancel button]

Said differently,

1. a dialog box must have at least one dialog, must have one set of u-action buttons, and may have

helper buttons;

2. a dialog must have at least one control and may have many controls; and

3. the u-action buttons may include any of OK, Submit, Copy, and Cancel and must include at

least one of them.

Here is a simple .dlg file that will execute the kappa command, although it does not allow if exp

and in range:

BEGIN mykappa.dlg
// ----------------- set version number and define size of box ---------
VERSION 19.5 // or VERSION 19.0 if you do not have StataNow
POSITION . . 290 200
// --- define a dialog ---------
DIALOG main, label(”kappa - Interrater agreement”)
BEGIN

TEXT tx_var 10 10 270 ., label(”frequency variables:”)
VARLIST vl_var @ +20 @ ., label(”frequencies”)

END
// -------------------- define the u-action and helper buttons ---------
OK ok1, label(”OK”)
CANCEL can1, label(”Cancel”)
SUBMIT sub1, label(”Submit”)
COPY copy1,
HELP hlp1, view(”help kappa”)
RESET res1
// --------------------------- define how to assemble u-action ---------
PROGRAM command
BEGIN

put ”kappa ”
varlist main.vl_var

END
END mykappa.dlg

https://www.stata.com/manuals/rkappa.pdf#rkappa

Dialog programming — Dialog programming 5

2.1 Organization of the .dlg file

A .dlg file consists of seven parts, some of which are optional:
BEGIN dialogboxname.dlg

VERSION ... Part 1: version number
POSITION ... Part 2: set size of dialog box
DEFINE ... Part 3, optional: common definitions
LIST ...
DIALOG ... Part 4: dialog definitions

BEGIN
FILE which contain input controls
BUTTON ...
CHECKBOX ...
COMBOBOX ...
EDIT ...
LISTBOX ...
RADIO ...
SPINNER ...
VARLIST ...
VARNAME ...
FRAME and static controls
GROUPBOX ...
TEXT ...

END
repeat DIALOG... BEGIN... END as necessary

SCRIPT ... Part 5, optional: i-action definitions
BEGIN . . . usually done as scripts

...
END

PROGRAM but sometimes as programs
BEGIN

...
END

OK ... Part 6: u-action and helper button definitions
CANCEL ...
SUBMIT ...
HELP ...
RESET ...
PROGRAM command Part 7: u-action definition

BEGIN
...

END
END dialogboxname.dlg

The VERSION statement must appear at the top; the other parts may appear in any order.

I-actions, mentioned in Part 5, are intermediate actions, such as hiding or showing, disabling or en-

abling a control, or opening theViewer to display something, etc., while leaving the dialog up and waiting

for the user to fill in more or press a u-action button.

2.2 Positions, sizes, and the DEFINE command

Part of specifying how a dialog appears is defining where things go and how big they are.

Positions are indicated by a pair of numbers, x and y. They are measured in pixels and are interpreted

as being measured from the top-left corner: x is how far to the right, and y is how far down.

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplespart5

Dialog programming — Dialog programming 6

Sizes are similarly indicated by a pair of numbers, xsize and ysize. They, too, are measured in pixels

and indicate the size starting at the top-left corner of the object.

Any command that needs a position or a size always takes all four numbers—position and size—and

you must specify all four. In addition to each element being allowed to be a number, some extra codes

are allowed. A position or size element is defined as

any unsigned integer number, such as 0, 1, 10, 200,

. (period) meaning the context-specific default value for this position or size element. . is

allowed only with heights of controls (heights are measured from the top down) and for the

initial position of a dialog box.

@ means the previous value for this position or size element. If @ is used for an x or a y, then

the x or y from the preceding command will be used. If @ is used for an xsize or a ysize, then

the previous xsize or ysize will be used.

+# means a positive offset from the last value (meaning to the right or down or bigger). If +10
is used for x, the result will be 10 pixels to the right of the previous position. If +10 is used
for a ysize, it means 10 pixels taller.

-# means a negative offset from the last value (meaning to the left or up or smaller). If -10 is

used for y, the result will be 10 pixels above the previous position. If -10 is used for a xsize,
it means 10 pixels narrower.

name means the value last recorded for name by the DEFINE command.

The DEFINE command has the syntax

DEFINE name { . | # | +# | -# | @x | @y | @xsize | @ysize }
and may appear anywhere in your dialog code, even inside the BEGIN/END of DIALOG. Anywhere you
need to specify a position or size element, you can use a name defined by DEFINE.

The first four possibilities for defining name have the obvious meaning: . means the default, #

means the number specified, +# means a positive offset, and -# means a negative offset. The other four
possibilities—@x, @y, @xsize, and @ysize—refer to the previous x, y, xsize, and ysize values, with

“previous” meaning previous to the time the DEFINE command was issued.

2.3 Default values

You can also load input controls with initial, or default, values. For instance, perhaps, as a default, you

want one checkbox checked and another unchecked, and you want an edit field filled in with “Default

title”.

The syntax of the CHECKBOX command, which creates checkboxes, is

CHECKBOX ... [, ... default(defnumval) ...]
In checkboxes, the default() option specifies how the box is to be filled in initially, and 1 corre-

sponds to checked and 0 to unchecked.

The syntax of EDIT, which creates edit fields, is

EDIT ... [, ... default(defstrval) ...]
In edit fields, default() specifies what the box will contain initially.

Dialog programming — Dialog programming 7

Wherever defnumval appears in a syntax diagram, you may type

defnumval Definition

meaning the number specified

literal # same as #

c(name) value of c(name); see [P] creturn
r(name) value of r(name); see [P] return
e(name) value of e(name); see [P] ereturn
s(name) value of s(name); see [P] return
global name value of global macro $name

Wherever defstrval appears in a syntax diagram, you may type

defstrval Definition

string meaning the string specified

literal string same as string

c(name) contents of c(name); see [P] creturn
r(name) contents of r(name); see [P] return
e(name) contents of e(name); see [P] ereturn
s(name) contents of s(name); see [P] return
char varname[charname] value of characteristic; see [P] char

global name contents of global macro $name

Note: If string is enclosed in double quotes (simple or compound), the first set of quotes

is stripped.

List and combo boxes present the user with a list of items from which to choose. In dialog-box jargon,

rather than having initial or default values, the boxes are said to be populated. The syntax for creating a

list-box input control is

LISTBOX ... [, ... contents(conspec) ...]
Wherever a conspec appears in a syntax diagram, you may type

list listname

populates the box with the specified list, which you create separately by using the LIST command.

LIST has the following syntax:

LIST
BEGIN

item to appear
item to appear
...

END

matrix
populates the box with the names of all matrices currently defined in Stata.

vector
populates the box with the names of all 1 × k and k × 1 matrices currently defined in Stata.

row
populates the box with the names of all 1 × k matrices currently defined in Stata.

https://www.stata.com/manuals/pcreturn.pdf#pcreturn
https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/pereturn.pdf#pereturn
https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/pcreturn.pdf#pcreturn
https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/pereturn.pdf#pereturn
https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/pchar.pdf#pchar

Dialog programming — Dialog programming 8

column
populates the box with the names of all k × 1 matrices currently defined in Stata.

square
populates the box with the names of all k × k matrices currently defined in Stata.

scalar
populates the box with the names of all scalars currently defined in Stata.

constraint
populates the box with the names of all constraints currently defined in Stata.

estimates
populates the box with the names of all saved estimates currently defined in Stata.

char varname[charname]
populates the box with the elements of the characteristic varname[charname], parsed on spaces.

e(name)
populates the box with the elements of e(name), parsed on spaces.

global
populates the box with the names of all global macros currently defined in Stata.

valuelabels
populates the box with the names of all values labels currently defined in Stata.

Predefined lists for use with Stata graphics:

Predefined lists Definition

symbols list of marker symbols

symbolsizes list of marker symbol sizes

colors list of colors

intensity list of fill intensities

clockpos list of clock positions

linepatterns list of line patterns

linewidths list of line widths

connecttypes list of line connecting types

textsizes list of text sizes

justification list of horizontal text justifications

alignment list of vertical text alignments

margin list of margins

tickpos list of axis-tick positions

angles list of angles; usually used for axis labels

compass list of compass directions

yesno list containing Default, Yes, and No; usually accompanied
by a user-defined values list

2.4 Memory (recollection)

All input control commands have a default() or contents() option that specifies how the control

is to be filled in, for example,

Dialog programming — Dialog programming 9

CHECKBOX ... [, ... default(defnumval) ...]
In this command, if defnumval evaluates to 0, the checkbox is initially unchecked; otherwise, it is

checked. If default() is not specified, the box is initially unchecked.

Dialogs remember how they were last filled in during a session, so the next time the user invokes

the dialog box that contains this CHECKBOX command, the default() option will be ignored and the

checkbox will be as the user last left it. That is, the setting will be remembered unless you specify the

input control’s nomemory option.

CHECKBOX ... [, ... default(defnumval) nomemory ...]
nomemory specifies that the dialog-box manager not remember between invocations how the control

is filled in; it will always reset it to the default, whether that default is explicitly specified or implied.

Whether or not you specify nomemory, explicit or implicit defaults are also restored when the user

presses the Reset helper button.

The contents of dialog boxes are only remembered during a session, not between them. Within a

session, the discard command causes Stata to forget the contents of all dialog boxes.

The issues of initialization and memory are in fact more complicated than they first appear. Consider

a list box. A list box might be populated with the currently saved estimates. If the dialog box containing

this list box is closed and reopened, the available estimates may have changed. So list boxes are always

repopulated according to the instructions given. Even so, list boxes remember the choice that was made.

If that choice is still among the possibilities, that choice will be the one selected unless nomemory is

specified; otherwise, the choice goes back to being the default—the first choice in the list of alternatives.

The same issues arise with combo boxes, and that is why some controls have the default() option
and others have contents(). default() is used once, and after that, memory is substituted (unless

nomemory is specified). contents() is always used—nomemory or not—but the choice made is re-

membered (unless nomemory is specified).

2.5 I-actions and member functions

I-actions—intermediate actions—refer to all actions taken in producing the u-action. An i-action

might disable or hide controls when another control is checked or unchecked, although there are many

other possibilities. I-actions are always optional.

I-actions are invoked by on*() options—those that begin with the letters “on”. For instance, the

syntax for the CHECKBOX command—the command for defining a checkbox control—is

CHECKBOX controlname ... [, ... onclickon(iaction) onclickoff(iaction) ...]
onclickon() is the i-action to be taken when the checkbox is checked, and onclickoff() is

the i-action for when the checkbox is unchecked. You do not have to fill in the onclickon() and

onclickoff() options—the checkbox will work fine taking no i-actions—but you may fill them in if

you want, say, to disable or to enable other controls when this control is checked. For instance, you might

code

CHECKBOX sw2 ..., onclickon(d2.sw3.show) onclickoff(d2.sw3.hide) ...

d2.sw3 refers to the control named sw3 in the dialog d2 (for instance, the control we just defined is

named sw2). hide and show are called member functions. hide is the member function that hides a

control, and show is its inverse. Controls have other member functions as well; what member functions
are available is documented with the command that creates the specific control.

https://www.stata.com/manuals/pdiscard.pdf#pdiscard

Dialog programming — Dialog programming 10

Many commands have on*() options that allow you to specify i-actions. When iaction appears in a

syntax diagram, you can specify

. (period)

Do nothing; take no action. This is the default if you do not specify the on*() option.

gaction dialogname.controlname.memberfunction [arguments]
Execute the specified memberfunction on the specified control, where memberfunction may be

{ hide | show | disable | enable | setposition | something else [arguments] }
All controls provide the memberfunctions hide, show, disable, enable, and setposition, and
some controls make other, special memberfunctions available.

hide specifies that the control disappear from view (if it has not already done so). show specifies that
it reappear (if it is not already visible).

disable specifies that the control be disabled (if it is not already). enable specifies that it be enabled
(if it is not already).

setposition specifies the new position and size of a control. setposition requires arguments in

the form of x y xsize ysize. A dot can be used with any of the four arguments to mean the current

value.

Sometimes arguments may require quotes. For instance, CHECKBOX provides a special memberfunc-

tion

setlabel string

which sets the text shown next to the checkbox, so you might specify onclickon(’”gaction
main.robust.setlabel ”Robust VCE””’). Anytime a string is required, you must place quotes

around it if that string contains a space. When you specify an iaction inside the parentheses of an

option, it is easier to leave the quotes off unless they are required. If quotes are required, you must

enclose the entire contents of the option in compound double quotes as in the example above.

dialogname.controlname.memberfunction [arguments]
Same as gaction; the gaction is optional.

action memberfunction [arguments]
Same as gaction currentdialog.currentcontrol.memberfunction; executes the specified member-

function on the current control.

view topic

Display topic in viewer; see [R] view.

script scriptname

Execute the specified script. A script is a set of lines, each specifying an iaction. So if you wanted to

disable three things, gaction would be insufficient. You would instead define a script containing the
three gaction lines.

program programname

Execute the specified dialog-box program. Programs can do more than scripts because they provide

if-statement flow of control (among other things), but they are more difficult to write; typically, the

extra capabilities are not needed when specifying i-actions.

create STRING | DOUBLE | BOOLEAN propertyname

Creates a new instance of a dialog property. See 6. Properties for details.

https://www.stata.com/manuals/rview.pdf#rview
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples6.Properties

Dialog programming — Dialog programming 11

create PSTRING | PDOUBLE | PBOOLEAN propertyname

Creates a new instance of a persistent dialog property. See 6. Properties for details.

create CHILD dialogname [AS referencename] [, nomodal allowsubmit allowcopy]
Creates a new instance of a child dialog. By default, the reference name will be the name of the dialog

unless otherwise specified. See 7. Child dialogs for details.

2.6 U-actions and communication options

Remember that the ultimate goal of a dialog box is to construct a u-action—a Stata command to be

executed. What that command is depends on how the user fills in the dialog box.

You construct the command by writing a dialog-box program, also known as a PROGRAM. You arrange
that the program be invoked by specifying the uaction() option allowed with the OK, SUBMIT, CANCEL,
and COPY u-action buttons. For instance, the syntax of OK is

OK ... [, ... uaction(pgmname) target(target) ...]
pgmname is the name of the dialog program you write, and target() specifies how the command

constructed by pgmname is to be executed. Usually, you will simply want Stata to execute the command,

which could be coded target(stata), but because that is the default, most programmers omit the

target() option altogether.

The dialog-box program you write accesses the information the user has filled in and outputs the Stata

command to be executed. Without going into details, the program might say to construct the command

by outputting the word regress, followed by the varlist the user specified in the varlist field of the first
dialog, and followed by if exp, getting the expression from what the user filled in an edit field of the

second dialog.

Dialogs and input controls are named, and in your dialog-box program, when you want to refer to

what a user has filled in, you refer to dialogname.inputcontrolname. dialogname was determined when

you coded the DIALOG command to create the dialog

DIALOG dialogname ...

and inputcontrolname was determined when you coded the input-control command to create the input

control, for instance,

CHECKBOX inputcontrolname ...

The details are discussed in 5. PROGRAM, but do not get lost in the details. Think first about coding

how the dialogs look and second about how to translate what the user specifies into the u-action.

On the various commands that specify how dialogs look, you can specify an option that will make

writing the u-action program easier: the communication option option(), which communicates some-
thing about the control to the u-action program, is allowed with every control. For instance, on the

CHECKBOX command, you could code

CHECKBOX ..., ... option(robust) ...

When you wrote your dialog-box PROGRAM, you would find it easier to associate the robust option

in the command you are constructing with this checkbox. Communication options never alter how a

control looks or works: they just make extra information available to the PROGRAM and make writing the
u-action routine easier.

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples6.Properties
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples7.Childdialogs
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples5.PROGRAM

Dialog programming — Dialog programming 12

Do not worrymuch about communication options whenwriting your dialog. Wait until you are writing

the corresponding u-action program. Then it will be obvious what communication options you should

have specified, and you can go back and specify them.

2.7 The distinction between i-actions and u-actions

In this documentation, we distinguish between i-actions and u-actions, but if you read carefully, you

will realize that the distinction is more syntactical than real. One way we have distinguished i-actions

from u-actions is to note that only u-actions can run Stata commands. In fact, i-actions can also run Stata

commands; you just code them differently. In the vast majority of dialog boxes, you will not do this.

Nevertheless, if you were writing a dialog box to edit a Stata graph, you might construct your dialog

box so that it contained no u-actions and only i-actions. Some of those i-actions might invoke Stata

commands.

As you already know, i-actions can invoke PROGRAMs, and PROGRAMs serve two purposes: coding

of i-actions and coding of u-actions. PROGRAMs themselves, however, have the ability to submit com-

mands to Stata, and therein lies the key. I-actions can invoke PROGRAMs, and PROGRAMs can invoke Stata
commands. How this is done is discussed in 5.1.3 rstrings: cmdstring and optstring and 5.5 Command-

execution commands.

We recommend that you not program i-actions and u-actions that are virtually indistinguishable except

in rare, special circumstances. Users expect to fill in a dialog box and to be given the opportunity to click

on OK or Submit before anything too severe happens.

2.8 Error and consistency checking

In filling in the dialogs you construct, the user might make errors. One alternative is simply to ignore

that possibility and let Stata complain when it executes the u-action command you construct. Even in

well-written dialog boxes, most errors should be handled this way because discovering all the problems

would require rewriting the entire logic of the Stata command.

Nevertheless, you will want to catch easy-to-detect errors while the dialog is still open and the user

can easily fix them. Errors come in two forms: An outright error would be typing a number in an edit

field that is supposed to contain a variable name. A consistency error would be checking two checkboxes

that are, logically speaking, mutually exclusive.

Youwill want to handlemost consistency errors at the dialog level, either by design (if two checkboxes

are mutually exclusive, perhaps the information should be collected as radio buttons) or by i-actions

(disabling or even hiding some fields depending on what has been filled in). The latter was discussed in

2.5 I-actions and member functions.

Outright errors can be detected and handled in dialog-box programs and are usually detected and

handled in the u-action program. For instance, in your dialog-box program, you can assert that dialog-

name.inputcontrolname must be filled in and pop up a custom error message if it is not, or the program

code can be written so that an automatically generated error message is presented. You will find that all

input-control commands have an error() option; for example,

VARLIST ... [, ... error(string) ...]

The error() string provides the text to describe the control when the dialog-box manager presents

an error. For instance, if we specified

VARLIST ... [, ... error(dependent variable) ...]

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples5.1.3rstringscmdstringandoptstring
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples5.5Command-executioncommands
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples5.5Command-executioncommands
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples2.5I-actionsandmemberfunctions

Dialog programming — Dialog programming 13

the dialog-box manager might use that information later to construct the error message “dependent vari-

able must be specified”.

If you do not specify the error() option, the dialog-box manager will use what was specified in

the label(); otherwise, ”” is used. The label() option specifies the text that usually appears near

the control describing it to the user, but label() will do double duty so that you only need to specify

error() when the two strings need to differ.

3. Commands

3.1 VERSION

Syntax
VERSION #[.##] [valid operating systems]

Description
VERSION specifies how the commands that follow are to be interpreted.

Remarks
VERSION must appear first in the .dlg file (it may be preceded by comments). In the current version

of Stata, it could read VERSION 19 or VERSION 19.0. It makes no difference; both mean the same thing.
For new dialogs in StataNow, this should read VERSION 19.5.

Optionally, VERSION can specify one or more valid operating systems. Accepted values are WINDOWS,
MACINTOSH, and UNIX. If none of these are specified, all are assumed.

Including VERSION at the top is of vital importance. Stata is under continual development, so syntax
and features can change. Including VERSION is how you ensure that your dialog box will continue to

work as you intended.

3.2 INCLUDE

Syntax
INCLUDE includefilename

where includefilename refers to includefilename.idlg andmust be specified without the suffix and with-
out a path.

Description
INCLUDE reads and processes the lines from includefilename.idlg just as if they were part of the

current file being read. INCLUDE may appear in both .dlg and .idlg files.

Remarks
The name of the file is specified without a file suffix and without a path. .idlg files are searched for

along the ado-path, as are .dlg files.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow

Dialog programming — Dialog programming 14

INCLUDE may appear anywhere in the dialog code and may appear in both .dlg and .idlg files;

include files may INCLUDE other include files. Files may contain multiple INCLUDEs. The maximum
nesting depth is 10.

3.3 DEFINE

Syntax
DEFINE name { . | # | +# | -# | @x | @y | @xsize | ,@ysize }

Description
DEFINE creates name, which may be used in other commands wherever a position or size element is

required.

Remarks
The first four possibilities for defining name—., #, +#, and -#—specify default, number specified,

positive offset, and negative offset.

The other four possibilities—@x, @y, @xsize, and @ysize—refer to the previous x, y, xsize, and

ysize values, with “previous” meaning previous to the time the DEFINE command is issued, not at the

time name is used.

3.4 POSITION

Syntax
POSITION x y xsize ysize

Description
POSITION is used to set the location and size of the dialog box. x and y refer to the upper-left-hand

corner of the dialog box. xsize and ysize refer to the width and height of the dialog box.

Remarks
The positions x and y may each be specified as ., and Stata will determine where the dialog box will

be displayed; this is recommended.

xsize and ysize may not be specified as . because they specify the overall size of the dialog box. You

can discover the size by experimentation. If you specify a size that is too small, some elements will flow

off the dialog box. If you specify a size that is too large, there will be large amounts of white space on

the right and bottom of the dialog box. Good initial values for xsize and ysize are 400 and 300.

POSITION may be specified anywhere in the dialog code outside BEGIN . . . END blocks. It does not

matter where it is specified because the entire .dlg file is processed before the dialog box is displayed.

Dialog programming — Dialog programming 15

3.5 LIST

Syntax

LIST newlistname

BEGIN
item

item

...
END

Description
LIST creates a named list for populating list and combo boxes.

Example
LIST choices

BEGIN
Statistics
Graphics
Data management

END
...
DIALOG ...

BEGIN
...
LISTBOX ... , ... contents(choices) ...
...

END

3.6 DIALOG

Syntax

DIALOG newdialogname [, title(” string”) tabtitle(” string”)]
BEGIN

{ control definition statements | INCLUDE | DEFINE }
...

END

Description
DIALOG defines a dialog. Every .dlg file should define at least one dialog. Only control definition

statements, INCLUDE, and DEFINE are allowed between BEGIN and END.

Options
title(”string”) defines the text to be displayed in the dialog’s title bar.

tabtitle(”string”) defines the text to be displayed on the dialog’s tab. Dialogs are tabbed if more than
one dialog is defined. When a user clicks on the tab, the dialog becomes visible and active. If only

one dialog is specified, the contents of tabtitle() are irrelevant.

Dialog programming — Dialog programming 16

Member functions
settabtitle string sets tab title to string

settitle string sets overall dialog box title to string

settitle may be called as a member function of any dialog tab, but it is more appropriate to call

it as a member function of the dialog box. This is accomplished by calling it in the local scope of the

dialog.

Example:

settitle ”sort - Sort data”

3.6.1 CHECKBOX on/off input control

Syntax
CHECKBOX newcontrolname x y xsize ysize [, label(”string”) error(”string”)

default(defnumval) nomemory groupbox onclickon(iaction) onclickoff(iaction)

option(optionname) tooltip(”string”)]

Member functions
setlabel string sets text to string

setoff unchecks checkbox

seton checks checkbox

setoption optionname associates optionname with the value of the checkbox

setdefault value sets the default value for the checkbox; this does not change the selected

state
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also provided.

Returned values for use in PROGRAM
Returns numeric, 0 or 1, depending on whether the box is checked.

Description
CHECKBOX defines a checkbox control, which indicates an option that is either on or off.

Options
label(”string”) specifies the text to be displayed next to the control. You should specify text that

clearly implies two opposite states so that it is obvious what happens when the checkbox is checked

or unchecked.

error(”string”) specifies the text to be displayed describing this field to the user in automatically gen-
erated error boxes.

default(defnumval) specifies whether the box is checked or unchecked initially; it will be unchecked
if defnumval evaluates to 0, and it will be checked otherwise. If default() is not specified,

default(0) is assumed.

Dialog programming — Dialog programming 17

nomemory specifies that the checkbox not remember how it was filled in between invocations.

groupbox makes this checkbox control also a group box into which other controls can be placed to

emphasize that they are related. The group box is just an outline; it does not cause the controls “inside”

to be disabled or hidden or in any other way act differently than they would if they were outside the

group box. On some platforms, radio buttons have precedence over checkbox group boxes. You may

place radio buttons within a checkbox group box, but do not place a checkbox group box within a

group of radio buttons. If you do, you may not be able to click on the checkbox control on some

platforms.

onclickon(iaction) and onclickoff(iaction) specify the i-actions to be invoked when the checkbox
is clicked on or off. This could be used, for instance, to hide, show, disable, or enable other input

controls. The default i-action is to do nothing. The onclickon() or onclickoff() i-action will be
invoked the first time the checkbox is displayed.

option(optionname) is a communication option that associates optionnamewith the value of the check-

box.

tooltip(”string”) specifies the text to be displayed as a tip or hint when the user hovers over the control
with the mouse.

Example
CHECKBOX robust 10 10 100 ., label(Robust VCE)

3.6.2 RADIO on/off input control

Syntax
RADIO newcontrolname x y xsize ysize [, [first | middle | last] label(”string”)

error(”string”) default(defnumval) nomemory onclickon(iaction)

onclickoff(iaction) option(optionname) tooltip(”string”)]

Member functions
setlabel string sets text to string

seton checks the radio button and unchecks any other buttons in the group

setoption optionname associates optionname with the value of the radio

setdefault value sets the default value for the radio; this does not change the selected state

settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also provided.

Returned values for use in PROGRAM
Returns numeric, 0 or 1, depending on whether the button is checked.

Dialog programming — Dialog programming 18

Description
RADIO defines a radio button control in a radio-button group. Radio buttons are used in groups of two

or more to select mutually exclusive, but related, choices when the number of choices is small. Selecting

one radio button automatically unselects the others in its group.

Options
first, middle, and last specify whether this radio button is the first, a middle, or the last member

of a group. There must be one first and one last. There can be zero or more middle members.

middle is the default if no option is specified.

label(”string”) specifies the text to be displayed next to the control.

error(”string”) specifies the text to be displayed describing this field to the user in automatically gen-
erated error boxes.

default(defnumval) specifies whether the radio button is to start as selected or unselected; it will be

unselected if defnumval evaluates to 0 and will be selected otherwise. If default() is not specified,
default(0) is assumed unless first is also specified, in which case default(1) is assumed. It is
considered bad style to use anything other than the first button as the default, so this option is rarely

specified.

nomemory specifies that the radio button not remember how it was filled in between invocations.

onclickon(iaction) and onclickoff(iaction) specify that i-action be invoked when the radio button
is clicked on or clicked off. This could be used, for instance, to hide, show, disable, or enable other

input controls. The default i-action is to do nothing. The onclickon() i-action will be invoked the

first time the radio button is displayed if it is selected.

option(optionname) is a communication option that associates optionname with the value of the radio

button.

tooltip(”string”) specifies the text to be displayed as a tip or hint when the user hovers over the control
with the mouse.

Example
RADIO r1 10 10 100 ., first label(”First choice”)
RADIO r2 @ +20 @ ., middle label(”Second choice”)
RADIO r3 @ +20 @ ., middle label(”Third choice”)
RADIO r4 @ +20 @ ., last label(”Last choice”)

3.6.3 SPINNER numeric input control

Syntax
SPINNER newcontrolname x y xsize ysize [, label(”string”) error(”string”)

default(defnumval) nomemory min(defnumval) max(defnumval) onchange(iaction)

option(optionname) tooltip(”string”)]

Dialog programming — Dialog programming 19

Member functions
setvalue value sets the actual value of the spinner to value

withvalue method string call method (another object’s member function) with the spinner’s value

substituted for@ in string
setrange min# max# sets the range of the spinner to min# max#

setoption optionname associates optionname with the value of the spinner

setdefault # sets the default of the spinner to #; this does not change the value shown

in the spinner control.
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also provided.

Returned values for use in PROGRAM
Returns numeric, the value of the spinner.

Description
SPINNER defines a spinner, which displays an edit field that accepts an integer number, which the user

may either increase or decrease by clicking on an up or down arrow.

Options
label(”string”) specifies a description for the control, but it does not display the label next to the

spinner. If you want to label the spinner, you must use a TEXT static control.

error(”string”) specifies the text to be displayed in describing this field to the user in automatically

generated error boxes.

default(defnumval) specifies the initial integer value of the spinner. If not specified, min() is assumed,
and if that is not specified, 0 is assumed.

nomemory specifies that the spinner not remember how it was filled in between invocations.

min(defnumval) and max(defnumval) set the minimum and maximum integer values of the spinner.

min(0) and max(100) are the defaults.

onchange(iaction) specifies the i-action to be invoked when the spinner is changed. The default i-action
is to do nothing. The onchange() i-action will be invoked the first time the spinner is displayed.

option(optionname) is a communication option that associates optionname with the value of the spin-

ner.

tooltip(”string”) specifies the text to be displayed as a tip or hint when the user hovers over the control
with the mouse.

Example
SPINNER level 10 10 60 ., label(Sig. level) min(5) max(100) ///

default(c(level)) option(level)

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.

Dialog programming — Dialog programming 20

3.6.4 EDIT string input control

Syntax
EDIT newcontrolname x y xsize ysize [, label(”string”) error(”string”)

default(defstrval) nomemory max(#) numonly password onchange(iaction)

option(optionname) tooltip(”string”)]

Member functions
setlabel string sets the label for the edit field

setvalue strvalue sets the value shown in the edit field

withvalue method string callmethod (another object’smember function) with the edit field’s value

substituted for@ in string
append string appends string to the value in the edit field

prepend string prepends string to the value of the edit field

insert string inserts string at the current cursor position of the edit field

smartinsert string inserts string at the current cursor position in the edit field with leading

and trailing spaces around it
setfocus causes the control to obtain keyboard focus

setoption optionname associates optionname with the contents of the edit field

setdefault string sets the default value for the edit field; this does not change what is dis-

played
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also provided.

Returned values for use in PROGRAM
Returns string, the contents of the edit field.

Description
EDIT defines an edit field. An edit field is a box into which the user may enter text or in which the

user may edit text; the width of the box does not limit how much text can be entered.

Options
label(”string”) specifies a description for the control, but it does not display the label next to the edit

field. If you want to label the edit field, you must use a TEXT static control.

error(”string”) specifies the text to be displayed describing this field to the user in automatically gen-
erated error boxes.

default(defstrval) specifies the default contents of the edit field. If not specified, default(””) is

assumed.

nomemory specifies that the edit field is not to remember how it was filled in between invocations.

max(#) specifies the maximum number of characters that may be entered into the edit field.

numonly specifies that the edit field be able to contain only a period, numeric characters 0 through 9,

and - (minus).

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.

Dialog programming — Dialog programming 21

password specifies that the characters entered into the edit field be shown on the screen as asterisks or

bullets, depending on the operating system.

onchange(iaction) specifies the i-action to be invoked when the contents of the edit field are changed.
The default i-action is to do nothing. Note that the onchange() i-action will be invoked the first time
the edit field is displayed.

option(optionname) is a communication option that associates optionnamewith the contents of the edit

field.

tooltip(”string”) specifies the text to be displayed as a tip or hint when the user hovers over the control
with the mouse.

Example
TEXT tlab 10 10 200 ., label(”Title”)
EDIT title @ +20 @ ., label(”title”)

3.6.5 VARLIST and VARNAME string input controls

Syntax
{ VARLIST | VARNAME } newcontrolname x y xsize ysize [, label(”string”)

error(”string”) default(defstrval) nomemory fv ts option(optionname)

tooltip(”string”)]

Member functions
setlabel string sets the label for the varlist edit field

setvalue strvalue sets the value shown in the varlist edit field

withvalue method string call method (another object’s member function) with the varlist edit

field’s value substituted for@ in string
append string appends string to the value in the varlist edit field

prepend string prepends string to the value of the varlist edit field

insert string inserts string at the current cursor position of the varlist edit field

smartinsert string inserts string at the current cursor position in the varlist edit field with

leading and trailing spaces around it
setfocus causes the control to obtain keyboard focus

setoption optionname associates optionname with the contents of the edit field

setdefault string sets the default value for the edit field; this does not change what is dis-

played
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also provided.

Returned values for use in PROGRAM
Returns string, the contents of the varlist edit field.

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.

Dialog programming — Dialog programming 22

Description
VARLIST and VARNAME are special cases of an edit field. VARLIST provides an edit field into which

one or more Stata variable names may be entered (along with standard Stata varlist abbreviations), and

VARNAME provides an edit field into which one Stata variable name may be entered (with standard Stata
varname abbreviations allowed).

Options
label(”string”) specifies a description for the control, but does not display the label next to the varlist

edit field. If you want to label the control, you must use a TEXT static control.

error(”string”) specifies the text to be displayed describing this field to the user in automatically gen-
erated error boxes.

default(defstrval) specifies the default contents of the edit field. If not specified, default(””) is

assumed.

nomemory specifies that the edit field not remember how it was filled in between invocations.

fv specifies that the control add a factor-variable dialog button.

ts specifies that the control add a time-series-operated variable dialog button.

option(optionname) is a communication option that associates optionnamewith the contents of the edit

field.

tooltip(”string”) specifies the text to be displayed as a tip or hint when the user hovers over the control
with the mouse.

Example
TEXT dvlab 10 10 200 ., label(”Dependent variable”)
VARNAME depvar @ +20 @ ., label(”dep. var”)
TEXT ivlab @ +30 @ ., label(”Independent variables”)
VARLIST idepvars @ +20 @ ., label(”ind. vars.”)

3.6.6 FILE string input control

Syntax
FILE newcontrolname x y xsize ysize [, label(”string”) error(”string”)

default(defstrval) nomemory buttonwidth(#) dialogtitle(string) save

multiselect directory filter(string) onchange(iaction) option(optionname)

tooltip(”string”)]

Member functions
setlabel string sets the label shown on the edit button

setvalue strvalue sets the value shown in the edit field

withvalue method string callmethod (another object’smember function) with the edit field’s value

substituted for@ in string
append string appends string to the value in the edit field

prepend string prepends string to the value of the edit field

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.

Dialog programming — Dialog programming 23

insert string inserts string at the current cursor position of the edit field

smartinsert string inserts string at the current cursor position in the edit field with leading

and trailing spaces around it
setoption optionname associates optionname with the contents of the edit field

setdefault string sets the default value for the edit field; this does not change what is dis-

played
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also provided.

Returned values for use in PROGRAM
Returns string, the contents of the edit field (the file chosen).

Description
FILE is a special edit field with a button on the right for selecting a filename. When the user clicks

on the button, a file dialog is displayed. If the user selects a filename and clicks on OK, that filename is
put into the edit field. The user may alternatively type a filename into the edit field.

Options
label(”string”) specifies the text to appear on the button. The default is (”Browse ...”).

error(”string”) specifies the text to be displayed describing this field to the user in automatically gen-
erated error boxes.

default(defstrval) specifies the default contents of the edit field. If not specified, default(””) is

assumed.

nomemory specifies that the edit field not remember how it was filled in between invocations.

buttonwidth(#) specifies the width in pixels of the button. The default is buttonwidth(80). The
overall size specified in xsize includes the button.

dialogtitle(string) is the title to show on the file dialog when you click on the file button.

save specifies that the file dialog allow the user to choose a filename for saving rather than one for

opening.

multiselect specifies that the file dialog allow the user to select multiple filenames rather than only

one filename.

directory specifies that the file dialog select a directory rather than a filename. If specified, any non-
relevant options will be ignored.

filter(string) consists of pairs of descriptions and wildcard file selection strings separated by “|”,
such as

filter(”Stata Graphs|*.gph|All Files|*.*”)

onchange(iaction) specifies an i-action to be invokedwhen the user changes the chosen file. The default
i-action is to do nothing. The onchange() i-action will be invoked the first time the file chooser is

displayed.

option(optionname) is a communication option that associates optionnamewith the contents of the edit

field.

Dialog programming — Dialog programming 24

tooltip(”string”) specifies the text to be displayed as a tip or hint when the user hovers over the control
with the mouse.

Example
FILE fname 10 10 300 ., error(”Filename to open”) label(”Browse ...”)

3.6.7 LISTBOX list input control

Syntax
LISTBOX newcontrolname x y xsize ysize [, label(”string”) error(”string”)

nomemory contents(conspec) values(listname) default(defstrval)

ondblclick(iaction) [onselchange(iaction) | onselchangelist(listname)]
option(optionname) tooltip(”string”)]

Member functions
setlabel string sets the label for the list box

setvalue strvalue sets the currently selected item

withvalue method string call method (another object’s member function) with the list box’s value

substituted for@ in string
setfocus causes the control to obtain keyboard focus

setoption optionname associates optionname with the element chosen from the list

setdefault string sets the default value for the list box; this does not change what is dis-

played
repopulate causes the associated contents list to rebuild itself and then updates the

control with the new values from that list
forceselchange forces an onselchange event to occur
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also provided.

Returned values for use in PROGRAM
Returns string, the text of the item chosen, or, if values(listname) is specified, the text from the

corresponding element of listname.

Description
LISTBOX defines a list box control. Like radio buttons, a list box allows the user to make a selection

from a number of mutually exclusive, but related, choices. A list box control is more appropriate when

the number of choices is large.

Options
label(”string”) specifies a description for the control but does not display the label next to the control.

If you want to label the list box, you must use a TEXT static control.

error(”string”) specifies the text to be displayed describing this field to the user in automatically gen-
erated error boxes.

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.

Dialog programming — Dialog programming 25

nomemory specifies that the list box not remember the item selected between invocations.

contents(conspec) specifies the items to be shown in the list box. If contents() is not specified, the
list box will be empty.

values(listname) specifies the list (see 3.5 LIST) for which the values of contents() should match

one to one. When the user chooses the 𝑘th element from contents(), the 𝑘th element of listname

will be returned. If the lists do not match one to one, extra elements of listname are ignored, and extra

elements of contents() return themselves.

default(defstrval) specifies the default selection. If not specified, or if defstrval does not exist, the

first item is the default.

ondblclick(iaction) specifies the i-action to be invoked when an item in the list is double clicked. The

double-clicked item is selected before the iaction is invoked.

onselchange(iaction) and onselchangelist(listname) are alternatives. They specify the i-action to
be invoked when a selection in the list changes.

onselchange(iaction) performs the same i-action, regardless of which element of the list was cho-
sen.

onselchangelist(listname) specifies a vector of iactions that should match one to one with

contents(). If the user selects the 𝑘th element of contents(), the 𝑘th i-action from listname is

invoked. See 3.5 LIST for information on creating listname. If the elements of listname do not match

one to one with the elements of contents(), extra elements are ignored, and if there are too few

elements, the last element will be invoked for the extra elements of contents().

option(optionname) is a communication option that associates optionname with the element chosen

from the list.

tooltip(”string”) specifies the text to be displayed as a tip or hint when the user hovers over the control
with the mouse.

Example
LIST ourlist

BEGIN
Good
Common or average
Poor

END
...
DIALOG ...

BEGIN
...
TEXT ourlab 10 10 200 ., label(”Pick a rating”)
LISTBOX rating @ +20 150 200, contents(ourlist)
...

END

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples3.5LIST
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples3.5LIST

Dialog programming — Dialog programming 26

3.6.8 COMBOBOX list input control

Syntax
COMBOBOX newcontrolname x y xsize ysize [, label(”string”) error(”string”)

[regular | dropdown | dropdownlist] default(defstrval) nomemory

contents(conspec) values(listname) append

[onselchange(iaction) | onselchangelist(listname)] option(optionname)

tooltip(”string”)]

Member functions
setlabel string sets the label for the combo box

setvalue strvalue in the case of regular and drop-down combo boxes, sets the value of the

edit field; in the case of a dropdownlist, sets the currently selected

item
withvalue method string call method (another object’s member function) with the combo box’s

value substituted for@ in string
setfocus causes the control to obtain keyboard focus

setoption optionname associates optionname with the element chosen from the list

setdefault string sets the default value for the combo box; this does not change what is

displayed or selected
repopulate causes the associated contents list to rebuild itself and then updates the

control with the new values from that list
forceselchange forces an onselchange event to occur
settooltip string sets the tooltip text to string

Also, except for drop-down lists (option dropdownlist specified), the following member functions are
also available:

append string appends string to the value in the edit field

prepend string prepends string to the value of the edit field

insert string inserts string at the current cursor position of the edit field

smartinsert string inserts string at the current cursor position in the edit field with leading

and trailing spaces around it

The standard member functions hide, show, disable, enable, and setposition are also always

provided.

Returned values for use in PROGRAM
Returns string, the contents of the edit field.

Description
COMBOBOX defines regular combo boxes, drop-down combo boxes, and drop-down-list combo boxes.

By default, COMBOBOX creates a regular combo box; it creates a drop-down combo box if the dropdown
option is specified, and it creates a drop-down-list combo box if the dropdownlist option is specified.

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.

Dialog programming — Dialog programming 27

A regular combo box contains an edit field and a visible list box. The user may make a selection from

the list box, which is entered into the edit field, or type in the edit field. Multiple selections are allowed

using the append option. Regular combo boxes are useful for allowing multiple selections from the list

as well as for allowing the user to type in an item not in the list.

A drop-down combo box contains an edit field and a list box that appears when the control is clicked

on. The user may make a selection from the list box, which is entered into the edit field, or type in the edit

field. The control has the same functionality and options as a regular combo box but requires less space.

Multiple selections are allowed using the append option. Drop-down combo boxes may be cumbersome
to use if the number of choices is large, so use them only when the number of choices is small or when

space is limited.

A drop-down-list combo box contains a list box that displays only the current selection. Clicking on

the control displays the entire list box, allowing the user to make a selection without typing in the edit

field; the user chooses among the given alternatives. Drop-down-list combo boxes should be used only

when the number of choices is small or when space is limited.

Options
label(”string”) specifies a description for the control but does not display the label next to the combo

box. If you want to label a combo box, you must use a TEXT static control.

error(”string”) specifies the text to be displayed describing this field to the user in automatically gen-
erated error boxes.

regular, dropdown, and dropdownlist specify the type of combo box to be created.

If regular is specified, a regular combo box is created. regular is the default.

If dropdown is specified, a drop-down combo box is created.

If dropdownlist is specified, a drop-down-list combo box is created.

default(defstrval) specifies the default contents of the edit field. If not specified, default(””) is

assumed. If dropdownlist is specified, the first item is the default.

nomemory specifies that the combo box not remember the item selected between invocations. Even

for drop-down lists—where there is no default()—combo boxes remember previous selections by

default.

contents(conspec) specifies the items to be shown in the list box from which the user may choose. If

contents() is not specified, the list box will be empty.

values(listname) specifies the list (see 3.5 LIST) for which the values of contents() should match

one to one. When the user chooses the 𝑘th element from contents(), the 𝑘th element of listname is

copied into the edit field. If the lists do not match one to one, extra elements of listname are ignored,

and extra elements of contents() return themselves.

append specifies that selections made from the combo box’s list box be appended to the contents of the

combo box’s edit field. By default, selections replace the contents of the edit field. append is not

allowed if dropdownlist is also specified.

onselchange(iaction) and onselchangelist(listname) are alternatives that specify the i-action to

be invoked when a selection in the list changes.

onselchange(iaction) performs the same i-action, regardless of the element of the list that was

chosen.

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples3.5LIST

Dialog programming — Dialog programming 28

onselchangelist(listname) specifies a vector of iactions that should match one to one with

contents(). If the user selects the 𝑘th element of contents(), the 𝑘th i-action from listname is

invoked. See 3.5 LIST for information on creating listname. If the elements of listname do not match

one to one with the elements of contents(), extra elements are ignored, and if there are too few ele-

ments, the last element will be invoked for the extra elements of contents(). onselchangelist()
should not be specified with dropdown.

option(optionname) is a communication option that associates optionname with the element chosen

from the list.

tooltip(”string”) specifies the text to be displayed as a tip or hint when the user hovers over the control
with the mouse.

Example
LIST namelist

BEGIN
John
Sue
Frank

END
...
DIALOG ...

BEGIN
...
TEXT ourlab 10 10 200 ., label(”Pick one or more names”)
COMBOBOX names @ +20 150 200, contents(namelist) append
...

END

3.6.9 BUTTON special input control

Syntax
BUTTON newcontrolname x y xsize ysize [, label(”string”) error(”string”)

onpush(iaction) tooltip(”string”)]

Member functions
setlabel string sets the label for the button

setfocus causes the control to obtain keyboard focus

settooltip string sets the tooltip text to string

modified on adds * to the end of the button label
modified off removes * at the end of the button label

The standard member functions hide, show, disable, enable, and setposition are also provided.

Returned values for use in PROGRAM
None.

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples3.5LIST

Dialog programming — Dialog programming 29

Description
BUTTON creates a push button that performs instantaneous actions. Push buttons do not indicate a

state, such as on or off, and do not return anything for use by the u-action PROGRAM. Buttons are used to
invoke i-actions.

Options
label(”string”) specifies the text to display on the button. You should specify text that contains verbs

that describe the action to perform.

error(”string”) specifies the text to be displayed describing this field to the user in automatically gen-
erated error boxes.

onpush(iaction) specifies the i-action to be invoked when the button is clicked on. If onpush() is not
specified, the button does nothing.

tooltip(”string”) specifies the text to be displayed as a tip or hint when the user hovers over the control
with the mouse.

Example
BUTTON help 10 10 80 ., label(”Help”) onpush(”view help example”)

3.6.10 TEXT static control

Syntax
TEXT newcontrolname x y xsize ysize [, label(”string”) [left | center | right]]

Member functions
setlabel string sets the text shown

The standard member functions hide, show, disable, enable, and setposition are also provided.

Returned values for use in PROGRAM
None.

Description
TEXT displays text.

Options
label(”string”) specifies the text to be shown.

left, center, and right are alternatives that specify the horizontal alignment of the text with respect

to x. left is the default.

Example
TEXT dvlab 10 10 200 ., label(”Dependent variable”)

Dialog programming — Dialog programming 30

3.6.11 TEXTBOX static control

Syntax
TEXTBOX newcontrolname x y xsize ysize [, label(”string”) [left | center | right]]

Member functions
setlabel string sets the text shown

The standard member functions hide, show, disable, enable, and setposition are also provided.

Returned values for use in PROGRAM
None.

Description
TEXTBOX displays multiline text.

Options
label(”string”) specifies the text to be shown.

left, center, and right are alternatives that specify the horizontal alignment of the text with respect

to x. left is the default.

Example
TEXTBOX tx_note 10 10 200 45, label(”Note ...”)

3.6.12 GROUPBOX static control

Syntax
GROUPBOX newcontrolname x y xsize ysize [, label(”string”)]

Member functions
setlabel string sets the text shown above the group box

The standard member functions hide, show, disable, enable, and setposition are also provided.

Returned values for use in PROGRAM
None.

Dialog programming — Dialog programming 31

Description
GROUPBOX displays a frame (an outline) with text displayed above it. Group boxes are used for group-

ing related controls together. The grouped controls are sometimes said to be inside the group box, but

there is no meaning to that other than the visual effect.

Options
label(”string”) specifies the text to be shown at the top of the group box.

Example
GROUPBOX weights 10 10 300 200, label(”Weight type”)

RADIO w1 ..., ... label(fweight) first ...
RADIO w2 ..., ... label(aweight) ...
RADIO w3 ..., ... label(pweight) ...
RADIO w4 ..., ... label(iweight) last ...

3.6.13 FRAME static control

Syntax
FRAME newcontrolname x y xsize ysize [, label(”string”)]

Member functions
There are no special member functions provided.

The standard member functions hide, show, disable, enable, and setposition are also provided.

Returned values for use in PROGRAM
None.

Description
FRAME displays a frame (an outline).

Options
label(”string”) specifies the label for the frame, which is not used in any way, but some programmers

use it to record comments documenting the purpose of the frame.

Remarks
The distinction between a frame and a group box with no label is that a frame draws its outline using

the entire dimensions of the control. A group box draws its outline a few pixels offset from the top of the

control, whether there is a label or not. A frame is useful for horizontal alignment with other controls.

Example
FRAME box 10 10 300 200

RADIO w1 ..., ... label(fweight) first ...
RADIO w2 ..., ... label(aweight) ...
RADIO w3 ..., ... label(pweight) ...
RADIO w4 ..., ... label(iweight) last ...

Dialog programming — Dialog programming 32

3.6.14 COLOR input control

Syntax
COLOR newcontrolname x y xsize ysize [, label(”string”) error(”string”)

default(rgbvalue) nomemory onchange(iaction) option(optionname)

tooltip(”string”)]

Member functions
setvalue rgbvalue sets the rgb value of the color selector

withvalue method string call method (another object’s member function) with the color selector’s

value substituted for@ in string
setoption optionname associates optionname with the selected color

setdefault rgbvalue sets the default rgb value of the color selector; this does not change the

selected color
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also provided.

Returned values for use in PROGRAM
Returns rgbvalue of the selected color as a string.

Description
COLOR defines a button to access a color selector. The button shows the color that is currently selected.

Options
label(”string”) specifies a description for the control, but it does not display the label next to the

button. If you want to label the color control, you must use a TEXT static control.

error(”string”) specifies the text to be displayed describing this field to the user in automatically gen-
erated error boxes.

default(rgbvalue) specifies the default color of the color control. If not specified, default(255 0 0)
is assumed.

nomemory specifies that the color control not remember the set color between invocations.

onchange(iaction) specifies the i-action to be invoked when the color is changed. The default i-action
is to do nothing. Note that the onchange() i-action will be invoked the first time the color control is
displayed.

option(optionname) is a communication option that associates optionname with the selected color.

tooltip(”string”) specifies the text to be displayed as a tip or hint when the user hovers over the control
with the mouse.

Example
COLOR box_color 10 10 40 ., default(0 0 0)

Dialog programming — Dialog programming 33

3.6.15 EXP expression input control

Syntax
EXP newcontrolname x y xsize ysize [, label(”string”) error(”string”)

default(defstrval) nomemory onchange(iaction) option(optionname)

tooltip(”string”)]

Member functions
setlabel string sets the label for the button

setvalue strvalue sets the value shown in the edit field

withvalue method string callmethod (another object’smember function) with the edit field’s value

substituted for@ in string
append string appends string to the value in the edit field

prepend string prepends string to the value of the edit field

insert string inserts string at the current cursor position of the edit field

smartinsert string inserts string at the current cursor position in the edit field with leading

and trailing spaces around it
setoption optionname associates optionname with the contents of the edit field

setdefault string sets the default value for the edit field; this does not change what is dis-

played
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also provided.

Returned values for use in PROGRAM
Returns string, the contents of the edit field.

Description
EXP defines an expression control that consists of an edit field and a button for launching the Expres-

sion Builder.

Options
label(”string”) specifies the text for labeling the button.

error(”string”) specifies the text to be displayed describing this field to the user in automatically gen-
erated error boxes.

default(defstrval) specifies the default contents of the edit field. If not specified, default(””) is

assumed.

nomemory specifies that the edit field not remember how it was filled in between invocations.

onchange(iaction) specifies the i-action to be invoked when the contents of the edit field are changed.
The default i-action is to do nothing. Note that the onchange() i-action will be invoked the first time
the expression control is displayed.

option(optionname) is a communication option that associates optionnamewith the contents of the edit

field.

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.

Dialog programming — Dialog programming 34

tooltip(”string”) specifies the text to be displayed as a tip or hint when the user hovers over the control
with the mouse.

Example
TEXT tlab 10 10 200 ., label(”Expression:”)
EXP exp @ +20 @ ., label(”Expression”)

3.6.16 HLINK hyperlink input control

Syntax
HLINK newcontrolname x y xsize ysize [, label(”string”) [left | center | right]

onpush(iaction)]

Member functions
setlabel string sets the text shown

The standard member functions hide, show, disable, enable, and setposition are also provided.

Returned values for use in PROGRAM
None.

Description
HLINK creates a hyperlink that performs instantaneous actions. Hyperlinks do not indicate a state,

such as on or off, and do not return anything for use by the u-action PROGRAM. Hyperlinks are used to

invoke i-actions.

Options
label(”string”) specifies the text to be shown.

left, center, and right are alternatives that specify the horizontal alignment of the text with respect

to x. left is the default.

onpush(iaction) specifies the i-action to be invoked when the hyperlink is clicked on. If onpush() is

not specified, the hyperlink does nothing.

Example
HLINK help 10 10 80 ., label(”Help”) onpush(”view help example”)

Dialog programming — Dialog programming 35

3.6.17 TREEVIEW tree input control

Syntax
TREEVIEW newcontrolname x y xsize ysize [, label(”string”) error(”string”)

nomemory contents(conspec) values(listname) default(defstrval)

ondblclick(iaction) [onselchange(iaction) | onselchangelist(listname)

option(optionname) tooltip(”string”)]

Member functions
setlabel string sets the label for the tree

setvalue strvalue sets the currently selected item

setfocus causes the control to obtain keyboard focus

setoption optionname associates optionname with the element chosen from the tree

setdefault string sets the default value for the tree; this does not change what is displayed

forceselchange forces an onselchange event to occur
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also provided.

Returned values for use in PROGRAM
Returns string, the text of the item chosen, or, if values(listname) is specified, the text from the

corresponding element of listname.

Description
TREEVIEW defines a tree control, which is used to display a hierarchical view of labeled items. A tree

view allows the user to select from several mutually exclusive but related choices. By clicking on an

item, the user can expand or collapse the associated list of subitems.

Options
label(”string”) specifies a description for the control but does not display the label next to the control.

If you want to label a tree view, you must use a TEXT static control.

error(”string”) specifies the text to be displayed describing this field to the user in automatically gen-
erated error boxes.

nomemory specifies that the control not remember the item selected between invocations.

contents(conspec) specifies the items to be shown in the control. If contents() is not specified, the
tree view control will be empty.

values(listname) specifies the list (see 3.5 LIST) for which the values of contents() should match

one to one. When the user chooses the 𝑘th element from contents(), the 𝑘th element of listname

will be returned. If the lists do not match one to one, extra elements of listname are ignored, and extra

elements of contents() return themselves.

default(defstrval) specifies the default selection. If not specified, or if defstrval does not exist, the

first item is the default.

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples3.5LIST

Dialog programming — Dialog programming 36

ondblclick(iaction) specifies the i-action to be invoked when an item in the control is double clicked.

The double-clicked item is selected before the iaction is invoked.

onselchange(iaction) and onselchangelist(listname) are alternatives. They specify the i-action to
be invoked when a selection in the control changes.

onselchange(iaction) performs the same i-action, regardless of which element of the control was

chosen.

onselchangelist(listname) specifies a vector of iactions that should match one to one with

contents(). If the user selects the 𝑘th element of contents(), the 𝑘th i-action from listname is

invoked. See 3.5 LIST for information on creating listname. If the elements of listname do not match

one to one with the elements of contents(), extra elements are ignored, and if there are too few

elements, the last element will be invoked for the extra elements of contents().

option(optionname) is a communication option that associates optionname with the element chosen

from the tree view control.

tooltip(”string”) specifies the text to be displayed as a tip or hint when the user hovers over the control
with the mouse.

Organize data
TREEVIEW represents a hierarchical view of information where each item may have several subitems.

Items (nodes) in the tree view can be expanded or collapsed to show or hide subitems. For example,

Root 1
SubItem A

SubItem A1
SubItem A2

SubItem B
Root 2

SubItem C

The parent–child relationship data are stored in a content list. Each item in the list represents a node of

the tree. The string labeling each item contains two parts. The first part encloses a nonnegative integer in

square brackets to denote the level or depth of each node. The second part following the square brackets

is the content shown in the tree.

Example
LIST ourcontentlist

BEGIN
[0]Root 1
[1]SubItem A
[2]SubItem A1
[2]SubItem A2
[1]SubItem B
[0]Root 2
[1]SubItem C

END
...
DIALOG ...

BEGIN
...
TEXT ourlab 10 10 200 ., label(”Pick an item”)
TREEVIEW ourtree @ +20 150 200, contents(ourcontentlist)
...

END

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples3.5LIST

Dialog programming — Dialog programming 37

3.7 OK, SUBMIT, CANCEL, and COPY u-action buttons

Syntax
{ OK | SUBMIT | COPY } newbuttonname [, label(”string”) uaction(programname)

target(target)]

CANCEL newbuttonname [, label(”string”)]

Description
OK, CANCEL, SUBMIT, and COPY define buttons that, when clicked on, invoke a u-action. At least one

of the buttons should be defined (or the dialog will have no associated u-action); only one of each button

may be defined; and usually, good style dictates defining all four.

OK executes programname, removes the dialog box from the screen, and submits the resulting com-

mand produced by programname to target. If no other buttons are defined, clicking on the close icon of

the dialog box does the same thing.

SUBMIT executes programname, leaves the dialog box on the screen, and submits the resulting com-

mand produced by programname to target.

CANCEL removes the dialog from the screen and does nothing. If this button is defined, clicking on

the close icon of the dialog box does the same thing.

COPY executes programname, leaves the dialog box on the screen, and copies the resulting command

produced by programname to target. By default, the target is the clipboard.

You do not specify the location or size of these controls. They will be placed in the dialog box where

the user would expect to see them.

Options
label(”string”) defines the text to appear on the button. The default label() is OK, Submit, and

Cancel for each individual button.

uaction(programname) specifies the PROGRAM to be executed. uaction(command) is the default.

target(target) defines what is to be done with the resulting string (command) produced by program-

name. The alternatives are

target(stata): The command is to be executed by Stata. This is the default.

target(stata hidden): The command is to be executed by Stata, but the command itself is not to

appear in the Results window. The output from the command will appear normally. This option may

change in the future and should be avoided when possible.

target(cmdwin): The command is to be placed in the Command window so that the user can edit it

and then press Enter to submit it.

target(clipboard): The command is to be placed on the clipboard so that the user can paste it into
the desired editor.

Dialog programming — Dialog programming 38

Example
OK ok1
CANCEL can1
SUBMIT sub1
COPY copy1

3.8 HELP and RESET helper buttons

Syntax
HELP newbuttonname [, view(”viewertopic”)]

RESET newbuttonname

Description
HELP defines a button that, when clicked on, presents viewertopic in the Viewer. viewertopic is typi-

cally specified as ”view helpfile”.

RESET defines a button that, when clicked on, resets the values of the controls in the dialog box to

their initial state, just as if the dialog box were invoked for the first time. Each time a user invokes a

dialog box, its controls will be filled in with the values the user last entered. RESET restores the control
values to their defaults.

You do not specify the location, size, or appearance of these controls. They will be placed in the

lower-left corner of the dialog box. The HELP button will have a question mark on it, and the RESET
button will have an R on it.

Option
view(”viewertopic”) specifies the topic to appear in the Viewer when the user clicks on the button. The

default is view(”help contents”).

Example
HELP hlp1, view(”help mycommand”)
RESET res1

3.9 Special dialog directives

Syntax
{ MODAL | SYNCHRONOUS ONLY }

Description
MODAL instructs the dialog to have modal behavior.

SYNCHRONOUS ONLY allows the dialog to invoke stata hidden immediate at special times during

the initialization process. See 5.5.1 stata for more information on this topic.

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples5.5.1stata

Dialog programming — Dialog programming 39

4. SCRIPT

Syntax

SCRIPT newscriptname

BEGIN
iaction

...
END

where iaction is

.

action memberfunction

gaction dialogname.controlname.memberfunction

dialogname.controlname.memberfunction

script scriptname

view topic

program programname

See 2.5 I-actions and member functions for more information on iactions.

Description
SCRIPT defines the newscriptname, which in turn defines a compound i-action. I-actions are invoked

by the on *() options of the input controls. When a script is invoked, the lines are executed sequentially,

and any errors are ignored.

Remarks
CHECKBOX provides onclickon(iaction) and onclickoff(iaction) options. Let’s focus on the

onclickon(iaction) option. If you wanted to take just one action when the box was checked—say,

disabling d1.s2—you could code

CHECKBOX ..., ... onclickon(d1.s2.disable) ...

If you wanted to take two actions, say, disabling d1.s3 as well, you would have to use a SCRIPT. On
the CHECKBOX command, you would code

CHECKBOX ..., ... onclickon(script buttonsoff) ...

and then somewhere else in the .dlg file (it does not matter where), you would code

SCRIPT buttonsoff
BEGIN

d1.s2.disable
d1.s3.disable

END

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples2.5I-actionsandmemberfunctions

Dialog programming — Dialog programming 40

5. PROGRAM

Syntax

PROGRAM programname

BEGIN
[program_line | INCLUDE]
[...]

END

Description
PROGRAM defines a dialog program. Dialog programs are used to describe complicated i-actions and

to implement u-actions.

Remarks
Dialog programs are used to describe complicated i-actions when flow control (if/then) is necessary

or when you wish to create heavyweight i-actions that are like u-actions because they invoke Stata com-

mands; otherwise, you should use a SCRIPT. Used this way, programs are invoked when the specified

iaction is program programname in an on*() option of an input control command; for instance, you

could code

CHECKBOX ..., ... onclickon(program complicated) ...

or use a SCRIPT:

CHECKBOX ..., ... onclickon(script multi) ...
...
SCRIPT multi

BEGIN
...
program complicated
...

END

The primary use of dialog programs, however, is to implement u-actions. The program constructs and

returns a string, which the dialog-box manager will then interpret as a Stata command. The program is

invoked by the uaction() options of OK and SUBMIT; for instance,

OK ..., ... uaction(program command) ...

The u-action program is nearly always named command because, if the uaction() option is not

specified, command is assumed. The u-action program may, however, be named as you please.

Here is an example of a dialog program being used to implement an i-action with if/then flow control:

PROGRAM testprog
BEGIN

if sample.cb1 & sample.cb2 {
call sample.txt1.disable

}
if !(sample.cb1 & sample.cb2) {

call sample.txt1.enable
}

END

Dialog programming — Dialog programming 41

Here is an example of a dialog program being used to implement the u-action:

PROGRAM command
BEGIN

put ”mycmd ”
varlist main.vars // varlist [main.vars] would make optional
ifexp main.if
inrange main.obs1 main.obs2
beginoptions

option options.detail
optionarg options.title

endoptions
END

Using programs to implement heavyweight i-actions is much like implementing u-actions, except the

program might not be a function of the input controls, and you must explicitly code the stata command
to execute what is constructed. Here is an example of a dialog program being used to implement a

heavyweight i-action:

PROGRAM heavyweight
BEGIN

put ”myeditcmd, resume”
stata

END

5.1 Concepts

5.1.1 Vnames

Vname stands for value name and refers to the “value” of a control. Vnames are of the form dialog-

name.controlname; for example, d2.s2 and d2.list would be vnames if input controls s2 and list
were defined in DIALOG d2:

DIALOG d2 ...
BEGIN

...
CHECKBOX s2 ...
EDIT list ...
...

END

A vname can be numeric or string depending on the control to which it corresponds. For CHECKBOX,
it was documented under “Returned value for use in PROGRAM” that CHECKBOX “returns numeric, 0 or

1, depending on whether box is checked”, so d2.s2 is a numeric. For the EDIT input control, it was

documented that EDIT returns a string representing the contents of the edit field, so d2.list is a string.

Different words are sometimes used to describe whether vname is numeric or string, including

vname is numeric

vname is string

vname is a numeric control

vname is a string control

vname returns a numeric result

vname returns a string result

Dialog programming — Dialog programming 42

In a program, you may not assign values to vnames; you may only examine their values and, for u-

action (and heavyweight i-action) programs, output them. Thus dialog programs are pretty relaxed about

types. You can ask whether d2.s2 is true or d2.list is true, even though d2.list is a string. For a

string, it is true if it is not ””. Numeric vnames are true if the numeric result is not 0.

5.1.2 Enames

Enames are an extension of vnames. An ename is defined as

vname

or(vname vname ... vname)
radio(dialogname controlname ... controlname)

or() returns the vname of the first in the list that is true (filled in). For instance, the varlist u-action
dialog-programming command “outputs” a varlist (see 5.1.3 rstrings: cmdstring and optstring). If you

knew that the varlist was in either control d1.field1 or d1.field2 and knew that both could not be

filled in, you might code

varlist or(d1.field1 d1.field2)

which would have the same effect as

if d1.field1 {
varlist d1.field1

}
if (!d1.field1) & d2.field2 {

varlist d2.field2
}

radio() is for dealing with radio buttons. Remember that each radio button is a separate control, and
yet, in the set, we know that exactly one is clicked on. radio finds the clicked one. Typing

option radio(d1 b1 b2 b3 b4)

would be equivalent to typing

option or(d1.b1 d1.b2 d1.b3 d1.b4)

which would be equivalent to typing

option d1.b2

assuming that the second radio button is selected. (The option command outputs the option correspond-
ing to a control.)

5.1.3 rstrings: cmdstring and optstring

Rstrings, cmdstring and optstring, are relevant only in u-action and heavyweight i-action pro-

grams.

The purpose of a u-action program is to build and return a string, which Stata will ultimately execute.

To do that, dialog programs have an rstring to which the dialog-programming commands implicitly

contribute. For example,

put ”kappa”

would add “kappa” (without the quotes) to the end of the rstring currently under construction, known as

the current rstring. Usually, the current rstring is cmdstring, but within a beginoptions/endoptions
block, the current rstring is switched to optstring:

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples5.1.3rstringscmdstringandoptstring

Dialog programming — Dialog programming 43

beginoptions
put ”kappa”

endoptions

The above would add “kappa” (without the quotes) to optstring.

When the program concludes, the cmdstring and the optstring are put together—separated by a

comma—and that is the command Stata will execute. In any case, any command that can be used outside

beginoptions/endoptions can be used inside them, and the only difference is the rstring to which the
output is directed. Thus if our entire u-action program read

PROGRAM command
BEGIN

put ”kappa”
beginoptions

put ”kappa”
endoptions

END

the result would be to execute the command “kappa, kappa”.

The difference between a u-action program and a heavyweight i-action program is that you must, in

your program, specify that the constructed command be executed. You do this with the stata command.
The stata command can also be used in u-action programs if you wish to execute more than one Stata
command:

PROGRAM command
BEGIN

put, etc. // construct first command
stata // execute first command
clear // clear cmdstring and optstring
put, etc. // construct second command

// execution will be automatic
END

5.1.4 Adding to an rstring

When adding to an rstring, be aware of some rules in using spaces. Call A the rstring and B the string

being added (say “kappa”). The following rules apply:

1. If A does not end in a space and B does not begin with a space, the two strings are joined to

form “AB”. If A is “this” and B is “that”, the result is “thisthat”.

2. If A ends in one or more spaces and B does not begin with a space, the spaces at the end of A

are removed, one space is added, and B is joined to form “rightstrip(A) B”. If A is “this ” and
B is “that”, the result is “this that”.

3. If A does not end in a space and B begins with one or more spaces, the spaces at the beginning

of B are ignored and treated as if there is one space, and the two strings are joined to form “A

leftstrip(B)”. If A is “this” and B is “ that”, the result is “this that”.

4. If A ends in one or more spaces and B begins with one or more spaces, the spaces at the end of

A are removed, the spaces at the beginning of B are ignored, and the two strings are joined with

one space in between to form “rightstrip(A) leftstrip(B)”. If A is “this ” and B is “ that”, the
result is “this that”.

These rules ensure that multiple spaces do not end up in the resulting string so that the string will look

better and more like what a user might have typed.

Dialog programming — Dialog programming 44

When string literals are put, they are nearly always put with a trailing space

put ”kappa ”

to ensure that they do not join up with whatever is put next. If what is put next has a leading space, that

space will be ignored.

5.2 Flow-control commands

5.2.1 if

Syntax

if ifexp {
...

}

or

if ifexp {
...

}
else {
...

}

where ifexp may be

ifexp Meaning

(ifexp) order of evaluation

!ifexp logical not

ifexp | ifexp logical or

ifexp & ifexp logical and

vname true if vname is not 0 and not ””
vname.booleanfunction true if vname.booleanfunction evaluates to true

rc see 5.5 Command-execution commands

stbusy true if Stata is busy

H(vname) true if vname is hidden or disabled

default(vname) true if vname is its default value

Note the recursive definition: An ifexp may be substituted into itself to produce more complicated ex-

pressions, such as ((!d1.s1) & d1.s2) | d1.s3.isdefault().

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesbooleanfunction
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples5.5Command-executioncommands

Dialog programming — Dialog programming 45

Also note that the order of evaluation is left to right; use parentheses.

booleanfunction Meaning

isdefault() true if the value of vname is its default value

isenabled() true if vname is enabled

isnumlist() true if the value of vname is a numlist

isvisible() true if vname is visible

isvalidname() true if the value of vname is a valid Stata name

isvarname() true if the value of vname is the name of a variable in the
current dataset

isInteger() true if the value of vname is an integer

iseq(argument) true if the value of vname is equal to argument

isneq(argument) true if the value of vname is not equal to argument

isgt(argument) true if the value of vname is greater than argument

isge(argument) true if the value of vname is greater than or equal to argument

islt(argument) true if the value of vname is less than argument

isle(argument) true if the value of vname is less than or equal to argument

isNumlistEQ(argument) true if every value of vname is equal to argument, where
vname may be a numlist

isNumlistLT(argument) true if every value of vname is less than argument, where
vname may be a numlist

isNumlistLE(argument) true if every value of vname is less than or equal to argument,
where vname may be a numlist

isNumlistGT(argument) true if every value of vname is greater than argument, where
vname may be a numlist

isNumlistGE(argument) true if every value of vname is greater than or equal to
argument, where vname may be a numlist

isNumlistInRange(arg1,arg2) true if every value of vname is within arg1 and arg2 inclusive,
where vname may be a numlist

isNumlistWithinRange(arg1,arg2) true if every value of vname is within range arg1 and arg2,
where vname may be a numlist

isNumlistCountGT(arg1) true if vname contains a count of the values of a numlist
greater than arg1, where vname may be a numlist

isWordCountGT(arg1) true if vname contains a count of the words greater than arg1,
where vname may be a numlist

startswith(argument) true if the value of vname starts with argument

endswith(argument) true if the value of vname ends with argument

contains(argument) true if the value of vname contains argument

iseqignorecase(argument) true if the value of vname is equal to argument ignoring case

An argument can be a dialog control, a dialog property, or a literal. If the argument is a literal it can be

either string or numeric, depending on the type of control the booleanfunction references. String controls

require that literals be quoted, and numeric controls require that literals not be quoted.

Description
if executes the code inside the braces if ifexp evaluates to true and skips it otherwise. When an else

has been specified, the code within its braces will be executed if ifexp evaluates to false. if commands
may be nested.

Dialog programming — Dialog programming 46

Example
if d1.v1.isvisible() {

put ”thing=” d1.v1
}
else {

put ”thing=” d1.v2
}

5.2.2 while

Syntax

while condition {
...

}

where condition may be

condition Meaning

(condition) order of evaluation

!condition logical not

condition | condition logical or

condition & condition logical and

Description
A while loop is for circumstances where you want to do the same thing repeatedly. It is controlled

by a counter. For a while loop to execute correctly, you must do the following:

1. Initialize a start value for the counter before the loop.

2. Specify a condition that tests the value of the counter against its expected final value such that

the logical condition evaluates to false and the loop is forced to end at some point.

3. Specify a command that modifies the value of the counter inside the loop.

Example
PROGRAM testprog

call create DOUBLE i
call create ARRAY testlist
while(i.islt(10)) {

call i.withvalue testlist.Arrpush @
call i.increment

}
END

Dialog programming — Dialog programming 47

5.2.3 call

Syntax

call iaction

where iaction is

.

action memberfunction

gaction dialogname.controlname.memberfunction

dialogname.controlname.memberfunction

script scriptname

view topic

program programname

iaction “action memberfunctionname” is invalid in u-action programs because there is no concept

of a current control.

Description
call executes the specified iaction. If an iaction is not specified, gaction is assumed.

Example
PROGRAM testprog

BEGIN
if sample.cb1 & sample.cb2 {

call gaction sample.txt1.disable
}
if !(sample.cb1 & sample.cb2) {

call gaction sample.txt1.enable
}

END

5.2.4 exit

Syntax

exit [#]

where # ≥ 0. The following exit codes have special meaning:

Definition

0 exit without error

>0 exit with error

101 program exited because of a missing required object

Dialog programming — Dialog programming 48

Description
exit causes the program to exit and, optionally, to return #.

exit without an argument is equivalent to “exit 0”. In u-action programs, the cmdstring,
optstring will be sent to Stata for execution.

exit #, # > 0, indicates an error. In u-action programs, the cmdstring, optstring will not be

executed. exit 101 has special meaning. When a u-action program exits, Stata checks the exit code for

that program and, if it is 101, presents an error box stating that the user forgot to fill in a required element
of the dialog box.

Example
if !sample.var1 {

exit 101
}

5.2.5 close

Syntax

close

Description
close causes the dialog box to close.

5.3 Error-checking and presentation commands

5.3.1 require

Syntax
require ename [ename [...]]

where each ename must be string.

Description
require does nothing on each ename that is disabled or hidden.

For other enames, require requires that the controls specified not be empty (””) and produces a stop-
box error message such as “dependent variable must be defined” for any that are empty. The “dependent

variable” part of the message will be obtained from the control’s error() option or, if that was not

specified, from the control’s label() option; if that was not specified, a generic error message will be

displayed.

Example
require main.grpvar

Dialog programming — Dialog programming 49

5.3.2 stopbox

Syntax
stopbox { stop | note | rusure } [”line1” [”line2” [”line3” [”line4”]]]]

Description
stopbox displays a message box containing up to four lines of text. Three types are available:

stop: Displays a message box in which there is only one button, OK, which means that the user
must accept that he or shemade an error and correct it. The programwill exit after stopbox
stop.

note: Displays a message box in which there is only one button, OK, which confirms that the user
has read the message. The program will continue after stopbox note.

rusure: Displays a message box in which there are two buttons, Yes and No. The program will

continue if the user clicks on Yes or exit if the user clicks on No.

Also see [P] window stopbox for more information.

Example
stopbox stop ”Nothing has been selected”

5.3.3 repfile

Syntax
repfile fname

where each fname must be a FILE control with option save specified.

Description
repfile only works with FILE controls when option save is specified. repfile checks that the

file specified does not already exist on disk, and if it does, it produces a stop-box rusure message

“”filename” already exists. Do you want to replace it?”. If the users press the Yes button, the

FILE control class variable repfile gets set to true.

Example
require main.fi_saving
repfile main.fi_saving
put /smartquote main.fi_saving
if rpt.fi_saving.repfile {

put ”, replace”
}

https://www.stata.com/manuals/pwindowstopbox.pdf#pwindowstopbox

Dialog programming — Dialog programming 50

5.3.4 smartquote

Syntax
smartquote ename

where each ename must be string.

Description
smartquote tries to handle quoting when enames contains single quotes, double quotes, or spaces.

For example, if ename contains a space, smartquote will double quote ename on output. If ename

contains double quotes, smartquote will compound double quote the ename on output.

Example
put /smartquote main.fi_saving

5.4 Command-construction commands

The command-construction commands are

by

bysort

put

varlist

ifexp

inrange

weight

beginoptions/option/optionarg/endoptions

allowxi/xi

clear

Most correspond to the part of Stata syntax for which they are named:

by varlist: cmd varlist [if] [in] [weight] [, options]
put corresponds to cmd (although it is useful for other things as well), and allowxi/xi corresponds

to putting xi: in front of the entire command; see [R] xi.

The command-construction commands (with the exception of xi) build cmdstring and optstring
in the order the commands are executed (see 5.1.3 rstrings: cmdstring and optstring), so you should issue

them in the same order they are used in Stata syntax.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/rxi.pdf#rxi
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples5.1.3rstringscmdstringandoptstring

Dialog programming — Dialog programming 51

Added to the syntax diagrams that follow is a new header:

Use of option() communication.

This refers to the option() option on the input control definition, such as CHECKBOX and EDIT; see
2.6 U-actions and communication options.

5.4.1 by

Syntax
by ename

where ename must contain a string and should refer to a VARNAME, VARLIST, or EDIT control.

Use of option() communication: None.

Description
by adds nothing to the current rstring if ename is hidden, disabled, or empty. Otherwise, by outputs

“by varlist:”, followed by a blank, obtaining a varlist from ename.

Example
by d2.by

5.4.2 bysort

Syntax
bysort ename

where ename must contain a string and should probably refer to a VARNAME, VARLIST, or EDIT control.

Use of option() communication: None.

Description
bysort adds nothing to the current rstring if ename is hidden, disabled, or empty. Otherwise, bysort

outputs “by varlist, sort :”, followed by a blank, obtaining a varlist from ename.

Example
bysort d2.by

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples2.6U-actionsandcommunicationoptions

Dialog programming — Dialog programming 52

5.4.3 put

Syntax
put [% fmt] putel [[% fmt] putel [. . .]]

where putel may be

””

”string”

vname

/hidden vname

/on vname

/program programname

The word “output” means “add to the current result” in what follows. The put directives are defined
as

”” and ”string”
Outputs the fixed text specified.

vname

Outputs the value of the control.

/hidden vname

Outputs the value of the control, even if it is hidden or disabled.

/on vname

Outputs nothing if vname==0. vname must be numeric and should be the result of a CHECKBOX or

RADIO control. /on outputs the text from the control’s option() option. Also see 5.4.8.1 option for
an alternative using the option command.

/program programname

Outputs the cmdstring, optstring returned by programname.

If any vname is disabled or hidden and not preceded by /hidden, put outputs nothing.

If the directive is preceded by % fmt, the specified % fmt is always used to format the result. Otherwise,

string results are displayed as is, and numeric results are displayed in %10.0g format and stripped of

resulting leading and trailing blanks. See [D] format.

Use of option() communication: See /on above.

Description
put adds to the current rstring (outputs) what is specified.

Remarks
put ”string” is often used to add the Stata command to the current rstring. When used in that way,

the right way to code is

put ”commandname ”

https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples5.4.8.1option
https://www.stata.com/manuals/dformat.pdf#dformat

Dialog programming — Dialog programming 53

Note the trailing blank on commandname; see 5.1.4 Adding to an rstring.

put displays nothing if any element specified is hidden or disabled. For instance,

put ”thing=” d1.v1

will output nothing (not even ”thing=”) if d1.v1 is hidden or disabled. This saves you from having to

code

if !H(d1.v1) {
put ”thing=” d1.v1

}

5.4.4 varlist

Syntax
varlist el [el [. . .]]

where an el is ename or [ename] (brackets significant).

Each ename must be string and should be the result from a VARLIST, VARNAME, or EDIT control.

If ename is not enclosed in brackets, it must not be hidden or disabled.

Use of option() communication: None.

Description
varlist considers it an error if any of the specified enames that are not enclosed in brackets are

hidden or disabled or empty (contain ””).

In these cases, varlist displays a stop-message box indicating that the varlist must be filled in and exits

the program.

varlist adds nothing to the current rstring if any of the specified enames that are enclosed in brackets

are hidden or disabled.

Otherwise, varlist outputs with leading and trailing blanks the contents of each ename that is not

hidden, is not disabled, and does not contain ””.

Remarks
varlist is most often used to output the varlist of a Stata command, such as

varlist main.depvar [main.indepvars]

varlist can also be used for other purposes. You might code

if d1.vl {
put ” exog(”
varlist d2.vl
put ”) ”

}

although coding

optionarg d2.vl

would be an easier way to achieve the same effect.

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples5.1.4Addingtoanrstring

Dialog programming — Dialog programming 54

5.4.5 ifexp

Syntax
ifexp ename

where ename must be a string control.

Use of option() communication: None.

Description
ifexp adds nothing to the current rstring if ename is hidden, disabled, or empty. Otherwise, output

is “if exp”, with spaces added before and after.

Example
if d2.if

5.4.6 inrange

Syntax
inrange ename 1 ename 2

where ename 1 and ename 2 must be numeric controls.

Use of option() communication: None.

Description
If ename 1 is hidden or disabled, results are as if ename 1 were not hidden and contained 1. If

ename 2 is hidden or disabled, results are as if ename 1 were not hidden and contained N, the number
of observations in the dataset.

If ename 1==1 and ename 2== N, nothing is output (added to the current rstring).

Otherwise, “in range” is output with spaces added before and after, with the range obtained from

ename 1 and ename 2.

Example
inrange d2.in1 d2.in2

5.4.7 weight

Syntax
weight ename t ename e

where ename t may be a string or numeric control and must have had option() filled in with a weight
type (one of weight, fweight, aweight, pweight, or iweight), and ename e must be a string evalu-

ating to the weight expression or variable name.

Use of option() communication: ename t must have option() filled in the weight type.

Dialog programming — Dialog programming 55

Description
weight adds nothing to the current rstring if ename t or ename e are hidden, disabled, or empty.

Otherwise, output is [weighttype=exp] with leading and trailing blanks.

Remarks
weight is typically used as

weight radio(d1 w1 w2 ... wk) d1.wexp

where d1.w1, d1.w2, . . . , d1.wk are radio buttons, which could be defined as

DIALOG d1 ...
BEGIN
...

RADIO w1 ..., ... label(fweight) first ...
RADIO w2 ..., ... label(aweight) ...
RADIO w3 ..., ... label(pweight) ...
RADIO w4 ..., ... label(iweight) last ...
...

END

Not all weight types need to be offered. If a command offers only one kind of weight, you do not

need to use radio buttons. You could code

weight d1.wt d1.wexp

where d1.wt was defined as

CHECKBOX wt ..., ... label(fweight) ...

5.4.8 beginoptions and endoptions

Syntax

beginoptions
any dialog-programming command except beginoptions
...

endoptions

Use of option() communication: None.

Description
beginoptions/endoptions indicates that you wish what is enclosed to be treated as Stata options

in constructing cmdstring, optstring.

The current rstring is, by default, cmdstring. beginoptions changes the current rstring to

optstring. endoptions changes it back to cmdstring. So there are two strings being built. When

the dialog program exits normally, if there is anything in optstring, trailing spaces are removed from
cmdstring, a comma and a space are added, the contents of optstring are added, and all that is re-

turned. Thus a dialog program can have many beginoptions/endoptions blocks, but all the options

will appear at the end of the cmdstring.

Dialog programming — Dialog programming 56

The command-construction commands option and optionarg are documented below because

they usually appear inside a beginoptions/endoptions block, but they can be used outside

beginoptions/endoptions blocks, too. Also all the other command-construction commands can be

used inside a beginoptions/endoptions block, and using put is particularly common.

5.4.8.1 option

Syntax

option ename [ename [...]]

where ename must be a numeric control with 0 indicating that the option is not desired.

Use of option() communication: option() specifies the name of the option.

Description
option adds nothing to the current rstring if any of the enames specified are hidden or disabled. Oth-

erwise, for each ename specified, if ename is not equal to 0, the contents of its option() are displayed.

Remarks
option is an easy way to output switch options such as noconstant and detail. You simply code

option d1.sw

where you have previously defined

CHECKBOX sw ..., option(detail) ...

Here detail will be output if the user checked the box.

5.4.8.2 optionarg

Syntax
optionarg [style] ename [[style] ename [...]]

where each ename may be a numeric or string control and style is

style Meaning

/asis do not quote

/quoted do quote

/oquoted quote if necessary

% fmt for use with numeric

Use of option() communication: option() specifies the name of the option.

Description
optionarg adds nothing to the current rstring if any of the enames specified are hidden or disabled.

Otherwise, for each ename specified, if ename is not equal to ””, the ename’s option() is output,

followed by “(”, the ename’s contents, and “)” with blanks added before and after.

https://www.stata.com/manuals/d.pdf#dformat

Dialog programming — Dialog programming 57

Remarks
optionarg is an easy way to output single-argument options such as title() or level(); for ex-

ample,

optionarg /oquoted d1.ttl
if ! d1.level.isdefault() {

optionarg d1.level
}

where you have previously defined

EDIT ttl ..., ... label(title) ...
SPINNER level ..., ... label(level) ...

5.5 Command-execution commands

Commands are executed automatically when a program is invoked by an input control’s uaction()
option. Programs so invoked are called u-action programs. No command is executed when a program is

invoked by an input control’s iaction() option. Programs so invoked are called i-action programs.

The stata and clear commands are for use if

1. you want to write a u-action program that executes more than one Stata command, or

2. you want to write an i-action program that executes one or more Stata commands (also known

as heavyweight i-action programs).

5.5.1 stata

Syntax
stata

stata hidden [immediate | queue]

Use of option() communication: None.

Description
stata executes the current cmdstring, optstring and displays the command in the Results win-

dow before execution, just as if the user had typed it.

stata hidden executes the current cmdstring, optstring but does not display the command in the
Results window before execution. stata hiddenmay optionally be called with either of two modifiers:
queue or immediate. If neither modifier is specified, immediate is implied.

immediate causes the command to execute at once, waits for the command to finish, and sets rc
to contain the return code. Because the command is to be executed immediately, the dialog engine will

complain if Stata is not idle.

queue causes the command to be placed into the command buffer, allowing it to be executed as soon
as Stata becomes idle. The behavior of stata and stata hidden queue are identical except that stata
hidden queue does not echo the command.

Dialog programming — Dialog programming 58

Important notes about stata hidden immediate
A unique situation can occur when stata hidden immediate is used in an initialization script or

program. Stata dialogs are considered asynchronous, meaning that Stata dialogs can be loaded through

the menu and help systems even when Stata is busy processing an ado program. Because stata hidden
immediate relies on ado processing and because ado processing is synchronous, dialogs that call stata
hidden immediate during initialization can only be used synchronously. That means these types of

dialogs cannot be loaded while Stata is busy processing other tasks. Because of this, the dialog must be

notified that it is special in this regard. This is done by placing the dialog directive SYNCHRONOUS ONLY
in the dialog box program just after the VERSION statement.

SYNCHRONOUS ONLY performs one other important function. Dialogs that are launched by using the

db command cause Stata to become busy and remain busy until the dialog is completely loaded. After all,
db is an ado program, and until the dialog loads and db subsequently exits execution, Stata is busy. The
SYNCHRONOUS ONLY directive lets the dialog engine know that executing stata hidden immediate
during initialization routines is allowed even when the dialog is launched with an ado program.

5.5.2 clear

Syntax
clear [curstring | cmdstring | optstring]

Use of option() communication: None.

Description
clear is seldom used and is typically specified without arguments. clear clears (resets to ””)

the specified return string or, if it is specified without arguments, clears cmdstring and optstring.
If curstring is specified, clear clears the current return string, which is cmdstring by default or

optstring within a beginoptions/endoptions block.

5.6 Special scripts and programs

Sometimes, it may be useful to have a script or program run automatically, either just before dialog-

box controls are created or just after. The following scripts and programs are special, and when they are

defined, they run automatically.

Name Function

PREINIT SCRIPT script that runs before any dialog box controls are created

PREINIT PROGRAM program that runs before any dialog box controls are created

POSTINIT SCRIPT script that runs after all dialog box controls are created

POSTINIT PROGRAM program that runs after all dialog box controls are created

PREINIT shortcut for PREINIT SCRIPT
POSTINIT shortcut for POSTINIT SCRIPT

ON DOTPROMPT program that runs when Stata returns from executing an
interactive command; ON DOTPROMPT program should
never call the dialog system’s stata command, because that
would result in infinite recursion

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples5.6Specialscriptsandprograms
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples5.6Specialscriptsandprograms
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples5.5.1stata

Dialog programming — Dialog programming 59

Often it is desirable to encapsulate individual dialog tabs into .idlg files, particularly when a di-

alog tab is used in many different dialog boxes. In those circumstances, a dialog tab can use its own

initialization script or program. The following naming conventions are used to define these scripts and

programs.

Name Function

tabname PREINIT SCRIPT script that runs before controls on dialog tabname are created

tabname PREINIT PROGRAM program that runs before controls on dialog tabname are created

tabname POSTINIT SCRIPT script that runs after controls on dialog tabname are created

tabname POSTINIT PROGRAM program that runs after controls on dialog tabname are created

tabname PREINIT shortcut for tabname PREINIT SCRIPT
tabname POSTINIT shortcut for tabname POSTINIT SCRIPT

The order of execution for dialog initialization is as follows:

1. Execute PREINIT script or program for the dialog box.

2. Execute PREINIT scripts and programs for each dialog tab using the order in which the tabs are
created.

3. Create all controls for the entire dialog box.

4. Execute POSTINIT scripts and programs for each dialog tab using the order in which the tabs

are created.

5. Execute POSTINIT script or program for the dialog box.

6. Properties
Properties are used to store information that is useful for dialog box programming. Properties may

be of type STRING, DOUBLE, or BOOLEAN and do not have a visual representation in the dialog box.

Special variants of these basic types are available. These variants, PSTRING, PDOUBLE, and PBOOLEAN,
are considered persistent and are identical to their counterparts. The contents of these persistent types

do not get destroyed when a dialog is reset. Usually, the base types should be used. Application of the

persistent types should be reserved for special circumstances. See create for information about creating
new instances of a property.

Member functions
STRING propertyname.setvalue strvalue

propertyname.setstring strvalue; synonym for .setvalue
propertyname.withvalue method string

propertyname.append strvalue

propertyname.tokenize classArrayName

propertyname.tokenizeOnStr classArrayName strvalue

propertyname.tokenizeOnChars classArrayName strvalue

propertyname.expandNumlist
propertyname.storeDialogClassName
propertyname.storeClsArrayToQuotedStr classArrayName

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplescreate
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.

Dialog programming — Dialog programming 60

DOUBLE propertyname.setvalue value

propertyname.withvalue method string

propertyname.increment
propertyname.decrement
propertyname.add value

propertyname.subtract value

propertyname.multiply value

propertyname.divide value

propertyname.storeClsArraySize classArrayName

BOOLEAN propertyname.settrue
propertyname.setfalse
propertyname.storeClsObjectExists objectName

Special definitions

strvalue Definition

”string” quoted string literal

literal string same as string

c(name) contents of c(name); see [P] creturn
r(name) contents of r(name); see [P] return
e(name) contents of e(name); see [P] ereturn
s(name) contents of s(name); see [P] return
char varname[charname] value of characteristic; see [P] char

global name contents of global macro $name

class objectName contents of a class system object; object name may be a
fully qualified object name, or it may be given in the scope of
the dialog box

value Definition

a numeric literal

literal # same as #

c(name) value of c(name); see [P] creturn
r(name) value of r(name); see [P] return
e(name) value of e(name); see [P] ereturn
s(name) value of s(name); see [P] return
global name value of global macro $name

class objectName contents of a class system object. The object name may be a
fully qualified object name or it may be given in the scope of
the dialog box.

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesspecialdefs.
https://www.stata.com/manuals/pcreturn.pdf#pcreturn
https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/pereturn.pdf#pereturn
https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/pchar.pdf#pchar
https://www.stata.com/manuals/pcreturn.pdf#pcreturn
https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/pereturn.pdf#pereturn
https://www.stata.com/manuals/preturn.pdf#preturn

Dialog programming — Dialog programming 61

7. Child dialogs

Syntax
create CHILD dialogname [AS referenceName] [, nomodal allowsubmit

allowcopy message(string)]

Member functions
settitle string sets the title text of the child dialog box

setExitString string informs the child where to save the command string when the OK or

Submit button is clicked on
setOkAction string informs the child that it is to invoke a specific action in the parent when

the OK button is clicked on and the child exits
setSubmitAction string informs the child that it is to invoke a specific action in the parent when

the Submit button is clicked on
setExitAction string informs the child that it is to invoke a specific action in the parent when

the OK or Submit button is clicked on; note that setExitAction has the
same effect as calling both setOkAction and setSubmitAction with

the same argument

create property allows the parent to create properties in the child; see 6. Properties

callthru gaction allows the parent to call global actions in the context of the child

Description
Child dialogs are dialogs that are spawned by another dialog. These dialogs form a relationship where

the initial dialog is referred to as the parent and all dialogs spawned from that parent are referred to as

its children. In most circumstances, the children collect information and return that information to the

parent for later use. Unless AS referencename has been specified, children are referenced through the

dialogname.

Options
nomodal suppresses the default modal behavior of a child dialog unless the MODAL directive was specif-

ically used inside the child dialog resource file.

allowsubmit allows for the use of the Submit button in the dialog box. By default, the Submit button
is removed if it has been declared in the child dialog resource file.

allowcopy allows for the use of the Copy button in the dialog box. By default, the Copy button is

removed if it has been declared in the child dialog resource file.

message(string) specifies that string be passed to the child dialog box, where it can be referenced from
STRING property named MESSAGE.

7.1 Referencing the parent
While it is normally not necessary, it is sometimes useful for a child dialog box to give special in-

structions or information to its parent. All child dialog boxes contain a special object named PARENT,
which can be used with a member program named callthru. PARENT.callthru can be used to call

any intermediate action in the context of the parent dialog box.

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamples6.Properties

Dialog programming — Dialog programming 62

8. Example
The following example will execute the summarize command. In addition to the copy below, a copy

can be found among the Stata distribution materials. You can type

. which sumexample.dlg

to find out where it is.

sumexample.dlg
// sumexample
// version 1.0.0
VERSION 19.5 // or VERSION 19.0 if you do not have StataNow
POSITION . . 320 200
DIALOG main, title(”Example simple summarize dialog”) tabtitle(”Main”)
BEGIN

TEXT lab 10 10 300 ., label(”Variables to summarize:”)
VARLIST vars @ +20 @ ., label(”Variables to sum”)

END
DIALOG options, tabtitle(”Options”)
BEGIN

CHECKBOX detail 10 10 300 ., ///
label(”Show detailed statistics”) ///
option(”detail”) ///
onclickoff(‘”options.status.setlabel ”(detail is off)””’) ///
onclickon(‘”gaction options.status.setlabel ”(detail is on)””’)

TEXT status @ +20 @ ., ///
label(”This label won’t be seen”)

BUTTON btnhide @ +30 200 ., ///
label(”Hide other controls”) push(”script hidethem”)

BUTTON btnshow @ +30 @ ., ///
label(”Show other controls”) push(”script showthem”)

BUTTON btngrey @ +30 @ ., ///
label(”Disable other controls”) push(”script disablethem”)

BUTTON btnnorm @ +30 @ ., ///
label(”Enable other controls”) push(”script enablethem”)

END
SCRIPT hidethem
BEGIN

gaction main.lab.hide
main.vars.hide
options.detail.hide
options.status.hide

END
SCRIPT showthem
BEGIN

main.lab.show
main.vars.show
options.detail.show
options.status.show

END

Dialog programming — Dialog programming 63

SCRIPT disablethem
BEGIN

main.lab.disable
main.vars.disable
options.detail.disable
options.status.disable

END
SCRIPT enablethem
BEGIN

main.lab.enable
main.vars.enable
options.detail.enable
options.status.enable

END

OK ok1, label(”Ok”)
CANCEL can1
SUBMIT sub1
HELP hlp1, view(”help summarize”)
RESET res1
PROGRAM command
BEGIN

put ”summarize”
varlist main.vars /* varlist [main.vars] to make it optional */
beginoptions

option options.detail
endoptions

END
sumexample.dlg

Appendix A. Jargon
action: See i-action and u-action.

browser: See file chooser.

button: A type of input control; a button causes an i-action to occur when it is clicked on. Also see

u-action buttons, helper buttons, and radio buttons.

checkbox: A type of numeric input control; the user may either check or uncheck what is presented;

suitable for obtaining yes/no responses. A checkbox has value 0 or 1, depending on whether the item

is checked.

combo box: A type of string input control that has an edit field at the top and a list box underneath.

Combo boxes come in three types:

A regular combo box has an edit field and a list below it. The user may choose from the list or type

into the edit field.

A drop-down combo box also has an edit field and a list, but only the edit field shows. The user can

click to expose the list. The user may choose from the list or type in the edit field.

A drop-down-list combo box is more like a list box. An edit field is displayed. The list is hidden, and

the user can click to expose the list, but the user can only choose elements from the list; he or she

cannot type in the edit field.

control: See input control and static control.

control status: Whether a control (input or static) is disabled or enabled, hidden or shown.

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesiaction
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesuaction
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesfile_chooser
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesu-action_buttons
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexampleshelper_buttons
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesradio_buttons
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesinput_control
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesstatic_control

Dialog programming — Dialog programming 64

dialog(s): The main components of a dialog box in that the dialogs contain all the controls except for

the u-action buttons.

dialog box: Something that pops up onto the screen that the user fills in; when the user clicks on an

action button, the dialog box causes something to happen (namely, Stata to execute a command).

A dialog box is made up of one or more dialogs, u-action buttons, and a title bar.

If the dialog box contains more than one dialog, only one of the dialogs shows at a time, which one

being determined by the tab selected.

dialog program: See PROGRAM.

disabled and enabled: A control that is disabled is visually grayed out; otherwise, it is enabled. The

user cannot modify disabled input controls. Also see hidden and exposed.

.dlg file: The file containing the code defining a dialog box and its actions. If the file is named xyz.dlg,
the dialog box is said to be named xyz.

dlg-program: The entire contents of a .dlg file; the code defining a dialog box and its actions.

edit field: A type of string input control; a box in which the user may type text.

enabled and disabled: See disabled and enabled.

exposed and hidden: See hidden and exposed.

file browser: See file chooser.

file chooser: A type of string input control; presents a list of files from which the user may choose one

or type a filename.

frame: A type of static control; a rectangle drawn around a group of controls.

group box: A type of static control; a rectangle drawn around a group of controls with descriptive text

at the top.

helper buttons: The buttonsHelp andReset. WhenHelp is clicked on, the help topic for the dialog box

is displayed. When Reset is clicked on, the control values of the dialog box are reset to their defaults.

hidden and exposed: A control that is removed from the screen is said to be hidden; otherwise, it is

exposed. Hidden input controls cannot be manipulated by the user. A control would also not be

shown when it is contained in a dialog that does not have its tab selected in a multidialog dialog box;

in this case, it may be invisible, but whether it is hidden or exposed is another matter. Also see disabled

and enabled.

i-action: An intermediate action usually caused by the interaction of a user with an input control, such as

hiding or showing and disabling or enabling other controls; opening the Viewer to display something;

or executing a SCRIPT or a PROGRAM.

input control: Ascreen element that the user fills in or sets. Controls include checkboxes, buttons, radio

buttons, edit fields, spinners, file choosers, etc. Input controls have (set) values, which can be string,

numeric, or special. These values reflect how the user has “filled in” the control. Input controls are

said to be string or numeric depending on the type of result they obtain (and how they store it).

Also see static control.

label or title: See title or label.

list: A programming concept; a vector of elements.

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesPROGRAM
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexampleshidden_and_exposed
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesdisabled_and_enabled
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexampleshidden_and_exposed
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesfile_chooser
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesdisabled_and_enabled
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesdisabled_and_enabled
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesstatic_control
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplestitle_or_label

Dialog programming — Dialog programming 65

list box: A type of string input control; presents a list of items from which the user may choose. A list

box has (sets) a string value.

numeric input control: An input control that returns a numeric value associated with it.

position: Where something is located, measured from the top left by how far to the right it is (x) and

how far down it is (y).

PROGRAM: A programming concept dealing with the implementation of dialogs. PROGRAMs may be

used to implement i-actions or u-actions. Also see SCRIPT.

radio buttons: A set of numeric input controls, each a button, of which only one may be selected at a

time; suitable for obtaining categorical responses. Each radio button in the set has (sets) a numeric

value, 0 or 1, depending on which button is selected. Only one in the set will be 1.

SCRIPT:A programming concept dealing with the implementation of dialogs. An array of i-actions to

be executed one after the other; errors that occur do not stop subsequent actions from being attempted.

Also see PROGRAM.

size: How large something is, measured from its top-left corner, as a width (xsize) and height (ysize).

Height is measured from the top down.

spinner: Atype of numeric input control; presents a numeric value that the user may increase or decrease

over a range. A spinner has (sets) a numeric value.

static control: A screen element similar to an input control, except that the end user cannot interact with

it. Static controls include static text and lines drawn around controls visually to group them together

(group boxes and frames). Also see control and input control.

static text: A static control specifying text to be placed on a dialog.

string input control: An input control that returns a string value associated with it.

tabs: The small labels at the top of each dialog (when there is more than one dialog associated with the

dialog box) and on which the user clicks to select the dialog to be filled in.

title or label: The fixed text that appears above or on objects such as dialog boxes and buttons. Controls

are usually said to be labeled, whereas dialog boxes are said to be titled.

u-action: What a dialog box causes to happen after the user has filled it in and clicked on a u-action

(ultimate action) button. The point of a dialog box is to result in a u-action.

u-action buttons: The buttons OK, Submit, Cancel, and Copy; clicking on one causes the ultimate

action (u-action) associated with the button to occur and, perhaps, the dialog box to close.

varlist or varname control: A type of string input control; an edit field that also accepts input from

the Variables window. This control also contains a combo-box-style list of the variables. A varlist or

varname control has (sets) a string value.

Appendix B. Class definition of dialog boxes
Dialog boxes are implemented in terms of class programming; see [P] class.

The top-level class instance of a dialog box defined in dialogbox.dlg is .dialogbox dlg. Dialogs
and controls are nested within that, so .dialogbox dlg.dialogname would refer to a dialog, and .di-
alogbox dlg.dialogname.controlname would refer to a control in the dialog.

.dialogbox dlg.dialogname.controlname.value is the current value of the control, which will be

either a string or a double. You must not change this value.

https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesSCRIPT
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesPROGRAM
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplescontrol
https://www.stata.com/manuals/pdialogprogramming.pdf#pDialogprogrammingRemarksandexamplesinput_control
https://www.stata.com/manuals/pclass.pdf#pclass

Dialog programming — Dialog programming 66

The member functions of the controls are implemented as member functions of .dialog-
box dlg.dialogname.controlname and may be called in the standard way.

Appendix C. Interface guidelines for dialog boxes
One of Stata’s strengths is its strong support for cross-platform use—datasets and programs are com-

pletely compatible across platforms. This includes dialogs written in the dialog-programming language.

Although Mac, Windows, and X Windows share many common graphical user-interface elements and

concepts, they all vary slightly in their appearance and implementation. This variation makes it diffi-

cult to design dialogs that look and behave the same across all platforms. Dialogs should look pleasant

on screen to enhance their usability, and achieving this goal often means being platform specific when

laying out controls. This often leads to undesirable results on other platforms.

The dialog-programming language was written with this in mind, and dialogs that appear and behave

the same across multiple operating systems and appear pleasant can be created by following some simple

guidelines.

Use default heights where applicable: Varying vertical-size requirements of controls across different

operating systems can cause a dialog that appears properly on one platform to display controls that

overlap one another on another platform. Using the default ysize of . takes these variations into

account and allows for much easier placement and alignment of controls. Some controls (list boxes,

regular combo boxes, group boxes, and frames) still require their ysize to be specified because their

vertical size determines how much information they can reveal.

Use all horizontal space available: Different platforms use different types of fonts to display text labels

and control values. These variations can cause some control labels to be truncated (or even word

wrapped) if their xsize is not large enough for a platform’s system font. To prevent this from happen-

ing, specify an xsize that is as large as possible. For each column of controls, specify the entire column

width for each control’s xsize, even for controls where it is obviously unnecessary. This reduces the

chances of a control’s label being truncated on another platform and also allows you to make changes

to the label without constantly having to adjust the xsize. If your control barely fits into the space

allocated to it, consider making your dialog slightly larger.

Use the appropriate alignment for static text controls: The variations in system fonts also make it

difficult to horizontally align static text controls with other controls. Placing a static text control next

to an edit field may look good on one platform but show up with too much space between the controls

on another or even show up truncated.

One solution is to place static text controls above controls that have an edit field and make the static

text control as wide as possible. This gives more room for the static text control and makes it easier

to left-justify it with other controls.

When placing a static text control to the left of a control is more appropriate (such as From: and To:

edit fields), use right-alignment rather than the default left-alignment. The two controls will then be

equally spaced apart on all platforms. Again be sure to make the static text control slightly wider than

necessary—do not try to left-justify a right-aligned static text control with controls above and below

it because it may not appear left-justified on other platforms or may even be truncated.

Do not crowd controls: Without making your dialog box unnecessarily large, use all the space that is

available. Organize related controls close together, and put some distance between unrelated ones.

Do not overload users with lots of controls in one dialog. If necessary, group controls in separate

dialogs. Most importantly, be consistent in how you layout controls.

Dialog programming — Dialog programming 67

All vertical size and spacing of controls involves multiples of 10 pixels: The default ysize for most

controls is 20 pixels. Related controls are typically spaced 10 pixels apart, and unrelated ones are at

least 20 pixels apart.

Use the appropriate control for the job: Checkboxes have two states: on or off. A radio-button group

consisting of two radio buttons similarly has two states. A checkbox is appropriate when the action

taken is either on or off or easy to infer (for example, Use constant). A two-radio-button group is

appropriate when the opposite state cannot be inferred (for example, Display graph and Display

table).

Radio-button groups should contain at least two radio buttons and no more than about seven. If you

need more choices, consider using a drop-down-list combo box or, if the number of choices is greater

than about 12, a list box. If you require a control that allows multiple selections, consider a regular

combo box or drop-down combo box. Drop-down combo boxes can be cumbersome to use if the

number of choices is great, so use a regular combo box unless space is limited.

Understand control precedence for mouse clicks: Because of the limited size of dialogs, you may

want to place several controls within the same area and hide and show them as necessary. It is also

useful to place controls within other controls, such as group boxes and frames, for organizational and

presentational purposes. However, the order of creation and placement and size of controls can affect

which controls receive mouse clicks first or whether they receive them at all.

The control where this can be problematic is the radio button. On some platforms, the space occupied

by a group of radio buttons is not the space occupied by the individual radio buttons. It is inclusive

to the space occupied by the radio button that is closest to the top-left corner of the dialog, the widest

radio button, and the bottommost radio button. To prevent a group of radio buttons from preventing

mouse clicks being received by other controls, Stata gives precedence to all other controls except for

group boxes and frames. The order of precedence for controls that can receive mouse clicks is the

following: first, all controls other than radio buttons and checkbox group boxes, then radio buttons,

then checkbox group boxes.

If you intend to place two or more groups of radio buttons in the same area and show and hide them as

necessary, be sure that when you hide the radio buttons from a group, you hide all radio buttons from

a group. The radio-button group with precedence over other groups will continue to have precedence

as long as any of its radio buttons are visible. Mouse clicks in the space occupied by nonvisible radio

buttons in a group with precedence will not pass through to any other groups occupying the same

space.

It is always safe to place controls within frames, group boxes, and checkbox group boxes because all

other controls take precedence over those controls.

In practice, you should never hide a radio button from a group without hiding the rest of the radio

buttons from the group. Consider simply disabling the radio button or buttons instead. It is also not a

good idea to hide or show radio buttons from different groups to make them appear that they are from

the same group. That simply will not work on some platforms and is generally a bad idea, anyway.

Radio buttons have precedence over checkbox group boxes. You may place radio buttons within a

checkbox group box, but do not place a checkbox group box within the space occupied by a group of

radio buttons. If you do, you may not be able to click on the checkbox control on some platforms.

Frequently asked questions
See dialog programming FAQs on the Stata website.

https://www.stata.com/support/faqs/lang/#dialog

Dialog programming — Dialog programming 68

Also see
[P] window programming — Programming menus and windows

[R] db — Launch dialog

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/pwindowprogramming.pdf#pwindowprogramming
https://www.stata.com/manuals/rdb.pdf#rdb
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

